2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
28 /*----------------------------------------------------------------------*/
31 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
32 * Use this for GPIO or shift-register level hardware APIs.
34 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
35 * to glue code. These bitbang setup() and cleanup() routines are always
36 * used, though maybe they're called from controller-aware code.
38 * chipselect() and friends may use spi_device->controller_data and
39 * controller registers as appropriate.
42 * NOTE: SPI controller pins can often be used as GPIO pins instead,
43 * which means you could use a bitbang driver either to get hardware
44 * working quickly, or testing for differences that aren't speed related.
47 struct spi_bitbang_cs
{
48 unsigned nsecs
; /* (clock cycle time)/2 */
49 u32 (*txrx_word
)(struct spi_device
*spi
, unsigned nsecs
,
51 unsigned (*txrx_bufs
)(struct spi_device
*,
53 struct spi_device
*spi
,
56 unsigned, struct spi_transfer
*);
59 static unsigned bitbang_txrx_8(
60 struct spi_device
*spi
,
61 u32 (*txrx_word
)(struct spi_device
*spi
,
65 struct spi_transfer
*t
67 unsigned bits
= t
->bits_per_word
;
68 unsigned count
= t
->len
;
69 const u8
*tx
= t
->tx_buf
;
72 while (likely(count
> 0)) {
77 word
= txrx_word(spi
, ns
, word
, bits
);
82 return t
->len
- count
;
85 static unsigned bitbang_txrx_16(
86 struct spi_device
*spi
,
87 u32 (*txrx_word
)(struct spi_device
*spi
,
91 struct spi_transfer
*t
93 unsigned bits
= t
->bits_per_word
;
94 unsigned count
= t
->len
;
95 const u16
*tx
= t
->tx_buf
;
98 while (likely(count
> 1)) {
103 word
= txrx_word(spi
, ns
, word
, bits
);
108 return t
->len
- count
;
111 static unsigned bitbang_txrx_32(
112 struct spi_device
*spi
,
113 u32 (*txrx_word
)(struct spi_device
*spi
,
117 struct spi_transfer
*t
119 unsigned bits
= t
->bits_per_word
;
120 unsigned count
= t
->len
;
121 const u32
*tx
= t
->tx_buf
;
124 while (likely(count
> 3)) {
129 word
= txrx_word(spi
, ns
, word
, bits
);
134 return t
->len
- count
;
137 int spi_bitbang_setup_transfer(struct spi_device
*spi
, struct spi_transfer
*t
)
139 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
144 bits_per_word
= t
->bits_per_word
;
151 /* spi_transfer level calls that work per-word */
153 bits_per_word
= spi
->bits_per_word
;
154 if (bits_per_word
<= 8)
155 cs
->txrx_bufs
= bitbang_txrx_8
;
156 else if (bits_per_word
<= 16)
157 cs
->txrx_bufs
= bitbang_txrx_16
;
158 else if (bits_per_word
<= 32)
159 cs
->txrx_bufs
= bitbang_txrx_32
;
163 /* nsecs = (clock period)/2 */
165 hz
= spi
->max_speed_hz
;
167 cs
->nsecs
= (1000000000/2) / hz
;
168 if (cs
->nsecs
> (MAX_UDELAY_MS
* 1000 * 1000))
174 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer
);
177 * spi_bitbang_setup - default setup for per-word I/O loops
179 int spi_bitbang_setup(struct spi_device
*spi
)
181 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
182 struct spi_bitbang
*bitbang
;
185 bitbang
= spi_master_get_devdata(spi
->master
);
188 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
191 spi
->controller_state
= cs
;
194 /* per-word shift register access, in hardware or bitbanging */
195 cs
->txrx_word
= bitbang
->txrx_word
[spi
->mode
& (SPI_CPOL
|SPI_CPHA
)];
199 if (bitbang
->setup_transfer
) {
200 int retval
= bitbang
->setup_transfer(spi
, NULL
);
205 dev_dbg(&spi
->dev
, "%s, %u nsec/bit\n", __func__
, 2 * cs
->nsecs
);
207 /* NOTE we _need_ to call chipselect() early, ideally with adapter
208 * setup, unless the hardware defaults cooperate to avoid confusion
209 * between normal (active low) and inverted chipselects.
212 /* deselect chip (low or high) */
213 spin_lock_irqsave(&bitbang
->lock
, flags
);
214 if (!bitbang
->busy
) {
215 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
218 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
222 EXPORT_SYMBOL_GPL(spi_bitbang_setup
);
225 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
227 void spi_bitbang_cleanup(struct spi_device
*spi
)
229 kfree(spi
->controller_state
);
231 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup
);
233 static int spi_bitbang_bufs(struct spi_device
*spi
, struct spi_transfer
*t
)
235 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
236 unsigned nsecs
= cs
->nsecs
;
238 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
);
241 /*----------------------------------------------------------------------*/
244 * SECOND PART ... simple transfer queue runner.
246 * This costs a task context per controller, running the queue by
247 * performing each transfer in sequence. Smarter hardware can queue
248 * several DMA transfers at once, and process several controller queues
249 * in parallel; this driver doesn't match such hardware very well.
251 * Drivers can provide word-at-a-time i/o primitives, or provide
252 * transfer-at-a-time ones to leverage dma or fifo hardware.
255 static int spi_bitbang_prepare_hardware(struct spi_master
*spi
)
257 struct spi_bitbang
*bitbang
;
260 bitbang
= spi_master_get_devdata(spi
);
262 spin_lock_irqsave(&bitbang
->lock
, flags
);
264 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
269 static int spi_bitbang_transfer_one(struct spi_master
*master
,
270 struct spi_message
*m
)
272 struct spi_bitbang
*bitbang
;
274 struct spi_transfer
*t
= NULL
;
278 struct spi_device
*spi
= m
->spi
;
280 bitbang
= spi_master_get_devdata(master
);
282 /* FIXME this is made-up ... the correct value is known to
283 * word-at-a-time bitbang code, and presumably chipselect()
284 * should enforce these requirements too?
291 list_for_each_entry(t
, &m
->transfers
, transfer_list
) {
293 /* override speed or wordsize? */
294 if (t
->speed_hz
|| t
->bits_per_word
)
297 /* init (-1) or override (1) transfer params */
299 if (bitbang
->setup_transfer
) {
300 status
= bitbang
->setup_transfer(spi
, t
);
308 /* set up default clock polarity, and activate chip;
309 * this implicitly updates clock and spi modes as
310 * previously recorded for this device via setup().
311 * (and also deselects any other chip that might be
315 bitbang
->chipselect(spi
, BITBANG_CS_ACTIVE
);
318 cs_change
= t
->cs_change
;
319 if (!t
->tx_buf
&& !t
->rx_buf
&& t
->len
) {
324 /* transfer data. the lower level code handles any
325 * new dma mappings it needs. our caller always gave
326 * us dma-safe buffers.
329 /* REVISIT dma API still needs a designated
330 * DMA_ADDR_INVALID; ~0 might be better.
332 if (!m
->is_dma_mapped
)
333 t
->rx_dma
= t
->tx_dma
= 0;
334 status
= bitbang
->txrx_bufs(spi
, t
);
337 m
->actual_length
+= status
;
338 if (status
!= t
->len
) {
339 /* always report some kind of error */
346 /* protocol tweaks before next transfer */
348 udelay(t
->delay_usecs
);
351 !list_is_last(&t
->transfer_list
, &m
->transfers
)) {
352 /* sometimes a short mid-message deselect of the chip
353 * may be needed to terminate a mode or command
356 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
363 /* normally deactivate chipselect ... unless no error and
364 * cs_change has hinted that the next message will probably
365 * be for this chip too.
367 if (!(status
== 0 && cs_change
)) {
369 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
373 spi_finalize_current_message(master
);
378 static int spi_bitbang_unprepare_hardware(struct spi_master
*spi
)
380 struct spi_bitbang
*bitbang
;
383 bitbang
= spi_master_get_devdata(spi
);
385 spin_lock_irqsave(&bitbang
->lock
, flags
);
387 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
392 /*----------------------------------------------------------------------*/
395 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
396 * @bitbang: driver handle
398 * Caller should have zero-initialized all parts of the structure, and then
399 * provided callbacks for chip selection and I/O loops. If the master has
400 * a transfer method, its final step should call spi_bitbang_transfer; or,
401 * that's the default if the transfer routine is not initialized. It should
402 * also set up the bus number and number of chipselects.
404 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
405 * hardware that basically exposes a shift register) or per-spi_transfer
406 * (which takes better advantage of hardware like fifos or DMA engines).
408 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
409 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
410 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
411 * routine isn't initialized.
413 * This routine registers the spi_master, which will process requests in a
414 * dedicated task, keeping IRQs unblocked most of the time. To stop
415 * processing those requests, call spi_bitbang_stop().
417 * On success, this routine will take a reference to master. The caller is
418 * responsible for calling spi_bitbang_stop() to decrement the reference and
419 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
422 int spi_bitbang_start(struct spi_bitbang
*bitbang
)
424 struct spi_master
*master
= bitbang
->master
;
427 if (!master
|| !bitbang
->chipselect
)
430 spin_lock_init(&bitbang
->lock
);
432 if (!master
->mode_bits
)
433 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| bitbang
->flags
;
435 if (master
->transfer
|| master
->transfer_one_message
)
438 master
->prepare_transfer_hardware
= spi_bitbang_prepare_hardware
;
439 master
->unprepare_transfer_hardware
= spi_bitbang_unprepare_hardware
;
440 master
->transfer_one_message
= spi_bitbang_transfer_one
;
442 if (!bitbang
->txrx_bufs
) {
443 bitbang
->use_dma
= 0;
444 bitbang
->txrx_bufs
= spi_bitbang_bufs
;
445 if (!master
->setup
) {
446 if (!bitbang
->setup_transfer
)
447 bitbang
->setup_transfer
=
448 spi_bitbang_setup_transfer
;
449 master
->setup
= spi_bitbang_setup
;
450 master
->cleanup
= spi_bitbang_cleanup
;
454 /* driver may get busy before register() returns, especially
455 * if someone registered boardinfo for devices
457 ret
= spi_register_master(spi_master_get(master
));
459 spi_master_put(master
);
463 EXPORT_SYMBOL_GPL(spi_bitbang_start
);
466 * spi_bitbang_stop - stops the task providing spi communication
468 void spi_bitbang_stop(struct spi_bitbang
*bitbang
)
470 spi_unregister_master(bitbang
->master
);
472 EXPORT_SYMBOL_GPL(spi_bitbang_stop
);
474 MODULE_LICENSE("GPL");