Linux 4.2.1
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx.c
blob7293d6d875c5c692184d1c45aea151f063bb6cd0
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
34 #include "spi-pxa2xx.h"
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
41 #define TIMOUT_DFLT 1000
44 * for testing SSCR1 changes that require SSP restart, basically
45 * everything except the service and interrupt enables, the pxa270 developer
46 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47 * list, but the PXA255 dev man says all bits without really meaning the
48 * service and interrupt enables
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
58 | QUARK_X1000_SSCR1_EFWR \
59 | QUARK_X1000_SSCR1_RFT \
60 | QUARK_X1000_SSCR1_TFT \
61 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
63 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
64 #define SPI_CS_CONTROL_SW_MODE BIT(0)
65 #define SPI_CS_CONTROL_CS_HIGH BIT(1)
67 struct lpss_config {
68 /* LPSS offset from drv_data->ioaddr */
69 unsigned offset;
70 /* Register offsets from drv_data->lpss_base or -1 */
71 int reg_general;
72 int reg_ssp;
73 int reg_cs_ctrl;
74 /* FIFO thresholds */
75 u32 rx_threshold;
76 u32 tx_threshold_lo;
77 u32 tx_threshold_hi;
80 /* Keep these sorted with enum pxa_ssp_type */
81 static const struct lpss_config lpss_platforms[] = {
82 { /* LPSS_LPT_SSP */
83 .offset = 0x800,
84 .reg_general = 0x08,
85 .reg_ssp = 0x0c,
86 .reg_cs_ctrl = 0x18,
87 .rx_threshold = 64,
88 .tx_threshold_lo = 160,
89 .tx_threshold_hi = 224,
91 { /* LPSS_BYT_SSP */
92 .offset = 0x400,
93 .reg_general = 0x08,
94 .reg_ssp = 0x0c,
95 .reg_cs_ctrl = 0x18,
96 .rx_threshold = 64,
97 .tx_threshold_lo = 160,
98 .tx_threshold_hi = 224,
102 static inline const struct lpss_config
103 *lpss_get_config(const struct driver_data *drv_data)
105 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
108 static bool is_lpss_ssp(const struct driver_data *drv_data)
110 switch (drv_data->ssp_type) {
111 case LPSS_LPT_SSP:
112 case LPSS_BYT_SSP:
113 return true;
114 default:
115 return false;
119 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
121 return drv_data->ssp_type == QUARK_X1000_SSP;
124 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
126 switch (drv_data->ssp_type) {
127 case QUARK_X1000_SSP:
128 return QUARK_X1000_SSCR1_CHANGE_MASK;
129 default:
130 return SSCR1_CHANGE_MASK;
134 static u32
135 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
137 switch (drv_data->ssp_type) {
138 case QUARK_X1000_SSP:
139 return RX_THRESH_QUARK_X1000_DFLT;
140 default:
141 return RX_THRESH_DFLT;
145 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
147 u32 mask;
149 switch (drv_data->ssp_type) {
150 case QUARK_X1000_SSP:
151 mask = QUARK_X1000_SSSR_TFL_MASK;
152 break;
153 default:
154 mask = SSSR_TFL_MASK;
155 break;
158 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
161 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
162 u32 *sccr1_reg)
164 u32 mask;
166 switch (drv_data->ssp_type) {
167 case QUARK_X1000_SSP:
168 mask = QUARK_X1000_SSCR1_RFT;
169 break;
170 default:
171 mask = SSCR1_RFT;
172 break;
174 *sccr1_reg &= ~mask;
177 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
178 u32 *sccr1_reg, u32 threshold)
180 switch (drv_data->ssp_type) {
181 case QUARK_X1000_SSP:
182 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
183 break;
184 default:
185 *sccr1_reg |= SSCR1_RxTresh(threshold);
186 break;
190 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
191 u32 clk_div, u8 bits)
193 switch (drv_data->ssp_type) {
194 case QUARK_X1000_SSP:
195 return clk_div
196 | QUARK_X1000_SSCR0_Motorola
197 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
198 | SSCR0_SSE;
199 default:
200 return clk_div
201 | SSCR0_Motorola
202 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
203 | SSCR0_SSE
204 | (bits > 16 ? SSCR0_EDSS : 0);
209 * Read and write LPSS SSP private registers. Caller must first check that
210 * is_lpss_ssp() returns true before these can be called.
212 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
214 WARN_ON(!drv_data->lpss_base);
215 return readl(drv_data->lpss_base + offset);
218 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
219 unsigned offset, u32 value)
221 WARN_ON(!drv_data->lpss_base);
222 writel(value, drv_data->lpss_base + offset);
226 * lpss_ssp_setup - perform LPSS SSP specific setup
227 * @drv_data: pointer to the driver private data
229 * Perform LPSS SSP specific setup. This function must be called first if
230 * one is going to use LPSS SSP private registers.
232 static void lpss_ssp_setup(struct driver_data *drv_data)
234 const struct lpss_config *config;
235 u32 value;
237 config = lpss_get_config(drv_data);
238 drv_data->lpss_base = drv_data->ioaddr + config->offset;
240 /* Enable software chip select control */
241 value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
242 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
244 /* Enable multiblock DMA transfers */
245 if (drv_data->master_info->enable_dma) {
246 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
248 if (config->reg_general >= 0) {
249 value = __lpss_ssp_read_priv(drv_data,
250 config->reg_general);
251 value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
252 __lpss_ssp_write_priv(drv_data,
253 config->reg_general, value);
258 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
260 const struct lpss_config *config;
261 u32 value;
263 config = lpss_get_config(drv_data);
265 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
266 if (enable)
267 value &= ~SPI_CS_CONTROL_CS_HIGH;
268 else
269 value |= SPI_CS_CONTROL_CS_HIGH;
270 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
273 static void cs_assert(struct driver_data *drv_data)
275 struct chip_data *chip = drv_data->cur_chip;
277 if (drv_data->ssp_type == CE4100_SSP) {
278 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
279 return;
282 if (chip->cs_control) {
283 chip->cs_control(PXA2XX_CS_ASSERT);
284 return;
287 if (gpio_is_valid(chip->gpio_cs)) {
288 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
289 return;
292 if (is_lpss_ssp(drv_data))
293 lpss_ssp_cs_control(drv_data, true);
296 static void cs_deassert(struct driver_data *drv_data)
298 struct chip_data *chip = drv_data->cur_chip;
300 if (drv_data->ssp_type == CE4100_SSP)
301 return;
303 if (chip->cs_control) {
304 chip->cs_control(PXA2XX_CS_DEASSERT);
305 return;
308 if (gpio_is_valid(chip->gpio_cs)) {
309 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
310 return;
313 if (is_lpss_ssp(drv_data))
314 lpss_ssp_cs_control(drv_data, false);
317 int pxa2xx_spi_flush(struct driver_data *drv_data)
319 unsigned long limit = loops_per_jiffy << 1;
321 do {
322 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
323 pxa2xx_spi_read(drv_data, SSDR);
324 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
325 write_SSSR_CS(drv_data, SSSR_ROR);
327 return limit;
330 static int null_writer(struct driver_data *drv_data)
332 u8 n_bytes = drv_data->n_bytes;
334 if (pxa2xx_spi_txfifo_full(drv_data)
335 || (drv_data->tx == drv_data->tx_end))
336 return 0;
338 pxa2xx_spi_write(drv_data, SSDR, 0);
339 drv_data->tx += n_bytes;
341 return 1;
344 static int null_reader(struct driver_data *drv_data)
346 u8 n_bytes = drv_data->n_bytes;
348 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
349 && (drv_data->rx < drv_data->rx_end)) {
350 pxa2xx_spi_read(drv_data, SSDR);
351 drv_data->rx += n_bytes;
354 return drv_data->rx == drv_data->rx_end;
357 static int u8_writer(struct driver_data *drv_data)
359 if (pxa2xx_spi_txfifo_full(drv_data)
360 || (drv_data->tx == drv_data->tx_end))
361 return 0;
363 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
364 ++drv_data->tx;
366 return 1;
369 static int u8_reader(struct driver_data *drv_data)
371 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
372 && (drv_data->rx < drv_data->rx_end)) {
373 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
374 ++drv_data->rx;
377 return drv_data->rx == drv_data->rx_end;
380 static int u16_writer(struct driver_data *drv_data)
382 if (pxa2xx_spi_txfifo_full(drv_data)
383 || (drv_data->tx == drv_data->tx_end))
384 return 0;
386 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
387 drv_data->tx += 2;
389 return 1;
392 static int u16_reader(struct driver_data *drv_data)
394 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
395 && (drv_data->rx < drv_data->rx_end)) {
396 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
397 drv_data->rx += 2;
400 return drv_data->rx == drv_data->rx_end;
403 static int u32_writer(struct driver_data *drv_data)
405 if (pxa2xx_spi_txfifo_full(drv_data)
406 || (drv_data->tx == drv_data->tx_end))
407 return 0;
409 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
410 drv_data->tx += 4;
412 return 1;
415 static int u32_reader(struct driver_data *drv_data)
417 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
418 && (drv_data->rx < drv_data->rx_end)) {
419 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
420 drv_data->rx += 4;
423 return drv_data->rx == drv_data->rx_end;
426 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
428 struct spi_message *msg = drv_data->cur_msg;
429 struct spi_transfer *trans = drv_data->cur_transfer;
431 /* Move to next transfer */
432 if (trans->transfer_list.next != &msg->transfers) {
433 drv_data->cur_transfer =
434 list_entry(trans->transfer_list.next,
435 struct spi_transfer,
436 transfer_list);
437 return RUNNING_STATE;
438 } else
439 return DONE_STATE;
442 /* caller already set message->status; dma and pio irqs are blocked */
443 static void giveback(struct driver_data *drv_data)
445 struct spi_transfer* last_transfer;
446 struct spi_message *msg;
448 msg = drv_data->cur_msg;
449 drv_data->cur_msg = NULL;
450 drv_data->cur_transfer = NULL;
452 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
453 transfer_list);
455 /* Delay if requested before any change in chip select */
456 if (last_transfer->delay_usecs)
457 udelay(last_transfer->delay_usecs);
459 /* Drop chip select UNLESS cs_change is true or we are returning
460 * a message with an error, or next message is for another chip
462 if (!last_transfer->cs_change)
463 cs_deassert(drv_data);
464 else {
465 struct spi_message *next_msg;
467 /* Holding of cs was hinted, but we need to make sure
468 * the next message is for the same chip. Don't waste
469 * time with the following tests unless this was hinted.
471 * We cannot postpone this until pump_messages, because
472 * after calling msg->complete (below) the driver that
473 * sent the current message could be unloaded, which
474 * could invalidate the cs_control() callback...
477 /* get a pointer to the next message, if any */
478 next_msg = spi_get_next_queued_message(drv_data->master);
480 /* see if the next and current messages point
481 * to the same chip
483 if (next_msg && next_msg->spi != msg->spi)
484 next_msg = NULL;
485 if (!next_msg || msg->state == ERROR_STATE)
486 cs_deassert(drv_data);
489 drv_data->cur_chip = NULL;
490 spi_finalize_current_message(drv_data->master);
493 static void reset_sccr1(struct driver_data *drv_data)
495 struct chip_data *chip = drv_data->cur_chip;
496 u32 sccr1_reg;
498 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
499 sccr1_reg &= ~SSCR1_RFT;
500 sccr1_reg |= chip->threshold;
501 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
504 static void int_error_stop(struct driver_data *drv_data, const char* msg)
506 /* Stop and reset SSP */
507 write_SSSR_CS(drv_data, drv_data->clear_sr);
508 reset_sccr1(drv_data);
509 if (!pxa25x_ssp_comp(drv_data))
510 pxa2xx_spi_write(drv_data, SSTO, 0);
511 pxa2xx_spi_flush(drv_data);
512 pxa2xx_spi_write(drv_data, SSCR0,
513 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
515 dev_err(&drv_data->pdev->dev, "%s\n", msg);
517 drv_data->cur_msg->state = ERROR_STATE;
518 tasklet_schedule(&drv_data->pump_transfers);
521 static void int_transfer_complete(struct driver_data *drv_data)
523 /* Stop SSP */
524 write_SSSR_CS(drv_data, drv_data->clear_sr);
525 reset_sccr1(drv_data);
526 if (!pxa25x_ssp_comp(drv_data))
527 pxa2xx_spi_write(drv_data, SSTO, 0);
529 /* Update total byte transferred return count actual bytes read */
530 drv_data->cur_msg->actual_length += drv_data->len -
531 (drv_data->rx_end - drv_data->rx);
533 /* Transfer delays and chip select release are
534 * handled in pump_transfers or giveback
537 /* Move to next transfer */
538 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
540 /* Schedule transfer tasklet */
541 tasklet_schedule(&drv_data->pump_transfers);
544 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
546 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
547 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
549 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
551 if (irq_status & SSSR_ROR) {
552 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
553 return IRQ_HANDLED;
556 if (irq_status & SSSR_TINT) {
557 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
558 if (drv_data->read(drv_data)) {
559 int_transfer_complete(drv_data);
560 return IRQ_HANDLED;
564 /* Drain rx fifo, Fill tx fifo and prevent overruns */
565 do {
566 if (drv_data->read(drv_data)) {
567 int_transfer_complete(drv_data);
568 return IRQ_HANDLED;
570 } while (drv_data->write(drv_data));
572 if (drv_data->read(drv_data)) {
573 int_transfer_complete(drv_data);
574 return IRQ_HANDLED;
577 if (drv_data->tx == drv_data->tx_end) {
578 u32 bytes_left;
579 u32 sccr1_reg;
581 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
582 sccr1_reg &= ~SSCR1_TIE;
585 * PXA25x_SSP has no timeout, set up rx threshould for the
586 * remaining RX bytes.
588 if (pxa25x_ssp_comp(drv_data)) {
589 u32 rx_thre;
591 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
593 bytes_left = drv_data->rx_end - drv_data->rx;
594 switch (drv_data->n_bytes) {
595 case 4:
596 bytes_left >>= 1;
597 case 2:
598 bytes_left >>= 1;
601 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
602 if (rx_thre > bytes_left)
603 rx_thre = bytes_left;
605 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
607 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
610 /* We did something */
611 return IRQ_HANDLED;
614 static irqreturn_t ssp_int(int irq, void *dev_id)
616 struct driver_data *drv_data = dev_id;
617 u32 sccr1_reg;
618 u32 mask = drv_data->mask_sr;
619 u32 status;
622 * The IRQ might be shared with other peripherals so we must first
623 * check that are we RPM suspended or not. If we are we assume that
624 * the IRQ was not for us (we shouldn't be RPM suspended when the
625 * interrupt is enabled).
627 if (pm_runtime_suspended(&drv_data->pdev->dev))
628 return IRQ_NONE;
631 * If the device is not yet in RPM suspended state and we get an
632 * interrupt that is meant for another device, check if status bits
633 * are all set to one. That means that the device is already
634 * powered off.
636 status = pxa2xx_spi_read(drv_data, SSSR);
637 if (status == ~0)
638 return IRQ_NONE;
640 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
642 /* Ignore possible writes if we don't need to write */
643 if (!(sccr1_reg & SSCR1_TIE))
644 mask &= ~SSSR_TFS;
646 if (!(status & mask))
647 return IRQ_NONE;
649 if (!drv_data->cur_msg) {
651 pxa2xx_spi_write(drv_data, SSCR0,
652 pxa2xx_spi_read(drv_data, SSCR0)
653 & ~SSCR0_SSE);
654 pxa2xx_spi_write(drv_data, SSCR1,
655 pxa2xx_spi_read(drv_data, SSCR1)
656 & ~drv_data->int_cr1);
657 if (!pxa25x_ssp_comp(drv_data))
658 pxa2xx_spi_write(drv_data, SSTO, 0);
659 write_SSSR_CS(drv_data, drv_data->clear_sr);
661 dev_err(&drv_data->pdev->dev,
662 "bad message state in interrupt handler\n");
664 /* Never fail */
665 return IRQ_HANDLED;
668 return drv_data->transfer_handler(drv_data);
672 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
673 * input frequency by fractions of 2^24. It also has a divider by 5.
675 * There are formulas to get baud rate value for given input frequency and
676 * divider parameters, such as DDS_CLK_RATE and SCR:
678 * Fsys = 200MHz
680 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
681 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
683 * DDS_CLK_RATE either 2^n or 2^n / 5.
684 * SCR is in range 0 .. 255
686 * Divisor = 5^i * 2^j * 2 * k
687 * i = [0, 1] i = 1 iff j = 0 or j > 3
688 * j = [0, 23] j = 0 iff i = 1
689 * k = [1, 256]
690 * Special case: j = 0, i = 1: Divisor = 2 / 5
692 * Accordingly to the specification the recommended values for DDS_CLK_RATE
693 * are:
694 * Case 1: 2^n, n = [0, 23]
695 * Case 2: 2^24 * 2 / 5 (0x666666)
696 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
698 * In all cases the lowest possible value is better.
700 * The function calculates parameters for all cases and chooses the one closest
701 * to the asked baud rate.
703 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
705 unsigned long xtal = 200000000;
706 unsigned long fref = xtal / 2; /* mandatory division by 2,
707 see (2) */
708 /* case 3 */
709 unsigned long fref1 = fref / 2; /* case 1 */
710 unsigned long fref2 = fref * 2 / 5; /* case 2 */
711 unsigned long scale;
712 unsigned long q, q1, q2;
713 long r, r1, r2;
714 u32 mul;
716 /* Case 1 */
718 /* Set initial value for DDS_CLK_RATE */
719 mul = (1 << 24) >> 1;
721 /* Calculate initial quot */
722 q1 = DIV_ROUND_CLOSEST(fref1, rate);
724 /* Scale q1 if it's too big */
725 if (q1 > 256) {
726 /* Scale q1 to range [1, 512] */
727 scale = fls_long(q1 - 1);
728 if (scale > 9) {
729 q1 >>= scale - 9;
730 mul >>= scale - 9;
733 /* Round the result if we have a remainder */
734 q1 += q1 & 1;
737 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
738 scale = __ffs(q1);
739 q1 >>= scale;
740 mul >>= scale;
742 /* Get the remainder */
743 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
745 /* Case 2 */
747 q2 = DIV_ROUND_CLOSEST(fref2, rate);
748 r2 = abs(fref2 / q2 - rate);
751 * Choose the best between two: less remainder we have the better. We
752 * can't go case 2 if q2 is greater than 256 since SCR register can
753 * hold only values 0 .. 255.
755 if (r2 >= r1 || q2 > 256) {
756 /* case 1 is better */
757 r = r1;
758 q = q1;
759 } else {
760 /* case 2 is better */
761 r = r2;
762 q = q2;
763 mul = (1 << 24) * 2 / 5;
766 /* Check case 3 only If the divisor is big enough */
767 if (fref / rate >= 80) {
768 u64 fssp;
769 u32 m;
771 /* Calculate initial quot */
772 q1 = DIV_ROUND_CLOSEST(fref, rate);
773 m = (1 << 24) / q1;
775 /* Get the remainder */
776 fssp = (u64)fref * m;
777 do_div(fssp, 1 << 24);
778 r1 = abs(fssp - rate);
780 /* Choose this one if it suits better */
781 if (r1 < r) {
782 /* case 3 is better */
783 q = 1;
784 mul = m;
788 *dds = mul;
789 return q - 1;
792 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
794 unsigned long ssp_clk = drv_data->max_clk_rate;
795 const struct ssp_device *ssp = drv_data->ssp;
797 rate = min_t(int, ssp_clk, rate);
799 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
800 return (ssp_clk / (2 * rate) - 1) & 0xff;
801 else
802 return (ssp_clk / rate - 1) & 0xfff;
805 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
806 struct chip_data *chip, int rate)
808 unsigned int clk_div;
810 switch (drv_data->ssp_type) {
811 case QUARK_X1000_SSP:
812 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
813 break;
814 default:
815 clk_div = ssp_get_clk_div(drv_data, rate);
816 break;
818 return clk_div << 8;
821 static void pump_transfers(unsigned long data)
823 struct driver_data *drv_data = (struct driver_data *)data;
824 struct spi_message *message = NULL;
825 struct spi_transfer *transfer = NULL;
826 struct spi_transfer *previous = NULL;
827 struct chip_data *chip = NULL;
828 u32 clk_div = 0;
829 u8 bits = 0;
830 u32 speed = 0;
831 u32 cr0;
832 u32 cr1;
833 u32 dma_thresh = drv_data->cur_chip->dma_threshold;
834 u32 dma_burst = drv_data->cur_chip->dma_burst_size;
835 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
837 /* Get current state information */
838 message = drv_data->cur_msg;
839 transfer = drv_data->cur_transfer;
840 chip = drv_data->cur_chip;
842 /* Handle for abort */
843 if (message->state == ERROR_STATE) {
844 message->status = -EIO;
845 giveback(drv_data);
846 return;
849 /* Handle end of message */
850 if (message->state == DONE_STATE) {
851 message->status = 0;
852 giveback(drv_data);
853 return;
856 /* Delay if requested at end of transfer before CS change */
857 if (message->state == RUNNING_STATE) {
858 previous = list_entry(transfer->transfer_list.prev,
859 struct spi_transfer,
860 transfer_list);
861 if (previous->delay_usecs)
862 udelay(previous->delay_usecs);
864 /* Drop chip select only if cs_change is requested */
865 if (previous->cs_change)
866 cs_deassert(drv_data);
869 /* Check if we can DMA this transfer */
870 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
872 /* reject already-mapped transfers; PIO won't always work */
873 if (message->is_dma_mapped
874 || transfer->rx_dma || transfer->tx_dma) {
875 dev_err(&drv_data->pdev->dev,
876 "pump_transfers: mapped transfer length of "
877 "%u is greater than %d\n",
878 transfer->len, MAX_DMA_LEN);
879 message->status = -EINVAL;
880 giveback(drv_data);
881 return;
884 /* warn ... we force this to PIO mode */
885 dev_warn_ratelimited(&message->spi->dev,
886 "pump_transfers: DMA disabled for transfer length %ld "
887 "greater than %d\n",
888 (long)drv_data->len, MAX_DMA_LEN);
891 /* Setup the transfer state based on the type of transfer */
892 if (pxa2xx_spi_flush(drv_data) == 0) {
893 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
894 message->status = -EIO;
895 giveback(drv_data);
896 return;
898 drv_data->n_bytes = chip->n_bytes;
899 drv_data->tx = (void *)transfer->tx_buf;
900 drv_data->tx_end = drv_data->tx + transfer->len;
901 drv_data->rx = transfer->rx_buf;
902 drv_data->rx_end = drv_data->rx + transfer->len;
903 drv_data->rx_dma = transfer->rx_dma;
904 drv_data->tx_dma = transfer->tx_dma;
905 drv_data->len = transfer->len;
906 drv_data->write = drv_data->tx ? chip->write : null_writer;
907 drv_data->read = drv_data->rx ? chip->read : null_reader;
909 /* Change speed and bit per word on a per transfer */
910 cr0 = chip->cr0;
911 if (transfer->speed_hz || transfer->bits_per_word) {
913 bits = chip->bits_per_word;
914 speed = chip->speed_hz;
916 if (transfer->speed_hz)
917 speed = transfer->speed_hz;
919 if (transfer->bits_per_word)
920 bits = transfer->bits_per_word;
922 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
924 if (bits <= 8) {
925 drv_data->n_bytes = 1;
926 drv_data->read = drv_data->read != null_reader ?
927 u8_reader : null_reader;
928 drv_data->write = drv_data->write != null_writer ?
929 u8_writer : null_writer;
930 } else if (bits <= 16) {
931 drv_data->n_bytes = 2;
932 drv_data->read = drv_data->read != null_reader ?
933 u16_reader : null_reader;
934 drv_data->write = drv_data->write != null_writer ?
935 u16_writer : null_writer;
936 } else if (bits <= 32) {
937 drv_data->n_bytes = 4;
938 drv_data->read = drv_data->read != null_reader ?
939 u32_reader : null_reader;
940 drv_data->write = drv_data->write != null_writer ?
941 u32_writer : null_writer;
943 /* if bits/word is changed in dma mode, then must check the
944 * thresholds and burst also */
945 if (chip->enable_dma) {
946 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
947 message->spi,
948 bits, &dma_burst,
949 &dma_thresh))
950 dev_warn_ratelimited(&message->spi->dev,
951 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
954 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
957 message->state = RUNNING_STATE;
959 drv_data->dma_mapped = 0;
960 if (pxa2xx_spi_dma_is_possible(drv_data->len))
961 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
962 if (drv_data->dma_mapped) {
964 /* Ensure we have the correct interrupt handler */
965 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
967 pxa2xx_spi_dma_prepare(drv_data, dma_burst);
969 /* Clear status and start DMA engine */
970 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
971 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
973 pxa2xx_spi_dma_start(drv_data);
974 } else {
975 /* Ensure we have the correct interrupt handler */
976 drv_data->transfer_handler = interrupt_transfer;
978 /* Clear status */
979 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
980 write_SSSR_CS(drv_data, drv_data->clear_sr);
983 if (is_lpss_ssp(drv_data)) {
984 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
985 != chip->lpss_rx_threshold)
986 pxa2xx_spi_write(drv_data, SSIRF,
987 chip->lpss_rx_threshold);
988 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
989 != chip->lpss_tx_threshold)
990 pxa2xx_spi_write(drv_data, SSITF,
991 chip->lpss_tx_threshold);
994 if (is_quark_x1000_ssp(drv_data) &&
995 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
996 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
998 /* see if we need to reload the config registers */
999 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1000 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1001 != (cr1 & change_mask)) {
1002 /* stop the SSP, and update the other bits */
1003 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1004 if (!pxa25x_ssp_comp(drv_data))
1005 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1006 /* first set CR1 without interrupt and service enables */
1007 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1008 /* restart the SSP */
1009 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1011 } else {
1012 if (!pxa25x_ssp_comp(drv_data))
1013 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1016 cs_assert(drv_data);
1018 /* after chip select, release the data by enabling service
1019 * requests and interrupts, without changing any mode bits */
1020 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1023 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1024 struct spi_message *msg)
1026 struct driver_data *drv_data = spi_master_get_devdata(master);
1028 drv_data->cur_msg = msg;
1029 /* Initial message state*/
1030 drv_data->cur_msg->state = START_STATE;
1031 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1032 struct spi_transfer,
1033 transfer_list);
1035 /* prepare to setup the SSP, in pump_transfers, using the per
1036 * chip configuration */
1037 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1039 /* Mark as busy and launch transfers */
1040 tasklet_schedule(&drv_data->pump_transfers);
1041 return 0;
1044 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1046 struct driver_data *drv_data = spi_master_get_devdata(master);
1048 /* Disable the SSP now */
1049 pxa2xx_spi_write(drv_data, SSCR0,
1050 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1052 return 0;
1055 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1056 struct pxa2xx_spi_chip *chip_info)
1058 int err = 0;
1060 if (chip == NULL || chip_info == NULL)
1061 return 0;
1063 /* NOTE: setup() can be called multiple times, possibly with
1064 * different chip_info, release previously requested GPIO
1066 if (gpio_is_valid(chip->gpio_cs))
1067 gpio_free(chip->gpio_cs);
1069 /* If (*cs_control) is provided, ignore GPIO chip select */
1070 if (chip_info->cs_control) {
1071 chip->cs_control = chip_info->cs_control;
1072 return 0;
1075 if (gpio_is_valid(chip_info->gpio_cs)) {
1076 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1077 if (err) {
1078 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1079 chip_info->gpio_cs);
1080 return err;
1083 chip->gpio_cs = chip_info->gpio_cs;
1084 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1086 err = gpio_direction_output(chip->gpio_cs,
1087 !chip->gpio_cs_inverted);
1090 return err;
1093 static int setup(struct spi_device *spi)
1095 struct pxa2xx_spi_chip *chip_info = NULL;
1096 struct chip_data *chip;
1097 const struct lpss_config *config;
1098 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1099 unsigned int clk_div;
1100 uint tx_thres, tx_hi_thres, rx_thres;
1102 switch (drv_data->ssp_type) {
1103 case QUARK_X1000_SSP:
1104 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1105 tx_hi_thres = 0;
1106 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1107 break;
1108 case LPSS_LPT_SSP:
1109 case LPSS_BYT_SSP:
1110 config = lpss_get_config(drv_data);
1111 tx_thres = config->tx_threshold_lo;
1112 tx_hi_thres = config->tx_threshold_hi;
1113 rx_thres = config->rx_threshold;
1114 break;
1115 default:
1116 tx_thres = TX_THRESH_DFLT;
1117 tx_hi_thres = 0;
1118 rx_thres = RX_THRESH_DFLT;
1119 break;
1122 /* Only alloc on first setup */
1123 chip = spi_get_ctldata(spi);
1124 if (!chip) {
1125 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1126 if (!chip)
1127 return -ENOMEM;
1129 if (drv_data->ssp_type == CE4100_SSP) {
1130 if (spi->chip_select > 4) {
1131 dev_err(&spi->dev,
1132 "failed setup: cs number must not be > 4.\n");
1133 kfree(chip);
1134 return -EINVAL;
1137 chip->frm = spi->chip_select;
1138 } else
1139 chip->gpio_cs = -1;
1140 chip->enable_dma = 0;
1141 chip->timeout = TIMOUT_DFLT;
1144 /* protocol drivers may change the chip settings, so...
1145 * if chip_info exists, use it */
1146 chip_info = spi->controller_data;
1148 /* chip_info isn't always needed */
1149 chip->cr1 = 0;
1150 if (chip_info) {
1151 if (chip_info->timeout)
1152 chip->timeout = chip_info->timeout;
1153 if (chip_info->tx_threshold)
1154 tx_thres = chip_info->tx_threshold;
1155 if (chip_info->tx_hi_threshold)
1156 tx_hi_thres = chip_info->tx_hi_threshold;
1157 if (chip_info->rx_threshold)
1158 rx_thres = chip_info->rx_threshold;
1159 chip->enable_dma = drv_data->master_info->enable_dma;
1160 chip->dma_threshold = 0;
1161 if (chip_info->enable_loopback)
1162 chip->cr1 = SSCR1_LBM;
1163 } else if (ACPI_HANDLE(&spi->dev)) {
1165 * Slave devices enumerated from ACPI namespace don't
1166 * usually have chip_info but we still might want to use
1167 * DMA with them.
1169 chip->enable_dma = drv_data->master_info->enable_dma;
1172 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1173 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1174 | SSITF_TxHiThresh(tx_hi_thres);
1176 /* set dma burst and threshold outside of chip_info path so that if
1177 * chip_info goes away after setting chip->enable_dma, the
1178 * burst and threshold can still respond to changes in bits_per_word */
1179 if (chip->enable_dma) {
1180 /* set up legal burst and threshold for dma */
1181 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1182 spi->bits_per_word,
1183 &chip->dma_burst_size,
1184 &chip->dma_threshold)) {
1185 dev_warn(&spi->dev,
1186 "in setup: DMA burst size reduced to match bits_per_word\n");
1190 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1191 chip->speed_hz = spi->max_speed_hz;
1193 chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1194 spi->bits_per_word);
1195 switch (drv_data->ssp_type) {
1196 case QUARK_X1000_SSP:
1197 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1198 & QUARK_X1000_SSCR1_RFT)
1199 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1200 & QUARK_X1000_SSCR1_TFT);
1201 break;
1202 default:
1203 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1204 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1205 break;
1208 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1209 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1210 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1212 if (spi->mode & SPI_LOOP)
1213 chip->cr1 |= SSCR1_LBM;
1215 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1216 if (!pxa25x_ssp_comp(drv_data))
1217 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1218 drv_data->max_clk_rate
1219 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1220 chip->enable_dma ? "DMA" : "PIO");
1221 else
1222 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1223 drv_data->max_clk_rate / 2
1224 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1225 chip->enable_dma ? "DMA" : "PIO");
1227 if (spi->bits_per_word <= 8) {
1228 chip->n_bytes = 1;
1229 chip->read = u8_reader;
1230 chip->write = u8_writer;
1231 } else if (spi->bits_per_word <= 16) {
1232 chip->n_bytes = 2;
1233 chip->read = u16_reader;
1234 chip->write = u16_writer;
1235 } else if (spi->bits_per_word <= 32) {
1236 if (!is_quark_x1000_ssp(drv_data))
1237 chip->cr0 |= SSCR0_EDSS;
1238 chip->n_bytes = 4;
1239 chip->read = u32_reader;
1240 chip->write = u32_writer;
1242 chip->bits_per_word = spi->bits_per_word;
1244 spi_set_ctldata(spi, chip);
1246 if (drv_data->ssp_type == CE4100_SSP)
1247 return 0;
1249 return setup_cs(spi, chip, chip_info);
1252 static void cleanup(struct spi_device *spi)
1254 struct chip_data *chip = spi_get_ctldata(spi);
1255 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1257 if (!chip)
1258 return;
1260 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1261 gpio_free(chip->gpio_cs);
1263 kfree(chip);
1266 #ifdef CONFIG_ACPI
1268 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1269 { "INT33C0", LPSS_LPT_SSP },
1270 { "INT33C1", LPSS_LPT_SSP },
1271 { "INT3430", LPSS_LPT_SSP },
1272 { "INT3431", LPSS_LPT_SSP },
1273 { "80860F0E", LPSS_BYT_SSP },
1274 { "8086228E", LPSS_BYT_SSP },
1275 { },
1277 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1279 static struct pxa2xx_spi_master *
1280 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1282 struct pxa2xx_spi_master *pdata;
1283 struct acpi_device *adev;
1284 struct ssp_device *ssp;
1285 struct resource *res;
1286 const struct acpi_device_id *id;
1287 int devid, type;
1289 if (!ACPI_HANDLE(&pdev->dev) ||
1290 acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1291 return NULL;
1293 id = acpi_match_device(pdev->dev.driver->acpi_match_table, &pdev->dev);
1294 if (id)
1295 type = (int)id->driver_data;
1296 else
1297 return NULL;
1299 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1300 if (!pdata)
1301 return NULL;
1303 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304 if (!res)
1305 return NULL;
1307 ssp = &pdata->ssp;
1309 ssp->phys_base = res->start;
1310 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1311 if (IS_ERR(ssp->mmio_base))
1312 return NULL;
1314 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1315 ssp->irq = platform_get_irq(pdev, 0);
1316 ssp->type = type;
1317 ssp->pdev = pdev;
1319 ssp->port_id = -1;
1320 if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1321 ssp->port_id = devid;
1323 pdata->num_chipselect = 1;
1324 pdata->enable_dma = true;
1326 return pdata;
1329 #else
1330 static inline struct pxa2xx_spi_master *
1331 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1333 return NULL;
1335 #endif
1337 static int pxa2xx_spi_probe(struct platform_device *pdev)
1339 struct device *dev = &pdev->dev;
1340 struct pxa2xx_spi_master *platform_info;
1341 struct spi_master *master;
1342 struct driver_data *drv_data;
1343 struct ssp_device *ssp;
1344 int status;
1345 u32 tmp;
1347 platform_info = dev_get_platdata(dev);
1348 if (!platform_info) {
1349 platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1350 if (!platform_info) {
1351 dev_err(&pdev->dev, "missing platform data\n");
1352 return -ENODEV;
1356 ssp = pxa_ssp_request(pdev->id, pdev->name);
1357 if (!ssp)
1358 ssp = &platform_info->ssp;
1360 if (!ssp->mmio_base) {
1361 dev_err(&pdev->dev, "failed to get ssp\n");
1362 return -ENODEV;
1365 /* Allocate master with space for drv_data and null dma buffer */
1366 master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1367 if (!master) {
1368 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1369 pxa_ssp_free(ssp);
1370 return -ENOMEM;
1372 drv_data = spi_master_get_devdata(master);
1373 drv_data->master = master;
1374 drv_data->master_info = platform_info;
1375 drv_data->pdev = pdev;
1376 drv_data->ssp = ssp;
1378 master->dev.parent = &pdev->dev;
1379 master->dev.of_node = pdev->dev.of_node;
1380 /* the spi->mode bits understood by this driver: */
1381 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1383 master->bus_num = ssp->port_id;
1384 master->num_chipselect = platform_info->num_chipselect;
1385 master->dma_alignment = DMA_ALIGNMENT;
1386 master->cleanup = cleanup;
1387 master->setup = setup;
1388 master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1389 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1390 master->auto_runtime_pm = true;
1392 drv_data->ssp_type = ssp->type;
1393 drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1395 drv_data->ioaddr = ssp->mmio_base;
1396 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1397 if (pxa25x_ssp_comp(drv_data)) {
1398 switch (drv_data->ssp_type) {
1399 case QUARK_X1000_SSP:
1400 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1401 break;
1402 default:
1403 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1404 break;
1407 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1408 drv_data->dma_cr1 = 0;
1409 drv_data->clear_sr = SSSR_ROR;
1410 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1411 } else {
1412 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1413 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1414 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1415 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1416 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1419 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1420 drv_data);
1421 if (status < 0) {
1422 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1423 goto out_error_master_alloc;
1426 /* Setup DMA if requested */
1427 drv_data->tx_channel = -1;
1428 drv_data->rx_channel = -1;
1429 if (platform_info->enable_dma) {
1430 status = pxa2xx_spi_dma_setup(drv_data);
1431 if (status) {
1432 dev_dbg(dev, "no DMA channels available, using PIO\n");
1433 platform_info->enable_dma = false;
1437 /* Enable SOC clock */
1438 clk_prepare_enable(ssp->clk);
1440 drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1442 /* Load default SSP configuration */
1443 pxa2xx_spi_write(drv_data, SSCR0, 0);
1444 switch (drv_data->ssp_type) {
1445 case QUARK_X1000_SSP:
1446 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1447 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1448 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1450 /* using the Motorola SPI protocol and use 8 bit frame */
1451 pxa2xx_spi_write(drv_data, SSCR0,
1452 QUARK_X1000_SSCR0_Motorola
1453 | QUARK_X1000_SSCR0_DataSize(8));
1454 break;
1455 default:
1456 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1457 SSCR1_TxTresh(TX_THRESH_DFLT);
1458 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1459 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1460 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1461 break;
1464 if (!pxa25x_ssp_comp(drv_data))
1465 pxa2xx_spi_write(drv_data, SSTO, 0);
1467 if (!is_quark_x1000_ssp(drv_data))
1468 pxa2xx_spi_write(drv_data, SSPSP, 0);
1470 if (is_lpss_ssp(drv_data))
1471 lpss_ssp_setup(drv_data);
1473 tasklet_init(&drv_data->pump_transfers, pump_transfers,
1474 (unsigned long)drv_data);
1476 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1477 pm_runtime_use_autosuspend(&pdev->dev);
1478 pm_runtime_set_active(&pdev->dev);
1479 pm_runtime_enable(&pdev->dev);
1481 /* Register with the SPI framework */
1482 platform_set_drvdata(pdev, drv_data);
1483 status = devm_spi_register_master(&pdev->dev, master);
1484 if (status != 0) {
1485 dev_err(&pdev->dev, "problem registering spi master\n");
1486 goto out_error_clock_enabled;
1489 return status;
1491 out_error_clock_enabled:
1492 clk_disable_unprepare(ssp->clk);
1493 pxa2xx_spi_dma_release(drv_data);
1494 free_irq(ssp->irq, drv_data);
1496 out_error_master_alloc:
1497 spi_master_put(master);
1498 pxa_ssp_free(ssp);
1499 return status;
1502 static int pxa2xx_spi_remove(struct platform_device *pdev)
1504 struct driver_data *drv_data = platform_get_drvdata(pdev);
1505 struct ssp_device *ssp;
1507 if (!drv_data)
1508 return 0;
1509 ssp = drv_data->ssp;
1511 pm_runtime_get_sync(&pdev->dev);
1513 /* Disable the SSP at the peripheral and SOC level */
1514 pxa2xx_spi_write(drv_data, SSCR0, 0);
1515 clk_disable_unprepare(ssp->clk);
1517 /* Release DMA */
1518 if (drv_data->master_info->enable_dma)
1519 pxa2xx_spi_dma_release(drv_data);
1521 pm_runtime_put_noidle(&pdev->dev);
1522 pm_runtime_disable(&pdev->dev);
1524 /* Release IRQ */
1525 free_irq(ssp->irq, drv_data);
1527 /* Release SSP */
1528 pxa_ssp_free(ssp);
1530 return 0;
1533 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1535 int status = 0;
1537 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1538 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1541 #ifdef CONFIG_PM_SLEEP
1542 static int pxa2xx_spi_suspend(struct device *dev)
1544 struct driver_data *drv_data = dev_get_drvdata(dev);
1545 struct ssp_device *ssp = drv_data->ssp;
1546 int status = 0;
1548 status = spi_master_suspend(drv_data->master);
1549 if (status != 0)
1550 return status;
1551 pxa2xx_spi_write(drv_data, SSCR0, 0);
1553 if (!pm_runtime_suspended(dev))
1554 clk_disable_unprepare(ssp->clk);
1556 return 0;
1559 static int pxa2xx_spi_resume(struct device *dev)
1561 struct driver_data *drv_data = dev_get_drvdata(dev);
1562 struct ssp_device *ssp = drv_data->ssp;
1563 int status = 0;
1565 pxa2xx_spi_dma_resume(drv_data);
1567 /* Enable the SSP clock */
1568 if (!pm_runtime_suspended(dev))
1569 clk_prepare_enable(ssp->clk);
1571 /* Restore LPSS private register bits */
1572 if (is_lpss_ssp(drv_data))
1573 lpss_ssp_setup(drv_data);
1575 /* Start the queue running */
1576 status = spi_master_resume(drv_data->master);
1577 if (status != 0) {
1578 dev_err(dev, "problem starting queue (%d)\n", status);
1579 return status;
1582 return 0;
1584 #endif
1586 #ifdef CONFIG_PM
1587 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1589 struct driver_data *drv_data = dev_get_drvdata(dev);
1591 clk_disable_unprepare(drv_data->ssp->clk);
1592 return 0;
1595 static int pxa2xx_spi_runtime_resume(struct device *dev)
1597 struct driver_data *drv_data = dev_get_drvdata(dev);
1599 clk_prepare_enable(drv_data->ssp->clk);
1600 return 0;
1602 #endif
1604 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1605 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1606 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1607 pxa2xx_spi_runtime_resume, NULL)
1610 static struct platform_driver driver = {
1611 .driver = {
1612 .name = "pxa2xx-spi",
1613 .pm = &pxa2xx_spi_pm_ops,
1614 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1616 .probe = pxa2xx_spi_probe,
1617 .remove = pxa2xx_spi_remove,
1618 .shutdown = pxa2xx_spi_shutdown,
1621 static int __init pxa2xx_spi_init(void)
1623 return platform_driver_register(&driver);
1625 subsys_initcall(pxa2xx_spi_init);
1627 static void __exit pxa2xx_spi_exit(void)
1629 platform_driver_unregister(&driver);
1631 module_exit(pxa2xx_spi_exit);