Linux 4.2.1
[linux/fpc-iii.git] / drivers / md / bcache / request.c
blobf292790997d72b98fc633dd3da089d93443fbdfa
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
20 #include <trace/events/bcache.h>
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
25 struct kmem_cache *bch_search_cache;
27 static void bch_data_insert_start(struct closure *);
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
31 return BDEV_CACHE_MODE(&dc->sb);
34 static bool verify(struct cached_dev *dc, struct bio *bio)
36 return dc->verify;
39 static void bio_csum(struct bio *bio, struct bkey *k)
41 struct bio_vec bv;
42 struct bvec_iter iter;
43 uint64_t csum = 0;
45 bio_for_each_segment(bv, bio, iter) {
46 void *d = kmap(bv.bv_page) + bv.bv_offset;
47 csum = bch_crc64_update(csum, d, bv.bv_len);
48 kunmap(bv.bv_page);
51 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 /* Insert data into cache */
56 static void bch_data_insert_keys(struct closure *cl)
58 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59 atomic_t *journal_ref = NULL;
60 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61 int ret;
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
66 * a time
68 * XXX: this looks wrong
70 #if 0
71 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 closure_sync(&s->cl);
73 #endif
75 if (!op->replace)
76 journal_ref = bch_journal(op->c, &op->insert_keys,
77 op->flush_journal ? cl : NULL);
79 ret = bch_btree_insert(op->c, &op->insert_keys,
80 journal_ref, replace_key);
81 if (ret == -ESRCH) {
82 op->replace_collision = true;
83 } else if (ret) {
84 op->error = -ENOMEM;
85 op->insert_data_done = true;
88 if (journal_ref)
89 atomic_dec_bug(journal_ref);
91 if (!op->insert_data_done) {
92 continue_at(cl, bch_data_insert_start, op->wq);
93 return;
96 bch_keylist_free(&op->insert_keys);
97 closure_return(cl);
100 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
101 struct cache_set *c)
103 size_t oldsize = bch_keylist_nkeys(l);
104 size_t newsize = oldsize + u64s;
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
112 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
113 return -ENOMEM;
115 return __bch_keylist_realloc(l, u64s);
118 static void bch_data_invalidate(struct closure *cl)
120 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
121 struct bio *bio = op->bio;
123 pr_debug("invalidating %i sectors from %llu",
124 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126 while (bio_sectors(bio)) {
127 unsigned sectors = min(bio_sectors(bio),
128 1U << (KEY_SIZE_BITS - 1));
130 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
131 goto out;
133 bio->bi_iter.bi_sector += sectors;
134 bio->bi_iter.bi_size -= sectors << 9;
136 bch_keylist_add(&op->insert_keys,
137 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
140 op->insert_data_done = true;
141 bio_put(bio);
142 out:
143 continue_at(cl, bch_data_insert_keys, op->wq);
146 static void bch_data_insert_error(struct closure *cl)
148 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
159 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
161 while (src != op->insert_keys.top) {
162 struct bkey *n = bkey_next(src);
164 SET_KEY_PTRS(src, 0);
165 memmove(dst, src, bkey_bytes(src));
167 dst = bkey_next(dst);
168 src = n;
171 op->insert_keys.top = dst;
173 bch_data_insert_keys(cl);
176 static void bch_data_insert_endio(struct bio *bio, int error)
178 struct closure *cl = bio->bi_private;
179 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
181 if (error) {
182 /* TODO: We could try to recover from this. */
183 if (op->writeback)
184 op->error = error;
185 else if (!op->replace)
186 set_closure_fn(cl, bch_data_insert_error, op->wq);
187 else
188 set_closure_fn(cl, NULL, NULL);
191 bch_bbio_endio(op->c, bio, error, "writing data to cache");
194 static void bch_data_insert_start(struct closure *cl)
196 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
197 struct bio *bio = op->bio, *n;
199 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
200 set_gc_sectors(op->c);
201 wake_up_gc(op->c);
204 if (op->bypass)
205 return bch_data_invalidate(cl);
208 * Journal writes are marked REQ_FLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
211 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
213 do {
214 unsigned i;
215 struct bkey *k;
216 struct bio_set *split = op->c->bio_split;
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op->insert_keys,
220 3 + (op->csum ? 1 : 0),
221 op->c)) {
222 continue_at(cl, bch_data_insert_keys, op->wq);
223 return;
226 k = op->insert_keys.top;
227 bkey_init(k);
228 SET_KEY_INODE(k, op->inode);
229 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
231 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
232 op->write_point, op->write_prio,
233 op->writeback))
234 goto err;
236 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
238 n->bi_end_io = bch_data_insert_endio;
239 n->bi_private = cl;
241 if (op->writeback) {
242 SET_KEY_DIRTY(k, true);
244 for (i = 0; i < KEY_PTRS(k); i++)
245 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
246 GC_MARK_DIRTY);
249 SET_KEY_CSUM(k, op->csum);
250 if (KEY_CSUM(k))
251 bio_csum(n, k);
253 trace_bcache_cache_insert(k);
254 bch_keylist_push(&op->insert_keys);
256 n->bi_rw |= REQ_WRITE;
257 bch_submit_bbio(n, op->c, k, 0);
258 } while (n != bio);
260 op->insert_data_done = true;
261 continue_at(cl, bch_data_insert_keys, op->wq);
262 return;
263 err:
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op->writeback);
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
273 if (!op->replace) {
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
278 * rest of the write.
280 op->bypass = true;
281 return bch_data_invalidate(cl);
282 } else {
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
287 op->insert_data_done = true;
288 bio_put(bio);
290 if (!bch_keylist_empty(&op->insert_keys))
291 continue_at(cl, bch_data_insert_keys, op->wq);
292 else
293 closure_return(cl);
298 * bch_data_insert - stick some data in the cache
300 * This is the starting point for any data to end up in a cache device; it could
301 * be from a normal write, or a writeback write, or a write to a flash only
302 * volume - it's also used by the moving garbage collector to compact data in
303 * mostly empty buckets.
305 * It first writes the data to the cache, creating a list of keys to be inserted
306 * (if the data had to be fragmented there will be multiple keys); after the
307 * data is written it calls bch_journal, and after the keys have been added to
308 * the next journal write they're inserted into the btree.
310 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
311 * and op->inode is used for the key inode.
313 * If s->bypass is true, instead of inserting the data it invalidates the
314 * region of the cache represented by s->cache_bio and op->inode.
316 void bch_data_insert(struct closure *cl)
318 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
320 trace_bcache_write(op->c, op->inode, op->bio,
321 op->writeback, op->bypass);
323 bch_keylist_init(&op->insert_keys);
324 bio_get(op->bio);
325 bch_data_insert_start(cl);
328 /* Congested? */
330 unsigned bch_get_congested(struct cache_set *c)
332 int i;
333 long rand;
335 if (!c->congested_read_threshold_us &&
336 !c->congested_write_threshold_us)
337 return 0;
339 i = (local_clock_us() - c->congested_last_us) / 1024;
340 if (i < 0)
341 return 0;
343 i += atomic_read(&c->congested);
344 if (i >= 0)
345 return 0;
347 i += CONGESTED_MAX;
349 if (i > 0)
350 i = fract_exp_two(i, 6);
352 rand = get_random_int();
353 i -= bitmap_weight(&rand, BITS_PER_LONG);
355 return i > 0 ? i : 1;
358 static void add_sequential(struct task_struct *t)
360 ewma_add(t->sequential_io_avg,
361 t->sequential_io, 8, 0);
363 t->sequential_io = 0;
366 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
368 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
371 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
373 struct cache_set *c = dc->disk.c;
374 unsigned mode = cache_mode(dc, bio);
375 unsigned sectors, congested = bch_get_congested(c);
376 struct task_struct *task = current;
377 struct io *i;
379 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
380 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
381 (bio->bi_rw & REQ_DISCARD))
382 goto skip;
384 if (mode == CACHE_MODE_NONE ||
385 (mode == CACHE_MODE_WRITEAROUND &&
386 (bio->bi_rw & REQ_WRITE)))
387 goto skip;
389 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
390 bio_sectors(bio) & (c->sb.block_size - 1)) {
391 pr_debug("skipping unaligned io");
392 goto skip;
395 if (bypass_torture_test(dc)) {
396 if ((get_random_int() & 3) == 3)
397 goto skip;
398 else
399 goto rescale;
402 if (!congested && !dc->sequential_cutoff)
403 goto rescale;
405 if (!congested &&
406 mode == CACHE_MODE_WRITEBACK &&
407 (bio->bi_rw & REQ_WRITE) &&
408 (bio->bi_rw & REQ_SYNC))
409 goto rescale;
411 spin_lock(&dc->io_lock);
413 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
414 if (i->last == bio->bi_iter.bi_sector &&
415 time_before(jiffies, i->jiffies))
416 goto found;
418 i = list_first_entry(&dc->io_lru, struct io, lru);
420 add_sequential(task);
421 i->sequential = 0;
422 found:
423 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
424 i->sequential += bio->bi_iter.bi_size;
426 i->last = bio_end_sector(bio);
427 i->jiffies = jiffies + msecs_to_jiffies(5000);
428 task->sequential_io = i->sequential;
430 hlist_del(&i->hash);
431 hlist_add_head(&i->hash, iohash(dc, i->last));
432 list_move_tail(&i->lru, &dc->io_lru);
434 spin_unlock(&dc->io_lock);
436 sectors = max(task->sequential_io,
437 task->sequential_io_avg) >> 9;
439 if (dc->sequential_cutoff &&
440 sectors >= dc->sequential_cutoff >> 9) {
441 trace_bcache_bypass_sequential(bio);
442 goto skip;
445 if (congested && sectors >= congested) {
446 trace_bcache_bypass_congested(bio);
447 goto skip;
450 rescale:
451 bch_rescale_priorities(c, bio_sectors(bio));
452 return false;
453 skip:
454 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
455 return true;
458 /* Cache lookup */
460 struct search {
461 /* Stack frame for bio_complete */
462 struct closure cl;
464 struct bbio bio;
465 struct bio *orig_bio;
466 struct bio *cache_miss;
467 struct bcache_device *d;
469 unsigned insert_bio_sectors;
470 unsigned recoverable:1;
471 unsigned write:1;
472 unsigned read_dirty_data:1;
474 unsigned long start_time;
476 struct btree_op op;
477 struct data_insert_op iop;
480 static void bch_cache_read_endio(struct bio *bio, int error)
482 struct bbio *b = container_of(bio, struct bbio, bio);
483 struct closure *cl = bio->bi_private;
484 struct search *s = container_of(cl, struct search, cl);
487 * If the bucket was reused while our bio was in flight, we might have
488 * read the wrong data. Set s->error but not error so it doesn't get
489 * counted against the cache device, but we'll still reread the data
490 * from the backing device.
493 if (error)
494 s->iop.error = error;
495 else if (!KEY_DIRTY(&b->key) &&
496 ptr_stale(s->iop.c, &b->key, 0)) {
497 atomic_long_inc(&s->iop.c->cache_read_races);
498 s->iop.error = -EINTR;
501 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
505 * Read from a single key, handling the initial cache miss if the key starts in
506 * the middle of the bio
508 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
510 struct search *s = container_of(op, struct search, op);
511 struct bio *n, *bio = &s->bio.bio;
512 struct bkey *bio_key;
513 unsigned ptr;
515 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
516 return MAP_CONTINUE;
518 if (KEY_INODE(k) != s->iop.inode ||
519 KEY_START(k) > bio->bi_iter.bi_sector) {
520 unsigned bio_sectors = bio_sectors(bio);
521 unsigned sectors = KEY_INODE(k) == s->iop.inode
522 ? min_t(uint64_t, INT_MAX,
523 KEY_START(k) - bio->bi_iter.bi_sector)
524 : INT_MAX;
526 int ret = s->d->cache_miss(b, s, bio, sectors);
527 if (ret != MAP_CONTINUE)
528 return ret;
530 /* if this was a complete miss we shouldn't get here */
531 BUG_ON(bio_sectors <= sectors);
534 if (!KEY_SIZE(k))
535 return MAP_CONTINUE;
537 /* XXX: figure out best pointer - for multiple cache devices */
538 ptr = 0;
540 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
542 if (KEY_DIRTY(k))
543 s->read_dirty_data = true;
545 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
546 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
547 GFP_NOIO, s->d->bio_split);
549 bio_key = &container_of(n, struct bbio, bio)->key;
550 bch_bkey_copy_single_ptr(bio_key, k, ptr);
552 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
553 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
555 n->bi_end_io = bch_cache_read_endio;
556 n->bi_private = &s->cl;
559 * The bucket we're reading from might be reused while our bio
560 * is in flight, and we could then end up reading the wrong
561 * data.
563 * We guard against this by checking (in cache_read_endio()) if
564 * the pointer is stale again; if so, we treat it as an error
565 * and reread from the backing device (but we don't pass that
566 * error up anywhere).
569 __bch_submit_bbio(n, b->c);
570 return n == bio ? MAP_DONE : MAP_CONTINUE;
573 static void cache_lookup(struct closure *cl)
575 struct search *s = container_of(cl, struct search, iop.cl);
576 struct bio *bio = &s->bio.bio;
577 int ret;
579 bch_btree_op_init(&s->op, -1);
581 ret = bch_btree_map_keys(&s->op, s->iop.c,
582 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
583 cache_lookup_fn, MAP_END_KEY);
584 if (ret == -EAGAIN) {
585 continue_at(cl, cache_lookup, bcache_wq);
586 return;
589 closure_return(cl);
592 /* Common code for the make_request functions */
594 static void request_endio(struct bio *bio, int error)
596 struct closure *cl = bio->bi_private;
598 if (error) {
599 struct search *s = container_of(cl, struct search, cl);
600 s->iop.error = error;
601 /* Only cache read errors are recoverable */
602 s->recoverable = false;
605 bio_put(bio);
606 closure_put(cl);
609 static void bio_complete(struct search *s)
611 if (s->orig_bio) {
612 generic_end_io_acct(bio_data_dir(s->orig_bio),
613 &s->d->disk->part0, s->start_time);
615 trace_bcache_request_end(s->d, s->orig_bio);
616 bio_endio(s->orig_bio, s->iop.error);
617 s->orig_bio = NULL;
621 static void do_bio_hook(struct search *s, struct bio *orig_bio)
623 struct bio *bio = &s->bio.bio;
625 bio_init(bio);
626 __bio_clone_fast(bio, orig_bio);
627 bio->bi_end_io = request_endio;
628 bio->bi_private = &s->cl;
630 bio_cnt_set(bio, 3);
633 static void search_free(struct closure *cl)
635 struct search *s = container_of(cl, struct search, cl);
636 bio_complete(s);
638 if (s->iop.bio)
639 bio_put(s->iop.bio);
641 closure_debug_destroy(cl);
642 mempool_free(s, s->d->c->search);
645 static inline struct search *search_alloc(struct bio *bio,
646 struct bcache_device *d)
648 struct search *s;
650 s = mempool_alloc(d->c->search, GFP_NOIO);
652 closure_init(&s->cl, NULL);
653 do_bio_hook(s, bio);
655 s->orig_bio = bio;
656 s->cache_miss = NULL;
657 s->d = d;
658 s->recoverable = 1;
659 s->write = (bio->bi_rw & REQ_WRITE) != 0;
660 s->read_dirty_data = 0;
661 s->start_time = jiffies;
663 s->iop.c = d->c;
664 s->iop.bio = NULL;
665 s->iop.inode = d->id;
666 s->iop.write_point = hash_long((unsigned long) current, 16);
667 s->iop.write_prio = 0;
668 s->iop.error = 0;
669 s->iop.flags = 0;
670 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
671 s->iop.wq = bcache_wq;
673 return s;
676 /* Cached devices */
678 static void cached_dev_bio_complete(struct closure *cl)
680 struct search *s = container_of(cl, struct search, cl);
681 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
683 search_free(cl);
684 cached_dev_put(dc);
687 /* Process reads */
689 static void cached_dev_cache_miss_done(struct closure *cl)
691 struct search *s = container_of(cl, struct search, cl);
693 if (s->iop.replace_collision)
694 bch_mark_cache_miss_collision(s->iop.c, s->d);
696 if (s->iop.bio) {
697 int i;
698 struct bio_vec *bv;
700 bio_for_each_segment_all(bv, s->iop.bio, i)
701 __free_page(bv->bv_page);
704 cached_dev_bio_complete(cl);
707 static void cached_dev_read_error(struct closure *cl)
709 struct search *s = container_of(cl, struct search, cl);
710 struct bio *bio = &s->bio.bio;
712 if (s->recoverable) {
713 /* Retry from the backing device: */
714 trace_bcache_read_retry(s->orig_bio);
716 s->iop.error = 0;
717 do_bio_hook(s, s->orig_bio);
719 /* XXX: invalidate cache */
721 closure_bio_submit(bio, cl, s->d);
724 continue_at(cl, cached_dev_cache_miss_done, NULL);
727 static void cached_dev_read_done(struct closure *cl)
729 struct search *s = container_of(cl, struct search, cl);
730 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
733 * We had a cache miss; cache_bio now contains data ready to be inserted
734 * into the cache.
736 * First, we copy the data we just read from cache_bio's bounce buffers
737 * to the buffers the original bio pointed to:
740 if (s->iop.bio) {
741 bio_reset(s->iop.bio);
742 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
743 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
744 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
745 bch_bio_map(s->iop.bio, NULL);
747 bio_copy_data(s->cache_miss, s->iop.bio);
749 bio_put(s->cache_miss);
750 s->cache_miss = NULL;
753 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
754 bch_data_verify(dc, s->orig_bio);
756 bio_complete(s);
758 if (s->iop.bio &&
759 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
760 BUG_ON(!s->iop.replace);
761 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
764 continue_at(cl, cached_dev_cache_miss_done, NULL);
767 static void cached_dev_read_done_bh(struct closure *cl)
769 struct search *s = container_of(cl, struct search, cl);
770 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
772 bch_mark_cache_accounting(s->iop.c, s->d,
773 !s->cache_miss, s->iop.bypass);
774 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
776 if (s->iop.error)
777 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
778 else if (s->iop.bio || verify(dc, &s->bio.bio))
779 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
780 else
781 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
784 static int cached_dev_cache_miss(struct btree *b, struct search *s,
785 struct bio *bio, unsigned sectors)
787 int ret = MAP_CONTINUE;
788 unsigned reada = 0;
789 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
790 struct bio *miss, *cache_bio;
792 if (s->cache_miss || s->iop.bypass) {
793 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
794 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
795 goto out_submit;
798 if (!(bio->bi_rw & REQ_RAHEAD) &&
799 !(bio->bi_rw & REQ_META) &&
800 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
801 reada = min_t(sector_t, dc->readahead >> 9,
802 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
804 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
806 s->iop.replace_key = KEY(s->iop.inode,
807 bio->bi_iter.bi_sector + s->insert_bio_sectors,
808 s->insert_bio_sectors);
810 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
811 if (ret)
812 return ret;
814 s->iop.replace = true;
816 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
818 /* btree_search_recurse()'s btree iterator is no good anymore */
819 ret = miss == bio ? MAP_DONE : -EINTR;
821 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
822 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
823 dc->disk.bio_split);
824 if (!cache_bio)
825 goto out_submit;
827 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
828 cache_bio->bi_bdev = miss->bi_bdev;
829 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
831 cache_bio->bi_end_io = request_endio;
832 cache_bio->bi_private = &s->cl;
834 bch_bio_map(cache_bio, NULL);
835 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
836 goto out_put;
838 if (reada)
839 bch_mark_cache_readahead(s->iop.c, s->d);
841 s->cache_miss = miss;
842 s->iop.bio = cache_bio;
843 bio_get(cache_bio);
844 closure_bio_submit(cache_bio, &s->cl, s->d);
846 return ret;
847 out_put:
848 bio_put(cache_bio);
849 out_submit:
850 miss->bi_end_io = request_endio;
851 miss->bi_private = &s->cl;
852 closure_bio_submit(miss, &s->cl, s->d);
853 return ret;
856 static void cached_dev_read(struct cached_dev *dc, struct search *s)
858 struct closure *cl = &s->cl;
860 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
861 continue_at(cl, cached_dev_read_done_bh, NULL);
864 /* Process writes */
866 static void cached_dev_write_complete(struct closure *cl)
868 struct search *s = container_of(cl, struct search, cl);
869 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
871 up_read_non_owner(&dc->writeback_lock);
872 cached_dev_bio_complete(cl);
875 static void cached_dev_write(struct cached_dev *dc, struct search *s)
877 struct closure *cl = &s->cl;
878 struct bio *bio = &s->bio.bio;
879 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
880 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
882 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
884 down_read_non_owner(&dc->writeback_lock);
885 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
887 * We overlap with some dirty data undergoing background
888 * writeback, force this write to writeback
890 s->iop.bypass = false;
891 s->iop.writeback = true;
895 * Discards aren't _required_ to do anything, so skipping if
896 * check_overlapping returned true is ok
898 * But check_overlapping drops dirty keys for which io hasn't started,
899 * so we still want to call it.
901 if (bio->bi_rw & REQ_DISCARD)
902 s->iop.bypass = true;
904 if (should_writeback(dc, s->orig_bio,
905 cache_mode(dc, bio),
906 s->iop.bypass)) {
907 s->iop.bypass = false;
908 s->iop.writeback = true;
911 if (s->iop.bypass) {
912 s->iop.bio = s->orig_bio;
913 bio_get(s->iop.bio);
915 if (!(bio->bi_rw & REQ_DISCARD) ||
916 blk_queue_discard(bdev_get_queue(dc->bdev)))
917 closure_bio_submit(bio, cl, s->d);
918 } else if (s->iop.writeback) {
919 bch_writeback_add(dc);
920 s->iop.bio = bio;
922 if (bio->bi_rw & REQ_FLUSH) {
923 /* Also need to send a flush to the backing device */
924 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
925 dc->disk.bio_split);
927 flush->bi_rw = WRITE_FLUSH;
928 flush->bi_bdev = bio->bi_bdev;
929 flush->bi_end_io = request_endio;
930 flush->bi_private = cl;
932 closure_bio_submit(flush, cl, s->d);
934 } else {
935 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
937 closure_bio_submit(bio, cl, s->d);
940 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
941 continue_at(cl, cached_dev_write_complete, NULL);
944 static void cached_dev_nodata(struct closure *cl)
946 struct search *s = container_of(cl, struct search, cl);
947 struct bio *bio = &s->bio.bio;
949 if (s->iop.flush_journal)
950 bch_journal_meta(s->iop.c, cl);
952 /* If it's a flush, we send the flush to the backing device too */
953 closure_bio_submit(bio, cl, s->d);
955 continue_at(cl, cached_dev_bio_complete, NULL);
958 /* Cached devices - read & write stuff */
960 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
962 struct search *s;
963 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
964 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
965 int rw = bio_data_dir(bio);
967 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
969 bio->bi_bdev = dc->bdev;
970 bio->bi_iter.bi_sector += dc->sb.data_offset;
972 if (cached_dev_get(dc)) {
973 s = search_alloc(bio, d);
974 trace_bcache_request_start(s->d, bio);
976 if (!bio->bi_iter.bi_size) {
978 * can't call bch_journal_meta from under
979 * generic_make_request
981 continue_at_nobarrier(&s->cl,
982 cached_dev_nodata,
983 bcache_wq);
984 } else {
985 s->iop.bypass = check_should_bypass(dc, bio);
987 if (rw)
988 cached_dev_write(dc, s);
989 else
990 cached_dev_read(dc, s);
992 } else {
993 if ((bio->bi_rw & REQ_DISCARD) &&
994 !blk_queue_discard(bdev_get_queue(dc->bdev)))
995 bio_endio(bio, 0);
996 else
997 bch_generic_make_request(bio, &d->bio_split_hook);
1001 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1002 unsigned int cmd, unsigned long arg)
1004 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1005 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1008 static int cached_dev_congested(void *data, int bits)
1010 struct bcache_device *d = data;
1011 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1012 struct request_queue *q = bdev_get_queue(dc->bdev);
1013 int ret = 0;
1015 if (bdi_congested(&q->backing_dev_info, bits))
1016 return 1;
1018 if (cached_dev_get(dc)) {
1019 unsigned i;
1020 struct cache *ca;
1022 for_each_cache(ca, d->c, i) {
1023 q = bdev_get_queue(ca->bdev);
1024 ret |= bdi_congested(&q->backing_dev_info, bits);
1027 cached_dev_put(dc);
1030 return ret;
1033 void bch_cached_dev_request_init(struct cached_dev *dc)
1035 struct gendisk *g = dc->disk.disk;
1037 g->queue->make_request_fn = cached_dev_make_request;
1038 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1039 dc->disk.cache_miss = cached_dev_cache_miss;
1040 dc->disk.ioctl = cached_dev_ioctl;
1043 /* Flash backed devices */
1045 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1046 struct bio *bio, unsigned sectors)
1048 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1050 swap(bio->bi_iter.bi_size, bytes);
1051 zero_fill_bio(bio);
1052 swap(bio->bi_iter.bi_size, bytes);
1054 bio_advance(bio, bytes);
1056 if (!bio->bi_iter.bi_size)
1057 return MAP_DONE;
1059 return MAP_CONTINUE;
1062 static void flash_dev_nodata(struct closure *cl)
1064 struct search *s = container_of(cl, struct search, cl);
1066 if (s->iop.flush_journal)
1067 bch_journal_meta(s->iop.c, cl);
1069 continue_at(cl, search_free, NULL);
1072 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1074 struct search *s;
1075 struct closure *cl;
1076 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1077 int rw = bio_data_dir(bio);
1079 generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1081 s = search_alloc(bio, d);
1082 cl = &s->cl;
1083 bio = &s->bio.bio;
1085 trace_bcache_request_start(s->d, bio);
1087 if (!bio->bi_iter.bi_size) {
1089 * can't call bch_journal_meta from under
1090 * generic_make_request
1092 continue_at_nobarrier(&s->cl,
1093 flash_dev_nodata,
1094 bcache_wq);
1095 return;
1096 } else if (rw) {
1097 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1098 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1099 &KEY(d->id, bio_end_sector(bio), 0));
1101 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1102 s->iop.writeback = true;
1103 s->iop.bio = bio;
1105 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1106 } else {
1107 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1110 continue_at(cl, search_free, NULL);
1113 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1114 unsigned int cmd, unsigned long arg)
1116 return -ENOTTY;
1119 static int flash_dev_congested(void *data, int bits)
1121 struct bcache_device *d = data;
1122 struct request_queue *q;
1123 struct cache *ca;
1124 unsigned i;
1125 int ret = 0;
1127 for_each_cache(ca, d->c, i) {
1128 q = bdev_get_queue(ca->bdev);
1129 ret |= bdi_congested(&q->backing_dev_info, bits);
1132 return ret;
1135 void bch_flash_dev_request_init(struct bcache_device *d)
1137 struct gendisk *g = d->disk;
1139 g->queue->make_request_fn = flash_dev_make_request;
1140 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1141 d->cache_miss = flash_dev_cache_miss;
1142 d->ioctl = flash_dev_ioctl;
1145 void bch_request_exit(void)
1147 if (bch_search_cache)
1148 kmem_cache_destroy(bch_search_cache);
1151 int __init bch_request_init(void)
1153 bch_search_cache = KMEM_CACHE(search, 0);
1154 if (!bch_search_cache)
1155 return -ENOMEM;
1157 return 0;