Linux 4.2.1
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx-dma.c
blob66a173939be81e5f4b944b287991c7c99957ae49
1 /*
2 * PXA2xx SPI DMA engine support.
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
21 #include "spi-pxa2xx.h"
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 enum dma_data_direction dir)
26 int i, nents, len = drv_data->len;
27 struct scatterlist *sg;
28 struct device *dmadev;
29 struct sg_table *sgt;
30 void *buf, *pbuf;
32 if (dir == DMA_TO_DEVICE) {
33 dmadev = drv_data->tx_chan->device->dev;
34 sgt = &drv_data->tx_sgt;
35 buf = drv_data->tx;
36 drv_data->tx_map_len = len;
37 } else {
38 dmadev = drv_data->rx_chan->device->dev;
39 sgt = &drv_data->rx_sgt;
40 buf = drv_data->rx;
41 drv_data->rx_map_len = len;
44 nents = DIV_ROUND_UP(len, SZ_2K);
45 if (nents != sgt->nents) {
46 int ret;
48 sg_free_table(sgt);
49 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50 if (ret)
51 return ret;
54 pbuf = buf;
55 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56 size_t bytes = min_t(size_t, len, SZ_2K);
58 if (buf)
59 sg_set_buf(sg, pbuf, bytes);
60 else
61 sg_set_buf(sg, drv_data->dummy, bytes);
63 pbuf += bytes;
64 len -= bytes;
67 nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68 if (!nents)
69 return -ENOMEM;
71 return nents;
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75 enum dma_data_direction dir)
77 struct device *dmadev;
78 struct sg_table *sgt;
80 if (dir == DMA_TO_DEVICE) {
81 dmadev = drv_data->tx_chan->device->dev;
82 sgt = &drv_data->tx_sgt;
83 } else {
84 dmadev = drv_data->rx_chan->device->dev;
85 sgt = &drv_data->rx_sgt;
88 dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
93 if (!drv_data->dma_mapped)
94 return;
96 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
99 drv_data->dma_mapped = 0;
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103 bool error)
105 struct spi_message *msg = drv_data->cur_msg;
108 * It is possible that one CPU is handling ROR interrupt and other
109 * just gets DMA completion. Calling pump_transfers() twice for the
110 * same transfer leads to problems thus we prevent concurrent calls
111 * by using ->dma_running.
113 if (atomic_dec_and_test(&drv_data->dma_running)) {
115 * If the other CPU is still handling the ROR interrupt we
116 * might not know about the error yet. So we re-check the
117 * ROR bit here before we clear the status register.
119 if (!error) {
120 u32 status = pxa2xx_spi_read(drv_data, SSSR)
121 & drv_data->mask_sr;
122 error = status & SSSR_ROR;
125 /* Clear status & disable interrupts */
126 pxa2xx_spi_write(drv_data, SSCR1,
127 pxa2xx_spi_read(drv_data, SSCR1)
128 & ~drv_data->dma_cr1);
129 write_SSSR_CS(drv_data, drv_data->clear_sr);
130 if (!pxa25x_ssp_comp(drv_data))
131 pxa2xx_spi_write(drv_data, SSTO, 0);
133 if (!error) {
134 pxa2xx_spi_unmap_dma_buffers(drv_data);
136 drv_data->tx += drv_data->tx_map_len;
137 drv_data->rx += drv_data->rx_map_len;
139 msg->actual_length += drv_data->len;
140 msg->state = pxa2xx_spi_next_transfer(drv_data);
141 } else {
142 /* In case we got an error we disable the SSP now */
143 pxa2xx_spi_write(drv_data, SSCR0,
144 pxa2xx_spi_read(drv_data, SSCR0)
145 & ~SSCR0_SSE);
147 msg->state = ERROR_STATE;
150 tasklet_schedule(&drv_data->pump_transfers);
154 static void pxa2xx_spi_dma_callback(void *data)
156 pxa2xx_spi_dma_transfer_complete(data, false);
159 static struct dma_async_tx_descriptor *
160 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
161 enum dma_transfer_direction dir)
163 struct chip_data *chip = drv_data->cur_chip;
164 enum dma_slave_buswidth width;
165 struct dma_slave_config cfg;
166 struct dma_chan *chan;
167 struct sg_table *sgt;
168 int nents, ret;
170 switch (drv_data->n_bytes) {
171 case 1:
172 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
173 break;
174 case 2:
175 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
176 break;
177 default:
178 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
179 break;
182 memset(&cfg, 0, sizeof(cfg));
183 cfg.direction = dir;
185 if (dir == DMA_MEM_TO_DEV) {
186 cfg.dst_addr = drv_data->ssdr_physical;
187 cfg.dst_addr_width = width;
188 cfg.dst_maxburst = chip->dma_burst_size;
190 sgt = &drv_data->tx_sgt;
191 nents = drv_data->tx_nents;
192 chan = drv_data->tx_chan;
193 } else {
194 cfg.src_addr = drv_data->ssdr_physical;
195 cfg.src_addr_width = width;
196 cfg.src_maxburst = chip->dma_burst_size;
198 sgt = &drv_data->rx_sgt;
199 nents = drv_data->rx_nents;
200 chan = drv_data->rx_chan;
203 ret = dmaengine_slave_config(chan, &cfg);
204 if (ret) {
205 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206 return NULL;
209 return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
213 bool pxa2xx_spi_dma_is_possible(size_t len)
215 return len <= MAX_DMA_LEN;
218 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
220 const struct chip_data *chip = drv_data->cur_chip;
221 int ret;
223 if (!chip->enable_dma)
224 return 0;
226 /* Don't bother with DMA if we can't do even a single burst */
227 if (drv_data->len < chip->dma_burst_size)
228 return 0;
230 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
231 if (ret <= 0) {
232 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
233 return 0;
236 drv_data->tx_nents = ret;
238 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
239 if (ret <= 0) {
240 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
241 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
242 return 0;
245 drv_data->rx_nents = ret;
246 return 1;
249 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
251 u32 status;
253 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
254 if (status & SSSR_ROR) {
255 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
257 dmaengine_terminate_all(drv_data->rx_chan);
258 dmaengine_terminate_all(drv_data->tx_chan);
260 pxa2xx_spi_dma_transfer_complete(drv_data, true);
261 return IRQ_HANDLED;
264 return IRQ_NONE;
267 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
269 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
271 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
272 if (!tx_desc) {
273 dev_err(&drv_data->pdev->dev,
274 "failed to get DMA TX descriptor\n");
275 return -EBUSY;
278 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
279 if (!rx_desc) {
280 dev_err(&drv_data->pdev->dev,
281 "failed to get DMA RX descriptor\n");
282 return -EBUSY;
285 /* We are ready when RX completes */
286 rx_desc->callback = pxa2xx_spi_dma_callback;
287 rx_desc->callback_param = drv_data;
289 dmaengine_submit(rx_desc);
290 dmaengine_submit(tx_desc);
291 return 0;
294 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
296 dma_async_issue_pending(drv_data->rx_chan);
297 dma_async_issue_pending(drv_data->tx_chan);
299 atomic_set(&drv_data->dma_running, 1);
302 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
304 struct pxa2xx_spi_master *pdata = drv_data->master_info;
305 struct device *dev = &drv_data->pdev->dev;
306 dma_cap_mask_t mask;
308 dma_cap_zero(mask);
309 dma_cap_set(DMA_SLAVE, mask);
311 drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
312 if (!drv_data->dummy)
313 return -ENOMEM;
315 drv_data->tx_chan = dma_request_slave_channel_compat(mask,
316 pdata->dma_filter, pdata->tx_param, dev, "tx");
317 if (!drv_data->tx_chan)
318 return -ENODEV;
320 drv_data->rx_chan = dma_request_slave_channel_compat(mask,
321 pdata->dma_filter, pdata->rx_param, dev, "rx");
322 if (!drv_data->rx_chan) {
323 dma_release_channel(drv_data->tx_chan);
324 drv_data->tx_chan = NULL;
325 return -ENODEV;
328 return 0;
331 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
333 if (drv_data->rx_chan) {
334 dmaengine_terminate_all(drv_data->rx_chan);
335 dma_release_channel(drv_data->rx_chan);
336 sg_free_table(&drv_data->rx_sgt);
337 drv_data->rx_chan = NULL;
339 if (drv_data->tx_chan) {
340 dmaengine_terminate_all(drv_data->tx_chan);
341 dma_release_channel(drv_data->tx_chan);
342 sg_free_table(&drv_data->tx_sgt);
343 drv_data->tx_chan = NULL;
347 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
351 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
352 struct spi_device *spi,
353 u8 bits_per_word, u32 *burst_code,
354 u32 *threshold)
356 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
359 * If the DMA burst size is given in chip_info we use that,
360 * otherwise we use the default. Also we use the default FIFO
361 * thresholds for now.
363 *burst_code = chip_info ? chip_info->dma_burst_size : 1;
364 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
365 | SSCR1_TxTresh(TX_THRESH_DFLT);
367 return 0;