2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
13 #include "writeback.h"
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
20 #include <trace/events/bcache.h>
22 #define CUTOFF_CACHE_ADD 95
23 #define CUTOFF_CACHE_READA 90
25 struct kmem_cache
*bch_search_cache
;
27 static void bch_data_insert_start(struct closure
*);
29 static unsigned cache_mode(struct cached_dev
*dc
, struct bio
*bio
)
31 return BDEV_CACHE_MODE(&dc
->sb
);
34 static bool verify(struct cached_dev
*dc
, struct bio
*bio
)
39 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
42 struct bvec_iter iter
;
45 bio_for_each_segment(bv
, bio
, iter
) {
46 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
47 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
51 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
54 /* Insert data into cache */
56 static void bch_data_insert_keys(struct closure
*cl
)
58 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
59 atomic_t
*journal_ref
= NULL
;
60 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
64 * If we're looping, might already be waiting on
65 * another journal write - can't wait on more than one journal write at
68 * XXX: this looks wrong
71 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
76 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
77 op
->flush_journal
? cl
: NULL
);
79 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
80 journal_ref
, replace_key
);
82 op
->replace_collision
= true;
85 op
->insert_data_done
= true;
89 atomic_dec_bug(journal_ref
);
91 if (!op
->insert_data_done
) {
92 continue_at(cl
, bch_data_insert_start
, op
->wq
);
96 bch_keylist_free(&op
->insert_keys
);
100 static int bch_keylist_realloc(struct keylist
*l
, unsigned u64s
,
103 size_t oldsize
= bch_keylist_nkeys(l
);
104 size_t newsize
= oldsize
+ u64s
;
107 * The journalling code doesn't handle the case where the keys to insert
108 * is bigger than an empty write: If we just return -ENOMEM here,
109 * bio_insert() and bio_invalidate() will insert the keys created so far
110 * and finish the rest when the keylist is empty.
112 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
115 return __bch_keylist_realloc(l
, u64s
);
118 static void bch_data_invalidate(struct closure
*cl
)
120 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
121 struct bio
*bio
= op
->bio
;
123 pr_debug("invalidating %i sectors from %llu",
124 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
126 while (bio_sectors(bio
)) {
127 unsigned sectors
= min(bio_sectors(bio
),
128 1U << (KEY_SIZE_BITS
- 1));
130 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
133 bio
->bi_iter
.bi_sector
+= sectors
;
134 bio
->bi_iter
.bi_size
-= sectors
<< 9;
136 bch_keylist_add(&op
->insert_keys
,
137 &KEY(op
->inode
, bio
->bi_iter
.bi_sector
, sectors
));
140 op
->insert_data_done
= true;
143 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
146 static void bch_data_insert_error(struct closure
*cl
)
148 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
151 * Our data write just errored, which means we've got a bunch of keys to
152 * insert that point to data that wasn't succesfully written.
154 * We don't have to insert those keys but we still have to invalidate
155 * that region of the cache - so, if we just strip off all the pointers
156 * from the keys we'll accomplish just that.
159 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
161 while (src
!= op
->insert_keys
.top
) {
162 struct bkey
*n
= bkey_next(src
);
164 SET_KEY_PTRS(src
, 0);
165 memmove(dst
, src
, bkey_bytes(src
));
167 dst
= bkey_next(dst
);
171 op
->insert_keys
.top
= dst
;
173 bch_data_insert_keys(cl
);
176 static void bch_data_insert_endio(struct bio
*bio
, int error
)
178 struct closure
*cl
= bio
->bi_private
;
179 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
182 /* TODO: We could try to recover from this. */
185 else if (!op
->replace
)
186 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
188 set_closure_fn(cl
, NULL
, NULL
);
191 bch_bbio_endio(op
->c
, bio
, error
, "writing data to cache");
194 static void bch_data_insert_start(struct closure
*cl
)
196 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
197 struct bio
*bio
= op
->bio
, *n
;
199 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0) {
200 set_gc_sectors(op
->c
);
205 return bch_data_invalidate(cl
);
208 * Journal writes are marked REQ_FLUSH; if the original write was a
209 * flush, it'll wait on the journal write.
211 bio
->bi_rw
&= ~(REQ_FLUSH
|REQ_FUA
);
216 struct bio_set
*split
= op
->c
->bio_split
;
218 /* 1 for the device pointer and 1 for the chksum */
219 if (bch_keylist_realloc(&op
->insert_keys
,
220 3 + (op
->csum
? 1 : 0),
222 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
226 k
= op
->insert_keys
.top
;
228 SET_KEY_INODE(k
, op
->inode
);
229 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
231 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
232 op
->write_point
, op
->write_prio
,
236 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
238 n
->bi_end_io
= bch_data_insert_endio
;
242 SET_KEY_DIRTY(k
, true);
244 for (i
= 0; i
< KEY_PTRS(k
); i
++)
245 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
249 SET_KEY_CSUM(k
, op
->csum
);
253 trace_bcache_cache_insert(k
);
254 bch_keylist_push(&op
->insert_keys
);
256 n
->bi_rw
|= REQ_WRITE
;
257 bch_submit_bbio(n
, op
->c
, k
, 0);
260 op
->insert_data_done
= true;
261 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
264 /* bch_alloc_sectors() blocks if s->writeback = true */
265 BUG_ON(op
->writeback
);
268 * But if it's not a writeback write we'd rather just bail out if
269 * there aren't any buckets ready to write to - it might take awhile and
270 * we might be starving btree writes for gc or something.
275 * Writethrough write: We can't complete the write until we've
276 * updated the index. But we don't want to delay the write while
277 * we wait for buckets to be freed up, so just invalidate the
281 return bch_data_invalidate(cl
);
284 * From a cache miss, we can just insert the keys for the data
285 * we have written or bail out if we didn't do anything.
287 op
->insert_data_done
= true;
290 if (!bch_keylist_empty(&op
->insert_keys
))
291 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
298 * bch_data_insert - stick some data in the cache
300 * This is the starting point for any data to end up in a cache device; it could
301 * be from a normal write, or a writeback write, or a write to a flash only
302 * volume - it's also used by the moving garbage collector to compact data in
303 * mostly empty buckets.
305 * It first writes the data to the cache, creating a list of keys to be inserted
306 * (if the data had to be fragmented there will be multiple keys); after the
307 * data is written it calls bch_journal, and after the keys have been added to
308 * the next journal write they're inserted into the btree.
310 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
311 * and op->inode is used for the key inode.
313 * If s->bypass is true, instead of inserting the data it invalidates the
314 * region of the cache represented by s->cache_bio and op->inode.
316 void bch_data_insert(struct closure
*cl
)
318 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
320 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
321 op
->writeback
, op
->bypass
);
323 bch_keylist_init(&op
->insert_keys
);
325 bch_data_insert_start(cl
);
330 unsigned bch_get_congested(struct cache_set
*c
)
335 if (!c
->congested_read_threshold_us
&&
336 !c
->congested_write_threshold_us
)
339 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
343 i
+= atomic_read(&c
->congested
);
350 i
= fract_exp_two(i
, 6);
352 rand
= get_random_int();
353 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
355 return i
> 0 ? i
: 1;
358 static void add_sequential(struct task_struct
*t
)
360 ewma_add(t
->sequential_io_avg
,
361 t
->sequential_io
, 8, 0);
363 t
->sequential_io
= 0;
366 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
368 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
371 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
373 struct cache_set
*c
= dc
->disk
.c
;
374 unsigned mode
= cache_mode(dc
, bio
);
375 unsigned sectors
, congested
= bch_get_congested(c
);
376 struct task_struct
*task
= current
;
379 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
380 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
381 (bio
->bi_rw
& REQ_DISCARD
))
384 if (mode
== CACHE_MODE_NONE
||
385 (mode
== CACHE_MODE_WRITEAROUND
&&
386 (bio
->bi_rw
& REQ_WRITE
)))
389 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
390 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
391 pr_debug("skipping unaligned io");
395 if (bypass_torture_test(dc
)) {
396 if ((get_random_int() & 3) == 3)
402 if (!congested
&& !dc
->sequential_cutoff
)
406 mode
== CACHE_MODE_WRITEBACK
&&
407 (bio
->bi_rw
& REQ_WRITE
) &&
408 (bio
->bi_rw
& REQ_SYNC
))
411 spin_lock(&dc
->io_lock
);
413 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
414 if (i
->last
== bio
->bi_iter
.bi_sector
&&
415 time_before(jiffies
, i
->jiffies
))
418 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
420 add_sequential(task
);
423 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
424 i
->sequential
+= bio
->bi_iter
.bi_size
;
426 i
->last
= bio_end_sector(bio
);
427 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
428 task
->sequential_io
= i
->sequential
;
431 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
432 list_move_tail(&i
->lru
, &dc
->io_lru
);
434 spin_unlock(&dc
->io_lock
);
436 sectors
= max(task
->sequential_io
,
437 task
->sequential_io_avg
) >> 9;
439 if (dc
->sequential_cutoff
&&
440 sectors
>= dc
->sequential_cutoff
>> 9) {
441 trace_bcache_bypass_sequential(bio
);
445 if (congested
&& sectors
>= congested
) {
446 trace_bcache_bypass_congested(bio
);
451 bch_rescale_priorities(c
, bio_sectors(bio
));
454 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
461 /* Stack frame for bio_complete */
465 struct bio
*orig_bio
;
466 struct bio
*cache_miss
;
467 struct bcache_device
*d
;
469 unsigned insert_bio_sectors
;
470 unsigned recoverable
:1;
472 unsigned read_dirty_data
:1;
474 unsigned long start_time
;
477 struct data_insert_op iop
;
480 static void bch_cache_read_endio(struct bio
*bio
, int error
)
482 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
483 struct closure
*cl
= bio
->bi_private
;
484 struct search
*s
= container_of(cl
, struct search
, cl
);
487 * If the bucket was reused while our bio was in flight, we might have
488 * read the wrong data. Set s->error but not error so it doesn't get
489 * counted against the cache device, but we'll still reread the data
490 * from the backing device.
494 s
->iop
.error
= error
;
495 else if (!KEY_DIRTY(&b
->key
) &&
496 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
497 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
498 s
->iop
.error
= -EINTR
;
501 bch_bbio_endio(s
->iop
.c
, bio
, error
, "reading from cache");
505 * Read from a single key, handling the initial cache miss if the key starts in
506 * the middle of the bio
508 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
510 struct search
*s
= container_of(op
, struct search
, op
);
511 struct bio
*n
, *bio
= &s
->bio
.bio
;
512 struct bkey
*bio_key
;
515 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
518 if (KEY_INODE(k
) != s
->iop
.inode
||
519 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
520 unsigned bio_sectors
= bio_sectors(bio
);
521 unsigned sectors
= KEY_INODE(k
) == s
->iop
.inode
522 ? min_t(uint64_t, INT_MAX
,
523 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
526 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
527 if (ret
!= MAP_CONTINUE
)
530 /* if this was a complete miss we shouldn't get here */
531 BUG_ON(bio_sectors
<= sectors
);
537 /* XXX: figure out best pointer - for multiple cache devices */
540 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
543 s
->read_dirty_data
= true;
545 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
546 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
547 GFP_NOIO
, s
->d
->bio_split
);
549 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
550 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
552 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
553 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
555 n
->bi_end_io
= bch_cache_read_endio
;
556 n
->bi_private
= &s
->cl
;
559 * The bucket we're reading from might be reused while our bio
560 * is in flight, and we could then end up reading the wrong
563 * We guard against this by checking (in cache_read_endio()) if
564 * the pointer is stale again; if so, we treat it as an error
565 * and reread from the backing device (but we don't pass that
566 * error up anywhere).
569 __bch_submit_bbio(n
, b
->c
);
570 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
573 static void cache_lookup(struct closure
*cl
)
575 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
576 struct bio
*bio
= &s
->bio
.bio
;
579 bch_btree_op_init(&s
->op
, -1);
581 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
582 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
583 cache_lookup_fn
, MAP_END_KEY
);
584 if (ret
== -EAGAIN
) {
585 continue_at(cl
, cache_lookup
, bcache_wq
);
592 /* Common code for the make_request functions */
594 static void request_endio(struct bio
*bio
, int error
)
596 struct closure
*cl
= bio
->bi_private
;
599 struct search
*s
= container_of(cl
, struct search
, cl
);
600 s
->iop
.error
= error
;
601 /* Only cache read errors are recoverable */
602 s
->recoverable
= false;
609 static void bio_complete(struct search
*s
)
612 generic_end_io_acct(bio_data_dir(s
->orig_bio
),
613 &s
->d
->disk
->part0
, s
->start_time
);
615 trace_bcache_request_end(s
->d
, s
->orig_bio
);
616 bio_endio(s
->orig_bio
, s
->iop
.error
);
621 static void do_bio_hook(struct search
*s
, struct bio
*orig_bio
)
623 struct bio
*bio
= &s
->bio
.bio
;
626 __bio_clone_fast(bio
, orig_bio
);
627 bio
->bi_end_io
= request_endio
;
628 bio
->bi_private
= &s
->cl
;
633 static void search_free(struct closure
*cl
)
635 struct search
*s
= container_of(cl
, struct search
, cl
);
641 closure_debug_destroy(cl
);
642 mempool_free(s
, s
->d
->c
->search
);
645 static inline struct search
*search_alloc(struct bio
*bio
,
646 struct bcache_device
*d
)
650 s
= mempool_alloc(d
->c
->search
, GFP_NOIO
);
652 closure_init(&s
->cl
, NULL
);
656 s
->cache_miss
= NULL
;
659 s
->write
= (bio
->bi_rw
& REQ_WRITE
) != 0;
660 s
->read_dirty_data
= 0;
661 s
->start_time
= jiffies
;
665 s
->iop
.inode
= d
->id
;
666 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
667 s
->iop
.write_prio
= 0;
670 s
->iop
.flush_journal
= (bio
->bi_rw
& (REQ_FLUSH
|REQ_FUA
)) != 0;
671 s
->iop
.wq
= bcache_wq
;
678 static void cached_dev_bio_complete(struct closure
*cl
)
680 struct search
*s
= container_of(cl
, struct search
, cl
);
681 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
689 static void cached_dev_cache_miss_done(struct closure
*cl
)
691 struct search
*s
= container_of(cl
, struct search
, cl
);
693 if (s
->iop
.replace_collision
)
694 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
700 bio_for_each_segment_all(bv
, s
->iop
.bio
, i
)
701 __free_page(bv
->bv_page
);
704 cached_dev_bio_complete(cl
);
707 static void cached_dev_read_error(struct closure
*cl
)
709 struct search
*s
= container_of(cl
, struct search
, cl
);
710 struct bio
*bio
= &s
->bio
.bio
;
712 if (s
->recoverable
) {
713 /* Retry from the backing device: */
714 trace_bcache_read_retry(s
->orig_bio
);
717 do_bio_hook(s
, s
->orig_bio
);
719 /* XXX: invalidate cache */
721 closure_bio_submit(bio
, cl
, s
->d
);
724 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
727 static void cached_dev_read_done(struct closure
*cl
)
729 struct search
*s
= container_of(cl
, struct search
, cl
);
730 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
733 * We had a cache miss; cache_bio now contains data ready to be inserted
736 * First, we copy the data we just read from cache_bio's bounce buffers
737 * to the buffers the original bio pointed to:
741 bio_reset(s
->iop
.bio
);
742 s
->iop
.bio
->bi_iter
.bi_sector
= s
->cache_miss
->bi_iter
.bi_sector
;
743 s
->iop
.bio
->bi_bdev
= s
->cache_miss
->bi_bdev
;
744 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
745 bch_bio_map(s
->iop
.bio
, NULL
);
747 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
749 bio_put(s
->cache_miss
);
750 s
->cache_miss
= NULL
;
753 if (verify(dc
, &s
->bio
.bio
) && s
->recoverable
&& !s
->read_dirty_data
)
754 bch_data_verify(dc
, s
->orig_bio
);
759 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
760 BUG_ON(!s
->iop
.replace
);
761 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
764 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
767 static void cached_dev_read_done_bh(struct closure
*cl
)
769 struct search
*s
= container_of(cl
, struct search
, cl
);
770 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
772 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
773 !s
->cache_miss
, s
->iop
.bypass
);
774 trace_bcache_read(s
->orig_bio
, !s
->cache_miss
, s
->iop
.bypass
);
777 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
778 else if (s
->iop
.bio
|| verify(dc
, &s
->bio
.bio
))
779 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
781 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
784 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
785 struct bio
*bio
, unsigned sectors
)
787 int ret
= MAP_CONTINUE
;
789 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
790 struct bio
*miss
, *cache_bio
;
792 if (s
->cache_miss
|| s
->iop
.bypass
) {
793 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
794 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
798 if (!(bio
->bi_rw
& REQ_RAHEAD
) &&
799 !(bio
->bi_rw
& REQ_META
) &&
800 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
801 reada
= min_t(sector_t
, dc
->readahead
>> 9,
802 bdev_sectors(bio
->bi_bdev
) - bio_end_sector(bio
));
804 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
806 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
807 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
808 s
->insert_bio_sectors
);
810 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
814 s
->iop
.replace
= true;
816 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, s
->d
->bio_split
);
818 /* btree_search_recurse()'s btree iterator is no good anymore */
819 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
821 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
822 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
827 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
828 cache_bio
->bi_bdev
= miss
->bi_bdev
;
829 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
831 cache_bio
->bi_end_io
= request_endio
;
832 cache_bio
->bi_private
= &s
->cl
;
834 bch_bio_map(cache_bio
, NULL
);
835 if (bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
839 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
841 s
->cache_miss
= miss
;
842 s
->iop
.bio
= cache_bio
;
844 closure_bio_submit(cache_bio
, &s
->cl
, s
->d
);
850 miss
->bi_end_io
= request_endio
;
851 miss
->bi_private
= &s
->cl
;
852 closure_bio_submit(miss
, &s
->cl
, s
->d
);
856 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
858 struct closure
*cl
= &s
->cl
;
860 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
861 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
866 static void cached_dev_write_complete(struct closure
*cl
)
868 struct search
*s
= container_of(cl
, struct search
, cl
);
869 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
871 up_read_non_owner(&dc
->writeback_lock
);
872 cached_dev_bio_complete(cl
);
875 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
877 struct closure
*cl
= &s
->cl
;
878 struct bio
*bio
= &s
->bio
.bio
;
879 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
880 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
882 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
884 down_read_non_owner(&dc
->writeback_lock
);
885 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
887 * We overlap with some dirty data undergoing background
888 * writeback, force this write to writeback
890 s
->iop
.bypass
= false;
891 s
->iop
.writeback
= true;
895 * Discards aren't _required_ to do anything, so skipping if
896 * check_overlapping returned true is ok
898 * But check_overlapping drops dirty keys for which io hasn't started,
899 * so we still want to call it.
901 if (bio
->bi_rw
& REQ_DISCARD
)
902 s
->iop
.bypass
= true;
904 if (should_writeback(dc
, s
->orig_bio
,
907 s
->iop
.bypass
= false;
908 s
->iop
.writeback
= true;
912 s
->iop
.bio
= s
->orig_bio
;
915 if (!(bio
->bi_rw
& REQ_DISCARD
) ||
916 blk_queue_discard(bdev_get_queue(dc
->bdev
)))
917 closure_bio_submit(bio
, cl
, s
->d
);
918 } else if (s
->iop
.writeback
) {
919 bch_writeback_add(dc
);
922 if (bio
->bi_rw
& REQ_FLUSH
) {
923 /* Also need to send a flush to the backing device */
924 struct bio
*flush
= bio_alloc_bioset(GFP_NOIO
, 0,
927 flush
->bi_rw
= WRITE_FLUSH
;
928 flush
->bi_bdev
= bio
->bi_bdev
;
929 flush
->bi_end_io
= request_endio
;
930 flush
->bi_private
= cl
;
932 closure_bio_submit(flush
, cl
, s
->d
);
935 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, dc
->disk
.bio_split
);
937 closure_bio_submit(bio
, cl
, s
->d
);
940 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
941 continue_at(cl
, cached_dev_write_complete
, NULL
);
944 static void cached_dev_nodata(struct closure
*cl
)
946 struct search
*s
= container_of(cl
, struct search
, cl
);
947 struct bio
*bio
= &s
->bio
.bio
;
949 if (s
->iop
.flush_journal
)
950 bch_journal_meta(s
->iop
.c
, cl
);
952 /* If it's a flush, we send the flush to the backing device too */
953 closure_bio_submit(bio
, cl
, s
->d
);
955 continue_at(cl
, cached_dev_bio_complete
, NULL
);
958 /* Cached devices - read & write stuff */
960 static void cached_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
963 struct bcache_device
*d
= bio
->bi_bdev
->bd_disk
->private_data
;
964 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
965 int rw
= bio_data_dir(bio
);
967 generic_start_io_acct(rw
, bio_sectors(bio
), &d
->disk
->part0
);
969 bio
->bi_bdev
= dc
->bdev
;
970 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
972 if (cached_dev_get(dc
)) {
973 s
= search_alloc(bio
, d
);
974 trace_bcache_request_start(s
->d
, bio
);
976 if (!bio
->bi_iter
.bi_size
) {
978 * can't call bch_journal_meta from under
979 * generic_make_request
981 continue_at_nobarrier(&s
->cl
,
985 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
988 cached_dev_write(dc
, s
);
990 cached_dev_read(dc
, s
);
993 if ((bio
->bi_rw
& REQ_DISCARD
) &&
994 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
997 bch_generic_make_request(bio
, &d
->bio_split_hook
);
1001 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1002 unsigned int cmd
, unsigned long arg
)
1004 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1005 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1008 static int cached_dev_congested(void *data
, int bits
)
1010 struct bcache_device
*d
= data
;
1011 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1012 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1015 if (bdi_congested(&q
->backing_dev_info
, bits
))
1018 if (cached_dev_get(dc
)) {
1022 for_each_cache(ca
, d
->c
, i
) {
1023 q
= bdev_get_queue(ca
->bdev
);
1024 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
1033 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1035 struct gendisk
*g
= dc
->disk
.disk
;
1037 g
->queue
->make_request_fn
= cached_dev_make_request
;
1038 g
->queue
->backing_dev_info
.congested_fn
= cached_dev_congested
;
1039 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1040 dc
->disk
.ioctl
= cached_dev_ioctl
;
1043 /* Flash backed devices */
1045 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1046 struct bio
*bio
, unsigned sectors
)
1048 unsigned bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1050 swap(bio
->bi_iter
.bi_size
, bytes
);
1052 swap(bio
->bi_iter
.bi_size
, bytes
);
1054 bio_advance(bio
, bytes
);
1056 if (!bio
->bi_iter
.bi_size
)
1059 return MAP_CONTINUE
;
1062 static void flash_dev_nodata(struct closure
*cl
)
1064 struct search
*s
= container_of(cl
, struct search
, cl
);
1066 if (s
->iop
.flush_journal
)
1067 bch_journal_meta(s
->iop
.c
, cl
);
1069 continue_at(cl
, search_free
, NULL
);
1072 static void flash_dev_make_request(struct request_queue
*q
, struct bio
*bio
)
1076 struct bcache_device
*d
= bio
->bi_bdev
->bd_disk
->private_data
;
1077 int rw
= bio_data_dir(bio
);
1079 generic_start_io_acct(rw
, bio_sectors(bio
), &d
->disk
->part0
);
1081 s
= search_alloc(bio
, d
);
1085 trace_bcache_request_start(s
->d
, bio
);
1087 if (!bio
->bi_iter
.bi_size
) {
1089 * can't call bch_journal_meta from under
1090 * generic_make_request
1092 continue_at_nobarrier(&s
->cl
,
1097 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1098 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1099 &KEY(d
->id
, bio_end_sector(bio
), 0));
1101 s
->iop
.bypass
= (bio
->bi_rw
& REQ_DISCARD
) != 0;
1102 s
->iop
.writeback
= true;
1105 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1107 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1110 continue_at(cl
, search_free
, NULL
);
1113 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1114 unsigned int cmd
, unsigned long arg
)
1119 static int flash_dev_congested(void *data
, int bits
)
1121 struct bcache_device
*d
= data
;
1122 struct request_queue
*q
;
1127 for_each_cache(ca
, d
->c
, i
) {
1128 q
= bdev_get_queue(ca
->bdev
);
1129 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
1135 void bch_flash_dev_request_init(struct bcache_device
*d
)
1137 struct gendisk
*g
= d
->disk
;
1139 g
->queue
->make_request_fn
= flash_dev_make_request
;
1140 g
->queue
->backing_dev_info
.congested_fn
= flash_dev_congested
;
1141 d
->cache_miss
= flash_dev_cache_miss
;
1142 d
->ioctl
= flash_dev_ioctl
;
1145 void bch_request_exit(void)
1147 if (bch_search_cache
)
1148 kmem_cache_destroy(bch_search_cache
);
1151 int __init
bch_request_init(void)
1153 bch_search_cache
= KMEM_CACHE(search
, 0);
1154 if (!bch_search_cache
)