Linux 4.2.1
[linux/fpc-iii.git] / drivers / misc / mei / hw-me.c
blob43d7101ff9933aef7511ab57b03e6f0f21fe53da
1 /*
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
22 #include "mei_dev.h"
23 #include "hbm.h"
25 #include "hw-me.h"
26 #include "hw-me-regs.h"
28 #include "mei-trace.h"
30 /**
31 * mei_me_reg_read - Reads 32bit data from the mei device
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
36 * Return: register value (u32)
38 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39 unsigned long offset)
41 return ioread32(hw->mem_addr + offset);
45 /**
46 * mei_me_reg_write - Writes 32bit data to the mei device
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
52 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53 unsigned long offset, u32 value)
55 iowrite32(value, hw->mem_addr + offset);
58 /**
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 * read window register
62 * @dev: the device structure
64 * Return: ME_CB_RW register value (u32)
66 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
68 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
71 /**
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
77 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
79 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
82 /**
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85 * @dev: the device structure
87 * Return: ME_CSR_HA register value (u32)
89 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
91 u32 reg;
93 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
94 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
96 return reg;
99 /**
100 * mei_hcsr_read - Reads 32bit data from the host CSR
102 * @dev: the device structure
104 * Return: H_CSR register value (u32)
106 static inline u32 mei_hcsr_read(const struct mei_device *dev)
108 u32 reg;
110 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
111 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
113 return reg;
117 * mei_hcsr_write - writes H_CSR register to the mei device
119 * @dev: the device structure
120 * @reg: new register value
122 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
124 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
132 * @dev: the device structure
133 * @reg: new register value
135 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
137 reg &= ~H_IS;
138 mei_hcsr_write(dev, reg);
142 * mei_me_fw_status - read fw status register from pci config space
144 * @dev: mei device
145 * @fw_status: fw status register values
147 * Return: 0 on success, error otherwise
149 static int mei_me_fw_status(struct mei_device *dev,
150 struct mei_fw_status *fw_status)
152 struct pci_dev *pdev = to_pci_dev(dev->dev);
153 struct mei_me_hw *hw = to_me_hw(dev);
154 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
155 int ret;
156 int i;
158 if (!fw_status)
159 return -EINVAL;
161 fw_status->count = fw_src->count;
162 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
163 ret = pci_read_config_dword(pdev,
164 fw_src->status[i], &fw_status->status[i]);
165 if (ret)
166 return ret;
169 return 0;
173 * mei_me_hw_config - configure hw dependent settings
175 * @dev: mei device
177 static void mei_me_hw_config(struct mei_device *dev)
179 struct mei_me_hw *hw = to_me_hw(dev);
180 u32 hcsr = mei_hcsr_read(dev);
181 /* Doesn't change in runtime */
182 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
184 hw->pg_state = MEI_PG_OFF;
188 * mei_me_pg_state - translate internal pg state
189 * to the mei power gating state
191 * @dev: mei device
193 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
195 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
197 struct mei_me_hw *hw = to_me_hw(dev);
199 return hw->pg_state;
203 * mei_me_intr_clear - clear and stop interrupts
205 * @dev: the device structure
207 static void mei_me_intr_clear(struct mei_device *dev)
209 u32 hcsr = mei_hcsr_read(dev);
211 if ((hcsr & H_IS) == H_IS)
212 mei_hcsr_write(dev, hcsr);
215 * mei_me_intr_enable - enables mei device interrupts
217 * @dev: the device structure
219 static void mei_me_intr_enable(struct mei_device *dev)
221 u32 hcsr = mei_hcsr_read(dev);
223 hcsr |= H_IE;
224 mei_hcsr_set(dev, hcsr);
228 * mei_me_intr_disable - disables mei device interrupts
230 * @dev: the device structure
232 static void mei_me_intr_disable(struct mei_device *dev)
234 u32 hcsr = mei_hcsr_read(dev);
236 hcsr &= ~H_IE;
237 mei_hcsr_set(dev, hcsr);
241 * mei_me_hw_reset_release - release device from the reset
243 * @dev: the device structure
245 static void mei_me_hw_reset_release(struct mei_device *dev)
247 u32 hcsr = mei_hcsr_read(dev);
249 hcsr |= H_IG;
250 hcsr &= ~H_RST;
251 mei_hcsr_set(dev, hcsr);
253 /* complete this write before we set host ready on another CPU */
254 mmiowb();
257 * mei_me_hw_reset - resets fw via mei csr register.
259 * @dev: the device structure
260 * @intr_enable: if interrupt should be enabled after reset.
262 * Return: always 0
264 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
266 u32 hcsr = mei_hcsr_read(dev);
268 /* H_RST may be found lit before reset is started,
269 * for example if preceding reset flow hasn't completed.
270 * In that case asserting H_RST will be ignored, therefore
271 * we need to clean H_RST bit to start a successful reset sequence.
273 if ((hcsr & H_RST) == H_RST) {
274 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
275 hcsr &= ~H_RST;
276 mei_hcsr_set(dev, hcsr);
277 hcsr = mei_hcsr_read(dev);
280 hcsr |= H_RST | H_IG | H_IS;
282 if (intr_enable)
283 hcsr |= H_IE;
284 else
285 hcsr &= ~H_IE;
287 dev->recvd_hw_ready = false;
288 mei_hcsr_write(dev, hcsr);
291 * Host reads the H_CSR once to ensure that the
292 * posted write to H_CSR completes.
294 hcsr = mei_hcsr_read(dev);
296 if ((hcsr & H_RST) == 0)
297 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
299 if ((hcsr & H_RDY) == H_RDY)
300 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
302 if (intr_enable == false)
303 mei_me_hw_reset_release(dev);
305 return 0;
309 * mei_me_host_set_ready - enable device
311 * @dev: mei device
313 static void mei_me_host_set_ready(struct mei_device *dev)
315 u32 hcsr = mei_hcsr_read(dev);
317 hcsr |= H_IE | H_IG | H_RDY;
318 mei_hcsr_set(dev, hcsr);
322 * mei_me_host_is_ready - check whether the host has turned ready
324 * @dev: mei device
325 * Return: bool
327 static bool mei_me_host_is_ready(struct mei_device *dev)
329 u32 hcsr = mei_hcsr_read(dev);
331 return (hcsr & H_RDY) == H_RDY;
335 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
337 * @dev: mei device
338 * Return: bool
340 static bool mei_me_hw_is_ready(struct mei_device *dev)
342 u32 mecsr = mei_me_mecsr_read(dev);
344 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
348 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
349 * or timeout is reached
351 * @dev: mei device
352 * Return: 0 on success, error otherwise
354 static int mei_me_hw_ready_wait(struct mei_device *dev)
356 mutex_unlock(&dev->device_lock);
357 wait_event_timeout(dev->wait_hw_ready,
358 dev->recvd_hw_ready,
359 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
360 mutex_lock(&dev->device_lock);
361 if (!dev->recvd_hw_ready) {
362 dev_err(dev->dev, "wait hw ready failed\n");
363 return -ETIME;
366 mei_me_hw_reset_release(dev);
367 dev->recvd_hw_ready = false;
368 return 0;
372 * mei_me_hw_start - hw start routine
374 * @dev: mei device
375 * Return: 0 on success, error otherwise
377 static int mei_me_hw_start(struct mei_device *dev)
379 int ret = mei_me_hw_ready_wait(dev);
381 if (ret)
382 return ret;
383 dev_dbg(dev->dev, "hw is ready\n");
385 mei_me_host_set_ready(dev);
386 return ret;
391 * mei_hbuf_filled_slots - gets number of device filled buffer slots
393 * @dev: the device structure
395 * Return: number of filled slots
397 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
399 u32 hcsr;
400 char read_ptr, write_ptr;
402 hcsr = mei_hcsr_read(dev);
404 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
405 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
407 return (unsigned char) (write_ptr - read_ptr);
411 * mei_me_hbuf_is_empty - checks if host buffer is empty.
413 * @dev: the device structure
415 * Return: true if empty, false - otherwise.
417 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
419 return mei_hbuf_filled_slots(dev) == 0;
423 * mei_me_hbuf_empty_slots - counts write empty slots.
425 * @dev: the device structure
427 * Return: -EOVERFLOW if overflow, otherwise empty slots count
429 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
431 unsigned char filled_slots, empty_slots;
433 filled_slots = mei_hbuf_filled_slots(dev);
434 empty_slots = dev->hbuf_depth - filled_slots;
436 /* check for overflow */
437 if (filled_slots > dev->hbuf_depth)
438 return -EOVERFLOW;
440 return empty_slots;
444 * mei_me_hbuf_max_len - returns size of hw buffer.
446 * @dev: the device structure
448 * Return: size of hw buffer in bytes
450 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
452 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
457 * mei_me_write_message - writes a message to mei device.
459 * @dev: the device structure
460 * @header: mei HECI header of message
461 * @buf: message payload will be written
463 * Return: -EIO if write has failed
465 static int mei_me_write_message(struct mei_device *dev,
466 struct mei_msg_hdr *header,
467 unsigned char *buf)
469 unsigned long rem;
470 unsigned long length = header->length;
471 u32 *reg_buf = (u32 *)buf;
472 u32 hcsr;
473 u32 dw_cnt;
474 int i;
475 int empty_slots;
477 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
479 empty_slots = mei_hbuf_empty_slots(dev);
480 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
482 dw_cnt = mei_data2slots(length);
483 if (empty_slots < 0 || dw_cnt > empty_slots)
484 return -EMSGSIZE;
486 mei_me_hcbww_write(dev, *((u32 *) header));
488 for (i = 0; i < length / 4; i++)
489 mei_me_hcbww_write(dev, reg_buf[i]);
491 rem = length & 0x3;
492 if (rem > 0) {
493 u32 reg = 0;
495 memcpy(&reg, &buf[length - rem], rem);
496 mei_me_hcbww_write(dev, reg);
499 hcsr = mei_hcsr_read(dev) | H_IG;
500 mei_hcsr_set(dev, hcsr);
501 if (!mei_me_hw_is_ready(dev))
502 return -EIO;
504 return 0;
508 * mei_me_count_full_read_slots - counts read full slots.
510 * @dev: the device structure
512 * Return: -EOVERFLOW if overflow, otherwise filled slots count
514 static int mei_me_count_full_read_slots(struct mei_device *dev)
516 u32 me_csr;
517 char read_ptr, write_ptr;
518 unsigned char buffer_depth, filled_slots;
520 me_csr = mei_me_mecsr_read(dev);
521 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
522 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
523 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
524 filled_slots = (unsigned char) (write_ptr - read_ptr);
526 /* check for overflow */
527 if (filled_slots > buffer_depth)
528 return -EOVERFLOW;
530 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
531 return (int)filled_slots;
535 * mei_me_read_slots - reads a message from mei device.
537 * @dev: the device structure
538 * @buffer: message buffer will be written
539 * @buffer_length: message size will be read
541 * Return: always 0
543 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
544 unsigned long buffer_length)
546 u32 *reg_buf = (u32 *)buffer;
547 u32 hcsr;
549 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
550 *reg_buf++ = mei_me_mecbrw_read(dev);
552 if (buffer_length > 0) {
553 u32 reg = mei_me_mecbrw_read(dev);
555 memcpy(reg_buf, &reg, buffer_length);
558 hcsr = mei_hcsr_read(dev) | H_IG;
559 mei_hcsr_set(dev, hcsr);
560 return 0;
564 * mei_me_pg_set - write pg enter register
566 * @dev: the device structure
568 static void mei_me_pg_set(struct mei_device *dev)
570 struct mei_me_hw *hw = to_me_hw(dev);
571 u32 reg;
573 reg = mei_me_reg_read(hw, H_HPG_CSR);
574 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
576 reg |= H_HPG_CSR_PGI;
578 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
579 mei_me_reg_write(hw, H_HPG_CSR, reg);
583 * mei_me_pg_unset - write pg exit register
585 * @dev: the device structure
587 static void mei_me_pg_unset(struct mei_device *dev)
589 struct mei_me_hw *hw = to_me_hw(dev);
590 u32 reg;
592 reg = mei_me_reg_read(hw, H_HPG_CSR);
593 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
595 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
597 reg |= H_HPG_CSR_PGIHEXR;
599 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
600 mei_me_reg_write(hw, H_HPG_CSR, reg);
604 * mei_me_pg_enter_sync - perform pg entry procedure
606 * @dev: the device structure
608 * Return: 0 on success an error code otherwise
610 int mei_me_pg_enter_sync(struct mei_device *dev)
612 struct mei_me_hw *hw = to_me_hw(dev);
613 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
614 int ret;
616 dev->pg_event = MEI_PG_EVENT_WAIT;
618 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
619 if (ret)
620 return ret;
622 mutex_unlock(&dev->device_lock);
623 wait_event_timeout(dev->wait_pg,
624 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
625 mutex_lock(&dev->device_lock);
627 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
628 mei_me_pg_set(dev);
629 ret = 0;
630 } else {
631 ret = -ETIME;
634 dev->pg_event = MEI_PG_EVENT_IDLE;
635 hw->pg_state = MEI_PG_ON;
637 return ret;
641 * mei_me_pg_exit_sync - perform pg exit procedure
643 * @dev: the device structure
645 * Return: 0 on success an error code otherwise
647 int mei_me_pg_exit_sync(struct mei_device *dev)
649 struct mei_me_hw *hw = to_me_hw(dev);
650 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
651 int ret;
653 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
654 goto reply;
656 dev->pg_event = MEI_PG_EVENT_WAIT;
658 mei_me_pg_unset(dev);
660 mutex_unlock(&dev->device_lock);
661 wait_event_timeout(dev->wait_pg,
662 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
663 mutex_lock(&dev->device_lock);
665 reply:
666 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
667 ret = -ETIME;
668 goto out;
671 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
672 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
673 if (ret)
674 return ret;
676 mutex_unlock(&dev->device_lock);
677 wait_event_timeout(dev->wait_pg,
678 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
679 mutex_lock(&dev->device_lock);
681 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
682 ret = 0;
683 else
684 ret = -ETIME;
686 out:
687 dev->pg_event = MEI_PG_EVENT_IDLE;
688 hw->pg_state = MEI_PG_OFF;
690 return ret;
694 * mei_me_pg_in_transition - is device now in pg transition
696 * @dev: the device structure
698 * Return: true if in pg transition, false otherwise
700 static bool mei_me_pg_in_transition(struct mei_device *dev)
702 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
703 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
707 * mei_me_pg_is_enabled - detect if PG is supported by HW
709 * @dev: the device structure
711 * Return: true is pg supported, false otherwise
713 static bool mei_me_pg_is_enabled(struct mei_device *dev)
715 u32 reg = mei_me_mecsr_read(dev);
717 if ((reg & ME_PGIC_HRA) == 0)
718 goto notsupported;
720 if (!dev->hbm_f_pg_supported)
721 goto notsupported;
723 return true;
725 notsupported:
726 dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
727 !!(reg & ME_PGIC_HRA),
728 dev->version.major_version,
729 dev->version.minor_version,
730 HBM_MAJOR_VERSION_PGI,
731 HBM_MINOR_VERSION_PGI);
733 return false;
737 * mei_me_pg_intr - perform pg processing in interrupt thread handler
739 * @dev: the device structure
741 static void mei_me_pg_intr(struct mei_device *dev)
743 struct mei_me_hw *hw = to_me_hw(dev);
745 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
746 return;
748 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
749 hw->pg_state = MEI_PG_OFF;
750 if (waitqueue_active(&dev->wait_pg))
751 wake_up(&dev->wait_pg);
755 * mei_me_irq_quick_handler - The ISR of the MEI device
757 * @irq: The irq number
758 * @dev_id: pointer to the device structure
760 * Return: irqreturn_t
763 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
765 struct mei_device *dev = (struct mei_device *) dev_id;
766 u32 hcsr = mei_hcsr_read(dev);
768 if ((hcsr & H_IS) != H_IS)
769 return IRQ_NONE;
771 /* clear H_IS bit in H_CSR */
772 mei_hcsr_write(dev, hcsr);
774 return IRQ_WAKE_THREAD;
778 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
779 * processing.
781 * @irq: The irq number
782 * @dev_id: pointer to the device structure
784 * Return: irqreturn_t
787 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
789 struct mei_device *dev = (struct mei_device *) dev_id;
790 struct mei_cl_cb complete_list;
791 s32 slots;
792 int rets = 0;
794 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
795 /* initialize our complete list */
796 mutex_lock(&dev->device_lock);
797 mei_io_list_init(&complete_list);
799 /* Ack the interrupt here
800 * In case of MSI we don't go through the quick handler */
801 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
802 mei_clear_interrupts(dev);
804 /* check if ME wants a reset */
805 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
806 dev_warn(dev->dev, "FW not ready: resetting.\n");
807 schedule_work(&dev->reset_work);
808 goto end;
811 mei_me_pg_intr(dev);
813 /* check if we need to start the dev */
814 if (!mei_host_is_ready(dev)) {
815 if (mei_hw_is_ready(dev)) {
816 dev_dbg(dev->dev, "we need to start the dev.\n");
817 dev->recvd_hw_ready = true;
818 wake_up(&dev->wait_hw_ready);
819 } else {
820 dev_dbg(dev->dev, "Spurious Interrupt\n");
822 goto end;
824 /* check slots available for reading */
825 slots = mei_count_full_read_slots(dev);
826 while (slots > 0) {
827 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
828 rets = mei_irq_read_handler(dev, &complete_list, &slots);
829 /* There is a race between ME write and interrupt delivery:
830 * Not all data is always available immediately after the
831 * interrupt, so try to read again on the next interrupt.
833 if (rets == -ENODATA)
834 break;
836 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
837 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
838 rets);
839 schedule_work(&dev->reset_work);
840 goto end;
844 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
847 * During PG handshake only allowed write is the replay to the
848 * PG exit message, so block calling write function
849 * if the pg event is in PG handshake
851 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
852 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
853 rets = mei_irq_write_handler(dev, &complete_list);
854 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
857 mei_irq_compl_handler(dev, &complete_list);
859 end:
860 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
861 mutex_unlock(&dev->device_lock);
862 return IRQ_HANDLED;
865 static const struct mei_hw_ops mei_me_hw_ops = {
867 .fw_status = mei_me_fw_status,
868 .pg_state = mei_me_pg_state,
870 .host_is_ready = mei_me_host_is_ready,
872 .hw_is_ready = mei_me_hw_is_ready,
873 .hw_reset = mei_me_hw_reset,
874 .hw_config = mei_me_hw_config,
875 .hw_start = mei_me_hw_start,
877 .pg_in_transition = mei_me_pg_in_transition,
878 .pg_is_enabled = mei_me_pg_is_enabled,
880 .intr_clear = mei_me_intr_clear,
881 .intr_enable = mei_me_intr_enable,
882 .intr_disable = mei_me_intr_disable,
884 .hbuf_free_slots = mei_me_hbuf_empty_slots,
885 .hbuf_is_ready = mei_me_hbuf_is_empty,
886 .hbuf_max_len = mei_me_hbuf_max_len,
888 .write = mei_me_write_message,
890 .rdbuf_full_slots = mei_me_count_full_read_slots,
891 .read_hdr = mei_me_mecbrw_read,
892 .read = mei_me_read_slots
895 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
897 u32 reg;
899 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
900 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
901 return (reg & 0x600) == 0x200;
904 #define MEI_CFG_FW_NM \
905 .quirk_probe = mei_me_fw_type_nm
907 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
909 u32 reg;
910 /* Read ME FW Status check for SPS Firmware */
911 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
912 /* if bits [19:16] = 15, running SPS Firmware */
913 return (reg & 0xf0000) == 0xf0000;
916 #define MEI_CFG_FW_SPS \
917 .quirk_probe = mei_me_fw_type_sps
920 #define MEI_CFG_LEGACY_HFS \
921 .fw_status.count = 0
923 #define MEI_CFG_ICH_HFS \
924 .fw_status.count = 1, \
925 .fw_status.status[0] = PCI_CFG_HFS_1
927 #define MEI_CFG_PCH_HFS \
928 .fw_status.count = 2, \
929 .fw_status.status[0] = PCI_CFG_HFS_1, \
930 .fw_status.status[1] = PCI_CFG_HFS_2
932 #define MEI_CFG_PCH8_HFS \
933 .fw_status.count = 6, \
934 .fw_status.status[0] = PCI_CFG_HFS_1, \
935 .fw_status.status[1] = PCI_CFG_HFS_2, \
936 .fw_status.status[2] = PCI_CFG_HFS_3, \
937 .fw_status.status[3] = PCI_CFG_HFS_4, \
938 .fw_status.status[4] = PCI_CFG_HFS_5, \
939 .fw_status.status[5] = PCI_CFG_HFS_6
941 /* ICH Legacy devices */
942 const struct mei_cfg mei_me_legacy_cfg = {
943 MEI_CFG_LEGACY_HFS,
946 /* ICH devices */
947 const struct mei_cfg mei_me_ich_cfg = {
948 MEI_CFG_ICH_HFS,
951 /* PCH devices */
952 const struct mei_cfg mei_me_pch_cfg = {
953 MEI_CFG_PCH_HFS,
957 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
958 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
959 MEI_CFG_PCH_HFS,
960 MEI_CFG_FW_NM,
963 /* PCH8 Lynx Point and newer devices */
964 const struct mei_cfg mei_me_pch8_cfg = {
965 MEI_CFG_PCH8_HFS,
968 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
969 const struct mei_cfg mei_me_pch8_sps_cfg = {
970 MEI_CFG_PCH8_HFS,
971 MEI_CFG_FW_SPS,
975 * mei_me_dev_init - allocates and initializes the mei device structure
977 * @pdev: The pci device structure
978 * @cfg: per device generation config
980 * Return: The mei_device_device pointer on success, NULL on failure.
982 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
983 const struct mei_cfg *cfg)
985 struct mei_device *dev;
986 struct mei_me_hw *hw;
988 dev = kzalloc(sizeof(struct mei_device) +
989 sizeof(struct mei_me_hw), GFP_KERNEL);
990 if (!dev)
991 return NULL;
992 hw = to_me_hw(dev);
994 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
995 hw->cfg = cfg;
996 return dev;