2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
57 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
58 #define SMALL_ALLOCATION 4
59 #define FREE_ALL_PAGES (~0U)
60 /* times are in msecs */
61 #define IS_UNDEFINED (0)
64 #define IS_CACHED (1<<3)
65 #define IS_DMA32 (1<<4)
71 POOL_IS_CACHED
= IS_CACHED
,
72 POOL_IS_WC_DMA32
= IS_WC
| IS_DMA32
,
73 POOL_IS_UC_DMA32
= IS_UC
| IS_DMA32
,
74 POOL_IS_CACHED_DMA32
= IS_CACHED
| IS_DMA32
,
77 * The pool structure. There are usually six pools:
78 * - generic (not restricted to DMA32):
79 * - write combined, uncached, cached.
80 * - dma32 (up to 2^32 - so up 4GB):
81 * - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if neccessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
89 * @inuse_list: Pool of pages that are in use. The order is very important and
90 * it is in the order that the TTM pages that are put back are in.
91 * @free_list: Pool of pages that are free to be used. No order requirements.
92 * @dev: The device that is associated with these pools.
93 * @size: Size used during DMA allocation.
94 * @npages_free: Count of available pages for re-use.
95 * @npages_in_use: Count of pages that are in use.
96 * @nfrees: Stats when pool is shrinking.
97 * @nrefills: Stats when the pool is grown.
98 * @gfp_flags: Flags to pass for alloc_page.
99 * @name: Name of the pool.
100 * @dev_name: Name derieved from dev - similar to how dev_info works.
101 * Used during shutdown as the dev_info during release is unavailable.
104 struct list_head pools
; /* The 'struct device->dma_pools link */
107 struct list_head inuse_list
;
108 struct list_head free_list
;
111 unsigned npages_free
;
112 unsigned npages_in_use
;
113 unsigned long nfrees
; /* Stats when shrunk. */
114 unsigned long nrefills
; /* Stats when grown. */
116 char name
[13]; /* "cached dma32" */
117 char dev_name
[64]; /* Constructed from dev */
121 * The accounting page keeping track of the allocated page along with
123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
124 * @vaddr: The virtual address of the page
125 * @dma: The bus address of the page. If the page is not allocated
126 * via the DMA API, it will be -1.
129 struct list_head page_list
;
136 * Limits for the pool. They are handled without locks because only place where
137 * they may change is in sysfs store. They won't have immediate effect anyway
138 * so forcing serialization to access them is pointless.
141 struct ttm_pool_opts
{
148 * Contains the list of all of the 'struct device' and their corresponding
149 * DMA pools. Guarded by _mutex->lock.
150 * @pools: The link to 'struct ttm_pool_manager->pools'
151 * @dev: The 'struct device' associated with the 'pool'
152 * @pool: The 'struct dma_pool' associated with the 'dev'
154 struct device_pools
{
155 struct list_head pools
;
157 struct dma_pool
*pool
;
161 * struct ttm_pool_manager - Holds memory pools for fast allocation
163 * @lock: Lock used when adding/removing from pools
164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
165 * @options: Limits for the pool.
166 * @npools: Total amount of pools in existence.
167 * @shrinker: The structure used by [un|]register_shrinker
169 struct ttm_pool_manager
{
171 struct list_head pools
;
172 struct ttm_pool_opts options
;
174 struct shrinker mm_shrink
;
178 static struct ttm_pool_manager
*_manager
;
180 static struct attribute ttm_page_pool_max
= {
181 .name
= "pool_max_size",
182 .mode
= S_IRUGO
| S_IWUSR
184 static struct attribute ttm_page_pool_small
= {
185 .name
= "pool_small_allocation",
186 .mode
= S_IRUGO
| S_IWUSR
188 static struct attribute ttm_page_pool_alloc_size
= {
189 .name
= "pool_allocation_size",
190 .mode
= S_IRUGO
| S_IWUSR
193 static struct attribute
*ttm_pool_attrs
[] = {
195 &ttm_page_pool_small
,
196 &ttm_page_pool_alloc_size
,
200 static void ttm_pool_kobj_release(struct kobject
*kobj
)
202 struct ttm_pool_manager
*m
=
203 container_of(kobj
, struct ttm_pool_manager
, kobj
);
207 static ssize_t
ttm_pool_store(struct kobject
*kobj
, struct attribute
*attr
,
208 const char *buffer
, size_t size
)
210 struct ttm_pool_manager
*m
=
211 container_of(kobj
, struct ttm_pool_manager
, kobj
);
214 chars
= sscanf(buffer
, "%u", &val
);
218 /* Convert kb to number of pages */
219 val
= val
/ (PAGE_SIZE
>> 10);
221 if (attr
== &ttm_page_pool_max
)
222 m
->options
.max_size
= val
;
223 else if (attr
== &ttm_page_pool_small
)
224 m
->options
.small
= val
;
225 else if (attr
== &ttm_page_pool_alloc_size
) {
226 if (val
> NUM_PAGES_TO_ALLOC
*8) {
227 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
228 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
229 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
231 } else if (val
> NUM_PAGES_TO_ALLOC
) {
232 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
233 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
235 m
->options
.alloc_size
= val
;
241 static ssize_t
ttm_pool_show(struct kobject
*kobj
, struct attribute
*attr
,
244 struct ttm_pool_manager
*m
=
245 container_of(kobj
, struct ttm_pool_manager
, kobj
);
248 if (attr
== &ttm_page_pool_max
)
249 val
= m
->options
.max_size
;
250 else if (attr
== &ttm_page_pool_small
)
251 val
= m
->options
.small
;
252 else if (attr
== &ttm_page_pool_alloc_size
)
253 val
= m
->options
.alloc_size
;
255 val
= val
* (PAGE_SIZE
>> 10);
257 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
260 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
261 .show
= &ttm_pool_show
,
262 .store
= &ttm_pool_store
,
265 static struct kobj_type ttm_pool_kobj_type
= {
266 .release
= &ttm_pool_kobj_release
,
267 .sysfs_ops
= &ttm_pool_sysfs_ops
,
268 .default_attrs
= ttm_pool_attrs
,
272 static int set_pages_array_wb(struct page
**pages
, int addrinarray
)
277 for (i
= 0; i
< addrinarray
; i
++)
278 unmap_page_from_agp(pages
[i
]);
283 static int set_pages_array_wc(struct page
**pages
, int addrinarray
)
288 for (i
= 0; i
< addrinarray
; i
++)
289 map_page_into_agp(pages
[i
]);
294 static int set_pages_array_uc(struct page
**pages
, int addrinarray
)
299 for (i
= 0; i
< addrinarray
; i
++)
300 map_page_into_agp(pages
[i
]);
304 #endif /* for !CONFIG_X86 */
306 static int ttm_set_pages_caching(struct dma_pool
*pool
,
307 struct page
**pages
, unsigned cpages
)
310 /* Set page caching */
311 if (pool
->type
& IS_UC
) {
312 r
= set_pages_array_uc(pages
, cpages
);
314 pr_err("%s: Failed to set %d pages to uc!\n",
315 pool
->dev_name
, cpages
);
317 if (pool
->type
& IS_WC
) {
318 r
= set_pages_array_wc(pages
, cpages
);
320 pr_err("%s: Failed to set %d pages to wc!\n",
321 pool
->dev_name
, cpages
);
326 static void __ttm_dma_free_page(struct dma_pool
*pool
, struct dma_page
*d_page
)
328 dma_addr_t dma
= d_page
->dma
;
329 dma_free_coherent(pool
->dev
, pool
->size
, d_page
->vaddr
, dma
);
334 static struct dma_page
*__ttm_dma_alloc_page(struct dma_pool
*pool
)
336 struct dma_page
*d_page
;
338 d_page
= kmalloc(sizeof(struct dma_page
), GFP_KERNEL
);
342 d_page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->size
,
346 if (is_vmalloc_addr(d_page
->vaddr
))
347 d_page
->p
= vmalloc_to_page(d_page
->vaddr
);
349 d_page
->p
= virt_to_page(d_page
->vaddr
);
356 static enum pool_type
ttm_to_type(int flags
, enum ttm_caching_state cstate
)
358 enum pool_type type
= IS_UNDEFINED
;
360 if (flags
& TTM_PAGE_FLAG_DMA32
)
362 if (cstate
== tt_cached
)
364 else if (cstate
== tt_uncached
)
372 static void ttm_pool_update_free_locked(struct dma_pool
*pool
,
373 unsigned freed_pages
)
375 pool
->npages_free
-= freed_pages
;
376 pool
->nfrees
+= freed_pages
;
380 /* set memory back to wb and free the pages. */
381 static void ttm_dma_pages_put(struct dma_pool
*pool
, struct list_head
*d_pages
,
382 struct page
*pages
[], unsigned npages
)
384 struct dma_page
*d_page
, *tmp
;
386 /* Don't set WB on WB page pool. */
387 if (npages
&& !(pool
->type
& IS_CACHED
) &&
388 set_pages_array_wb(pages
, npages
))
389 pr_err("%s: Failed to set %d pages to wb!\n",
390 pool
->dev_name
, npages
);
392 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
393 list_del(&d_page
->page_list
);
394 __ttm_dma_free_page(pool
, d_page
);
398 static void ttm_dma_page_put(struct dma_pool
*pool
, struct dma_page
*d_page
)
400 /* Don't set WB on WB page pool. */
401 if (!(pool
->type
& IS_CACHED
) && set_pages_array_wb(&d_page
->p
, 1))
402 pr_err("%s: Failed to set %d pages to wb!\n",
405 list_del(&d_page
->page_list
);
406 __ttm_dma_free_page(pool
, d_page
);
410 * Free pages from pool.
412 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
413 * number of pages in one go.
415 * @pool: to free the pages from
416 * @nr_free: If set to true will free all pages in pool
417 * @use_static: Safe to use static buffer
419 static unsigned ttm_dma_page_pool_free(struct dma_pool
*pool
, unsigned nr_free
,
422 static struct page
*static_buf
[NUM_PAGES_TO_ALLOC
];
423 unsigned long irq_flags
;
424 struct dma_page
*dma_p
, *tmp
;
425 struct page
**pages_to_free
;
426 struct list_head d_pages
;
427 unsigned freed_pages
= 0,
428 npages_to_free
= nr_free
;
430 if (NUM_PAGES_TO_ALLOC
< nr_free
)
431 npages_to_free
= NUM_PAGES_TO_ALLOC
;
434 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
435 pool
->dev_name
, pool
->name
, current
->pid
,
436 npages_to_free
, nr_free
);
440 pages_to_free
= static_buf
;
442 pages_to_free
= kmalloc(npages_to_free
* sizeof(struct page
*),
445 if (!pages_to_free
) {
446 pr_err("%s: Failed to allocate memory for pool free operation\n",
450 INIT_LIST_HEAD(&d_pages
);
452 spin_lock_irqsave(&pool
->lock
, irq_flags
);
454 /* We picking the oldest ones off the list */
455 list_for_each_entry_safe_reverse(dma_p
, tmp
, &pool
->free_list
,
457 if (freed_pages
>= npages_to_free
)
460 /* Move the dma_page from one list to another. */
461 list_move(&dma_p
->page_list
, &d_pages
);
463 pages_to_free
[freed_pages
++] = dma_p
->p
;
464 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
465 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
467 ttm_pool_update_free_locked(pool
, freed_pages
);
469 * Because changing page caching is costly
470 * we unlock the pool to prevent stalling.
472 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
474 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
,
477 INIT_LIST_HEAD(&d_pages
);
479 if (likely(nr_free
!= FREE_ALL_PAGES
))
480 nr_free
-= freed_pages
;
482 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
483 npages_to_free
= nr_free
;
485 npages_to_free
= NUM_PAGES_TO_ALLOC
;
489 /* free all so restart the processing */
493 /* Not allowed to fall through or break because
494 * following context is inside spinlock while we are
502 /* remove range of pages from the pool */
504 ttm_pool_update_free_locked(pool
, freed_pages
);
505 nr_free
-= freed_pages
;
508 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
511 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
, freed_pages
);
513 if (pages_to_free
!= static_buf
)
514 kfree(pages_to_free
);
518 static void ttm_dma_free_pool(struct device
*dev
, enum pool_type type
)
520 struct device_pools
*p
;
521 struct dma_pool
*pool
;
526 mutex_lock(&_manager
->lock
);
527 list_for_each_entry_reverse(p
, &_manager
->pools
, pools
) {
531 if (pool
->type
!= type
)
539 list_for_each_entry_reverse(pool
, &dev
->dma_pools
, pools
) {
540 if (pool
->type
!= type
)
542 /* Takes a spinlock.. */
543 /* OK to use static buffer since global mutex is held. */
544 ttm_dma_page_pool_free(pool
, FREE_ALL_PAGES
, true);
545 WARN_ON(((pool
->npages_in_use
+ pool
->npages_free
) != 0));
546 /* This code path is called after _all_ references to the
547 * struct device has been dropped - so nobody should be
548 * touching it. In case somebody is trying to _add_ we are
549 * guarded by the mutex. */
550 list_del(&pool
->pools
);
554 mutex_unlock(&_manager
->lock
);
558 * On free-ing of the 'struct device' this deconstructor is run.
559 * Albeit the pool might have already been freed earlier.
561 static void ttm_dma_pool_release(struct device
*dev
, void *res
)
563 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
566 ttm_dma_free_pool(dev
, pool
->type
);
569 static int ttm_dma_pool_match(struct device
*dev
, void *res
, void *match_data
)
571 return *(struct dma_pool
**)res
== match_data
;
574 static struct dma_pool
*ttm_dma_pool_init(struct device
*dev
, gfp_t flags
,
577 char *n
[] = {"wc", "uc", "cached", " dma32", "unknown",};
578 enum pool_type t
[] = {IS_WC
, IS_UC
, IS_CACHED
, IS_DMA32
, IS_UNDEFINED
};
579 struct device_pools
*sec_pool
= NULL
;
580 struct dma_pool
*pool
= NULL
, **ptr
;
588 ptr
= devres_alloc(ttm_dma_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
594 pool
= kmalloc_node(sizeof(struct dma_pool
), GFP_KERNEL
,
599 sec_pool
= kmalloc_node(sizeof(struct device_pools
), GFP_KERNEL
,
604 INIT_LIST_HEAD(&sec_pool
->pools
);
606 sec_pool
->pool
= pool
;
608 INIT_LIST_HEAD(&pool
->free_list
);
609 INIT_LIST_HEAD(&pool
->inuse_list
);
610 INIT_LIST_HEAD(&pool
->pools
);
611 spin_lock_init(&pool
->lock
);
613 pool
->npages_free
= pool
->npages_in_use
= 0;
615 pool
->gfp_flags
= flags
;
616 pool
->size
= PAGE_SIZE
;
620 for (i
= 0; i
< 5; i
++) {
622 p
+= snprintf(p
, sizeof(pool
->name
) - (p
- pool
->name
),
627 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
628 * - the kobj->name has already been deallocated.*/
629 snprintf(pool
->dev_name
, sizeof(pool
->dev_name
), "%s %s",
630 dev_driver_string(dev
), dev_name(dev
));
631 mutex_lock(&_manager
->lock
);
632 /* You can get the dma_pool from either the global: */
633 list_add(&sec_pool
->pools
, &_manager
->pools
);
635 /* or from 'struct device': */
636 list_add(&pool
->pools
, &dev
->dma_pools
);
637 mutex_unlock(&_manager
->lock
);
640 devres_add(dev
, ptr
);
650 static struct dma_pool
*ttm_dma_find_pool(struct device
*dev
,
653 struct dma_pool
*pool
, *tmp
, *found
= NULL
;
655 if (type
== IS_UNDEFINED
)
658 /* NB: We iterate on the 'struct dev' which has no spinlock, but
659 * it does have a kref which we have taken. The kref is taken during
660 * graphic driver loading - in the drm_pci_init it calls either
661 * pci_dev_get or pci_register_driver which both end up taking a kref
662 * on 'struct device'.
664 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
665 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
666 * thing is at that point of time there are no pages associated with the
667 * driver so this function will not be called.
669 list_for_each_entry_safe(pool
, tmp
, &dev
->dma_pools
, pools
) {
670 if (pool
->type
!= type
)
679 * Free pages the pages that failed to change the caching state. If there
680 * are pages that have changed their caching state already put them to the
683 static void ttm_dma_handle_caching_state_failure(struct dma_pool
*pool
,
684 struct list_head
*d_pages
,
685 struct page
**failed_pages
,
688 struct dma_page
*d_page
, *tmp
;
695 /* Find the failed page. */
696 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
699 /* .. and then progress over the full list. */
700 list_del(&d_page
->page_list
);
701 __ttm_dma_free_page(pool
, d_page
);
711 * Allocate 'count' pages, and put 'need' number of them on the
712 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
713 * The full list of pages should also be on 'd_pages'.
714 * We return zero for success, and negative numbers as errors.
716 static int ttm_dma_pool_alloc_new_pages(struct dma_pool
*pool
,
717 struct list_head
*d_pages
,
720 struct page
**caching_array
;
721 struct dma_page
*dma_p
;
725 unsigned max_cpages
= min(count
,
726 (unsigned)(PAGE_SIZE
/sizeof(struct page
*)));
728 /* allocate array for page caching change */
729 caching_array
= kmalloc(max_cpages
*sizeof(struct page
*), GFP_KERNEL
);
731 if (!caching_array
) {
732 pr_err("%s: Unable to allocate table for new pages\n",
738 pr_debug("%s: (%s:%d) Getting %d pages\n",
739 pool
->dev_name
, pool
->name
, current
->pid
, count
);
742 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
743 dma_p
= __ttm_dma_alloc_page(pool
);
745 pr_err("%s: Unable to get page %u\n",
748 /* store already allocated pages in the pool after
749 * setting the caching state */
751 r
= ttm_set_pages_caching(pool
, caching_array
,
754 ttm_dma_handle_caching_state_failure(
755 pool
, d_pages
, caching_array
,
762 #ifdef CONFIG_HIGHMEM
763 /* gfp flags of highmem page should never be dma32 so we
764 * we should be fine in such case
769 caching_array
[cpages
++] = p
;
770 if (cpages
== max_cpages
) {
771 /* Note: Cannot hold the spinlock */
772 r
= ttm_set_pages_caching(pool
, caching_array
,
775 ttm_dma_handle_caching_state_failure(
776 pool
, d_pages
, caching_array
,
783 list_add(&dma_p
->page_list
, d_pages
);
787 r
= ttm_set_pages_caching(pool
, caching_array
, cpages
);
789 ttm_dma_handle_caching_state_failure(pool
, d_pages
,
790 caching_array
, cpages
);
793 kfree(caching_array
);
798 * @return count of pages still required to fulfill the request.
800 static int ttm_dma_page_pool_fill_locked(struct dma_pool
*pool
,
801 unsigned long *irq_flags
)
803 unsigned count
= _manager
->options
.small
;
804 int r
= pool
->npages_free
;
806 if (count
> pool
->npages_free
) {
807 struct list_head d_pages
;
809 INIT_LIST_HEAD(&d_pages
);
811 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
813 /* Returns how many more are neccessary to fulfill the
815 r
= ttm_dma_pool_alloc_new_pages(pool
, &d_pages
, count
);
817 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
819 /* Add the fresh to the end.. */
820 list_splice(&d_pages
, &pool
->free_list
);
822 pool
->npages_free
+= count
;
825 struct dma_page
*d_page
;
828 pr_err("%s: Failed to fill %s pool (r:%d)!\n",
829 pool
->dev_name
, pool
->name
, r
);
831 list_for_each_entry(d_page
, &d_pages
, page_list
) {
834 list_splice_tail(&d_pages
, &pool
->free_list
);
835 pool
->npages_free
+= cpages
;
843 * @return count of pages still required to fulfill the request.
844 * The populate list is actually a stack (not that is matters as TTM
845 * allocates one page at a time.
847 static int ttm_dma_pool_get_pages(struct dma_pool
*pool
,
848 struct ttm_dma_tt
*ttm_dma
,
851 struct dma_page
*d_page
;
852 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
853 unsigned long irq_flags
;
854 int count
, r
= -ENOMEM
;
856 spin_lock_irqsave(&pool
->lock
, irq_flags
);
857 count
= ttm_dma_page_pool_fill_locked(pool
, &irq_flags
);
859 d_page
= list_first_entry(&pool
->free_list
, struct dma_page
, page_list
);
860 ttm
->pages
[index
] = d_page
->p
;
861 ttm_dma
->cpu_address
[index
] = d_page
->vaddr
;
862 ttm_dma
->dma_address
[index
] = d_page
->dma
;
863 list_move_tail(&d_page
->page_list
, &ttm_dma
->pages_list
);
865 pool
->npages_in_use
+= 1;
866 pool
->npages_free
-= 1;
868 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
873 * On success pages list will hold count number of correctly
874 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
876 int ttm_dma_populate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
878 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
879 struct ttm_mem_global
*mem_glob
= ttm
->glob
->mem_glob
;
880 struct dma_pool
*pool
;
886 if (ttm
->state
!= tt_unpopulated
)
889 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
890 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
891 gfp_flags
= GFP_USER
| GFP_DMA32
;
893 gfp_flags
= GFP_HIGHUSER
;
894 if (ttm
->page_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
895 gfp_flags
|= __GFP_ZERO
;
897 pool
= ttm_dma_find_pool(dev
, type
);
899 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
);
900 if (IS_ERR_OR_NULL(pool
)) {
905 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
906 for (i
= 0; i
< ttm
->num_pages
; ++i
) {
907 ret
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
909 ttm_dma_unpopulate(ttm_dma
, dev
);
913 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
915 if (unlikely(ret
!= 0)) {
916 ttm_dma_unpopulate(ttm_dma
, dev
);
921 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
922 ret
= ttm_tt_swapin(ttm
);
923 if (unlikely(ret
!= 0)) {
924 ttm_dma_unpopulate(ttm_dma
, dev
);
929 ttm
->state
= tt_unbound
;
932 EXPORT_SYMBOL_GPL(ttm_dma_populate
);
934 /* Put all pages in pages list to correct pool to wait for reuse */
935 void ttm_dma_unpopulate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
937 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
938 struct dma_pool
*pool
;
939 struct dma_page
*d_page
, *next
;
941 bool is_cached
= false;
942 unsigned count
= 0, i
, npages
= 0;
943 unsigned long irq_flags
;
945 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
946 pool
= ttm_dma_find_pool(dev
, type
);
950 is_cached
= (ttm_dma_find_pool(pool
->dev
,
951 ttm_to_type(ttm
->page_flags
, tt_cached
)) == pool
);
953 /* make sure pages array match list and count number of pages */
954 list_for_each_entry(d_page
, &ttm_dma
->pages_list
, page_list
) {
955 ttm
->pages
[count
] = d_page
->p
;
959 spin_lock_irqsave(&pool
->lock
, irq_flags
);
960 pool
->npages_in_use
-= count
;
962 pool
->nfrees
+= count
;
964 pool
->npages_free
+= count
;
965 list_splice(&ttm_dma
->pages_list
, &pool
->free_list
);
967 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
968 * to free in order to minimize calls to set_memory_wb().
970 if (pool
->npages_free
>= (_manager
->options
.max_size
+
972 npages
= pool
->npages_free
- _manager
->options
.max_size
;
974 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
977 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
, page_list
) {
978 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
980 ttm_dma_page_put(pool
, d_page
);
983 for (i
= 0; i
< count
; i
++) {
984 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
989 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
990 for (i
= 0; i
< ttm
->num_pages
; i
++) {
991 ttm
->pages
[i
] = NULL
;
992 ttm_dma
->cpu_address
[i
] = 0;
993 ttm_dma
->dma_address
[i
] = 0;
996 /* shrink pool if necessary (only on !is_cached pools)*/
998 ttm_dma_page_pool_free(pool
, npages
, false);
999 ttm
->state
= tt_unpopulated
;
1001 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate
);
1004 * Callback for mm to request pool to reduce number of page held.
1006 * XXX: (dchinner) Deadlock warning!
1008 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1011 static unsigned long
1012 ttm_dma_pool_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
1014 static unsigned start_pool
;
1016 unsigned pool_offset
;
1017 unsigned shrink_pages
= sc
->nr_to_scan
;
1018 struct device_pools
*p
;
1019 unsigned long freed
= 0;
1021 if (list_empty(&_manager
->pools
))
1024 if (!mutex_trylock(&_manager
->lock
))
1026 if (!_manager
->npools
)
1028 pool_offset
= ++start_pool
% _manager
->npools
;
1029 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1034 if (shrink_pages
== 0)
1036 /* Do it in round-robin fashion. */
1037 if (++idx
< pool_offset
)
1039 nr_free
= shrink_pages
;
1040 /* OK to use static buffer since global mutex is held. */
1041 shrink_pages
= ttm_dma_page_pool_free(p
->pool
, nr_free
, true);
1042 freed
+= nr_free
- shrink_pages
;
1044 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1045 p
->pool
->dev_name
, p
->pool
->name
, current
->pid
,
1046 nr_free
, shrink_pages
);
1049 mutex_unlock(&_manager
->lock
);
1053 static unsigned long
1054 ttm_dma_pool_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
1056 struct device_pools
*p
;
1057 unsigned long count
= 0;
1059 if (!mutex_trylock(&_manager
->lock
))
1061 list_for_each_entry(p
, &_manager
->pools
, pools
)
1062 count
+= p
->pool
->npages_free
;
1063 mutex_unlock(&_manager
->lock
);
1067 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
1069 manager
->mm_shrink
.count_objects
= ttm_dma_pool_shrink_count
;
1070 manager
->mm_shrink
.scan_objects
= &ttm_dma_pool_shrink_scan
;
1071 manager
->mm_shrink
.seeks
= 1;
1072 register_shrinker(&manager
->mm_shrink
);
1075 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
1077 unregister_shrinker(&manager
->mm_shrink
);
1080 int ttm_dma_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
1086 pr_info("Initializing DMA pool allocator\n");
1088 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
1092 mutex_init(&_manager
->lock
);
1093 INIT_LIST_HEAD(&_manager
->pools
);
1095 _manager
->options
.max_size
= max_pages
;
1096 _manager
->options
.small
= SMALL_ALLOCATION
;
1097 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
1099 /* This takes care of auto-freeing the _manager */
1100 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
1101 &glob
->kobj
, "dma_pool");
1102 if (unlikely(ret
!= 0)) {
1103 kobject_put(&_manager
->kobj
);
1106 ttm_dma_pool_mm_shrink_init(_manager
);
1112 void ttm_dma_page_alloc_fini(void)
1114 struct device_pools
*p
, *t
;
1116 pr_info("Finalizing DMA pool allocator\n");
1117 ttm_dma_pool_mm_shrink_fini(_manager
);
1119 list_for_each_entry_safe_reverse(p
, t
, &_manager
->pools
, pools
) {
1120 dev_dbg(p
->dev
, "(%s:%d) Freeing.\n", p
->pool
->name
,
1122 WARN_ON(devres_destroy(p
->dev
, ttm_dma_pool_release
,
1123 ttm_dma_pool_match
, p
->pool
));
1124 ttm_dma_free_pool(p
->dev
, p
->pool
->type
);
1126 kobject_put(&_manager
->kobj
);
1130 int ttm_dma_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1132 struct device_pools
*p
;
1133 struct dma_pool
*pool
= NULL
;
1134 char *h
[] = {"pool", "refills", "pages freed", "inuse", "available",
1135 "name", "virt", "busaddr"};
1138 seq_printf(m
, "No pool allocator running.\n");
1141 seq_printf(m
, "%13s %12s %13s %8s %8s %8s\n",
1142 h
[0], h
[1], h
[2], h
[3], h
[4], h
[5]);
1143 mutex_lock(&_manager
->lock
);
1144 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1145 struct device
*dev
= p
->dev
;
1149 seq_printf(m
, "%13s %12ld %13ld %8d %8d %8s\n",
1150 pool
->name
, pool
->nrefills
,
1151 pool
->nfrees
, pool
->npages_in_use
,
1155 mutex_unlock(&_manager
->lock
);
1158 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs
);