Linux 4.2.1
[linux/fpc-iii.git] / drivers / misc / genwqe / card_utils.c
blob1ca94e6fa8fbb54452ad70b72c466c203c1aab6c
1 /**
2 * IBM Accelerator Family 'GenWQE'
4 * (C) Copyright IBM Corp. 2013
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
22 * Miscelanous functionality used in the other GenWQE driver parts.
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
46 /**
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd: genwqe device descriptor
49 * @byte_offs: byte offset within BAR
50 * @val: 64-bit value
52 * Return: 0 if success; < 0 if error
54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
56 struct pci_dev *pci_dev = cd->pci_dev;
58 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
59 return -EIO;
61 if (cd->mmio == NULL)
62 return -EIO;
64 if (pci_channel_offline(pci_dev))
65 return -EIO;
67 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
68 return 0;
71 /**
72 * __genwqe_readq() - Read 64-bit register
73 * @cd: genwqe device descriptor
74 * @byte_offs: offset within BAR
76 * Return: value from register
78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
80 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
81 return 0xffffffffffffffffull;
83 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
84 (byte_offs == IO_SLC_CFGREG_GFIR))
85 return 0x000000000000ffffull;
87 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
88 (byte_offs == IO_SLC_CFGREG_GFIR))
89 return 0x00000000ffff0000ull;
91 if (cd->mmio == NULL)
92 return 0xffffffffffffffffull;
94 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
97 /**
98 * __genwqe_writel() - Write 32-bit register
99 * @cd: genwqe device descriptor
100 * @byte_offs: byte offset within BAR
101 * @val: 32-bit value
103 * Return: 0 if success; < 0 if error
105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
107 struct pci_dev *pci_dev = cd->pci_dev;
109 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
110 return -EIO;
112 if (cd->mmio == NULL)
113 return -EIO;
115 if (pci_channel_offline(pci_dev))
116 return -EIO;
118 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
119 return 0;
123 * __genwqe_readl() - Read 32-bit register
124 * @cd: genwqe device descriptor
125 * @byte_offs: offset within BAR
127 * Return: Value from register
129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
131 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
132 return 0xffffffff;
134 if (cd->mmio == NULL)
135 return 0xffffffff;
137 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
141 * genwqe_read_app_id() - Extract app_id
143 * app_unitcfg need to be filled with valid data first
145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
147 int i, j;
148 u32 app_id = (u32)cd->app_unitcfg;
150 memset(app_name, 0, len);
151 for (i = 0, j = 0; j < min(len, 4); j++) {
152 char ch = (char)((app_id >> (24 - j*8)) & 0xff);
154 if (ch == ' ')
155 continue;
156 app_name[i++] = isprint(ch) ? ch : 'X';
158 return i;
162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
164 * Existing kernel functions seem to use a different polynom,
165 * therefore we could not use them here.
167 * Genwqe's Polynomial = 0x20044009
169 #define CRC32_POLYNOMIAL 0x20044009
170 static u32 crc32_tab[256]; /* crc32 lookup table */
172 void genwqe_init_crc32(void)
174 int i, j;
175 u32 crc;
177 for (i = 0; i < 256; i++) {
178 crc = i << 24;
179 for (j = 0; j < 8; j++) {
180 if (crc & 0x80000000)
181 crc = (crc << 1) ^ CRC32_POLYNOMIAL;
182 else
183 crc = (crc << 1);
185 crc32_tab[i] = crc;
190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
191 * @buff: pointer to data buffer
192 * @len: length of data for calculation
193 * @init: initial crc (0xffffffff at start)
195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
198 * result in a crc32 of 0xf33cb7d3.
200 * The existing kernel crc functions did not cover this polynom yet.
202 * Return: crc32 checksum.
204 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
206 int i;
207 u32 crc;
209 crc = init;
210 while (len--) {
211 i = ((crc >> 24) ^ *buff++) & 0xFF;
212 crc = (crc << 8) ^ crc32_tab[i];
214 return crc;
217 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
218 dma_addr_t *dma_handle)
220 if (get_order(size) > MAX_ORDER)
221 return NULL;
223 return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
226 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
227 void *vaddr, dma_addr_t dma_handle)
229 if (vaddr == NULL)
230 return;
232 pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
235 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
236 int num_pages)
238 int i;
239 struct pci_dev *pci_dev = cd->pci_dev;
241 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
242 pci_unmap_page(pci_dev, dma_list[i],
243 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
244 dma_list[i] = 0x0;
248 static int genwqe_map_pages(struct genwqe_dev *cd,
249 struct page **page_list, int num_pages,
250 dma_addr_t *dma_list)
252 int i;
253 struct pci_dev *pci_dev = cd->pci_dev;
255 /* establish DMA mapping for requested pages */
256 for (i = 0; i < num_pages; i++) {
257 dma_addr_t daddr;
259 dma_list[i] = 0x0;
260 daddr = pci_map_page(pci_dev, page_list[i],
261 0, /* map_offs */
262 PAGE_SIZE,
263 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
265 if (pci_dma_mapping_error(pci_dev, daddr)) {
266 dev_err(&pci_dev->dev,
267 "[%s] err: no dma addr daddr=%016llx!\n",
268 __func__, (long long)daddr);
269 goto err;
272 dma_list[i] = daddr;
274 return 0;
276 err:
277 genwqe_unmap_pages(cd, dma_list, num_pages);
278 return -EIO;
281 static int genwqe_sgl_size(int num_pages)
283 int len, num_tlb = num_pages / 7;
285 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
286 return roundup(len, PAGE_SIZE);
290 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
292 * Allocates memory for sgl and overlapping pages. Pages which might
293 * overlap other user-space memory blocks are being cached for DMAs,
294 * such that we do not run into syncronization issues. Data is copied
295 * from user-space into the cached pages.
297 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
298 void __user *user_addr, size_t user_size)
300 int rc;
301 struct pci_dev *pci_dev = cd->pci_dev;
303 sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
304 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
305 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
306 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
308 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
309 __func__, user_addr, user_size, sgl->nr_pages,
310 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
312 sgl->user_addr = user_addr;
313 sgl->user_size = user_size;
314 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
316 if (get_order(sgl->sgl_size) > MAX_ORDER) {
317 dev_err(&pci_dev->dev,
318 "[%s] err: too much memory requested!\n", __func__);
319 return -ENOMEM;
322 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
323 &sgl->sgl_dma_addr);
324 if (sgl->sgl == NULL) {
325 dev_err(&pci_dev->dev,
326 "[%s] err: no memory available!\n", __func__);
327 return -ENOMEM;
330 /* Only use buffering on incomplete pages */
331 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
332 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
333 &sgl->fpage_dma_addr);
334 if (sgl->fpage == NULL)
335 goto err_out;
337 /* Sync with user memory */
338 if (copy_from_user(sgl->fpage + sgl->fpage_offs,
339 user_addr, sgl->fpage_size)) {
340 rc = -EFAULT;
341 goto err_out;
344 if (sgl->lpage_size != 0) {
345 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
346 &sgl->lpage_dma_addr);
347 if (sgl->lpage == NULL)
348 goto err_out1;
350 /* Sync with user memory */
351 if (copy_from_user(sgl->lpage, user_addr + user_size -
352 sgl->lpage_size, sgl->lpage_size)) {
353 rc = -EFAULT;
354 goto err_out1;
357 return 0;
359 err_out1:
360 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
361 sgl->fpage_dma_addr);
362 err_out:
363 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
364 sgl->sgl_dma_addr);
365 return -ENOMEM;
368 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
369 dma_addr_t *dma_list)
371 int i = 0, j = 0, p;
372 unsigned long dma_offs, map_offs;
373 dma_addr_t prev_daddr = 0;
374 struct sg_entry *s, *last_s = NULL;
375 size_t size = sgl->user_size;
377 dma_offs = 128; /* next block if needed/dma_offset */
378 map_offs = sgl->fpage_offs; /* offset in first page */
380 s = &sgl->sgl[0]; /* first set of 8 entries */
381 p = 0; /* page */
382 while (p < sgl->nr_pages) {
383 dma_addr_t daddr;
384 unsigned int size_to_map;
386 /* always write the chaining entry, cleanup is done later */
387 j = 0;
388 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
389 s[j].len = cpu_to_be32(128);
390 s[j].flags = cpu_to_be32(SG_CHAINED);
391 j++;
393 while (j < 8) {
394 /* DMA mapping for requested page, offs, size */
395 size_to_map = min(size, PAGE_SIZE - map_offs);
397 if ((p == 0) && (sgl->fpage != NULL)) {
398 daddr = sgl->fpage_dma_addr + map_offs;
400 } else if ((p == sgl->nr_pages - 1) &&
401 (sgl->lpage != NULL)) {
402 daddr = sgl->lpage_dma_addr;
403 } else {
404 daddr = dma_list[p] + map_offs;
407 size -= size_to_map;
408 map_offs = 0;
410 if (prev_daddr == daddr) {
411 u32 prev_len = be32_to_cpu(last_s->len);
413 /* pr_info("daddr combining: "
414 "%016llx/%08x -> %016llx\n",
415 prev_daddr, prev_len, daddr); */
417 last_s->len = cpu_to_be32(prev_len +
418 size_to_map);
420 p++; /* process next page */
421 if (p == sgl->nr_pages)
422 goto fixup; /* nothing to do */
424 prev_daddr = daddr + size_to_map;
425 continue;
428 /* start new entry */
429 s[j].target_addr = cpu_to_be64(daddr);
430 s[j].len = cpu_to_be32(size_to_map);
431 s[j].flags = cpu_to_be32(SG_DATA);
432 prev_daddr = daddr + size_to_map;
433 last_s = &s[j];
434 j++;
436 p++; /* process next page */
437 if (p == sgl->nr_pages)
438 goto fixup; /* nothing to do */
440 dma_offs += 128;
441 s += 8; /* continue 8 elements further */
443 fixup:
444 if (j == 1) { /* combining happend on last entry! */
445 s -= 8; /* full shift needed on previous sgl block */
446 j = 7; /* shift all elements */
449 for (i = 0; i < j; i++) /* move elements 1 up */
450 s[i] = s[i + 1];
452 s[i].target_addr = cpu_to_be64(0);
453 s[i].len = cpu_to_be32(0);
454 s[i].flags = cpu_to_be32(SG_END_LIST);
455 return 0;
459 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
461 * After the DMA transfer has been completed we free the memory for
462 * the sgl and the cached pages. Data is being transfered from cached
463 * pages into user-space buffers.
465 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
467 int rc = 0;
468 struct pci_dev *pci_dev = cd->pci_dev;
470 if (sgl->fpage) {
471 if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
472 sgl->fpage_size)) {
473 dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
474 __func__);
475 rc = -EFAULT;
477 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
478 sgl->fpage_dma_addr);
479 sgl->fpage = NULL;
480 sgl->fpage_dma_addr = 0;
482 if (sgl->lpage) {
483 if (copy_to_user(sgl->user_addr + sgl->user_size -
484 sgl->lpage_size, sgl->lpage,
485 sgl->lpage_size)) {
486 dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
487 __func__);
488 rc = -EFAULT;
490 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
491 sgl->lpage_dma_addr);
492 sgl->lpage = NULL;
493 sgl->lpage_dma_addr = 0;
495 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
496 sgl->sgl_dma_addr);
498 sgl->sgl = NULL;
499 sgl->sgl_dma_addr = 0x0;
500 sgl->sgl_size = 0;
501 return rc;
505 * free_user_pages() - Give pinned pages back
507 * Documentation of get_user_pages is in mm/memory.c:
509 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
510 * as appropriate) must be called after the page is finished with, and
511 * before put_page is called.
513 * FIXME Could be of use to others and might belong in the generic
514 * code, if others agree. E.g.
515 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
516 * ceph_put_page_vector in net/ceph/pagevec.c
517 * maybe more?
519 static int free_user_pages(struct page **page_list, unsigned int nr_pages,
520 int dirty)
522 unsigned int i;
524 for (i = 0; i < nr_pages; i++) {
525 if (page_list[i] != NULL) {
526 if (dirty)
527 set_page_dirty_lock(page_list[i]);
528 put_page(page_list[i]);
531 return 0;
535 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
536 * @cd: pointer to genwqe device
537 * @m: mapping params
538 * @uaddr: user virtual address
539 * @size: size of memory to be mapped
541 * We need to think about how we could speed this up. Of course it is
542 * not a good idea to do this over and over again, like we are
543 * currently doing it. Nevertheless, I am curious where on the path
544 * the performance is spend. Most probably within the memory
545 * allocation functions, but maybe also in the DMA mapping code.
547 * Restrictions: The maximum size of the possible mapping currently depends
548 * on the amount of memory we can get using kzalloc() for the
549 * page_list and pci_alloc_consistent for the sg_list.
550 * The sg_list is currently itself not scattered, which could
551 * be fixed with some effort. The page_list must be split into
552 * PAGE_SIZE chunks too. All that will make the complicated
553 * code more complicated.
555 * Return: 0 if success
557 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
558 unsigned long size, struct ddcb_requ *req)
560 int rc = -EINVAL;
561 unsigned long data, offs;
562 struct pci_dev *pci_dev = cd->pci_dev;
564 if ((uaddr == NULL) || (size == 0)) {
565 m->size = 0; /* mark unused and not added */
566 return -EINVAL;
568 m->u_vaddr = uaddr;
569 m->size = size;
571 /* determine space needed for page_list. */
572 data = (unsigned long)uaddr;
573 offs = offset_in_page(data);
574 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
576 m->page_list = kcalloc(m->nr_pages,
577 sizeof(struct page *) + sizeof(dma_addr_t),
578 GFP_KERNEL);
579 if (!m->page_list) {
580 dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
581 m->nr_pages = 0;
582 m->u_vaddr = NULL;
583 m->size = 0; /* mark unused and not added */
584 return -ENOMEM;
586 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
588 /* pin user pages in memory */
589 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
590 m->nr_pages,
591 1, /* write by caller */
592 m->page_list); /* ptrs to pages */
593 if (rc < 0)
594 goto fail_get_user_pages;
596 /* assumption: get_user_pages can be killed by signals. */
597 if (rc < m->nr_pages) {
598 free_user_pages(m->page_list, rc, 0);
599 rc = -EFAULT;
600 goto fail_get_user_pages;
603 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
604 if (rc != 0)
605 goto fail_free_user_pages;
607 return 0;
609 fail_free_user_pages:
610 free_user_pages(m->page_list, m->nr_pages, 0);
612 fail_get_user_pages:
613 kfree(m->page_list);
614 m->page_list = NULL;
615 m->dma_list = NULL;
616 m->nr_pages = 0;
617 m->u_vaddr = NULL;
618 m->size = 0; /* mark unused and not added */
619 return rc;
623 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
624 * memory
625 * @cd: pointer to genwqe device
626 * @m: mapping params
628 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
629 struct ddcb_requ *req)
631 struct pci_dev *pci_dev = cd->pci_dev;
633 if (!dma_mapping_used(m)) {
634 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
635 __func__, m);
636 return -EINVAL;
639 if (m->dma_list)
640 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
642 if (m->page_list) {
643 free_user_pages(m->page_list, m->nr_pages, 1);
645 kfree(m->page_list);
646 m->page_list = NULL;
647 m->dma_list = NULL;
648 m->nr_pages = 0;
651 m->u_vaddr = NULL;
652 m->size = 0; /* mark as unused and not added */
653 return 0;
657 * genwqe_card_type() - Get chip type SLU Configuration Register
658 * @cd: pointer to the genwqe device descriptor
659 * Return: 0: Altera Stratix-IV 230
660 * 1: Altera Stratix-IV 530
661 * 2: Altera Stratix-V A4
662 * 3: Altera Stratix-V A7
664 u8 genwqe_card_type(struct genwqe_dev *cd)
666 u64 card_type = cd->slu_unitcfg;
668 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
672 * genwqe_card_reset() - Reset the card
673 * @cd: pointer to the genwqe device descriptor
675 int genwqe_card_reset(struct genwqe_dev *cd)
677 u64 softrst;
678 struct pci_dev *pci_dev = cd->pci_dev;
680 if (!genwqe_is_privileged(cd))
681 return -ENODEV;
683 /* new SL */
684 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
685 msleep(1000);
686 __genwqe_readq(cd, IO_HSU_FIR_CLR);
687 __genwqe_readq(cd, IO_APP_FIR_CLR);
688 __genwqe_readq(cd, IO_SLU_FIR_CLR);
691 * Read-modify-write to preserve the stealth bits
693 * For SL >= 039, Stealth WE bit allows removing
694 * the read-modify-wrote.
695 * r-m-w may require a mask 0x3C to avoid hitting hard
696 * reset again for error reset (should be 0, chicken).
698 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
699 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
701 /* give ERRORRESET some time to finish */
702 msleep(50);
704 if (genwqe_need_err_masking(cd)) {
705 dev_info(&pci_dev->dev,
706 "[%s] masking errors for old bitstreams\n", __func__);
707 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
709 return 0;
712 int genwqe_read_softreset(struct genwqe_dev *cd)
714 u64 bitstream;
716 if (!genwqe_is_privileged(cd))
717 return -ENODEV;
719 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
720 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
721 return 0;
725 * genwqe_set_interrupt_capability() - Configure MSI capability structure
726 * @cd: pointer to the device
727 * Return: 0 if no error
729 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
731 int rc;
732 struct pci_dev *pci_dev = cd->pci_dev;
734 rc = pci_enable_msi_range(pci_dev, 1, count);
735 if (rc < 0)
736 return rc;
738 cd->flags |= GENWQE_FLAG_MSI_ENABLED;
739 return 0;
743 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
744 * @cd: pointer to the device
746 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
748 struct pci_dev *pci_dev = cd->pci_dev;
750 if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
751 pci_disable_msi(pci_dev);
752 cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
757 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
758 * @cd: card device
759 * @r: debug register array
760 * @i: index to desired entry
761 * @m: maximum possible entries
762 * @addr: addr which is read
763 * @index: index in debug array
764 * @val: read value
766 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
767 unsigned int *i, unsigned int m, u32 addr, u32 idx,
768 u64 val)
770 if (WARN_ON_ONCE(*i >= m))
771 return -EFAULT;
773 r[*i].addr = addr;
774 r[*i].idx = idx;
775 r[*i].val = val;
776 ++*i;
777 return 0;
780 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
781 unsigned int *i, unsigned int m, u32 addr, u64 val)
783 return set_reg_idx(cd, r, i, m, addr, 0, val);
786 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
787 unsigned int max_regs, int all)
789 unsigned int i, j, idx = 0;
790 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
791 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
793 /* Global FIR */
794 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
795 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
797 /* UnitCfg for SLU */
798 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
799 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
801 /* UnitCfg for APP */
802 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
803 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
805 /* Check all chip Units */
806 for (i = 0; i < GENWQE_MAX_UNITS; i++) {
808 /* Unit FIR */
809 ufir_addr = (i << 24) | 0x008;
810 ufir = __genwqe_readq(cd, ufir_addr);
811 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
813 /* Unit FEC */
814 ufec_addr = (i << 24) | 0x018;
815 ufec = __genwqe_readq(cd, ufec_addr);
816 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
818 for (j = 0; j < 64; j++) {
819 /* wherever there is a primary 1, read the 2ndary */
820 if (!all && (!(ufir & (1ull << j))))
821 continue;
823 sfir_addr = (i << 24) | (0x100 + 8 * j);
824 sfir = __genwqe_readq(cd, sfir_addr);
825 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
827 sfec_addr = (i << 24) | (0x300 + 8 * j);
828 sfec = __genwqe_readq(cd, sfec_addr);
829 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
833 /* fill with invalid data until end */
834 for (i = idx; i < max_regs; i++) {
835 regs[i].addr = 0xffffffff;
836 regs[i].val = 0xffffffffffffffffull;
838 return idx;
842 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
844 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
846 int entries = 0, ring, traps, traces, trace_entries;
847 u32 eevptr_addr, l_addr, d_len, d_type;
848 u64 eevptr, val, addr;
850 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
851 eevptr = __genwqe_readq(cd, eevptr_addr);
853 if ((eevptr != 0x0) && (eevptr != -1ull)) {
854 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
856 while (1) {
857 val = __genwqe_readq(cd, l_addr);
859 if ((val == 0x0) || (val == -1ull))
860 break;
862 /* 38:24 */
863 d_len = (val & 0x0000007fff000000ull) >> 24;
865 /* 39 */
866 d_type = (val & 0x0000008000000000ull) >> 36;
868 if (d_type) { /* repeat */
869 entries += d_len;
870 } else { /* size in bytes! */
871 entries += d_len >> 3;
874 l_addr += 8;
878 for (ring = 0; ring < 8; ring++) {
879 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
880 val = __genwqe_readq(cd, addr);
882 if ((val == 0x0ull) || (val == -1ull))
883 continue;
885 traps = (val >> 24) & 0xff;
886 traces = (val >> 16) & 0xff;
887 trace_entries = val & 0xffff;
889 entries += traps + (traces * trace_entries);
891 return entries;
895 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
897 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
898 struct genwqe_reg *regs, unsigned int max_regs)
900 int i, traps, traces, trace, trace_entries, trace_entry, ring;
901 unsigned int idx = 0;
902 u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
903 u64 eevptr, e, val, addr;
905 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
906 eevptr = __genwqe_readq(cd, eevptr_addr);
908 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
909 l_addr = GENWQE_UID_OFFS(uid) | eevptr;
910 while (1) {
911 e = __genwqe_readq(cd, l_addr);
912 if ((e == 0x0) || (e == 0xffffffffffffffffull))
913 break;
915 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
916 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
917 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
918 d_addr |= GENWQE_UID_OFFS(uid);
920 if (d_type) {
921 for (i = 0; i < (int)d_len; i++) {
922 val = __genwqe_readq(cd, d_addr);
923 set_reg_idx(cd, regs, &idx, max_regs,
924 d_addr, i, val);
926 } else {
927 d_len >>= 3; /* Size in bytes! */
928 for (i = 0; i < (int)d_len; i++, d_addr += 8) {
929 val = __genwqe_readq(cd, d_addr);
930 set_reg_idx(cd, regs, &idx, max_regs,
931 d_addr, 0, val);
934 l_addr += 8;
939 * To save time, there are only 6 traces poplulated on Uid=2,
940 * Ring=1. each with iters=512.
942 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
943 2...7 are ASI rings */
944 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
945 val = __genwqe_readq(cd, addr);
947 if ((val == 0x0ull) || (val == -1ull))
948 continue;
950 traps = (val >> 24) & 0xff; /* Number of Traps */
951 traces = (val >> 16) & 0xff; /* Number of Traces */
952 trace_entries = val & 0xffff; /* Entries per trace */
954 /* Note: This is a combined loop that dumps both the traps */
955 /* (for the trace == 0 case) as well as the traces 1 to */
956 /* 'traces'. */
957 for (trace = 0; trace <= traces; trace++) {
958 u32 diag_sel =
959 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
961 addr = (GENWQE_UID_OFFS(uid) |
962 IO_EXTENDED_DIAG_SELECTOR);
963 __genwqe_writeq(cd, addr, diag_sel);
965 for (trace_entry = 0;
966 trace_entry < (trace ? trace_entries : traps);
967 trace_entry++) {
968 addr = (GENWQE_UID_OFFS(uid) |
969 IO_EXTENDED_DIAG_READ_MBX);
970 val = __genwqe_readq(cd, addr);
971 set_reg_idx(cd, regs, &idx, max_regs, addr,
972 (diag_sel<<16) | trace_entry, val);
976 return 0;
980 * genwqe_write_vreg() - Write register in virtual window
982 * Note, these registers are only accessible to the PF through the
983 * VF-window. It is not intended for the VF to access.
985 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
987 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
988 __genwqe_writeq(cd, reg, val);
989 return 0;
993 * genwqe_read_vreg() - Read register in virtual window
995 * Note, these registers are only accessible to the PF through the
996 * VF-window. It is not intended for the VF to access.
998 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1000 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1001 return __genwqe_readq(cd, reg);
1005 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1007 * Note: From a design perspective it turned out to be a bad idea to
1008 * use codes here to specifiy the frequency/speed values. An old
1009 * driver cannot understand new codes and is therefore always a
1010 * problem. Better is to measure out the value or put the
1011 * speed/frequency directly into a register which is always a valid
1012 * value for old as well as for new software.
1014 * Return: Card clock in MHz
1016 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1018 u16 speed; /* MHz MHz MHz MHz */
1019 static const int speed_grade[] = { 250, 200, 166, 175 };
1021 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1022 if (speed >= ARRAY_SIZE(speed_grade))
1023 return 0; /* illegal value */
1025 return speed_grade[speed];
1029 * genwqe_stop_traps() - Stop traps
1031 * Before reading out the analysis data, we need to stop the traps.
1033 void genwqe_stop_traps(struct genwqe_dev *cd)
1035 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1039 * genwqe_start_traps() - Start traps
1041 * After having read the data, we can/must enable the traps again.
1043 void genwqe_start_traps(struct genwqe_dev *cd)
1045 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1047 if (genwqe_need_err_masking(cd))
1048 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);