Linux 4.2.1
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
blob840a4984d3650e27dcf98713235a67e040b8ca1a
1 /*
2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
28 /*----------------------------------------------------------------------*/
31 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
32 * Use this for GPIO or shift-register level hardware APIs.
34 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
35 * to glue code. These bitbang setup() and cleanup() routines are always
36 * used, though maybe they're called from controller-aware code.
38 * chipselect() and friends may use spi_device->controller_data and
39 * controller registers as appropriate.
42 * NOTE: SPI controller pins can often be used as GPIO pins instead,
43 * which means you could use a bitbang driver either to get hardware
44 * working quickly, or testing for differences that aren't speed related.
47 struct spi_bitbang_cs {
48 unsigned nsecs; /* (clock cycle time)/2 */
49 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
50 u32 word, u8 bits);
51 unsigned (*txrx_bufs)(struct spi_device *,
52 u32 (*txrx_word)(
53 struct spi_device *spi,
54 unsigned nsecs,
55 u32 word, u8 bits),
56 unsigned, struct spi_transfer *);
59 static unsigned bitbang_txrx_8(
60 struct spi_device *spi,
61 u32 (*txrx_word)(struct spi_device *spi,
62 unsigned nsecs,
63 u32 word, u8 bits),
64 unsigned ns,
65 struct spi_transfer *t
66 ) {
67 unsigned bits = t->bits_per_word;
68 unsigned count = t->len;
69 const u8 *tx = t->tx_buf;
70 u8 *rx = t->rx_buf;
72 while (likely(count > 0)) {
73 u8 word = 0;
75 if (tx)
76 word = *tx++;
77 word = txrx_word(spi, ns, word, bits);
78 if (rx)
79 *rx++ = word;
80 count -= 1;
82 return t->len - count;
85 static unsigned bitbang_txrx_16(
86 struct spi_device *spi,
87 u32 (*txrx_word)(struct spi_device *spi,
88 unsigned nsecs,
89 u32 word, u8 bits),
90 unsigned ns,
91 struct spi_transfer *t
92 ) {
93 unsigned bits = t->bits_per_word;
94 unsigned count = t->len;
95 const u16 *tx = t->tx_buf;
96 u16 *rx = t->rx_buf;
98 while (likely(count > 1)) {
99 u16 word = 0;
101 if (tx)
102 word = *tx++;
103 word = txrx_word(spi, ns, word, bits);
104 if (rx)
105 *rx++ = word;
106 count -= 2;
108 return t->len - count;
111 static unsigned bitbang_txrx_32(
112 struct spi_device *spi,
113 u32 (*txrx_word)(struct spi_device *spi,
114 unsigned nsecs,
115 u32 word, u8 bits),
116 unsigned ns,
117 struct spi_transfer *t
119 unsigned bits = t->bits_per_word;
120 unsigned count = t->len;
121 const u32 *tx = t->tx_buf;
122 u32 *rx = t->rx_buf;
124 while (likely(count > 3)) {
125 u32 word = 0;
127 if (tx)
128 word = *tx++;
129 word = txrx_word(spi, ns, word, bits);
130 if (rx)
131 *rx++ = word;
132 count -= 4;
134 return t->len - count;
137 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
139 struct spi_bitbang_cs *cs = spi->controller_state;
140 u8 bits_per_word;
141 u32 hz;
143 if (t) {
144 bits_per_word = t->bits_per_word;
145 hz = t->speed_hz;
146 } else {
147 bits_per_word = 0;
148 hz = 0;
151 /* spi_transfer level calls that work per-word */
152 if (!bits_per_word)
153 bits_per_word = spi->bits_per_word;
154 if (bits_per_word <= 8)
155 cs->txrx_bufs = bitbang_txrx_8;
156 else if (bits_per_word <= 16)
157 cs->txrx_bufs = bitbang_txrx_16;
158 else if (bits_per_word <= 32)
159 cs->txrx_bufs = bitbang_txrx_32;
160 else
161 return -EINVAL;
163 /* nsecs = (clock period)/2 */
164 if (!hz)
165 hz = spi->max_speed_hz;
166 if (hz) {
167 cs->nsecs = (1000000000/2) / hz;
168 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
169 return -EINVAL;
172 return 0;
174 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
177 * spi_bitbang_setup - default setup for per-word I/O loops
179 int spi_bitbang_setup(struct spi_device *spi)
181 struct spi_bitbang_cs *cs = spi->controller_state;
182 struct spi_bitbang *bitbang;
183 unsigned long flags;
185 bitbang = spi_master_get_devdata(spi->master);
187 if (!cs) {
188 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
189 if (!cs)
190 return -ENOMEM;
191 spi->controller_state = cs;
194 /* per-word shift register access, in hardware or bitbanging */
195 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
196 if (!cs->txrx_word)
197 return -EINVAL;
199 if (bitbang->setup_transfer) {
200 int retval = bitbang->setup_transfer(spi, NULL);
201 if (retval < 0)
202 return retval;
205 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
207 /* NOTE we _need_ to call chipselect() early, ideally with adapter
208 * setup, unless the hardware defaults cooperate to avoid confusion
209 * between normal (active low) and inverted chipselects.
212 /* deselect chip (low or high) */
213 spin_lock_irqsave(&bitbang->lock, flags);
214 if (!bitbang->busy) {
215 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
216 ndelay(cs->nsecs);
218 spin_unlock_irqrestore(&bitbang->lock, flags);
220 return 0;
222 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
225 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
227 void spi_bitbang_cleanup(struct spi_device *spi)
229 kfree(spi->controller_state);
231 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
233 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
235 struct spi_bitbang_cs *cs = spi->controller_state;
236 unsigned nsecs = cs->nsecs;
238 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
241 /*----------------------------------------------------------------------*/
244 * SECOND PART ... simple transfer queue runner.
246 * This costs a task context per controller, running the queue by
247 * performing each transfer in sequence. Smarter hardware can queue
248 * several DMA transfers at once, and process several controller queues
249 * in parallel; this driver doesn't match such hardware very well.
251 * Drivers can provide word-at-a-time i/o primitives, or provide
252 * transfer-at-a-time ones to leverage dma or fifo hardware.
255 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
257 struct spi_bitbang *bitbang;
258 unsigned long flags;
260 bitbang = spi_master_get_devdata(spi);
262 spin_lock_irqsave(&bitbang->lock, flags);
263 bitbang->busy = 1;
264 spin_unlock_irqrestore(&bitbang->lock, flags);
266 return 0;
269 static int spi_bitbang_transfer_one(struct spi_master *master,
270 struct spi_message *m)
272 struct spi_bitbang *bitbang;
273 unsigned nsecs;
274 struct spi_transfer *t = NULL;
275 unsigned cs_change;
276 int status;
277 int do_setup = -1;
278 struct spi_device *spi = m->spi;
280 bitbang = spi_master_get_devdata(master);
282 /* FIXME this is made-up ... the correct value is known to
283 * word-at-a-time bitbang code, and presumably chipselect()
284 * should enforce these requirements too?
286 nsecs = 100;
288 cs_change = 1;
289 status = 0;
291 list_for_each_entry(t, &m->transfers, transfer_list) {
293 /* override speed or wordsize? */
294 if (t->speed_hz || t->bits_per_word)
295 do_setup = 1;
297 /* init (-1) or override (1) transfer params */
298 if (do_setup != 0) {
299 if (bitbang->setup_transfer) {
300 status = bitbang->setup_transfer(spi, t);
301 if (status < 0)
302 break;
304 if (do_setup == -1)
305 do_setup = 0;
308 /* set up default clock polarity, and activate chip;
309 * this implicitly updates clock and spi modes as
310 * previously recorded for this device via setup().
311 * (and also deselects any other chip that might be
312 * selected ...)
314 if (cs_change) {
315 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
316 ndelay(nsecs);
318 cs_change = t->cs_change;
319 if (!t->tx_buf && !t->rx_buf && t->len) {
320 status = -EINVAL;
321 break;
324 /* transfer data. the lower level code handles any
325 * new dma mappings it needs. our caller always gave
326 * us dma-safe buffers.
328 if (t->len) {
329 /* REVISIT dma API still needs a designated
330 * DMA_ADDR_INVALID; ~0 might be better.
332 if (!m->is_dma_mapped)
333 t->rx_dma = t->tx_dma = 0;
334 status = bitbang->txrx_bufs(spi, t);
336 if (status > 0)
337 m->actual_length += status;
338 if (status != t->len) {
339 /* always report some kind of error */
340 if (status >= 0)
341 status = -EREMOTEIO;
342 break;
344 status = 0;
346 /* protocol tweaks before next transfer */
347 if (t->delay_usecs)
348 udelay(t->delay_usecs);
350 if (cs_change &&
351 !list_is_last(&t->transfer_list, &m->transfers)) {
352 /* sometimes a short mid-message deselect of the chip
353 * may be needed to terminate a mode or command
355 ndelay(nsecs);
356 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
357 ndelay(nsecs);
361 m->status = status;
363 /* normally deactivate chipselect ... unless no error and
364 * cs_change has hinted that the next message will probably
365 * be for this chip too.
367 if (!(status == 0 && cs_change)) {
368 ndelay(nsecs);
369 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
370 ndelay(nsecs);
373 spi_finalize_current_message(master);
375 return status;
378 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
380 struct spi_bitbang *bitbang;
381 unsigned long flags;
383 bitbang = spi_master_get_devdata(spi);
385 spin_lock_irqsave(&bitbang->lock, flags);
386 bitbang->busy = 0;
387 spin_unlock_irqrestore(&bitbang->lock, flags);
389 return 0;
392 /*----------------------------------------------------------------------*/
395 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
396 * @bitbang: driver handle
398 * Caller should have zero-initialized all parts of the structure, and then
399 * provided callbacks for chip selection and I/O loops. If the master has
400 * a transfer method, its final step should call spi_bitbang_transfer; or,
401 * that's the default if the transfer routine is not initialized. It should
402 * also set up the bus number and number of chipselects.
404 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
405 * hardware that basically exposes a shift register) or per-spi_transfer
406 * (which takes better advantage of hardware like fifos or DMA engines).
408 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
409 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
410 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
411 * routine isn't initialized.
413 * This routine registers the spi_master, which will process requests in a
414 * dedicated task, keeping IRQs unblocked most of the time. To stop
415 * processing those requests, call spi_bitbang_stop().
417 * On success, this routine will take a reference to master. The caller is
418 * responsible for calling spi_bitbang_stop() to decrement the reference and
419 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
420 * leak.
422 int spi_bitbang_start(struct spi_bitbang *bitbang)
424 struct spi_master *master = bitbang->master;
425 int ret;
427 if (!master || !bitbang->chipselect)
428 return -EINVAL;
430 spin_lock_init(&bitbang->lock);
432 if (!master->mode_bits)
433 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
435 if (master->transfer || master->transfer_one_message)
436 return -EINVAL;
438 master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
439 master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
440 master->transfer_one_message = spi_bitbang_transfer_one;
442 if (!bitbang->txrx_bufs) {
443 bitbang->use_dma = 0;
444 bitbang->txrx_bufs = spi_bitbang_bufs;
445 if (!master->setup) {
446 if (!bitbang->setup_transfer)
447 bitbang->setup_transfer =
448 spi_bitbang_setup_transfer;
449 master->setup = spi_bitbang_setup;
450 master->cleanup = spi_bitbang_cleanup;
454 /* driver may get busy before register() returns, especially
455 * if someone registered boardinfo for devices
457 ret = spi_register_master(spi_master_get(master));
458 if (ret)
459 spi_master_put(master);
461 return 0;
463 EXPORT_SYMBOL_GPL(spi_bitbang_start);
466 * spi_bitbang_stop - stops the task providing spi communication
468 void spi_bitbang_stop(struct spi_bitbang *bitbang)
470 spi_unregister_master(bitbang->master);
472 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
474 MODULE_LICENSE("GPL");