Linux 4.2.1
[linux/fpc-iii.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
blobf42d9c4e45619ae5f15cbf7cc270ad1f57b2c3f7
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47 * new-style VMX'en.
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
53 * | |
54 * \_/ \_/
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | | |
57 * | o-----------------------o |
58 * | | |
59 * \_/ \_/ \_/
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | | |
62 * | o----------------------o |
63 * | | |
64 * \_/ \_/ \_/
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66 * | |
67 * | |
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95 * paths:
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110 * will be entered.
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
133 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
134 * types are passed around to enqueue and dequeue routines. Note that
135 * often the functions passed are simply wrappers around memcpy
136 * itself.
138 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139 * there's an unused last parameter for the hosted side. In
140 * ESX, that parameter holds a buffer type.
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143 u64 queue_offset, const void *src,
144 size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146 const struct vmci_queue *queue,
147 u64 queue_offset, size_t size);
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151 struct mutex __mutex; /* Protects the queue. */
152 struct mutex *mutex; /* Shared by producer and consumer queues. */
153 size_t num_pages; /* Number of pages incl. header. */
154 bool host; /* Host or guest? */
155 union {
156 struct {
157 dma_addr_t *pas;
158 void **vas;
159 } g; /* Used by the guest. */
160 struct {
161 struct page **page;
162 struct page **header_page;
163 } h; /* Used by the host. */
164 } u;
168 * This structure is opaque to the clients.
170 struct vmci_qp {
171 struct vmci_handle handle;
172 struct vmci_queue *produce_q;
173 struct vmci_queue *consume_q;
174 u64 produce_q_size;
175 u64 consume_q_size;
176 u32 peer;
177 u32 flags;
178 u32 priv_flags;
179 bool guest_endpoint;
180 unsigned int blocked;
181 unsigned int generation;
182 wait_queue_head_t event;
185 enum qp_broker_state {
186 VMCIQPB_NEW,
187 VMCIQPB_CREATED_NO_MEM,
188 VMCIQPB_CREATED_MEM,
189 VMCIQPB_ATTACHED_NO_MEM,
190 VMCIQPB_ATTACHED_MEM,
191 VMCIQPB_SHUTDOWN_NO_MEM,
192 VMCIQPB_SHUTDOWN_MEM,
193 VMCIQPB_GONE
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197 _qpb->state == VMCIQPB_ATTACHED_MEM || \
198 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
201 * In the queue pair broker, we always use the guest point of view for
202 * the produce and consume queue values and references, e.g., the
203 * produce queue size stored is the guests produce queue size. The
204 * host endpoint will need to swap these around. The only exception is
205 * the local queue pairs on the host, in which case the host endpoint
206 * that creates the queue pair will have the right orientation, and
207 * the attaching host endpoint will need to swap.
209 struct qp_entry {
210 struct list_head list_item;
211 struct vmci_handle handle;
212 u32 peer;
213 u32 flags;
214 u64 produce_size;
215 u64 consume_size;
216 u32 ref_count;
219 struct qp_broker_entry {
220 struct vmci_resource resource;
221 struct qp_entry qp;
222 u32 create_id;
223 u32 attach_id;
224 enum qp_broker_state state;
225 bool require_trusted_attach;
226 bool created_by_trusted;
227 bool vmci_page_files; /* Created by VMX using VMCI page files */
228 struct vmci_queue *produce_q;
229 struct vmci_queue *consume_q;
230 struct vmci_queue_header saved_produce_q;
231 struct vmci_queue_header saved_consume_q;
232 vmci_event_release_cb wakeup_cb;
233 void *client_data;
234 void *local_mem; /* Kernel memory for local queue pair */
237 struct qp_guest_endpoint {
238 struct vmci_resource resource;
239 struct qp_entry qp;
240 u64 num_ppns;
241 void *produce_q;
242 void *consume_q;
243 struct ppn_set ppn_set;
246 struct qp_list {
247 struct list_head head;
248 struct mutex mutex; /* Protect queue list. */
251 static struct qp_list qp_broker_list = {
252 .head = LIST_HEAD_INIT(qp_broker_list.head),
253 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
256 static struct qp_list qp_guest_endpoints = {
257 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
261 #define INVALID_VMCI_GUEST_MEM_ID 0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
268 * Frees kernel VA space for a given queue and its queue header, and
269 * frees physical data pages.
271 static void qp_free_queue(void *q, u64 size)
273 struct vmci_queue *queue = q;
275 if (queue) {
276 u64 i;
278 /* Given size does not include header, so add in a page here. */
279 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281 queue->kernel_if->u.g.vas[i],
282 queue->kernel_if->u.g.pas[i]);
285 vfree(queue);
290 * Allocates kernel queue pages of specified size with IOMMU mappings,
291 * plus space for the queue structure/kernel interface and the queue
292 * header.
294 static void *qp_alloc_queue(u64 size, u32 flags)
296 u64 i;
297 struct vmci_queue *queue;
298 size_t pas_size;
299 size_t vas_size;
300 size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
301 const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
303 if (num_pages >
304 (SIZE_MAX - queue_size) /
305 (sizeof(*queue->kernel_if->u.g.pas) +
306 sizeof(*queue->kernel_if->u.g.vas)))
307 return NULL;
309 pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
310 vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
311 queue_size += pas_size + vas_size;
313 queue = vmalloc(queue_size);
314 if (!queue)
315 return NULL;
317 queue->q_header = NULL;
318 queue->saved_header = NULL;
319 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
320 queue->kernel_if->mutex = NULL;
321 queue->kernel_if->num_pages = num_pages;
322 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
323 queue->kernel_if->u.g.vas =
324 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
325 queue->kernel_if->host = false;
327 for (i = 0; i < num_pages; i++) {
328 queue->kernel_if->u.g.vas[i] =
329 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
330 &queue->kernel_if->u.g.pas[i],
331 GFP_KERNEL);
332 if (!queue->kernel_if->u.g.vas[i]) {
333 /* Size excl. the header. */
334 qp_free_queue(queue, i * PAGE_SIZE);
335 return NULL;
339 /* Queue header is the first page. */
340 queue->q_header = queue->kernel_if->u.g.vas[0];
342 return queue;
346 * Copies from a given buffer or iovector to a VMCI Queue. Uses
347 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
348 * by traversing the offset -> page translation structure for the queue.
349 * Assumes that offset + size does not wrap around in the queue.
351 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
352 u64 queue_offset,
353 const void *src,
354 size_t size,
355 bool is_iovec)
357 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
358 size_t bytes_copied = 0;
360 while (bytes_copied < size) {
361 const u64 page_index =
362 (queue_offset + bytes_copied) / PAGE_SIZE;
363 const size_t page_offset =
364 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
365 void *va;
366 size_t to_copy;
368 if (kernel_if->host)
369 va = kmap(kernel_if->u.h.page[page_index]);
370 else
371 va = kernel_if->u.g.vas[page_index + 1];
372 /* Skip header. */
374 if (size - bytes_copied > PAGE_SIZE - page_offset)
375 /* Enough payload to fill up from this page. */
376 to_copy = PAGE_SIZE - page_offset;
377 else
378 to_copy = size - bytes_copied;
380 if (is_iovec) {
381 struct msghdr *msg = (struct msghdr *)src;
382 int err;
384 /* The iovec will track bytes_copied internally. */
385 err = memcpy_from_msg((u8 *)va + page_offset,
386 msg, to_copy);
387 if (err != 0) {
388 if (kernel_if->host)
389 kunmap(kernel_if->u.h.page[page_index]);
390 return VMCI_ERROR_INVALID_ARGS;
392 } else {
393 memcpy((u8 *)va + page_offset,
394 (u8 *)src + bytes_copied, to_copy);
397 bytes_copied += to_copy;
398 if (kernel_if->host)
399 kunmap(kernel_if->u.h.page[page_index]);
402 return VMCI_SUCCESS;
406 * Copies to a given buffer or iovector from a VMCI Queue. Uses
407 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
408 * by traversing the offset -> page translation structure for the queue.
409 * Assumes that offset + size does not wrap around in the queue.
411 static int __qp_memcpy_from_queue(void *dest,
412 const struct vmci_queue *queue,
413 u64 queue_offset,
414 size_t size,
415 bool is_iovec)
417 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
418 size_t bytes_copied = 0;
420 while (bytes_copied < size) {
421 const u64 page_index =
422 (queue_offset + bytes_copied) / PAGE_SIZE;
423 const size_t page_offset =
424 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
425 void *va;
426 size_t to_copy;
428 if (kernel_if->host)
429 va = kmap(kernel_if->u.h.page[page_index]);
430 else
431 va = kernel_if->u.g.vas[page_index + 1];
432 /* Skip header. */
434 if (size - bytes_copied > PAGE_SIZE - page_offset)
435 /* Enough payload to fill up this page. */
436 to_copy = PAGE_SIZE - page_offset;
437 else
438 to_copy = size - bytes_copied;
440 if (is_iovec) {
441 struct msghdr *msg = dest;
442 int err;
444 /* The iovec will track bytes_copied internally. */
445 err = memcpy_to_msg(msg, (u8 *)va + page_offset,
446 to_copy);
447 if (err != 0) {
448 if (kernel_if->host)
449 kunmap(kernel_if->u.h.page[page_index]);
450 return VMCI_ERROR_INVALID_ARGS;
452 } else {
453 memcpy((u8 *)dest + bytes_copied,
454 (u8 *)va + page_offset, to_copy);
457 bytes_copied += to_copy;
458 if (kernel_if->host)
459 kunmap(kernel_if->u.h.page[page_index]);
462 return VMCI_SUCCESS;
466 * Allocates two list of PPNs --- one for the pages in the produce queue,
467 * and the other for the pages in the consume queue. Intializes the list
468 * of PPNs with the page frame numbers of the KVA for the two queues (and
469 * the queue headers).
471 static int qp_alloc_ppn_set(void *prod_q,
472 u64 num_produce_pages,
473 void *cons_q,
474 u64 num_consume_pages, struct ppn_set *ppn_set)
476 u32 *produce_ppns;
477 u32 *consume_ppns;
478 struct vmci_queue *produce_q = prod_q;
479 struct vmci_queue *consume_q = cons_q;
480 u64 i;
482 if (!produce_q || !num_produce_pages || !consume_q ||
483 !num_consume_pages || !ppn_set)
484 return VMCI_ERROR_INVALID_ARGS;
486 if (ppn_set->initialized)
487 return VMCI_ERROR_ALREADY_EXISTS;
489 produce_ppns =
490 kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
491 if (!produce_ppns)
492 return VMCI_ERROR_NO_MEM;
494 consume_ppns =
495 kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
496 if (!consume_ppns) {
497 kfree(produce_ppns);
498 return VMCI_ERROR_NO_MEM;
501 for (i = 0; i < num_produce_pages; i++) {
502 unsigned long pfn;
504 produce_ppns[i] =
505 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
506 pfn = produce_ppns[i];
508 /* Fail allocation if PFN isn't supported by hypervisor. */
509 if (sizeof(pfn) > sizeof(*produce_ppns)
510 && pfn != produce_ppns[i])
511 goto ppn_error;
514 for (i = 0; i < num_consume_pages; i++) {
515 unsigned long pfn;
517 consume_ppns[i] =
518 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
519 pfn = consume_ppns[i];
521 /* Fail allocation if PFN isn't supported by hypervisor. */
522 if (sizeof(pfn) > sizeof(*consume_ppns)
523 && pfn != consume_ppns[i])
524 goto ppn_error;
527 ppn_set->num_produce_pages = num_produce_pages;
528 ppn_set->num_consume_pages = num_consume_pages;
529 ppn_set->produce_ppns = produce_ppns;
530 ppn_set->consume_ppns = consume_ppns;
531 ppn_set->initialized = true;
532 return VMCI_SUCCESS;
534 ppn_error:
535 kfree(produce_ppns);
536 kfree(consume_ppns);
537 return VMCI_ERROR_INVALID_ARGS;
541 * Frees the two list of PPNs for a queue pair.
543 static void qp_free_ppn_set(struct ppn_set *ppn_set)
545 if (ppn_set->initialized) {
546 /* Do not call these functions on NULL inputs. */
547 kfree(ppn_set->produce_ppns);
548 kfree(ppn_set->consume_ppns);
550 memset(ppn_set, 0, sizeof(*ppn_set));
554 * Populates the list of PPNs in the hypercall structure with the PPNS
555 * of the produce queue and the consume queue.
557 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
559 memcpy(call_buf, ppn_set->produce_ppns,
560 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
561 memcpy(call_buf +
562 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
563 ppn_set->consume_ppns,
564 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
566 return VMCI_SUCCESS;
569 static int qp_memcpy_to_queue(struct vmci_queue *queue,
570 u64 queue_offset,
571 const void *src, size_t src_offset, size_t size)
573 return __qp_memcpy_to_queue(queue, queue_offset,
574 (u8 *)src + src_offset, size, false);
577 static int qp_memcpy_from_queue(void *dest,
578 size_t dest_offset,
579 const struct vmci_queue *queue,
580 u64 queue_offset, size_t size)
582 return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
583 queue, queue_offset, size, false);
587 * Copies from a given iovec from a VMCI Queue.
589 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
590 u64 queue_offset,
591 const void *msg,
592 size_t src_offset, size_t size)
596 * We ignore src_offset because src is really a struct iovec * and will
597 * maintain offset internally.
599 return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
603 * Copies to a given iovec from a VMCI Queue.
605 static int qp_memcpy_from_queue_iov(void *dest,
606 size_t dest_offset,
607 const struct vmci_queue *queue,
608 u64 queue_offset, size_t size)
611 * We ignore dest_offset because dest is really a struct iovec * and
612 * will maintain offset internally.
614 return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
618 * Allocates kernel VA space of specified size plus space for the queue
619 * and kernel interface. This is different from the guest queue allocator,
620 * because we do not allocate our own queue header/data pages here but
621 * share those of the guest.
623 static struct vmci_queue *qp_host_alloc_queue(u64 size)
625 struct vmci_queue *queue;
626 size_t queue_page_size;
627 const u64 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
628 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
630 if (num_pages > (SIZE_MAX - queue_size) /
631 sizeof(*queue->kernel_if->u.h.page))
632 return NULL;
634 queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
636 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
637 if (queue) {
638 queue->q_header = NULL;
639 queue->saved_header = NULL;
640 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
641 queue->kernel_if->host = true;
642 queue->kernel_if->mutex = NULL;
643 queue->kernel_if->num_pages = num_pages;
644 queue->kernel_if->u.h.header_page =
645 (struct page **)((u8 *)queue + queue_size);
646 queue->kernel_if->u.h.page =
647 &queue->kernel_if->u.h.header_page[1];
650 return queue;
654 * Frees kernel memory for a given queue (header plus translation
655 * structure).
657 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
659 kfree(queue);
663 * Initialize the mutex for the pair of queues. This mutex is used to
664 * protect the q_header and the buffer from changing out from under any
665 * users of either queue. Of course, it's only any good if the mutexes
666 * are actually acquired. Queue structure must lie on non-paged memory
667 * or we cannot guarantee access to the mutex.
669 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
670 struct vmci_queue *consume_q)
673 * Only the host queue has shared state - the guest queues do not
674 * need to synchronize access using a queue mutex.
677 if (produce_q->kernel_if->host) {
678 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
679 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
680 mutex_init(produce_q->kernel_if->mutex);
685 * Cleans up the mutex for the pair of queues.
687 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
688 struct vmci_queue *consume_q)
690 if (produce_q->kernel_if->host) {
691 produce_q->kernel_if->mutex = NULL;
692 consume_q->kernel_if->mutex = NULL;
697 * Acquire the mutex for the queue. Note that the produce_q and
698 * the consume_q share a mutex. So, only one of the two need to
699 * be passed in to this routine. Either will work just fine.
701 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
703 if (queue->kernel_if->host)
704 mutex_lock(queue->kernel_if->mutex);
708 * Release the mutex for the queue. Note that the produce_q and
709 * the consume_q share a mutex. So, only one of the two need to
710 * be passed in to this routine. Either will work just fine.
712 static void qp_release_queue_mutex(struct vmci_queue *queue)
714 if (queue->kernel_if->host)
715 mutex_unlock(queue->kernel_if->mutex);
719 * Helper function to release pages in the PageStoreAttachInfo
720 * previously obtained using get_user_pages.
722 static void qp_release_pages(struct page **pages,
723 u64 num_pages, bool dirty)
725 int i;
727 for (i = 0; i < num_pages; i++) {
728 if (dirty)
729 set_page_dirty(pages[i]);
731 page_cache_release(pages[i]);
732 pages[i] = NULL;
737 * Lock the user pages referenced by the {produce,consume}Buffer
738 * struct into memory and populate the {produce,consume}Pages
739 * arrays in the attach structure with them.
741 static int qp_host_get_user_memory(u64 produce_uva,
742 u64 consume_uva,
743 struct vmci_queue *produce_q,
744 struct vmci_queue *consume_q)
746 int retval;
747 int err = VMCI_SUCCESS;
749 retval = get_user_pages_fast((uintptr_t) produce_uva,
750 produce_q->kernel_if->num_pages, 1,
751 produce_q->kernel_if->u.h.header_page);
752 if (retval < produce_q->kernel_if->num_pages) {
753 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
754 retval);
755 qp_release_pages(produce_q->kernel_if->u.h.header_page,
756 retval, false);
757 err = VMCI_ERROR_NO_MEM;
758 goto out;
761 retval = get_user_pages_fast((uintptr_t) consume_uva,
762 consume_q->kernel_if->num_pages, 1,
763 consume_q->kernel_if->u.h.header_page);
764 if (retval < consume_q->kernel_if->num_pages) {
765 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
766 retval);
767 qp_release_pages(consume_q->kernel_if->u.h.header_page,
768 retval, false);
769 qp_release_pages(produce_q->kernel_if->u.h.header_page,
770 produce_q->kernel_if->num_pages, false);
771 err = VMCI_ERROR_NO_MEM;
774 out:
775 return err;
779 * Registers the specification of the user pages used for backing a queue
780 * pair. Enough information to map in pages is stored in the OS specific
781 * part of the struct vmci_queue structure.
783 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
784 struct vmci_queue *produce_q,
785 struct vmci_queue *consume_q)
787 u64 produce_uva;
788 u64 consume_uva;
791 * The new style and the old style mapping only differs in
792 * that we either get a single or two UVAs, so we split the
793 * single UVA range at the appropriate spot.
795 produce_uva = page_store->pages;
796 consume_uva = page_store->pages +
797 produce_q->kernel_if->num_pages * PAGE_SIZE;
798 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
799 consume_q);
803 * Releases and removes the references to user pages stored in the attach
804 * struct. Pages are released from the page cache and may become
805 * swappable again.
807 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
808 struct vmci_queue *consume_q)
810 qp_release_pages(produce_q->kernel_if->u.h.header_page,
811 produce_q->kernel_if->num_pages, true);
812 memset(produce_q->kernel_if->u.h.header_page, 0,
813 sizeof(*produce_q->kernel_if->u.h.header_page) *
814 produce_q->kernel_if->num_pages);
815 qp_release_pages(consume_q->kernel_if->u.h.header_page,
816 consume_q->kernel_if->num_pages, true);
817 memset(consume_q->kernel_if->u.h.header_page, 0,
818 sizeof(*consume_q->kernel_if->u.h.header_page) *
819 consume_q->kernel_if->num_pages);
823 * Once qp_host_register_user_memory has been performed on a
824 * queue, the queue pair headers can be mapped into the
825 * kernel. Once mapped, they must be unmapped with
826 * qp_host_unmap_queues prior to calling
827 * qp_host_unregister_user_memory.
828 * Pages are pinned.
830 static int qp_host_map_queues(struct vmci_queue *produce_q,
831 struct vmci_queue *consume_q)
833 int result;
835 if (!produce_q->q_header || !consume_q->q_header) {
836 struct page *headers[2];
838 if (produce_q->q_header != consume_q->q_header)
839 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
841 if (produce_q->kernel_if->u.h.header_page == NULL ||
842 *produce_q->kernel_if->u.h.header_page == NULL)
843 return VMCI_ERROR_UNAVAILABLE;
845 headers[0] = *produce_q->kernel_if->u.h.header_page;
846 headers[1] = *consume_q->kernel_if->u.h.header_page;
848 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
849 if (produce_q->q_header != NULL) {
850 consume_q->q_header =
851 (struct vmci_queue_header *)((u8 *)
852 produce_q->q_header +
853 PAGE_SIZE);
854 result = VMCI_SUCCESS;
855 } else {
856 pr_warn("vmap failed\n");
857 result = VMCI_ERROR_NO_MEM;
859 } else {
860 result = VMCI_SUCCESS;
863 return result;
867 * Unmaps previously mapped queue pair headers from the kernel.
868 * Pages are unpinned.
870 static int qp_host_unmap_queues(u32 gid,
871 struct vmci_queue *produce_q,
872 struct vmci_queue *consume_q)
874 if (produce_q->q_header) {
875 if (produce_q->q_header < consume_q->q_header)
876 vunmap(produce_q->q_header);
877 else
878 vunmap(consume_q->q_header);
880 produce_q->q_header = NULL;
881 consume_q->q_header = NULL;
884 return VMCI_SUCCESS;
888 * Finds the entry in the list corresponding to a given handle. Assumes
889 * that the list is locked.
891 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
892 struct vmci_handle handle)
894 struct qp_entry *entry;
896 if (vmci_handle_is_invalid(handle))
897 return NULL;
899 list_for_each_entry(entry, &qp_list->head, list_item) {
900 if (vmci_handle_is_equal(entry->handle, handle))
901 return entry;
904 return NULL;
908 * Finds the entry in the list corresponding to a given handle.
910 static struct qp_guest_endpoint *
911 qp_guest_handle_to_entry(struct vmci_handle handle)
913 struct qp_guest_endpoint *entry;
914 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
916 entry = qp ? container_of(
917 qp, struct qp_guest_endpoint, qp) : NULL;
918 return entry;
922 * Finds the entry in the list corresponding to a given handle.
924 static struct qp_broker_entry *
925 qp_broker_handle_to_entry(struct vmci_handle handle)
927 struct qp_broker_entry *entry;
928 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
930 entry = qp ? container_of(
931 qp, struct qp_broker_entry, qp) : NULL;
932 return entry;
936 * Dispatches a queue pair event message directly into the local event
937 * queue.
939 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
941 u32 context_id = vmci_get_context_id();
942 struct vmci_event_qp ev;
944 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
945 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
946 VMCI_CONTEXT_RESOURCE_ID);
947 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
948 ev.msg.event_data.event =
949 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
950 ev.payload.peer_id = context_id;
951 ev.payload.handle = handle;
953 return vmci_event_dispatch(&ev.msg.hdr);
957 * Allocates and initializes a qp_guest_endpoint structure.
958 * Allocates a queue_pair rid (and handle) iff the given entry has
959 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
960 * are reserved handles. Assumes that the QP list mutex is held
961 * by the caller.
963 static struct qp_guest_endpoint *
964 qp_guest_endpoint_create(struct vmci_handle handle,
965 u32 peer,
966 u32 flags,
967 u64 produce_size,
968 u64 consume_size,
969 void *produce_q,
970 void *consume_q)
972 int result;
973 struct qp_guest_endpoint *entry;
974 /* One page each for the queue headers. */
975 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
976 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
978 if (vmci_handle_is_invalid(handle)) {
979 u32 context_id = vmci_get_context_id();
981 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
984 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
985 if (entry) {
986 entry->qp.peer = peer;
987 entry->qp.flags = flags;
988 entry->qp.produce_size = produce_size;
989 entry->qp.consume_size = consume_size;
990 entry->qp.ref_count = 0;
991 entry->num_ppns = num_ppns;
992 entry->produce_q = produce_q;
993 entry->consume_q = consume_q;
994 INIT_LIST_HEAD(&entry->qp.list_item);
996 /* Add resource obj */
997 result = vmci_resource_add(&entry->resource,
998 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
999 handle);
1000 entry->qp.handle = vmci_resource_handle(&entry->resource);
1001 if ((result != VMCI_SUCCESS) ||
1002 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1003 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1004 handle.context, handle.resource, result);
1005 kfree(entry);
1006 entry = NULL;
1009 return entry;
1013 * Frees a qp_guest_endpoint structure.
1015 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1017 qp_free_ppn_set(&entry->ppn_set);
1018 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1019 qp_free_queue(entry->produce_q, entry->qp.produce_size);
1020 qp_free_queue(entry->consume_q, entry->qp.consume_size);
1021 /* Unlink from resource hash table and free callback */
1022 vmci_resource_remove(&entry->resource);
1024 kfree(entry);
1028 * Helper to make a queue_pairAlloc hypercall when the driver is
1029 * supporting a guest device.
1031 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1033 struct vmci_qp_alloc_msg *alloc_msg;
1034 size_t msg_size;
1035 int result;
1037 if (!entry || entry->num_ppns <= 2)
1038 return VMCI_ERROR_INVALID_ARGS;
1040 msg_size = sizeof(*alloc_msg) +
1041 (size_t) entry->num_ppns * sizeof(u32);
1042 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1043 if (!alloc_msg)
1044 return VMCI_ERROR_NO_MEM;
1046 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1047 VMCI_QUEUEPAIR_ALLOC);
1048 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1049 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1050 alloc_msg->handle = entry->qp.handle;
1051 alloc_msg->peer = entry->qp.peer;
1052 alloc_msg->flags = entry->qp.flags;
1053 alloc_msg->produce_size = entry->qp.produce_size;
1054 alloc_msg->consume_size = entry->qp.consume_size;
1055 alloc_msg->num_ppns = entry->num_ppns;
1057 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1058 &entry->ppn_set);
1059 if (result == VMCI_SUCCESS)
1060 result = vmci_send_datagram(&alloc_msg->hdr);
1062 kfree(alloc_msg);
1064 return result;
1068 * Helper to make a queue_pairDetach hypercall when the driver is
1069 * supporting a guest device.
1071 static int qp_detatch_hypercall(struct vmci_handle handle)
1073 struct vmci_qp_detach_msg detach_msg;
1075 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1076 VMCI_QUEUEPAIR_DETACH);
1077 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1078 detach_msg.hdr.payload_size = sizeof(handle);
1079 detach_msg.handle = handle;
1081 return vmci_send_datagram(&detach_msg.hdr);
1085 * Adds the given entry to the list. Assumes that the list is locked.
1087 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1089 if (entry)
1090 list_add(&entry->list_item, &qp_list->head);
1094 * Removes the given entry from the list. Assumes that the list is locked.
1096 static void qp_list_remove_entry(struct qp_list *qp_list,
1097 struct qp_entry *entry)
1099 if (entry)
1100 list_del(&entry->list_item);
1104 * Helper for VMCI queue_pair detach interface. Frees the physical
1105 * pages for the queue pair.
1107 static int qp_detatch_guest_work(struct vmci_handle handle)
1109 int result;
1110 struct qp_guest_endpoint *entry;
1111 u32 ref_count = ~0; /* To avoid compiler warning below */
1113 mutex_lock(&qp_guest_endpoints.mutex);
1115 entry = qp_guest_handle_to_entry(handle);
1116 if (!entry) {
1117 mutex_unlock(&qp_guest_endpoints.mutex);
1118 return VMCI_ERROR_NOT_FOUND;
1121 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1122 result = VMCI_SUCCESS;
1124 if (entry->qp.ref_count > 1) {
1125 result = qp_notify_peer_local(false, handle);
1127 * We can fail to notify a local queuepair
1128 * because we can't allocate. We still want
1129 * to release the entry if that happens, so
1130 * don't bail out yet.
1133 } else {
1134 result = qp_detatch_hypercall(handle);
1135 if (result < VMCI_SUCCESS) {
1137 * We failed to notify a non-local queuepair.
1138 * That other queuepair might still be
1139 * accessing the shared memory, so don't
1140 * release the entry yet. It will get cleaned
1141 * up by VMCIqueue_pair_Exit() if necessary
1142 * (assuming we are going away, otherwise why
1143 * did this fail?).
1146 mutex_unlock(&qp_guest_endpoints.mutex);
1147 return result;
1152 * If we get here then we either failed to notify a local queuepair, or
1153 * we succeeded in all cases. Release the entry if required.
1156 entry->qp.ref_count--;
1157 if (entry->qp.ref_count == 0)
1158 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1160 /* If we didn't remove the entry, this could change once we unlock. */
1161 if (entry)
1162 ref_count = entry->qp.ref_count;
1164 mutex_unlock(&qp_guest_endpoints.mutex);
1166 if (ref_count == 0)
1167 qp_guest_endpoint_destroy(entry);
1169 return result;
1173 * This functions handles the actual allocation of a VMCI queue
1174 * pair guest endpoint. Allocates physical pages for the queue
1175 * pair. It makes OS dependent calls through generic wrappers.
1177 static int qp_alloc_guest_work(struct vmci_handle *handle,
1178 struct vmci_queue **produce_q,
1179 u64 produce_size,
1180 struct vmci_queue **consume_q,
1181 u64 consume_size,
1182 u32 peer,
1183 u32 flags,
1184 u32 priv_flags)
1186 const u64 num_produce_pages =
1187 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1188 const u64 num_consume_pages =
1189 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1190 void *my_produce_q = NULL;
1191 void *my_consume_q = NULL;
1192 int result;
1193 struct qp_guest_endpoint *queue_pair_entry = NULL;
1195 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1196 return VMCI_ERROR_NO_ACCESS;
1198 mutex_lock(&qp_guest_endpoints.mutex);
1200 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1201 if (queue_pair_entry) {
1202 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1203 /* Local attach case. */
1204 if (queue_pair_entry->qp.ref_count > 1) {
1205 pr_devel("Error attempting to attach more than once\n");
1206 result = VMCI_ERROR_UNAVAILABLE;
1207 goto error_keep_entry;
1210 if (queue_pair_entry->qp.produce_size != consume_size ||
1211 queue_pair_entry->qp.consume_size !=
1212 produce_size ||
1213 queue_pair_entry->qp.flags !=
1214 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1215 pr_devel("Error mismatched queue pair in local attach\n");
1216 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1217 goto error_keep_entry;
1221 * Do a local attach. We swap the consume and
1222 * produce queues for the attacher and deliver
1223 * an attach event.
1225 result = qp_notify_peer_local(true, *handle);
1226 if (result < VMCI_SUCCESS)
1227 goto error_keep_entry;
1229 my_produce_q = queue_pair_entry->consume_q;
1230 my_consume_q = queue_pair_entry->produce_q;
1231 goto out;
1234 result = VMCI_ERROR_ALREADY_EXISTS;
1235 goto error_keep_entry;
1238 my_produce_q = qp_alloc_queue(produce_size, flags);
1239 if (!my_produce_q) {
1240 pr_warn("Error allocating pages for produce queue\n");
1241 result = VMCI_ERROR_NO_MEM;
1242 goto error;
1245 my_consume_q = qp_alloc_queue(consume_size, flags);
1246 if (!my_consume_q) {
1247 pr_warn("Error allocating pages for consume queue\n");
1248 result = VMCI_ERROR_NO_MEM;
1249 goto error;
1252 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1253 produce_size, consume_size,
1254 my_produce_q, my_consume_q);
1255 if (!queue_pair_entry) {
1256 pr_warn("Error allocating memory in %s\n", __func__);
1257 result = VMCI_ERROR_NO_MEM;
1258 goto error;
1261 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1262 num_consume_pages,
1263 &queue_pair_entry->ppn_set);
1264 if (result < VMCI_SUCCESS) {
1265 pr_warn("qp_alloc_ppn_set failed\n");
1266 goto error;
1270 * It's only necessary to notify the host if this queue pair will be
1271 * attached to from another context.
1273 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1274 /* Local create case. */
1275 u32 context_id = vmci_get_context_id();
1278 * Enforce similar checks on local queue pairs as we
1279 * do for regular ones. The handle's context must
1280 * match the creator or attacher context id (here they
1281 * are both the current context id) and the
1282 * attach-only flag cannot exist during create. We
1283 * also ensure specified peer is this context or an
1284 * invalid one.
1286 if (queue_pair_entry->qp.handle.context != context_id ||
1287 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1288 queue_pair_entry->qp.peer != context_id)) {
1289 result = VMCI_ERROR_NO_ACCESS;
1290 goto error;
1293 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1294 result = VMCI_ERROR_NOT_FOUND;
1295 goto error;
1297 } else {
1298 result = qp_alloc_hypercall(queue_pair_entry);
1299 if (result < VMCI_SUCCESS) {
1300 pr_warn("qp_alloc_hypercall result = %d\n", result);
1301 goto error;
1305 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1306 (struct vmci_queue *)my_consume_q);
1308 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1310 out:
1311 queue_pair_entry->qp.ref_count++;
1312 *handle = queue_pair_entry->qp.handle;
1313 *produce_q = (struct vmci_queue *)my_produce_q;
1314 *consume_q = (struct vmci_queue *)my_consume_q;
1317 * We should initialize the queue pair header pages on a local
1318 * queue pair create. For non-local queue pairs, the
1319 * hypervisor initializes the header pages in the create step.
1321 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1322 queue_pair_entry->qp.ref_count == 1) {
1323 vmci_q_header_init((*produce_q)->q_header, *handle);
1324 vmci_q_header_init((*consume_q)->q_header, *handle);
1327 mutex_unlock(&qp_guest_endpoints.mutex);
1329 return VMCI_SUCCESS;
1331 error:
1332 mutex_unlock(&qp_guest_endpoints.mutex);
1333 if (queue_pair_entry) {
1334 /* The queues will be freed inside the destroy routine. */
1335 qp_guest_endpoint_destroy(queue_pair_entry);
1336 } else {
1337 qp_free_queue(my_produce_q, produce_size);
1338 qp_free_queue(my_consume_q, consume_size);
1340 return result;
1342 error_keep_entry:
1343 /* This path should only be used when an existing entry was found. */
1344 mutex_unlock(&qp_guest_endpoints.mutex);
1345 return result;
1349 * The first endpoint issuing a queue pair allocation will create the state
1350 * of the queue pair in the queue pair broker.
1352 * If the creator is a guest, it will associate a VMX virtual address range
1353 * with the queue pair as specified by the page_store. For compatibility with
1354 * older VMX'en, that would use a separate step to set the VMX virtual
1355 * address range, the virtual address range can be registered later using
1356 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1357 * used.
1359 * If the creator is the host, a page_store of NULL should be used as well,
1360 * since the host is not able to supply a page store for the queue pair.
1362 * For older VMX and host callers, the queue pair will be created in the
1363 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1364 * created in VMCOQPB_CREATED_MEM state.
1366 static int qp_broker_create(struct vmci_handle handle,
1367 u32 peer,
1368 u32 flags,
1369 u32 priv_flags,
1370 u64 produce_size,
1371 u64 consume_size,
1372 struct vmci_qp_page_store *page_store,
1373 struct vmci_ctx *context,
1374 vmci_event_release_cb wakeup_cb,
1375 void *client_data, struct qp_broker_entry **ent)
1377 struct qp_broker_entry *entry = NULL;
1378 const u32 context_id = vmci_ctx_get_id(context);
1379 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1380 int result;
1381 u64 guest_produce_size;
1382 u64 guest_consume_size;
1384 /* Do not create if the caller asked not to. */
1385 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1386 return VMCI_ERROR_NOT_FOUND;
1389 * Creator's context ID should match handle's context ID or the creator
1390 * must allow the context in handle's context ID as the "peer".
1392 if (handle.context != context_id && handle.context != peer)
1393 return VMCI_ERROR_NO_ACCESS;
1395 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1396 return VMCI_ERROR_DST_UNREACHABLE;
1399 * Creator's context ID for local queue pairs should match the
1400 * peer, if a peer is specified.
1402 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1403 return VMCI_ERROR_NO_ACCESS;
1405 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1406 if (!entry)
1407 return VMCI_ERROR_NO_MEM;
1409 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1411 * The queue pair broker entry stores values from the guest
1412 * point of view, so a creating host side endpoint should swap
1413 * produce and consume values -- unless it is a local queue
1414 * pair, in which case no swapping is necessary, since the local
1415 * attacher will swap queues.
1418 guest_produce_size = consume_size;
1419 guest_consume_size = produce_size;
1420 } else {
1421 guest_produce_size = produce_size;
1422 guest_consume_size = consume_size;
1425 entry->qp.handle = handle;
1426 entry->qp.peer = peer;
1427 entry->qp.flags = flags;
1428 entry->qp.produce_size = guest_produce_size;
1429 entry->qp.consume_size = guest_consume_size;
1430 entry->qp.ref_count = 1;
1431 entry->create_id = context_id;
1432 entry->attach_id = VMCI_INVALID_ID;
1433 entry->state = VMCIQPB_NEW;
1434 entry->require_trusted_attach =
1435 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1436 entry->created_by_trusted =
1437 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1438 entry->vmci_page_files = false;
1439 entry->wakeup_cb = wakeup_cb;
1440 entry->client_data = client_data;
1441 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1442 if (entry->produce_q == NULL) {
1443 result = VMCI_ERROR_NO_MEM;
1444 goto error;
1446 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1447 if (entry->consume_q == NULL) {
1448 result = VMCI_ERROR_NO_MEM;
1449 goto error;
1452 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1454 INIT_LIST_HEAD(&entry->qp.list_item);
1456 if (is_local) {
1457 u8 *tmp;
1459 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1460 PAGE_SIZE, GFP_KERNEL);
1461 if (entry->local_mem == NULL) {
1462 result = VMCI_ERROR_NO_MEM;
1463 goto error;
1465 entry->state = VMCIQPB_CREATED_MEM;
1466 entry->produce_q->q_header = entry->local_mem;
1467 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1468 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1469 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1470 } else if (page_store) {
1472 * The VMX already initialized the queue pair headers, so no
1473 * need for the kernel side to do that.
1475 result = qp_host_register_user_memory(page_store,
1476 entry->produce_q,
1477 entry->consume_q);
1478 if (result < VMCI_SUCCESS)
1479 goto error;
1481 entry->state = VMCIQPB_CREATED_MEM;
1482 } else {
1484 * A create without a page_store may be either a host
1485 * side create (in which case we are waiting for the
1486 * guest side to supply the memory) or an old style
1487 * queue pair create (in which case we will expect a
1488 * set page store call as the next step).
1490 entry->state = VMCIQPB_CREATED_NO_MEM;
1493 qp_list_add_entry(&qp_broker_list, &entry->qp);
1494 if (ent != NULL)
1495 *ent = entry;
1497 /* Add to resource obj */
1498 result = vmci_resource_add(&entry->resource,
1499 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1500 handle);
1501 if (result != VMCI_SUCCESS) {
1502 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1503 handle.context, handle.resource, result);
1504 goto error;
1507 entry->qp.handle = vmci_resource_handle(&entry->resource);
1508 if (is_local) {
1509 vmci_q_header_init(entry->produce_q->q_header,
1510 entry->qp.handle);
1511 vmci_q_header_init(entry->consume_q->q_header,
1512 entry->qp.handle);
1515 vmci_ctx_qp_create(context, entry->qp.handle);
1517 return VMCI_SUCCESS;
1519 error:
1520 if (entry != NULL) {
1521 qp_host_free_queue(entry->produce_q, guest_produce_size);
1522 qp_host_free_queue(entry->consume_q, guest_consume_size);
1523 kfree(entry);
1526 return result;
1530 * Enqueues an event datagram to notify the peer VM attached to
1531 * the given queue pair handle about attach/detach event by the
1532 * given VM. Returns Payload size of datagram enqueued on
1533 * success, error code otherwise.
1535 static int qp_notify_peer(bool attach,
1536 struct vmci_handle handle,
1537 u32 my_id,
1538 u32 peer_id)
1540 int rv;
1541 struct vmci_event_qp ev;
1543 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1544 peer_id == VMCI_INVALID_ID)
1545 return VMCI_ERROR_INVALID_ARGS;
1548 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1549 * number of pending events from the hypervisor to a given VM
1550 * otherwise a rogue VM could do an arbitrary number of attach
1551 * and detach operations causing memory pressure in the host
1552 * kernel.
1555 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1556 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1557 VMCI_CONTEXT_RESOURCE_ID);
1558 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1559 ev.msg.event_data.event = attach ?
1560 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1561 ev.payload.handle = handle;
1562 ev.payload.peer_id = my_id;
1564 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1565 &ev.msg.hdr, false);
1566 if (rv < VMCI_SUCCESS)
1567 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1568 attach ? "ATTACH" : "DETACH", peer_id);
1570 return rv;
1574 * The second endpoint issuing a queue pair allocation will attach to
1575 * the queue pair registered with the queue pair broker.
1577 * If the attacher is a guest, it will associate a VMX virtual address
1578 * range with the queue pair as specified by the page_store. At this
1579 * point, the already attach host endpoint may start using the queue
1580 * pair, and an attach event is sent to it. For compatibility with
1581 * older VMX'en, that used a separate step to set the VMX virtual
1582 * address range, the virtual address range can be registered later
1583 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1584 * NULL should be used, and the attach event will be generated once
1585 * the actual page store has been set.
1587 * If the attacher is the host, a page_store of NULL should be used as
1588 * well, since the page store information is already set by the guest.
1590 * For new VMX and host callers, the queue pair will be moved to the
1591 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1592 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1594 static int qp_broker_attach(struct qp_broker_entry *entry,
1595 u32 peer,
1596 u32 flags,
1597 u32 priv_flags,
1598 u64 produce_size,
1599 u64 consume_size,
1600 struct vmci_qp_page_store *page_store,
1601 struct vmci_ctx *context,
1602 vmci_event_release_cb wakeup_cb,
1603 void *client_data,
1604 struct qp_broker_entry **ent)
1606 const u32 context_id = vmci_ctx_get_id(context);
1607 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1608 int result;
1610 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1611 entry->state != VMCIQPB_CREATED_MEM)
1612 return VMCI_ERROR_UNAVAILABLE;
1614 if (is_local) {
1615 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1616 context_id != entry->create_id) {
1617 return VMCI_ERROR_INVALID_ARGS;
1619 } else if (context_id == entry->create_id ||
1620 context_id == entry->attach_id) {
1621 return VMCI_ERROR_ALREADY_EXISTS;
1624 if (VMCI_CONTEXT_IS_VM(context_id) &&
1625 VMCI_CONTEXT_IS_VM(entry->create_id))
1626 return VMCI_ERROR_DST_UNREACHABLE;
1629 * If we are attaching from a restricted context then the queuepair
1630 * must have been created by a trusted endpoint.
1632 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1633 !entry->created_by_trusted)
1634 return VMCI_ERROR_NO_ACCESS;
1637 * If we are attaching to a queuepair that was created by a restricted
1638 * context then we must be trusted.
1640 if (entry->require_trusted_attach &&
1641 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1642 return VMCI_ERROR_NO_ACCESS;
1645 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1646 * control check is not performed.
1648 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1649 return VMCI_ERROR_NO_ACCESS;
1651 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1653 * Do not attach if the caller doesn't support Host Queue Pairs
1654 * and a host created this queue pair.
1657 if (!vmci_ctx_supports_host_qp(context))
1658 return VMCI_ERROR_INVALID_RESOURCE;
1660 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1661 struct vmci_ctx *create_context;
1662 bool supports_host_qp;
1665 * Do not attach a host to a user created queue pair if that
1666 * user doesn't support host queue pair end points.
1669 create_context = vmci_ctx_get(entry->create_id);
1670 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1671 vmci_ctx_put(create_context);
1673 if (!supports_host_qp)
1674 return VMCI_ERROR_INVALID_RESOURCE;
1677 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1678 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1680 if (context_id != VMCI_HOST_CONTEXT_ID) {
1682 * The queue pair broker entry stores values from the guest
1683 * point of view, so an attaching guest should match the values
1684 * stored in the entry.
1687 if (entry->qp.produce_size != produce_size ||
1688 entry->qp.consume_size != consume_size) {
1689 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1691 } else if (entry->qp.produce_size != consume_size ||
1692 entry->qp.consume_size != produce_size) {
1693 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1696 if (context_id != VMCI_HOST_CONTEXT_ID) {
1698 * If a guest attached to a queue pair, it will supply
1699 * the backing memory. If this is a pre NOVMVM vmx,
1700 * the backing memory will be supplied by calling
1701 * vmci_qp_broker_set_page_store() following the
1702 * return of the vmci_qp_broker_alloc() call. If it is
1703 * a vmx of version NOVMVM or later, the page store
1704 * must be supplied as part of the
1705 * vmci_qp_broker_alloc call. Under all circumstances
1706 * must the initially created queue pair not have any
1707 * memory associated with it already.
1710 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1711 return VMCI_ERROR_INVALID_ARGS;
1713 if (page_store != NULL) {
1715 * Patch up host state to point to guest
1716 * supplied memory. The VMX already
1717 * initialized the queue pair headers, so no
1718 * need for the kernel side to do that.
1721 result = qp_host_register_user_memory(page_store,
1722 entry->produce_q,
1723 entry->consume_q);
1724 if (result < VMCI_SUCCESS)
1725 return result;
1727 entry->state = VMCIQPB_ATTACHED_MEM;
1728 } else {
1729 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1731 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1733 * The host side is attempting to attach to a queue
1734 * pair that doesn't have any memory associated with
1735 * it. This must be a pre NOVMVM vmx that hasn't set
1736 * the page store information yet, or a quiesced VM.
1739 return VMCI_ERROR_UNAVAILABLE;
1740 } else {
1741 /* The host side has successfully attached to a queue pair. */
1742 entry->state = VMCIQPB_ATTACHED_MEM;
1745 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1746 result =
1747 qp_notify_peer(true, entry->qp.handle, context_id,
1748 entry->create_id);
1749 if (result < VMCI_SUCCESS)
1750 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1751 entry->create_id, entry->qp.handle.context,
1752 entry->qp.handle.resource);
1755 entry->attach_id = context_id;
1756 entry->qp.ref_count++;
1757 if (wakeup_cb) {
1758 entry->wakeup_cb = wakeup_cb;
1759 entry->client_data = client_data;
1763 * When attaching to local queue pairs, the context already has
1764 * an entry tracking the queue pair, so don't add another one.
1766 if (!is_local)
1767 vmci_ctx_qp_create(context, entry->qp.handle);
1769 if (ent != NULL)
1770 *ent = entry;
1772 return VMCI_SUCCESS;
1776 * queue_pair_Alloc for use when setting up queue pair endpoints
1777 * on the host.
1779 static int qp_broker_alloc(struct vmci_handle handle,
1780 u32 peer,
1781 u32 flags,
1782 u32 priv_flags,
1783 u64 produce_size,
1784 u64 consume_size,
1785 struct vmci_qp_page_store *page_store,
1786 struct vmci_ctx *context,
1787 vmci_event_release_cb wakeup_cb,
1788 void *client_data,
1789 struct qp_broker_entry **ent,
1790 bool *swap)
1792 const u32 context_id = vmci_ctx_get_id(context);
1793 bool create;
1794 struct qp_broker_entry *entry = NULL;
1795 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1796 int result;
1798 if (vmci_handle_is_invalid(handle) ||
1799 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1800 !(produce_size || consume_size) ||
1801 !context || context_id == VMCI_INVALID_ID ||
1802 handle.context == VMCI_INVALID_ID) {
1803 return VMCI_ERROR_INVALID_ARGS;
1806 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1807 return VMCI_ERROR_INVALID_ARGS;
1810 * In the initial argument check, we ensure that non-vmkernel hosts
1811 * are not allowed to create local queue pairs.
1814 mutex_lock(&qp_broker_list.mutex);
1816 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1817 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1818 context_id, handle.context, handle.resource);
1819 mutex_unlock(&qp_broker_list.mutex);
1820 return VMCI_ERROR_ALREADY_EXISTS;
1823 if (handle.resource != VMCI_INVALID_ID)
1824 entry = qp_broker_handle_to_entry(handle);
1826 if (!entry) {
1827 create = true;
1828 result =
1829 qp_broker_create(handle, peer, flags, priv_flags,
1830 produce_size, consume_size, page_store,
1831 context, wakeup_cb, client_data, ent);
1832 } else {
1833 create = false;
1834 result =
1835 qp_broker_attach(entry, peer, flags, priv_flags,
1836 produce_size, consume_size, page_store,
1837 context, wakeup_cb, client_data, ent);
1840 mutex_unlock(&qp_broker_list.mutex);
1842 if (swap)
1843 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1844 !(create && is_local);
1846 return result;
1850 * This function implements the kernel API for allocating a queue
1851 * pair.
1853 static int qp_alloc_host_work(struct vmci_handle *handle,
1854 struct vmci_queue **produce_q,
1855 u64 produce_size,
1856 struct vmci_queue **consume_q,
1857 u64 consume_size,
1858 u32 peer,
1859 u32 flags,
1860 u32 priv_flags,
1861 vmci_event_release_cb wakeup_cb,
1862 void *client_data)
1864 struct vmci_handle new_handle;
1865 struct vmci_ctx *context;
1866 struct qp_broker_entry *entry;
1867 int result;
1868 bool swap;
1870 if (vmci_handle_is_invalid(*handle)) {
1871 new_handle = vmci_make_handle(
1872 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1873 } else
1874 new_handle = *handle;
1876 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1877 entry = NULL;
1878 result =
1879 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1880 produce_size, consume_size, NULL, context,
1881 wakeup_cb, client_data, &entry, &swap);
1882 if (result == VMCI_SUCCESS) {
1883 if (swap) {
1885 * If this is a local queue pair, the attacher
1886 * will swap around produce and consume
1887 * queues.
1890 *produce_q = entry->consume_q;
1891 *consume_q = entry->produce_q;
1892 } else {
1893 *produce_q = entry->produce_q;
1894 *consume_q = entry->consume_q;
1897 *handle = vmci_resource_handle(&entry->resource);
1898 } else {
1899 *handle = VMCI_INVALID_HANDLE;
1900 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1901 result);
1903 vmci_ctx_put(context);
1904 return result;
1908 * Allocates a VMCI queue_pair. Only checks validity of input
1909 * arguments. The real work is done in the host or guest
1910 * specific function.
1912 int vmci_qp_alloc(struct vmci_handle *handle,
1913 struct vmci_queue **produce_q,
1914 u64 produce_size,
1915 struct vmci_queue **consume_q,
1916 u64 consume_size,
1917 u32 peer,
1918 u32 flags,
1919 u32 priv_flags,
1920 bool guest_endpoint,
1921 vmci_event_release_cb wakeup_cb,
1922 void *client_data)
1924 if (!handle || !produce_q || !consume_q ||
1925 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1926 return VMCI_ERROR_INVALID_ARGS;
1928 if (guest_endpoint) {
1929 return qp_alloc_guest_work(handle, produce_q,
1930 produce_size, consume_q,
1931 consume_size, peer,
1932 flags, priv_flags);
1933 } else {
1934 return qp_alloc_host_work(handle, produce_q,
1935 produce_size, consume_q,
1936 consume_size, peer, flags,
1937 priv_flags, wakeup_cb, client_data);
1942 * This function implements the host kernel API for detaching from
1943 * a queue pair.
1945 static int qp_detatch_host_work(struct vmci_handle handle)
1947 int result;
1948 struct vmci_ctx *context;
1950 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1952 result = vmci_qp_broker_detach(handle, context);
1954 vmci_ctx_put(context);
1955 return result;
1959 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1960 * Real work is done in the host or guest specific function.
1962 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1964 if (vmci_handle_is_invalid(handle))
1965 return VMCI_ERROR_INVALID_ARGS;
1967 if (guest_endpoint)
1968 return qp_detatch_guest_work(handle);
1969 else
1970 return qp_detatch_host_work(handle);
1974 * Returns the entry from the head of the list. Assumes that the list is
1975 * locked.
1977 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1979 if (!list_empty(&qp_list->head)) {
1980 struct qp_entry *entry =
1981 list_first_entry(&qp_list->head, struct qp_entry,
1982 list_item);
1983 return entry;
1986 return NULL;
1989 void vmci_qp_broker_exit(void)
1991 struct qp_entry *entry;
1992 struct qp_broker_entry *be;
1994 mutex_lock(&qp_broker_list.mutex);
1996 while ((entry = qp_list_get_head(&qp_broker_list))) {
1997 be = (struct qp_broker_entry *)entry;
1999 qp_list_remove_entry(&qp_broker_list, entry);
2000 kfree(be);
2003 mutex_unlock(&qp_broker_list.mutex);
2007 * Requests that a queue pair be allocated with the VMCI queue
2008 * pair broker. Allocates a queue pair entry if one does not
2009 * exist. Attaches to one if it exists, and retrieves the page
2010 * files backing that queue_pair. Assumes that the queue pair
2011 * broker lock is held.
2013 int vmci_qp_broker_alloc(struct vmci_handle handle,
2014 u32 peer,
2015 u32 flags,
2016 u32 priv_flags,
2017 u64 produce_size,
2018 u64 consume_size,
2019 struct vmci_qp_page_store *page_store,
2020 struct vmci_ctx *context)
2022 return qp_broker_alloc(handle, peer, flags, priv_flags,
2023 produce_size, consume_size,
2024 page_store, context, NULL, NULL, NULL, NULL);
2028 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2029 * step to add the UVAs of the VMX mapping of the queue pair. This function
2030 * provides backwards compatibility with such VMX'en, and takes care of
2031 * registering the page store for a queue pair previously allocated by the
2032 * VMX during create or attach. This function will move the queue pair state
2033 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2034 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2035 * attached state with memory, the queue pair is ready to be used by the
2036 * host peer, and an attached event will be generated.
2038 * Assumes that the queue pair broker lock is held.
2040 * This function is only used by the hosted platform, since there is no
2041 * issue with backwards compatibility for vmkernel.
2043 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2044 u64 produce_uva,
2045 u64 consume_uva,
2046 struct vmci_ctx *context)
2048 struct qp_broker_entry *entry;
2049 int result;
2050 const u32 context_id = vmci_ctx_get_id(context);
2052 if (vmci_handle_is_invalid(handle) || !context ||
2053 context_id == VMCI_INVALID_ID)
2054 return VMCI_ERROR_INVALID_ARGS;
2057 * We only support guest to host queue pairs, so the VMX must
2058 * supply UVAs for the mapped page files.
2061 if (produce_uva == 0 || consume_uva == 0)
2062 return VMCI_ERROR_INVALID_ARGS;
2064 mutex_lock(&qp_broker_list.mutex);
2066 if (!vmci_ctx_qp_exists(context, handle)) {
2067 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2068 context_id, handle.context, handle.resource);
2069 result = VMCI_ERROR_NOT_FOUND;
2070 goto out;
2073 entry = qp_broker_handle_to_entry(handle);
2074 if (!entry) {
2075 result = VMCI_ERROR_NOT_FOUND;
2076 goto out;
2080 * If I'm the owner then I can set the page store.
2082 * Or, if a host created the queue_pair and I'm the attached peer
2083 * then I can set the page store.
2085 if (entry->create_id != context_id &&
2086 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2087 entry->attach_id != context_id)) {
2088 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2089 goto out;
2092 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2093 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2094 result = VMCI_ERROR_UNAVAILABLE;
2095 goto out;
2098 result = qp_host_get_user_memory(produce_uva, consume_uva,
2099 entry->produce_q, entry->consume_q);
2100 if (result < VMCI_SUCCESS)
2101 goto out;
2103 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2104 if (result < VMCI_SUCCESS) {
2105 qp_host_unregister_user_memory(entry->produce_q,
2106 entry->consume_q);
2107 goto out;
2110 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2111 entry->state = VMCIQPB_CREATED_MEM;
2112 else
2113 entry->state = VMCIQPB_ATTACHED_MEM;
2115 entry->vmci_page_files = true;
2117 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2118 result =
2119 qp_notify_peer(true, handle, context_id, entry->create_id);
2120 if (result < VMCI_SUCCESS) {
2121 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2122 entry->create_id, entry->qp.handle.context,
2123 entry->qp.handle.resource);
2127 result = VMCI_SUCCESS;
2128 out:
2129 mutex_unlock(&qp_broker_list.mutex);
2130 return result;
2134 * Resets saved queue headers for the given QP broker
2135 * entry. Should be used when guest memory becomes available
2136 * again, or the guest detaches.
2138 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2140 entry->produce_q->saved_header = NULL;
2141 entry->consume_q->saved_header = NULL;
2145 * The main entry point for detaching from a queue pair registered with the
2146 * queue pair broker. If more than one endpoint is attached to the queue
2147 * pair, the first endpoint will mainly decrement a reference count and
2148 * generate a notification to its peer. The last endpoint will clean up
2149 * the queue pair state registered with the broker.
2151 * When a guest endpoint detaches, it will unmap and unregister the guest
2152 * memory backing the queue pair. If the host is still attached, it will
2153 * no longer be able to access the queue pair content.
2155 * If the queue pair is already in a state where there is no memory
2156 * registered for the queue pair (any *_NO_MEM state), it will transition to
2157 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2158 * endpoint is the first of two endpoints to detach. If the host endpoint is
2159 * the first out of two to detach, the queue pair will move to the
2160 * VMCIQPB_SHUTDOWN_MEM state.
2162 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2164 struct qp_broker_entry *entry;
2165 const u32 context_id = vmci_ctx_get_id(context);
2166 u32 peer_id;
2167 bool is_local = false;
2168 int result;
2170 if (vmci_handle_is_invalid(handle) || !context ||
2171 context_id == VMCI_INVALID_ID) {
2172 return VMCI_ERROR_INVALID_ARGS;
2175 mutex_lock(&qp_broker_list.mutex);
2177 if (!vmci_ctx_qp_exists(context, handle)) {
2178 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2179 context_id, handle.context, handle.resource);
2180 result = VMCI_ERROR_NOT_FOUND;
2181 goto out;
2184 entry = qp_broker_handle_to_entry(handle);
2185 if (!entry) {
2186 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2187 context_id, handle.context, handle.resource);
2188 result = VMCI_ERROR_NOT_FOUND;
2189 goto out;
2192 if (context_id != entry->create_id && context_id != entry->attach_id) {
2193 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2194 goto out;
2197 if (context_id == entry->create_id) {
2198 peer_id = entry->attach_id;
2199 entry->create_id = VMCI_INVALID_ID;
2200 } else {
2201 peer_id = entry->create_id;
2202 entry->attach_id = VMCI_INVALID_ID;
2204 entry->qp.ref_count--;
2206 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2208 if (context_id != VMCI_HOST_CONTEXT_ID) {
2209 bool headers_mapped;
2212 * Pre NOVMVM vmx'en may detach from a queue pair
2213 * before setting the page store, and in that case
2214 * there is no user memory to detach from. Also, more
2215 * recent VMX'en may detach from a queue pair in the
2216 * quiesced state.
2219 qp_acquire_queue_mutex(entry->produce_q);
2220 headers_mapped = entry->produce_q->q_header ||
2221 entry->consume_q->q_header;
2222 if (QPBROKERSTATE_HAS_MEM(entry)) {
2223 result =
2224 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2225 entry->produce_q,
2226 entry->consume_q);
2227 if (result < VMCI_SUCCESS)
2228 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2229 handle.context, handle.resource,
2230 result);
2232 if (entry->vmci_page_files)
2233 qp_host_unregister_user_memory(entry->produce_q,
2234 entry->
2235 consume_q);
2236 else
2237 qp_host_unregister_user_memory(entry->produce_q,
2238 entry->
2239 consume_q);
2243 if (!headers_mapped)
2244 qp_reset_saved_headers(entry);
2246 qp_release_queue_mutex(entry->produce_q);
2248 if (!headers_mapped && entry->wakeup_cb)
2249 entry->wakeup_cb(entry->client_data);
2251 } else {
2252 if (entry->wakeup_cb) {
2253 entry->wakeup_cb = NULL;
2254 entry->client_data = NULL;
2258 if (entry->qp.ref_count == 0) {
2259 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2261 if (is_local)
2262 kfree(entry->local_mem);
2264 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2265 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2266 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2267 /* Unlink from resource hash table and free callback */
2268 vmci_resource_remove(&entry->resource);
2270 kfree(entry);
2272 vmci_ctx_qp_destroy(context, handle);
2273 } else {
2274 qp_notify_peer(false, handle, context_id, peer_id);
2275 if (context_id == VMCI_HOST_CONTEXT_ID &&
2276 QPBROKERSTATE_HAS_MEM(entry)) {
2277 entry->state = VMCIQPB_SHUTDOWN_MEM;
2278 } else {
2279 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2282 if (!is_local)
2283 vmci_ctx_qp_destroy(context, handle);
2286 result = VMCI_SUCCESS;
2287 out:
2288 mutex_unlock(&qp_broker_list.mutex);
2289 return result;
2293 * Establishes the necessary mappings for a queue pair given a
2294 * reference to the queue pair guest memory. This is usually
2295 * called when a guest is unquiesced and the VMX is allowed to
2296 * map guest memory once again.
2298 int vmci_qp_broker_map(struct vmci_handle handle,
2299 struct vmci_ctx *context,
2300 u64 guest_mem)
2302 struct qp_broker_entry *entry;
2303 const u32 context_id = vmci_ctx_get_id(context);
2304 bool is_local = false;
2305 int result;
2307 if (vmci_handle_is_invalid(handle) || !context ||
2308 context_id == VMCI_INVALID_ID)
2309 return VMCI_ERROR_INVALID_ARGS;
2311 mutex_lock(&qp_broker_list.mutex);
2313 if (!vmci_ctx_qp_exists(context, handle)) {
2314 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2315 context_id, handle.context, handle.resource);
2316 result = VMCI_ERROR_NOT_FOUND;
2317 goto out;
2320 entry = qp_broker_handle_to_entry(handle);
2321 if (!entry) {
2322 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2323 context_id, handle.context, handle.resource);
2324 result = VMCI_ERROR_NOT_FOUND;
2325 goto out;
2328 if (context_id != entry->create_id && context_id != entry->attach_id) {
2329 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2330 goto out;
2333 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2334 result = VMCI_SUCCESS;
2336 if (context_id != VMCI_HOST_CONTEXT_ID) {
2337 struct vmci_qp_page_store page_store;
2339 page_store.pages = guest_mem;
2340 page_store.len = QPE_NUM_PAGES(entry->qp);
2342 qp_acquire_queue_mutex(entry->produce_q);
2343 qp_reset_saved_headers(entry);
2344 result =
2345 qp_host_register_user_memory(&page_store,
2346 entry->produce_q,
2347 entry->consume_q);
2348 qp_release_queue_mutex(entry->produce_q);
2349 if (result == VMCI_SUCCESS) {
2350 /* Move state from *_NO_MEM to *_MEM */
2352 entry->state++;
2354 if (entry->wakeup_cb)
2355 entry->wakeup_cb(entry->client_data);
2359 out:
2360 mutex_unlock(&qp_broker_list.mutex);
2361 return result;
2365 * Saves a snapshot of the queue headers for the given QP broker
2366 * entry. Should be used when guest memory is unmapped.
2367 * Results:
2368 * VMCI_SUCCESS on success, appropriate error code if guest memory
2369 * can't be accessed..
2371 static int qp_save_headers(struct qp_broker_entry *entry)
2373 int result;
2375 if (entry->produce_q->saved_header != NULL &&
2376 entry->consume_q->saved_header != NULL) {
2378 * If the headers have already been saved, we don't need to do
2379 * it again, and we don't want to map in the headers
2380 * unnecessarily.
2383 return VMCI_SUCCESS;
2386 if (NULL == entry->produce_q->q_header ||
2387 NULL == entry->consume_q->q_header) {
2388 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2389 if (result < VMCI_SUCCESS)
2390 return result;
2393 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2394 sizeof(entry->saved_produce_q));
2395 entry->produce_q->saved_header = &entry->saved_produce_q;
2396 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2397 sizeof(entry->saved_consume_q));
2398 entry->consume_q->saved_header = &entry->saved_consume_q;
2400 return VMCI_SUCCESS;
2404 * Removes all references to the guest memory of a given queue pair, and
2405 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2406 * called when a VM is being quiesced where access to guest memory should
2407 * avoided.
2409 int vmci_qp_broker_unmap(struct vmci_handle handle,
2410 struct vmci_ctx *context,
2411 u32 gid)
2413 struct qp_broker_entry *entry;
2414 const u32 context_id = vmci_ctx_get_id(context);
2415 bool is_local = false;
2416 int result;
2418 if (vmci_handle_is_invalid(handle) || !context ||
2419 context_id == VMCI_INVALID_ID)
2420 return VMCI_ERROR_INVALID_ARGS;
2422 mutex_lock(&qp_broker_list.mutex);
2424 if (!vmci_ctx_qp_exists(context, handle)) {
2425 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2426 context_id, handle.context, handle.resource);
2427 result = VMCI_ERROR_NOT_FOUND;
2428 goto out;
2431 entry = qp_broker_handle_to_entry(handle);
2432 if (!entry) {
2433 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2434 context_id, handle.context, handle.resource);
2435 result = VMCI_ERROR_NOT_FOUND;
2436 goto out;
2439 if (context_id != entry->create_id && context_id != entry->attach_id) {
2440 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2441 goto out;
2444 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2446 if (context_id != VMCI_HOST_CONTEXT_ID) {
2447 qp_acquire_queue_mutex(entry->produce_q);
2448 result = qp_save_headers(entry);
2449 if (result < VMCI_SUCCESS)
2450 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2451 handle.context, handle.resource, result);
2453 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2456 * On hosted, when we unmap queue pairs, the VMX will also
2457 * unmap the guest memory, so we invalidate the previously
2458 * registered memory. If the queue pair is mapped again at a
2459 * later point in time, we will need to reregister the user
2460 * memory with a possibly new user VA.
2462 qp_host_unregister_user_memory(entry->produce_q,
2463 entry->consume_q);
2466 * Move state from *_MEM to *_NO_MEM.
2468 entry->state--;
2470 qp_release_queue_mutex(entry->produce_q);
2473 result = VMCI_SUCCESS;
2475 out:
2476 mutex_unlock(&qp_broker_list.mutex);
2477 return result;
2481 * Destroys all guest queue pair endpoints. If active guest queue
2482 * pairs still exist, hypercalls to attempt detach from these
2483 * queue pairs will be made. Any failure to detach is silently
2484 * ignored.
2486 void vmci_qp_guest_endpoints_exit(void)
2488 struct qp_entry *entry;
2489 struct qp_guest_endpoint *ep;
2491 mutex_lock(&qp_guest_endpoints.mutex);
2493 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2494 ep = (struct qp_guest_endpoint *)entry;
2496 /* Don't make a hypercall for local queue_pairs. */
2497 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2498 qp_detatch_hypercall(entry->handle);
2500 /* We cannot fail the exit, so let's reset ref_count. */
2501 entry->ref_count = 0;
2502 qp_list_remove_entry(&qp_guest_endpoints, entry);
2504 qp_guest_endpoint_destroy(ep);
2507 mutex_unlock(&qp_guest_endpoints.mutex);
2511 * Helper routine that will lock the queue pair before subsequent
2512 * operations.
2513 * Note: Non-blocking on the host side is currently only implemented in ESX.
2514 * Since non-blocking isn't yet implemented on the host personality we
2515 * have no reason to acquire a spin lock. So to avoid the use of an
2516 * unnecessary lock only acquire the mutex if we can block.
2518 static void qp_lock(const struct vmci_qp *qpair)
2520 qp_acquire_queue_mutex(qpair->produce_q);
2524 * Helper routine that unlocks the queue pair after calling
2525 * qp_lock.
2527 static void qp_unlock(const struct vmci_qp *qpair)
2529 qp_release_queue_mutex(qpair->produce_q);
2533 * The queue headers may not be mapped at all times. If a queue is
2534 * currently not mapped, it will be attempted to do so.
2536 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2537 struct vmci_queue *consume_q)
2539 int result;
2541 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2542 result = qp_host_map_queues(produce_q, consume_q);
2543 if (result < VMCI_SUCCESS)
2544 return (produce_q->saved_header &&
2545 consume_q->saved_header) ?
2546 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2547 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2550 return VMCI_SUCCESS;
2554 * Helper routine that will retrieve the produce and consume
2555 * headers of a given queue pair. If the guest memory of the
2556 * queue pair is currently not available, the saved queue headers
2557 * will be returned, if these are available.
2559 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2560 struct vmci_queue_header **produce_q_header,
2561 struct vmci_queue_header **consume_q_header)
2563 int result;
2565 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2566 if (result == VMCI_SUCCESS) {
2567 *produce_q_header = qpair->produce_q->q_header;
2568 *consume_q_header = qpair->consume_q->q_header;
2569 } else if (qpair->produce_q->saved_header &&
2570 qpair->consume_q->saved_header) {
2571 *produce_q_header = qpair->produce_q->saved_header;
2572 *consume_q_header = qpair->consume_q->saved_header;
2573 result = VMCI_SUCCESS;
2576 return result;
2580 * Callback from VMCI queue pair broker indicating that a queue
2581 * pair that was previously not ready, now either is ready or
2582 * gone forever.
2584 static int qp_wakeup_cb(void *client_data)
2586 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2588 qp_lock(qpair);
2589 while (qpair->blocked > 0) {
2590 qpair->blocked--;
2591 qpair->generation++;
2592 wake_up(&qpair->event);
2594 qp_unlock(qpair);
2596 return VMCI_SUCCESS;
2600 * Makes the calling thread wait for the queue pair to become
2601 * ready for host side access. Returns true when thread is
2602 * woken up after queue pair state change, false otherwise.
2604 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2606 unsigned int generation;
2608 qpair->blocked++;
2609 generation = qpair->generation;
2610 qp_unlock(qpair);
2611 wait_event(qpair->event, generation != qpair->generation);
2612 qp_lock(qpair);
2614 return true;
2618 * Enqueues a given buffer to the produce queue using the provided
2619 * function. As many bytes as possible (space available in the queue)
2620 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2621 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2622 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2623 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2624 * an error occured when accessing the buffer,
2625 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2626 * available. Otherwise, the number of bytes written to the queue is
2627 * returned. Updates the tail pointer of the produce queue.
2629 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2630 struct vmci_queue *consume_q,
2631 const u64 produce_q_size,
2632 const void *buf,
2633 size_t buf_size,
2634 vmci_memcpy_to_queue_func memcpy_to_queue)
2636 s64 free_space;
2637 u64 tail;
2638 size_t written;
2639 ssize_t result;
2641 result = qp_map_queue_headers(produce_q, consume_q);
2642 if (unlikely(result != VMCI_SUCCESS))
2643 return result;
2645 free_space = vmci_q_header_free_space(produce_q->q_header,
2646 consume_q->q_header,
2647 produce_q_size);
2648 if (free_space == 0)
2649 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2651 if (free_space < VMCI_SUCCESS)
2652 return (ssize_t) free_space;
2654 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2655 tail = vmci_q_header_producer_tail(produce_q->q_header);
2656 if (likely(tail + written < produce_q_size)) {
2657 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2658 } else {
2659 /* Tail pointer wraps around. */
2661 const size_t tmp = (size_t) (produce_q_size - tail);
2663 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2664 if (result >= VMCI_SUCCESS)
2665 result = memcpy_to_queue(produce_q, 0, buf, tmp,
2666 written - tmp);
2669 if (result < VMCI_SUCCESS)
2670 return result;
2672 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2673 produce_q_size);
2674 return written;
2678 * Dequeues data (if available) from the given consume queue. Writes data
2679 * to the user provided buffer using the provided function.
2680 * Assumes the queue->mutex has been acquired.
2681 * Results:
2682 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2683 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2684 * (as defined by the queue size).
2685 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2686 * Otherwise the number of bytes dequeued is returned.
2687 * Side effects:
2688 * Updates the head pointer of the consume queue.
2690 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2691 struct vmci_queue *consume_q,
2692 const u64 consume_q_size,
2693 void *buf,
2694 size_t buf_size,
2695 vmci_memcpy_from_queue_func memcpy_from_queue,
2696 bool update_consumer)
2698 s64 buf_ready;
2699 u64 head;
2700 size_t read;
2701 ssize_t result;
2703 result = qp_map_queue_headers(produce_q, consume_q);
2704 if (unlikely(result != VMCI_SUCCESS))
2705 return result;
2707 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2708 produce_q->q_header,
2709 consume_q_size);
2710 if (buf_ready == 0)
2711 return VMCI_ERROR_QUEUEPAIR_NODATA;
2713 if (buf_ready < VMCI_SUCCESS)
2714 return (ssize_t) buf_ready;
2716 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2717 head = vmci_q_header_consumer_head(produce_q->q_header);
2718 if (likely(head + read < consume_q_size)) {
2719 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2720 } else {
2721 /* Head pointer wraps around. */
2723 const size_t tmp = (size_t) (consume_q_size - head);
2725 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2726 if (result >= VMCI_SUCCESS)
2727 result = memcpy_from_queue(buf, tmp, consume_q, 0,
2728 read - tmp);
2732 if (result < VMCI_SUCCESS)
2733 return result;
2735 if (update_consumer)
2736 vmci_q_header_add_consumer_head(produce_q->q_header,
2737 read, consume_q_size);
2739 return read;
2743 * vmci_qpair_alloc() - Allocates a queue pair.
2744 * @qpair: Pointer for the new vmci_qp struct.
2745 * @handle: Handle to track the resource.
2746 * @produce_qsize: Desired size of the producer queue.
2747 * @consume_qsize: Desired size of the consumer queue.
2748 * @peer: ContextID of the peer.
2749 * @flags: VMCI flags.
2750 * @priv_flags: VMCI priviledge flags.
2752 * This is the client interface for allocating the memory for a
2753 * vmci_qp structure and then attaching to the underlying
2754 * queue. If an error occurs allocating the memory for the
2755 * vmci_qp structure no attempt is made to attach. If an
2756 * error occurs attaching, then the structure is freed.
2758 int vmci_qpair_alloc(struct vmci_qp **qpair,
2759 struct vmci_handle *handle,
2760 u64 produce_qsize,
2761 u64 consume_qsize,
2762 u32 peer,
2763 u32 flags,
2764 u32 priv_flags)
2766 struct vmci_qp *my_qpair;
2767 int retval;
2768 struct vmci_handle src = VMCI_INVALID_HANDLE;
2769 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2770 enum vmci_route route;
2771 vmci_event_release_cb wakeup_cb;
2772 void *client_data;
2775 * Restrict the size of a queuepair. The device already
2776 * enforces a limit on the total amount of memory that can be
2777 * allocated to queuepairs for a guest. However, we try to
2778 * allocate this memory before we make the queuepair
2779 * allocation hypercall. On Linux, we allocate each page
2780 * separately, which means rather than fail, the guest will
2781 * thrash while it tries to allocate, and will become
2782 * increasingly unresponsive to the point where it appears to
2783 * be hung. So we place a limit on the size of an individual
2784 * queuepair here, and leave the device to enforce the
2785 * restriction on total queuepair memory. (Note that this
2786 * doesn't prevent all cases; a user with only this much
2787 * physical memory could still get into trouble.) The error
2788 * used by the device is NO_RESOURCES, so use that here too.
2791 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2792 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2793 return VMCI_ERROR_NO_RESOURCES;
2795 retval = vmci_route(&src, &dst, false, &route);
2796 if (retval < VMCI_SUCCESS)
2797 route = vmci_guest_code_active() ?
2798 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2800 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2801 pr_devel("NONBLOCK OR PINNED set");
2802 return VMCI_ERROR_INVALID_ARGS;
2805 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2806 if (!my_qpair)
2807 return VMCI_ERROR_NO_MEM;
2809 my_qpair->produce_q_size = produce_qsize;
2810 my_qpair->consume_q_size = consume_qsize;
2811 my_qpair->peer = peer;
2812 my_qpair->flags = flags;
2813 my_qpair->priv_flags = priv_flags;
2815 wakeup_cb = NULL;
2816 client_data = NULL;
2818 if (VMCI_ROUTE_AS_HOST == route) {
2819 my_qpair->guest_endpoint = false;
2820 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2821 my_qpair->blocked = 0;
2822 my_qpair->generation = 0;
2823 init_waitqueue_head(&my_qpair->event);
2824 wakeup_cb = qp_wakeup_cb;
2825 client_data = (void *)my_qpair;
2827 } else {
2828 my_qpair->guest_endpoint = true;
2831 retval = vmci_qp_alloc(handle,
2832 &my_qpair->produce_q,
2833 my_qpair->produce_q_size,
2834 &my_qpair->consume_q,
2835 my_qpair->consume_q_size,
2836 my_qpair->peer,
2837 my_qpair->flags,
2838 my_qpair->priv_flags,
2839 my_qpair->guest_endpoint,
2840 wakeup_cb, client_data);
2842 if (retval < VMCI_SUCCESS) {
2843 kfree(my_qpair);
2844 return retval;
2847 *qpair = my_qpair;
2848 my_qpair->handle = *handle;
2850 return retval;
2852 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2855 * vmci_qpair_detach() - Detatches the client from a queue pair.
2856 * @qpair: Reference of a pointer to the qpair struct.
2858 * This is the client interface for detaching from a VMCIQPair.
2859 * Note that this routine will free the memory allocated for the
2860 * vmci_qp structure too.
2862 int vmci_qpair_detach(struct vmci_qp **qpair)
2864 int result;
2865 struct vmci_qp *old_qpair;
2867 if (!qpair || !(*qpair))
2868 return VMCI_ERROR_INVALID_ARGS;
2870 old_qpair = *qpair;
2871 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2874 * The guest can fail to detach for a number of reasons, and
2875 * if it does so, it will cleanup the entry (if there is one).
2876 * The host can fail too, but it won't cleanup the entry
2877 * immediately, it will do that later when the context is
2878 * freed. Either way, we need to release the qpair struct
2879 * here; there isn't much the caller can do, and we don't want
2880 * to leak.
2883 memset(old_qpair, 0, sizeof(*old_qpair));
2884 old_qpair->handle = VMCI_INVALID_HANDLE;
2885 old_qpair->peer = VMCI_INVALID_ID;
2886 kfree(old_qpair);
2887 *qpair = NULL;
2889 return result;
2891 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2894 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2895 * @qpair: Pointer to the queue pair struct.
2896 * @producer_tail: Reference used for storing producer tail index.
2897 * @consumer_head: Reference used for storing the consumer head index.
2899 * This is the client interface for getting the current indexes of the
2900 * QPair from the point of the view of the caller as the producer.
2902 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2903 u64 *producer_tail,
2904 u64 *consumer_head)
2906 struct vmci_queue_header *produce_q_header;
2907 struct vmci_queue_header *consume_q_header;
2908 int result;
2910 if (!qpair)
2911 return VMCI_ERROR_INVALID_ARGS;
2913 qp_lock(qpair);
2914 result =
2915 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2916 if (result == VMCI_SUCCESS)
2917 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2918 producer_tail, consumer_head);
2919 qp_unlock(qpair);
2921 if (result == VMCI_SUCCESS &&
2922 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2923 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2924 return VMCI_ERROR_INVALID_SIZE;
2926 return result;
2928 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2931 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2932 * @qpair: Pointer to the queue pair struct.
2933 * @consumer_tail: Reference used for storing consumer tail index.
2934 * @producer_head: Reference used for storing the producer head index.
2936 * This is the client interface for getting the current indexes of the
2937 * QPair from the point of the view of the caller as the consumer.
2939 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2940 u64 *consumer_tail,
2941 u64 *producer_head)
2943 struct vmci_queue_header *produce_q_header;
2944 struct vmci_queue_header *consume_q_header;
2945 int result;
2947 if (!qpair)
2948 return VMCI_ERROR_INVALID_ARGS;
2950 qp_lock(qpair);
2951 result =
2952 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2953 if (result == VMCI_SUCCESS)
2954 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2955 consumer_tail, producer_head);
2956 qp_unlock(qpair);
2958 if (result == VMCI_SUCCESS &&
2959 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2960 (producer_head && *producer_head >= qpair->consume_q_size)))
2961 return VMCI_ERROR_INVALID_SIZE;
2963 return result;
2965 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2968 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2969 * @qpair: Pointer to the queue pair struct.
2971 * This is the client interface for getting the amount of free
2972 * space in the QPair from the point of the view of the caller as
2973 * the producer which is the common case. Returns < 0 if err, else
2974 * available bytes into which data can be enqueued if > 0.
2976 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2978 struct vmci_queue_header *produce_q_header;
2979 struct vmci_queue_header *consume_q_header;
2980 s64 result;
2982 if (!qpair)
2983 return VMCI_ERROR_INVALID_ARGS;
2985 qp_lock(qpair);
2986 result =
2987 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2988 if (result == VMCI_SUCCESS)
2989 result = vmci_q_header_free_space(produce_q_header,
2990 consume_q_header,
2991 qpair->produce_q_size);
2992 else
2993 result = 0;
2995 qp_unlock(qpair);
2997 return result;
2999 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3002 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3003 * @qpair: Pointer to the queue pair struct.
3005 * This is the client interface for getting the amount of free
3006 * space in the QPair from the point of the view of the caller as
3007 * the consumer which is not the common case. Returns < 0 if err, else
3008 * available bytes into which data can be enqueued if > 0.
3010 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3012 struct vmci_queue_header *produce_q_header;
3013 struct vmci_queue_header *consume_q_header;
3014 s64 result;
3016 if (!qpair)
3017 return VMCI_ERROR_INVALID_ARGS;
3019 qp_lock(qpair);
3020 result =
3021 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3022 if (result == VMCI_SUCCESS)
3023 result = vmci_q_header_free_space(consume_q_header,
3024 produce_q_header,
3025 qpair->consume_q_size);
3026 else
3027 result = 0;
3029 qp_unlock(qpair);
3031 return result;
3033 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3036 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3037 * producer queue.
3038 * @qpair: Pointer to the queue pair struct.
3040 * This is the client interface for getting the amount of
3041 * enqueued data in the QPair from the point of the view of the
3042 * caller as the producer which is not the common case. Returns < 0 if err,
3043 * else available bytes that may be read.
3045 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3047 struct vmci_queue_header *produce_q_header;
3048 struct vmci_queue_header *consume_q_header;
3049 s64 result;
3051 if (!qpair)
3052 return VMCI_ERROR_INVALID_ARGS;
3054 qp_lock(qpair);
3055 result =
3056 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3057 if (result == VMCI_SUCCESS)
3058 result = vmci_q_header_buf_ready(produce_q_header,
3059 consume_q_header,
3060 qpair->produce_q_size);
3061 else
3062 result = 0;
3064 qp_unlock(qpair);
3066 return result;
3068 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3071 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3072 * consumer queue.
3073 * @qpair: Pointer to the queue pair struct.
3075 * This is the client interface for getting the amount of
3076 * enqueued data in the QPair from the point of the view of the
3077 * caller as the consumer which is the normal case. Returns < 0 if err,
3078 * else available bytes that may be read.
3080 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3082 struct vmci_queue_header *produce_q_header;
3083 struct vmci_queue_header *consume_q_header;
3084 s64 result;
3086 if (!qpair)
3087 return VMCI_ERROR_INVALID_ARGS;
3089 qp_lock(qpair);
3090 result =
3091 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3092 if (result == VMCI_SUCCESS)
3093 result = vmci_q_header_buf_ready(consume_q_header,
3094 produce_q_header,
3095 qpair->consume_q_size);
3096 else
3097 result = 0;
3099 qp_unlock(qpair);
3101 return result;
3103 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3106 * vmci_qpair_enqueue() - Throw data on the queue.
3107 * @qpair: Pointer to the queue pair struct.
3108 * @buf: Pointer to buffer containing data
3109 * @buf_size: Length of buffer.
3110 * @buf_type: Buffer type (Unused).
3112 * This is the client interface for enqueueing data into the queue.
3113 * Returns number of bytes enqueued or < 0 on error.
3115 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3116 const void *buf,
3117 size_t buf_size,
3118 int buf_type)
3120 ssize_t result;
3122 if (!qpair || !buf)
3123 return VMCI_ERROR_INVALID_ARGS;
3125 qp_lock(qpair);
3127 do {
3128 result = qp_enqueue_locked(qpair->produce_q,
3129 qpair->consume_q,
3130 qpair->produce_q_size,
3131 buf, buf_size,
3132 qp_memcpy_to_queue);
3134 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3135 !qp_wait_for_ready_queue(qpair))
3136 result = VMCI_ERROR_WOULD_BLOCK;
3138 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3140 qp_unlock(qpair);
3142 return result;
3144 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3147 * vmci_qpair_dequeue() - Get data from the queue.
3148 * @qpair: Pointer to the queue pair struct.
3149 * @buf: Pointer to buffer for the data
3150 * @buf_size: Length of buffer.
3151 * @buf_type: Buffer type (Unused).
3153 * This is the client interface for dequeueing data from the queue.
3154 * Returns number of bytes dequeued or < 0 on error.
3156 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3157 void *buf,
3158 size_t buf_size,
3159 int buf_type)
3161 ssize_t result;
3163 if (!qpair || !buf)
3164 return VMCI_ERROR_INVALID_ARGS;
3166 qp_lock(qpair);
3168 do {
3169 result = qp_dequeue_locked(qpair->produce_q,
3170 qpair->consume_q,
3171 qpair->consume_q_size,
3172 buf, buf_size,
3173 qp_memcpy_from_queue, true);
3175 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3176 !qp_wait_for_ready_queue(qpair))
3177 result = VMCI_ERROR_WOULD_BLOCK;
3179 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3181 qp_unlock(qpair);
3183 return result;
3185 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3188 * vmci_qpair_peek() - Peek at the data in the queue.
3189 * @qpair: Pointer to the queue pair struct.
3190 * @buf: Pointer to buffer for the data
3191 * @buf_size: Length of buffer.
3192 * @buf_type: Buffer type (Unused on Linux).
3194 * This is the client interface for peeking into a queue. (I.e.,
3195 * copy data from the queue without updating the head pointer.)
3196 * Returns number of bytes dequeued or < 0 on error.
3198 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3199 void *buf,
3200 size_t buf_size,
3201 int buf_type)
3203 ssize_t result;
3205 if (!qpair || !buf)
3206 return VMCI_ERROR_INVALID_ARGS;
3208 qp_lock(qpair);
3210 do {
3211 result = qp_dequeue_locked(qpair->produce_q,
3212 qpair->consume_q,
3213 qpair->consume_q_size,
3214 buf, buf_size,
3215 qp_memcpy_from_queue, false);
3217 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218 !qp_wait_for_ready_queue(qpair))
3219 result = VMCI_ERROR_WOULD_BLOCK;
3221 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3223 qp_unlock(qpair);
3225 return result;
3227 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3230 * vmci_qpair_enquev() - Throw data on the queue using iov.
3231 * @qpair: Pointer to the queue pair struct.
3232 * @iov: Pointer to buffer containing data
3233 * @iov_size: Length of buffer.
3234 * @buf_type: Buffer type (Unused).
3236 * This is the client interface for enqueueing data into the queue.
3237 * This function uses IO vectors to handle the work. Returns number
3238 * of bytes enqueued or < 0 on error.
3240 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3241 struct msghdr *msg,
3242 size_t iov_size,
3243 int buf_type)
3245 ssize_t result;
3247 if (!qpair)
3248 return VMCI_ERROR_INVALID_ARGS;
3250 qp_lock(qpair);
3252 do {
3253 result = qp_enqueue_locked(qpair->produce_q,
3254 qpair->consume_q,
3255 qpair->produce_q_size,
3256 msg, iov_size,
3257 qp_memcpy_to_queue_iov);
3259 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260 !qp_wait_for_ready_queue(qpair))
3261 result = VMCI_ERROR_WOULD_BLOCK;
3263 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3265 qp_unlock(qpair);
3267 return result;
3269 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3272 * vmci_qpair_dequev() - Get data from the queue using iov.
3273 * @qpair: Pointer to the queue pair struct.
3274 * @iov: Pointer to buffer for the data
3275 * @iov_size: Length of buffer.
3276 * @buf_type: Buffer type (Unused).
3278 * This is the client interface for dequeueing data from the queue.
3279 * This function uses IO vectors to handle the work. Returns number
3280 * of bytes dequeued or < 0 on error.
3282 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3283 struct msghdr *msg,
3284 size_t iov_size,
3285 int buf_type)
3287 ssize_t result;
3289 if (!qpair)
3290 return VMCI_ERROR_INVALID_ARGS;
3292 qp_lock(qpair);
3294 do {
3295 result = qp_dequeue_locked(qpair->produce_q,
3296 qpair->consume_q,
3297 qpair->consume_q_size,
3298 msg, iov_size,
3299 qp_memcpy_from_queue_iov,
3300 true);
3302 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3303 !qp_wait_for_ready_queue(qpair))
3304 result = VMCI_ERROR_WOULD_BLOCK;
3306 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3308 qp_unlock(qpair);
3310 return result;
3312 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3315 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3316 * @qpair: Pointer to the queue pair struct.
3317 * @iov: Pointer to buffer for the data
3318 * @iov_size: Length of buffer.
3319 * @buf_type: Buffer type (Unused on Linux).
3321 * This is the client interface for peeking into a queue. (I.e.,
3322 * copy data from the queue without updating the head pointer.)
3323 * This function uses IO vectors to handle the work. Returns number
3324 * of bytes peeked or < 0 on error.
3326 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3327 struct msghdr *msg,
3328 size_t iov_size,
3329 int buf_type)
3331 ssize_t result;
3333 if (!qpair)
3334 return VMCI_ERROR_INVALID_ARGS;
3336 qp_lock(qpair);
3338 do {
3339 result = qp_dequeue_locked(qpair->produce_q,
3340 qpair->consume_q,
3341 qpair->consume_q_size,
3342 msg, iov_size,
3343 qp_memcpy_from_queue_iov,
3344 false);
3346 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3347 !qp_wait_for_ready_queue(qpair))
3348 result = VMCI_ERROR_WOULD_BLOCK;
3350 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3352 qp_unlock(qpair);
3353 return result;
3355 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);