Linux 4.2.1
[linux/fpc-iii.git] / drivers / misc / genwqe / card_base.c
blob4cf8f82cfca2567bf7642d4c8ba7f8fafc2e8fea
1 /**
2 * IBM Accelerator Family 'GenWQE'
4 * (C) Copyright IBM Corp. 2013
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
22 * Module initialization and PCIe setup. Card health monitoring and
23 * recovery functionality. Character device creation and deletion are
24 * controlled from here.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/err.h>
31 #include <linux/aer.h>
32 #include <linux/string.h>
33 #include <linux/sched.h>
34 #include <linux/wait.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/module.h>
38 #include <linux/notifier.h>
39 #include <linux/device.h>
40 #include <linux/log2.h>
42 #include "card_base.h"
43 #include "card_ddcb.h"
45 MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
46 MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
47 MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
48 MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
50 MODULE_DESCRIPTION("GenWQE Card");
51 MODULE_VERSION(DRV_VERSION);
52 MODULE_LICENSE("GPL");
54 static char genwqe_driver_name[] = GENWQE_DEVNAME;
55 static struct class *class_genwqe;
56 static struct dentry *debugfs_genwqe;
57 static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
59 /* PCI structure for identifying device by PCI vendor and device ID */
60 static const struct pci_device_id genwqe_device_table[] = {
61 { .vendor = PCI_VENDOR_ID_IBM,
62 .device = PCI_DEVICE_GENWQE,
63 .subvendor = PCI_SUBVENDOR_ID_IBM,
64 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
65 .class = (PCI_CLASSCODE_GENWQE5 << 8),
66 .class_mask = ~0,
67 .driver_data = 0 },
69 /* Initial SR-IOV bring-up image */
70 { .vendor = PCI_VENDOR_ID_IBM,
71 .device = PCI_DEVICE_GENWQE,
72 .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
73 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
74 .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
75 .class_mask = ~0,
76 .driver_data = 0 },
78 { .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
79 .device = 0x0000, /* VF Device ID */
80 .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
81 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
82 .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
83 .class_mask = ~0,
84 .driver_data = 0 },
86 /* Fixed up image */
87 { .vendor = PCI_VENDOR_ID_IBM,
88 .device = PCI_DEVICE_GENWQE,
89 .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
90 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
91 .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
92 .class_mask = ~0,
93 .driver_data = 0 },
95 { .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
96 .device = 0x0000, /* VF Device ID */
97 .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
98 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
99 .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
100 .class_mask = ~0,
101 .driver_data = 0 },
103 /* Even one more ... */
104 { .vendor = PCI_VENDOR_ID_IBM,
105 .device = PCI_DEVICE_GENWQE,
106 .subvendor = PCI_SUBVENDOR_ID_IBM,
107 .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
108 .class = (PCI_CLASSCODE_GENWQE5 << 8),
109 .class_mask = ~0,
110 .driver_data = 0 },
112 { 0, } /* 0 terminated list. */
115 MODULE_DEVICE_TABLE(pci, genwqe_device_table);
118 * genwqe_dev_alloc() - Create and prepare a new card descriptor
120 * Return: Pointer to card descriptor, or ERR_PTR(err) on error
122 static struct genwqe_dev *genwqe_dev_alloc(void)
124 unsigned int i = 0, j;
125 struct genwqe_dev *cd;
127 for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
128 if (genwqe_devices[i] == NULL)
129 break;
131 if (i >= GENWQE_CARD_NO_MAX)
132 return ERR_PTR(-ENODEV);
134 cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
135 if (!cd)
136 return ERR_PTR(-ENOMEM);
138 cd->card_idx = i;
139 cd->class_genwqe = class_genwqe;
140 cd->debugfs_genwqe = debugfs_genwqe;
143 * This comes from kernel config option and can be overritten via
144 * debugfs.
146 cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
148 init_waitqueue_head(&cd->queue_waitq);
150 spin_lock_init(&cd->file_lock);
151 INIT_LIST_HEAD(&cd->file_list);
153 cd->card_state = GENWQE_CARD_UNUSED;
154 spin_lock_init(&cd->print_lock);
156 cd->ddcb_software_timeout = genwqe_ddcb_software_timeout;
157 cd->kill_timeout = genwqe_kill_timeout;
159 for (j = 0; j < GENWQE_MAX_VFS; j++)
160 cd->vf_jobtimeout_msec[j] = genwqe_vf_jobtimeout_msec;
162 genwqe_devices[i] = cd;
163 return cd;
166 static void genwqe_dev_free(struct genwqe_dev *cd)
168 if (!cd)
169 return;
171 genwqe_devices[cd->card_idx] = NULL;
172 kfree(cd);
176 * genwqe_bus_reset() - Card recovery
178 * pci_reset_function() will recover the device and ensure that the
179 * registers are accessible again when it completes with success. If
180 * not, the card will stay dead and registers will be unaccessible
181 * still.
183 static int genwqe_bus_reset(struct genwqe_dev *cd)
185 int bars, rc = 0;
186 struct pci_dev *pci_dev = cd->pci_dev;
187 void __iomem *mmio;
189 if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
190 return -EIO;
192 mmio = cd->mmio;
193 cd->mmio = NULL;
194 pci_iounmap(pci_dev, mmio);
196 bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
197 pci_release_selected_regions(pci_dev, bars);
200 * Firmware/BIOS might change memory mapping during bus reset.
201 * Settings like enable bus-mastering, ... are backuped and
202 * restored by the pci_reset_function().
204 dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
205 rc = pci_reset_function(pci_dev);
206 if (rc) {
207 dev_err(&pci_dev->dev,
208 "[%s] err: failed reset func (rc %d)\n", __func__, rc);
209 return rc;
211 dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
214 * Here is the right spot to clear the register read
215 * failure. pci_bus_reset() does this job in real systems.
217 cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
218 GENWQE_INJECT_GFIR_FATAL |
219 GENWQE_INJECT_GFIR_INFO);
221 rc = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
222 if (rc) {
223 dev_err(&pci_dev->dev,
224 "[%s] err: request bars failed (%d)\n", __func__, rc);
225 return -EIO;
228 cd->mmio = pci_iomap(pci_dev, 0, 0);
229 if (cd->mmio == NULL) {
230 dev_err(&pci_dev->dev,
231 "[%s] err: mapping BAR0 failed\n", __func__);
232 return -ENOMEM;
234 return 0;
238 * Hardware circumvention section. Certain bitstreams in our test-lab
239 * had different kinds of problems. Here is where we adjust those
240 * bitstreams to function will with this version of our device driver.
242 * Thise circumventions are applied to the physical function only.
243 * The magical numbers below are identifying development/manufacturing
244 * versions of the bitstream used on the card.
246 * Turn off error reporting for old/manufacturing images.
249 bool genwqe_need_err_masking(struct genwqe_dev *cd)
251 return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
254 static void genwqe_tweak_hardware(struct genwqe_dev *cd)
256 struct pci_dev *pci_dev = cd->pci_dev;
258 /* Mask FIRs for development images */
259 if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
260 ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
261 dev_warn(&pci_dev->dev,
262 "FIRs masked due to bitstream %016llx.%016llx\n",
263 cd->slu_unitcfg, cd->app_unitcfg);
265 __genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
266 0xFFFFFFFFFFFFFFFFull);
268 __genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
269 0x0000000000000000ull);
274 * genwqe_recovery_on_fatal_gfir_required() - Version depended actions
276 * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
277 * be ignored. This is e.g. true for the bitstream we gave to the card
278 * manufacturer, but also for some old bitstreams we released to our
279 * test-lab.
281 int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
283 return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
286 int genwqe_flash_readback_fails(struct genwqe_dev *cd)
288 return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
292 * genwqe_T_psec() - Calculate PF/VF timeout register content
294 * Note: From a design perspective it turned out to be a bad idea to
295 * use codes here to specifiy the frequency/speed values. An old
296 * driver cannot understand new codes and is therefore always a
297 * problem. Better is to measure out the value or put the
298 * speed/frequency directly into a register which is always a valid
299 * value for old as well as for new software.
301 /* T = 1/f */
302 static int genwqe_T_psec(struct genwqe_dev *cd)
304 u16 speed; /* 1/f -> 250, 200, 166, 175 */
305 static const int T[] = { 4000, 5000, 6000, 5714 };
307 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
308 if (speed >= ARRAY_SIZE(T))
309 return -1; /* illegal value */
311 return T[speed];
315 * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
317 * Do this _after_ card_reset() is called. Otherwise the values will
318 * vanish. The settings need to be done when the queues are inactive.
320 * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
321 * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
323 static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
325 u32 T = genwqe_T_psec(cd);
326 u64 x;
328 if (genwqe_pf_jobtimeout_msec == 0)
329 return false;
331 /* PF: large value needed, flash update 2sec per block */
332 x = ilog2(genwqe_pf_jobtimeout_msec *
333 16000000000uL/(T * 15)) - 10;
335 genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
336 0xff00 | (x & 0xff), 0);
337 return true;
341 * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
343 static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
345 struct pci_dev *pci_dev = cd->pci_dev;
346 unsigned int vf;
347 u32 T = genwqe_T_psec(cd);
348 u64 x;
349 int totalvfs;
351 totalvfs = pci_sriov_get_totalvfs(pci_dev);
352 if (totalvfs <= 0)
353 return false;
355 for (vf = 0; vf < totalvfs; vf++) {
357 if (cd->vf_jobtimeout_msec[vf] == 0)
358 continue;
360 x = ilog2(cd->vf_jobtimeout_msec[vf] *
361 16000000000uL/(T * 15)) - 10;
363 genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
364 0xff00 | (x & 0xff), vf + 1);
366 return true;
369 static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
371 unsigned int type, e = 0;
373 for (type = 0; type < GENWQE_DBG_UNITS; type++) {
374 switch (type) {
375 case GENWQE_DBG_UNIT0:
376 e = genwqe_ffdc_buff_size(cd, 0);
377 break;
378 case GENWQE_DBG_UNIT1:
379 e = genwqe_ffdc_buff_size(cd, 1);
380 break;
381 case GENWQE_DBG_UNIT2:
382 e = genwqe_ffdc_buff_size(cd, 2);
383 break;
384 case GENWQE_DBG_REGS:
385 e = GENWQE_FFDC_REGS;
386 break;
389 /* currently support only the debug units mentioned here */
390 cd->ffdc[type].entries = e;
391 cd->ffdc[type].regs =
392 kmalloc_array(e, sizeof(struct genwqe_reg),
393 GFP_KERNEL);
395 * regs == NULL is ok, the using code treats this as no regs,
396 * Printing warning is ok in this case.
399 return 0;
402 static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
404 unsigned int type;
406 for (type = 0; type < GENWQE_DBG_UNITS; type++) {
407 kfree(cd->ffdc[type].regs);
408 cd->ffdc[type].regs = NULL;
412 static int genwqe_read_ids(struct genwqe_dev *cd)
414 int err = 0;
415 int slu_id;
416 struct pci_dev *pci_dev = cd->pci_dev;
418 cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
419 if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
420 dev_err(&pci_dev->dev,
421 "err: SLUID=%016llx\n", cd->slu_unitcfg);
422 err = -EIO;
423 goto out_err;
426 slu_id = genwqe_get_slu_id(cd);
427 if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
428 dev_err(&pci_dev->dev,
429 "err: incompatible SLU Architecture %u\n", slu_id);
430 err = -ENOENT;
431 goto out_err;
434 cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
435 if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
436 dev_err(&pci_dev->dev,
437 "err: APPID=%016llx\n", cd->app_unitcfg);
438 err = -EIO;
439 goto out_err;
441 genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
444 * Is access to all registers possible? If we are a VF the
445 * answer is obvious. If we run fully virtualized, we need to
446 * check if we can access all registers. If we do not have
447 * full access we will cause an UR and some informational FIRs
448 * in the PF, but that should not harm.
450 if (pci_dev->is_virtfn)
451 cd->is_privileged = 0;
452 else
453 cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
454 != IO_ILLEGAL_VALUE);
456 out_err:
457 return err;
460 static int genwqe_start(struct genwqe_dev *cd)
462 int err;
463 struct pci_dev *pci_dev = cd->pci_dev;
465 err = genwqe_read_ids(cd);
466 if (err)
467 return err;
469 if (genwqe_is_privileged(cd)) {
470 /* do this after the tweaks. alloc fail is acceptable */
471 genwqe_ffdc_buffs_alloc(cd);
472 genwqe_stop_traps(cd);
474 /* Collect registers e.g. FIRs, UNITIDs, traces ... */
475 genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
476 cd->ffdc[GENWQE_DBG_REGS].entries, 0);
478 genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
479 cd->ffdc[GENWQE_DBG_UNIT0].regs,
480 cd->ffdc[GENWQE_DBG_UNIT0].entries);
482 genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
483 cd->ffdc[GENWQE_DBG_UNIT1].regs,
484 cd->ffdc[GENWQE_DBG_UNIT1].entries);
486 genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
487 cd->ffdc[GENWQE_DBG_UNIT2].regs,
488 cd->ffdc[GENWQE_DBG_UNIT2].entries);
490 genwqe_start_traps(cd);
492 if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
493 dev_warn(&pci_dev->dev,
494 "[%s] chip reload/recovery!\n", __func__);
497 * Stealth Mode: Reload chip on either hot
498 * reset or PERST.
500 cd->softreset = 0x7Cull;
501 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
502 cd->softreset);
504 err = genwqe_bus_reset(cd);
505 if (err != 0) {
506 dev_err(&pci_dev->dev,
507 "[%s] err: bus reset failed!\n",
508 __func__);
509 goto out;
513 * Re-read the IDs because
514 * it could happen that the bitstream load
515 * failed!
517 err = genwqe_read_ids(cd);
518 if (err)
519 goto out;
523 err = genwqe_setup_service_layer(cd); /* does a reset to the card */
524 if (err != 0) {
525 dev_err(&pci_dev->dev,
526 "[%s] err: could not setup servicelayer!\n", __func__);
527 err = -ENODEV;
528 goto out;
531 if (genwqe_is_privileged(cd)) { /* code is running _after_ reset */
532 genwqe_tweak_hardware(cd);
534 genwqe_setup_pf_jtimer(cd);
535 genwqe_setup_vf_jtimer(cd);
538 err = genwqe_device_create(cd);
539 if (err < 0) {
540 dev_err(&pci_dev->dev,
541 "err: chdev init failed! (err=%d)\n", err);
542 goto out_release_service_layer;
544 return 0;
546 out_release_service_layer:
547 genwqe_release_service_layer(cd);
548 out:
549 if (genwqe_is_privileged(cd))
550 genwqe_ffdc_buffs_free(cd);
551 return -EIO;
555 * genwqe_stop() - Stop card operation
557 * Recovery notes:
558 * As long as genwqe_thread runs we might access registers during
559 * error data capture. Same is with the genwqe_health_thread.
560 * When genwqe_bus_reset() fails this function might called two times:
561 * first by the genwqe_health_thread() and later by genwqe_remove() to
562 * unbind the device. We must be able to survive that.
564 * This function must be robust enough to be called twice.
566 static int genwqe_stop(struct genwqe_dev *cd)
568 genwqe_finish_queue(cd); /* no register access */
569 genwqe_device_remove(cd); /* device removed, procs killed */
570 genwqe_release_service_layer(cd); /* here genwqe_thread is stopped */
572 if (genwqe_is_privileged(cd)) {
573 pci_disable_sriov(cd->pci_dev); /* access pci config space */
574 genwqe_ffdc_buffs_free(cd);
577 return 0;
581 * genwqe_recover_card() - Try to recover the card if it is possible
583 * If fatal_err is set no register access is possible anymore. It is
584 * likely that genwqe_start fails in that situation. Proper error
585 * handling is required in this case.
587 * genwqe_bus_reset() will cause the pci code to call genwqe_remove()
588 * and later genwqe_probe() for all virtual functions.
590 static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
592 int rc;
593 struct pci_dev *pci_dev = cd->pci_dev;
595 genwqe_stop(cd);
598 * Make sure chip is not reloaded to maintain FFDC. Write SLU
599 * Reset Register, CPLDReset field to 0.
601 if (!fatal_err) {
602 cd->softreset = 0x70ull;
603 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
606 rc = genwqe_bus_reset(cd);
607 if (rc != 0) {
608 dev_err(&pci_dev->dev,
609 "[%s] err: card recovery impossible!\n", __func__);
610 return rc;
613 rc = genwqe_start(cd);
614 if (rc < 0) {
615 dev_err(&pci_dev->dev,
616 "[%s] err: failed to launch device!\n", __func__);
617 return rc;
619 return 0;
622 static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
624 *gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
625 return (*gfir & GFIR_ERR_TRIGGER) &&
626 genwqe_recovery_on_fatal_gfir_required(cd);
630 * genwqe_fir_checking() - Check the fault isolation registers of the card
632 * If this code works ok, can be tried out with help of the genwqe_poke tool:
633 * sudo ./tools/genwqe_poke 0x8 0xfefefefefef
635 * Now the relevant FIRs/sFIRs should be printed out and the driver should
636 * invoke recovery (devices are removed and readded).
638 static u64 genwqe_fir_checking(struct genwqe_dev *cd)
640 int j, iterations = 0;
641 u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
642 u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
643 struct pci_dev *pci_dev = cd->pci_dev;
645 healthMonitor:
646 iterations++;
647 if (iterations > 16) {
648 dev_err(&pci_dev->dev, "* exit looping after %d times\n",
649 iterations);
650 goto fatal_error;
653 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
654 if (gfir != 0x0)
655 dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
656 IO_SLC_CFGREG_GFIR, gfir);
657 if (gfir == IO_ILLEGAL_VALUE)
658 goto fatal_error;
661 * Avoid printing when to GFIR bit is on prevents contignous
662 * printout e.g. for the following bug:
663 * FIR set without a 2ndary FIR/FIR cannot be cleared
664 * Comment out the following if to get the prints:
666 if (gfir == 0)
667 return 0;
669 gfir_masked = gfir & GFIR_ERR_TRIGGER; /* fatal errors */
671 for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
673 /* read the primary FIR (pfir) */
674 fir_addr = (uid << 24) + 0x08;
675 fir = __genwqe_readq(cd, fir_addr);
676 if (fir == 0x0)
677 continue; /* no error in this unit */
679 dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
680 if (fir == IO_ILLEGAL_VALUE)
681 goto fatal_error;
683 /* read primary FEC */
684 fec_addr = (uid << 24) + 0x18;
685 fec = __genwqe_readq(cd, fec_addr);
687 dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
688 if (fec == IO_ILLEGAL_VALUE)
689 goto fatal_error;
691 for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
693 /* secondary fir empty, skip it */
694 if ((fir & mask) == 0x0)
695 continue;
697 sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
698 sfir = __genwqe_readq(cd, sfir_addr);
700 if (sfir == IO_ILLEGAL_VALUE)
701 goto fatal_error;
702 dev_err(&pci_dev->dev,
703 "* 0x%08x 0x%016llx\n", sfir_addr, sfir);
705 sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
706 sfec = __genwqe_readq(cd, sfec_addr);
708 if (sfec == IO_ILLEGAL_VALUE)
709 goto fatal_error;
710 dev_err(&pci_dev->dev,
711 "* 0x%08x 0x%016llx\n", sfec_addr, sfec);
713 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
714 if (gfir == IO_ILLEGAL_VALUE)
715 goto fatal_error;
717 /* gfir turned on during routine! get out and
718 start over. */
719 if ((gfir_masked == 0x0) &&
720 (gfir & GFIR_ERR_TRIGGER)) {
721 goto healthMonitor;
724 /* do not clear if we entered with a fatal gfir */
725 if (gfir_masked == 0x0) {
727 /* NEW clear by mask the logged bits */
728 sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
729 __genwqe_writeq(cd, sfir_addr, sfir);
731 dev_dbg(&pci_dev->dev,
732 "[HM] Clearing 2ndary FIR 0x%08x with 0x%016llx\n",
733 sfir_addr, sfir);
736 * note, these cannot be error-Firs
737 * since gfir_masked is 0 after sfir
738 * was read. Also, it is safe to do
739 * this write if sfir=0. Still need to
740 * clear the primary. This just means
741 * there is no secondary FIR.
744 /* clear by mask the logged bit. */
745 fir_clr_addr = (uid << 24) + 0x10;
746 __genwqe_writeq(cd, fir_clr_addr, mask);
748 dev_dbg(&pci_dev->dev,
749 "[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
750 fir_clr_addr, mask);
754 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
755 if (gfir == IO_ILLEGAL_VALUE)
756 goto fatal_error;
758 if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
760 * Check once more that it didn't go on after all the
761 * FIRS were cleared.
763 dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
764 iterations);
765 goto healthMonitor;
767 return gfir_masked;
769 fatal_error:
770 return IO_ILLEGAL_VALUE;
774 * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
776 * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
777 * reset method will not work in all cases.
779 * Return: 0 on success or error code from pci_set_pcie_reset_state()
781 static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
783 int rc;
786 * lock pci config space access from userspace,
787 * save state and issue PCIe fundamental reset
789 pci_cfg_access_lock(pci_dev);
790 pci_save_state(pci_dev);
791 rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
792 if (!rc) {
793 /* keep PCIe reset asserted for 250ms */
794 msleep(250);
795 pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
796 /* Wait for 2s to reload flash and train the link */
797 msleep(2000);
799 pci_restore_state(pci_dev);
800 pci_cfg_access_unlock(pci_dev);
801 return rc;
805 static int genwqe_platform_recovery(struct genwqe_dev *cd)
807 struct pci_dev *pci_dev = cd->pci_dev;
808 int rc;
810 dev_info(&pci_dev->dev,
811 "[%s] resetting card for error recovery\n", __func__);
813 /* Clear out error injection flags */
814 cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
815 GENWQE_INJECT_GFIR_FATAL |
816 GENWQE_INJECT_GFIR_INFO);
818 genwqe_stop(cd);
820 /* Try recoverying the card with fundamental reset */
821 rc = genwqe_pci_fundamental_reset(pci_dev);
822 if (!rc) {
823 rc = genwqe_start(cd);
824 if (!rc)
825 dev_info(&pci_dev->dev,
826 "[%s] card recovered\n", __func__);
827 else
828 dev_err(&pci_dev->dev,
829 "[%s] err: cannot start card services! (err=%d)\n",
830 __func__, rc);
831 } else {
832 dev_err(&pci_dev->dev,
833 "[%s] card reset failed\n", __func__);
836 return rc;
840 * genwqe_reload_bistream() - reload card bitstream
842 * Set the appropriate register and call fundamental reset to reaload the card
843 * bitstream.
845 * Return: 0 on success, error code otherwise
847 static int genwqe_reload_bistream(struct genwqe_dev *cd)
849 struct pci_dev *pci_dev = cd->pci_dev;
850 int rc;
852 dev_info(&pci_dev->dev,
853 "[%s] resetting card for bitstream reload\n",
854 __func__);
856 genwqe_stop(cd);
859 * Cause a CPLD reprogram with the 'next_bitstream'
860 * partition on PCIe hot or fundamental reset
862 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
863 (cd->softreset & 0xcull) | 0x70ull);
865 rc = genwqe_pci_fundamental_reset(pci_dev);
866 if (rc) {
868 * A fundamental reset failure can be caused
869 * by lack of support on the arch, so we just
870 * log the error and try to start the card
871 * again.
873 dev_err(&pci_dev->dev,
874 "[%s] err: failed to reset card for bitstream reload\n",
875 __func__);
878 rc = genwqe_start(cd);
879 if (rc) {
880 dev_err(&pci_dev->dev,
881 "[%s] err: cannot start card services! (err=%d)\n",
882 __func__, rc);
883 return rc;
885 dev_info(&pci_dev->dev,
886 "[%s] card reloaded\n", __func__);
887 return 0;
892 * genwqe_health_thread() - Health checking thread
894 * This thread is only started for the PF of the card.
896 * This thread monitors the health of the card. A critical situation
897 * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
898 * this case we need to be recovered from outside. Writing to
899 * registers will very likely not work either.
901 * This thread must only exit if kthread_should_stop() becomes true.
903 * Condition for the health-thread to trigger:
904 * a) when a kthread_stop() request comes in or
905 * b) a critical GFIR occured
907 * Informational GFIRs are checked and potentially printed in
908 * health_check_interval seconds.
910 static int genwqe_health_thread(void *data)
912 int rc, should_stop = 0;
913 struct genwqe_dev *cd = data;
914 struct pci_dev *pci_dev = cd->pci_dev;
915 u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
917 health_thread_begin:
918 while (!kthread_should_stop()) {
919 rc = wait_event_interruptible_timeout(cd->health_waitq,
920 (genwqe_health_check_cond(cd, &gfir) ||
921 (should_stop = kthread_should_stop())),
922 genwqe_health_check_interval * HZ);
924 if (should_stop)
925 break;
927 if (gfir == IO_ILLEGAL_VALUE) {
928 dev_err(&pci_dev->dev,
929 "[%s] GFIR=%016llx\n", __func__, gfir);
930 goto fatal_error;
933 slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
934 if (slu_unitcfg == IO_ILLEGAL_VALUE) {
935 dev_err(&pci_dev->dev,
936 "[%s] SLU_UNITCFG=%016llx\n",
937 __func__, slu_unitcfg);
938 goto fatal_error;
941 app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
942 if (app_unitcfg == IO_ILLEGAL_VALUE) {
943 dev_err(&pci_dev->dev,
944 "[%s] APP_UNITCFG=%016llx\n",
945 __func__, app_unitcfg);
946 goto fatal_error;
949 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
950 if (gfir == IO_ILLEGAL_VALUE) {
951 dev_err(&pci_dev->dev,
952 "[%s] %s: GFIR=%016llx\n", __func__,
953 (gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
954 gfir);
955 goto fatal_error;
958 gfir_masked = genwqe_fir_checking(cd);
959 if (gfir_masked == IO_ILLEGAL_VALUE)
960 goto fatal_error;
963 * GFIR ErrorTrigger bits set => reset the card!
964 * Never do this for old/manufacturing images!
966 if ((gfir_masked) && !cd->skip_recovery &&
967 genwqe_recovery_on_fatal_gfir_required(cd)) {
969 cd->card_state = GENWQE_CARD_FATAL_ERROR;
971 rc = genwqe_recover_card(cd, 0);
972 if (rc < 0) {
973 /* FIXME Card is unusable and needs unbind! */
974 goto fatal_error;
978 if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
979 /* Userspace requested card bitstream reload */
980 rc = genwqe_reload_bistream(cd);
981 if (rc)
982 goto fatal_error;
985 cd->last_gfir = gfir;
986 cond_resched();
989 return 0;
991 fatal_error:
992 if (cd->use_platform_recovery) {
994 * Since we use raw accessors, EEH errors won't be detected
995 * by the platform until we do a non-raw MMIO or config space
996 * read
998 readq(cd->mmio + IO_SLC_CFGREG_GFIR);
1000 /* We do nothing if the card is going over PCI recovery */
1001 if (pci_channel_offline(pci_dev))
1002 return -EIO;
1005 * If it's supported by the platform, we try a fundamental reset
1006 * to recover from a fatal error. Otherwise, we continue to wait
1007 * for an external recovery procedure to take care of it.
1009 rc = genwqe_platform_recovery(cd);
1010 if (!rc)
1011 goto health_thread_begin;
1014 dev_err(&pci_dev->dev,
1015 "[%s] card unusable. Please trigger unbind!\n", __func__);
1017 /* Bring down logical devices to inform user space via udev remove. */
1018 cd->card_state = GENWQE_CARD_FATAL_ERROR;
1019 genwqe_stop(cd);
1021 /* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
1022 while (!kthread_should_stop())
1023 cond_resched();
1025 return -EIO;
1028 static int genwqe_health_check_start(struct genwqe_dev *cd)
1030 int rc;
1032 if (genwqe_health_check_interval <= 0)
1033 return 0; /* valid for disabling the service */
1035 /* moved before request_irq() */
1036 /* init_waitqueue_head(&cd->health_waitq); */
1038 cd->health_thread = kthread_run(genwqe_health_thread, cd,
1039 GENWQE_DEVNAME "%d_health",
1040 cd->card_idx);
1041 if (IS_ERR(cd->health_thread)) {
1042 rc = PTR_ERR(cd->health_thread);
1043 cd->health_thread = NULL;
1044 return rc;
1046 return 0;
1049 static int genwqe_health_thread_running(struct genwqe_dev *cd)
1051 return cd->health_thread != NULL;
1054 static int genwqe_health_check_stop(struct genwqe_dev *cd)
1056 int rc;
1058 if (!genwqe_health_thread_running(cd))
1059 return -EIO;
1061 rc = kthread_stop(cd->health_thread);
1062 cd->health_thread = NULL;
1063 return 0;
1067 * genwqe_pci_setup() - Allocate PCIe related resources for our card
1069 static int genwqe_pci_setup(struct genwqe_dev *cd)
1071 int err, bars;
1072 struct pci_dev *pci_dev = cd->pci_dev;
1074 bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1075 err = pci_enable_device_mem(pci_dev);
1076 if (err) {
1077 dev_err(&pci_dev->dev,
1078 "err: failed to enable pci memory (err=%d)\n", err);
1079 goto err_out;
1082 /* Reserve PCI I/O and memory resources */
1083 err = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
1084 if (err) {
1085 dev_err(&pci_dev->dev,
1086 "[%s] err: request bars failed (%d)\n", __func__, err);
1087 err = -EIO;
1088 goto err_disable_device;
1091 /* check for 64-bit DMA address supported (DAC) */
1092 if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1093 err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
1094 if (err) {
1095 dev_err(&pci_dev->dev,
1096 "err: DMA64 consistent mask error\n");
1097 err = -EIO;
1098 goto out_release_resources;
1100 /* check for 32-bit DMA address supported (SAC) */
1101 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1102 err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
1103 if (err) {
1104 dev_err(&pci_dev->dev,
1105 "err: DMA32 consistent mask error\n");
1106 err = -EIO;
1107 goto out_release_resources;
1109 } else {
1110 dev_err(&pci_dev->dev,
1111 "err: neither DMA32 nor DMA64 supported\n");
1112 err = -EIO;
1113 goto out_release_resources;
1116 pci_set_master(pci_dev);
1117 pci_enable_pcie_error_reporting(pci_dev);
1119 /* EEH recovery requires PCIe fundamental reset */
1120 pci_dev->needs_freset = 1;
1122 /* request complete BAR-0 space (length = 0) */
1123 cd->mmio_len = pci_resource_len(pci_dev, 0);
1124 cd->mmio = pci_iomap(pci_dev, 0, 0);
1125 if (cd->mmio == NULL) {
1126 dev_err(&pci_dev->dev,
1127 "[%s] err: mapping BAR0 failed\n", __func__);
1128 err = -ENOMEM;
1129 goto out_release_resources;
1132 cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
1133 if (cd->num_vfs < 0)
1134 cd->num_vfs = 0;
1136 err = genwqe_read_ids(cd);
1137 if (err)
1138 goto out_iounmap;
1140 return 0;
1142 out_iounmap:
1143 pci_iounmap(pci_dev, cd->mmio);
1144 out_release_resources:
1145 pci_release_selected_regions(pci_dev, bars);
1146 err_disable_device:
1147 pci_disable_device(pci_dev);
1148 err_out:
1149 return err;
1153 * genwqe_pci_remove() - Free PCIe related resources for our card
1155 static void genwqe_pci_remove(struct genwqe_dev *cd)
1157 int bars;
1158 struct pci_dev *pci_dev = cd->pci_dev;
1160 if (cd->mmio)
1161 pci_iounmap(pci_dev, cd->mmio);
1163 bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1164 pci_release_selected_regions(pci_dev, bars);
1165 pci_disable_device(pci_dev);
1169 * genwqe_probe() - Device initialization
1170 * @pdev: PCI device information struct
1172 * Callable for multiple cards. This function is called on bind.
1174 * Return: 0 if succeeded, < 0 when failed
1176 static int genwqe_probe(struct pci_dev *pci_dev,
1177 const struct pci_device_id *id)
1179 int err;
1180 struct genwqe_dev *cd;
1182 genwqe_init_crc32();
1184 cd = genwqe_dev_alloc();
1185 if (IS_ERR(cd)) {
1186 dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
1187 (int)PTR_ERR(cd));
1188 return PTR_ERR(cd);
1191 dev_set_drvdata(&pci_dev->dev, cd);
1192 cd->pci_dev = pci_dev;
1194 err = genwqe_pci_setup(cd);
1195 if (err < 0) {
1196 dev_err(&pci_dev->dev,
1197 "err: problems with PCI setup (err=%d)\n", err);
1198 goto out_free_dev;
1201 err = genwqe_start(cd);
1202 if (err < 0) {
1203 dev_err(&pci_dev->dev,
1204 "err: cannot start card services! (err=%d)\n", err);
1205 goto out_pci_remove;
1208 if (genwqe_is_privileged(cd)) {
1209 err = genwqe_health_check_start(cd);
1210 if (err < 0) {
1211 dev_err(&pci_dev->dev,
1212 "err: cannot start health checking! (err=%d)\n",
1213 err);
1214 goto out_stop_services;
1217 return 0;
1219 out_stop_services:
1220 genwqe_stop(cd);
1221 out_pci_remove:
1222 genwqe_pci_remove(cd);
1223 out_free_dev:
1224 genwqe_dev_free(cd);
1225 return err;
1229 * genwqe_remove() - Called when device is removed (hot-plugable)
1231 * Or when driver is unloaded respecitively when unbind is done.
1233 static void genwqe_remove(struct pci_dev *pci_dev)
1235 struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1237 genwqe_health_check_stop(cd);
1240 * genwqe_stop() must survive if it is called twice
1241 * sequentially. This happens when the health thread calls it
1242 * and fails on genwqe_bus_reset().
1244 genwqe_stop(cd);
1245 genwqe_pci_remove(cd);
1246 genwqe_dev_free(cd);
1250 * genwqe_err_error_detected() - Error detection callback
1252 * This callback is called by the PCI subsystem whenever a PCI bus
1253 * error is detected.
1255 static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
1256 enum pci_channel_state state)
1258 struct genwqe_dev *cd;
1260 dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
1262 cd = dev_get_drvdata(&pci_dev->dev);
1263 if (cd == NULL)
1264 return PCI_ERS_RESULT_DISCONNECT;
1266 /* Stop the card */
1267 genwqe_health_check_stop(cd);
1268 genwqe_stop(cd);
1271 * On permanent failure, the PCI code will call device remove
1272 * after the return of this function.
1273 * genwqe_stop() can be called twice.
1275 if (state == pci_channel_io_perm_failure) {
1276 return PCI_ERS_RESULT_DISCONNECT;
1277 } else {
1278 genwqe_pci_remove(cd);
1279 return PCI_ERS_RESULT_NEED_RESET;
1283 static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
1285 int rc;
1286 struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1288 rc = genwqe_pci_setup(cd);
1289 if (!rc) {
1290 return PCI_ERS_RESULT_RECOVERED;
1291 } else {
1292 dev_err(&pci_dev->dev,
1293 "err: problems with PCI setup (err=%d)\n", rc);
1294 return PCI_ERS_RESULT_DISCONNECT;
1298 static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
1300 return PCI_ERS_RESULT_NONE;
1303 static void genwqe_err_resume(struct pci_dev *pci_dev)
1305 int rc;
1306 struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1308 rc = genwqe_start(cd);
1309 if (!rc) {
1310 rc = genwqe_health_check_start(cd);
1311 if (rc)
1312 dev_err(&pci_dev->dev,
1313 "err: cannot start health checking! (err=%d)\n",
1314 rc);
1315 } else {
1316 dev_err(&pci_dev->dev,
1317 "err: cannot start card services! (err=%d)\n", rc);
1321 static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
1323 int rc;
1324 struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
1326 if (numvfs > 0) {
1327 genwqe_setup_vf_jtimer(cd);
1328 rc = pci_enable_sriov(dev, numvfs);
1329 if (rc < 0)
1330 return rc;
1331 return numvfs;
1333 if (numvfs == 0) {
1334 pci_disable_sriov(dev);
1335 return 0;
1337 return 0;
1340 static struct pci_error_handlers genwqe_err_handler = {
1341 .error_detected = genwqe_err_error_detected,
1342 .mmio_enabled = genwqe_err_result_none,
1343 .link_reset = genwqe_err_result_none,
1344 .slot_reset = genwqe_err_slot_reset,
1345 .resume = genwqe_err_resume,
1348 static struct pci_driver genwqe_driver = {
1349 .name = genwqe_driver_name,
1350 .id_table = genwqe_device_table,
1351 .probe = genwqe_probe,
1352 .remove = genwqe_remove,
1353 .sriov_configure = genwqe_sriov_configure,
1354 .err_handler = &genwqe_err_handler,
1358 * genwqe_init_module() - Driver registration and initialization
1360 static int __init genwqe_init_module(void)
1362 int rc;
1364 class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
1365 if (IS_ERR(class_genwqe)) {
1366 pr_err("[%s] create class failed\n", __func__);
1367 return -ENOMEM;
1370 debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
1371 if (!debugfs_genwqe) {
1372 rc = -ENOMEM;
1373 goto err_out;
1376 rc = pci_register_driver(&genwqe_driver);
1377 if (rc != 0) {
1378 pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
1379 goto err_out0;
1382 return rc;
1384 err_out0:
1385 debugfs_remove(debugfs_genwqe);
1386 err_out:
1387 class_destroy(class_genwqe);
1388 return rc;
1392 * genwqe_exit_module() - Driver exit
1394 static void __exit genwqe_exit_module(void)
1396 pci_unregister_driver(&genwqe_driver);
1397 debugfs_remove(debugfs_genwqe);
1398 class_destroy(class_genwqe);
1401 module_init(genwqe_init_module);
1402 module_exit(genwqe_exit_module);