Linux 4.2.1
[linux/fpc-iii.git] / drivers / spi / spi-tegra114.c
blob73779cecc3bbcf544ffb74f55048dcc6d06db952
1 /*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
38 #define SPI_COMMAND1 0x000
39 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
40 #define SPI_PACKED (1 << 5)
41 #define SPI_TX_EN (1 << 11)
42 #define SPI_RX_EN (1 << 12)
43 #define SPI_BOTH_EN_BYTE (1 << 13)
44 #define SPI_BOTH_EN_BIT (1 << 14)
45 #define SPI_LSBYTE_FE (1 << 15)
46 #define SPI_LSBIT_FE (1 << 16)
47 #define SPI_BIDIROE (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
52 #define SPI_IDLE_SDA_MASK (3 << 18)
53 #define SPI_CS_SS_VAL (1 << 20)
54 #define SPI_CS_SW_HW (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
60 #define SPI_CS_SEL_0 (0 << 26)
61 #define SPI_CS_SEL_1 (1 << 26)
62 #define SPI_CS_SEL_2 (2 << 26)
63 #define SPI_CS_SEL_3 (3 << 26)
64 #define SPI_CS_SEL_MASK (3 << 26)
65 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0 (0 << 28)
67 #define SPI_CONTROL_MODE_1 (1 << 28)
68 #define SPI_CONTROL_MODE_2 (2 << 28)
69 #define SPI_CONTROL_MODE_3 (3 << 28)
70 #define SPI_CONTROL_MODE_MASK (3 << 28)
71 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
72 #define SPI_M_S (1 << 30)
73 #define SPI_PIO (1 << 31)
75 #define SPI_COMMAND2 0x004
76 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
79 #define SPI_CS_TIMING1 0x008
80 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
82 ((((val) & 0xFFu) << ((cs) * 8)) | \
83 ((reg) & ~(0xFFu << ((cs) * 8))))
85 #define SPI_CS_TIMING2 0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
95 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
96 ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
98 (reg = (((val) & 0xF) << ((cs) * 8)) | \
99 ((reg) & ~(0xF << ((cs) * 8))))
101 #define SPI_TRANS_STATUS 0x010
102 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
104 #define SPI_RDY (1 << 30)
106 #define SPI_FIFO_STATUS 0x014
107 #define SPI_RX_FIFO_EMPTY (1 << 0)
108 #define SPI_RX_FIFO_FULL (1 << 1)
109 #define SPI_TX_FIFO_EMPTY (1 << 2)
110 #define SPI_TX_FIFO_FULL (1 << 3)
111 #define SPI_RX_FIFO_UNF (1 << 4)
112 #define SPI_RX_FIFO_OVF (1 << 5)
113 #define SPI_TX_FIFO_UNF (1 << 6)
114 #define SPI_TX_FIFO_OVF (1 << 7)
115 #define SPI_ERR (1 << 8)
116 #define SPI_TX_FIFO_FLUSH (1 << 14)
117 #define SPI_RX_FIFO_FLUSH (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END (1 << 30)
121 #define SPI_CS_INACTIVE (1 << 31)
123 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
124 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
127 #define SPI_TX_DATA 0x018
128 #define SPI_RX_DATA 0x01C
130 #define SPI_DMA_CTL 0x020
131 #define SPI_TX_TRIG_1 (0 << 15)
132 #define SPI_TX_TRIG_4 (1 << 15)
133 #define SPI_TX_TRIG_8 (2 << 15)
134 #define SPI_TX_TRIG_16 (3 << 15)
135 #define SPI_TX_TRIG_MASK (3 << 15)
136 #define SPI_RX_TRIG_1 (0 << 19)
137 #define SPI_RX_TRIG_4 (1 << 19)
138 #define SPI_RX_TRIG_8 (2 << 19)
139 #define SPI_RX_TRIG_16 (3 << 19)
140 #define SPI_RX_TRIG_MASK (3 << 19)
141 #define SPI_IE_TX (1 << 28)
142 #define SPI_IE_RX (1 << 29)
143 #define SPI_CONT (1 << 30)
144 #define SPI_DMA (1 << 31)
145 #define SPI_DMA_EN SPI_DMA
147 #define SPI_DMA_BLK 0x024
148 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
150 #define SPI_TX_FIFO 0x108
151 #define SPI_RX_FIFO 0x188
152 #define MAX_CHIP_SELECT 4
153 #define SPI_FIFO_DEPTH 64
154 #define DATA_DIR_TX (1 << 0)
155 #define DATA_DIR_RX (1 << 1)
157 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES 16
162 #define SPI_DEFAULT_SPEED 25000000
164 struct tegra_spi_data {
165 struct device *dev;
166 struct spi_master *master;
167 spinlock_t lock;
169 struct clk *clk;
170 struct reset_control *rst;
171 void __iomem *base;
172 phys_addr_t phys;
173 unsigned irq;
174 u32 cur_speed;
176 struct spi_device *cur_spi;
177 struct spi_device *cs_control;
178 unsigned cur_pos;
179 unsigned words_per_32bit;
180 unsigned bytes_per_word;
181 unsigned curr_dma_words;
182 unsigned cur_direction;
184 unsigned cur_rx_pos;
185 unsigned cur_tx_pos;
187 unsigned dma_buf_size;
188 unsigned max_buf_size;
189 bool is_curr_dma_xfer;
191 struct completion rx_dma_complete;
192 struct completion tx_dma_complete;
194 u32 tx_status;
195 u32 rx_status;
196 u32 status_reg;
197 bool is_packed;
199 u32 command1_reg;
200 u32 dma_control_reg;
201 u32 def_command1_reg;
203 struct completion xfer_completion;
204 struct spi_transfer *curr_xfer;
205 struct dma_chan *rx_dma_chan;
206 u32 *rx_dma_buf;
207 dma_addr_t rx_dma_phys;
208 struct dma_async_tx_descriptor *rx_dma_desc;
210 struct dma_chan *tx_dma_chan;
211 u32 *tx_dma_buf;
212 dma_addr_t tx_dma_phys;
213 struct dma_async_tx_descriptor *tx_dma_desc;
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220 unsigned long reg)
222 return readl(tspi->base + reg);
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226 u32 val, unsigned long reg)
228 writel(val, tspi->base + reg);
230 /* Read back register to make sure that register writes completed */
231 if (reg != SPI_TX_FIFO)
232 readl(tspi->base + SPI_COMMAND1);
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
237 u32 val;
239 /* Write 1 to clear status register */
240 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
243 /* Clear fifo status error if any */
244 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245 if (val & SPI_ERR)
246 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247 SPI_FIFO_STATUS);
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251 struct spi_device *spi, struct tegra_spi_data *tspi,
252 struct spi_transfer *t)
254 unsigned remain_len = t->len - tspi->cur_pos;
255 unsigned max_word;
256 unsigned bits_per_word = t->bits_per_word;
257 unsigned max_len;
258 unsigned total_fifo_words;
260 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
262 if (bits_per_word == 8 || bits_per_word == 16) {
263 tspi->is_packed = 1;
264 tspi->words_per_32bit = 32/bits_per_word;
265 } else {
266 tspi->is_packed = 0;
267 tspi->words_per_32bit = 1;
270 if (tspi->is_packed) {
271 max_len = min(remain_len, tspi->max_buf_size);
272 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273 total_fifo_words = (max_len + 3) / 4;
274 } else {
275 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276 max_word = min(max_word, tspi->max_buf_size/4);
277 tspi->curr_dma_words = max_word;
278 total_fifo_words = max_word;
280 return total_fifo_words;
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284 struct tegra_spi_data *tspi, struct spi_transfer *t)
286 unsigned nbytes;
287 unsigned tx_empty_count;
288 u32 fifo_status;
289 unsigned max_n_32bit;
290 unsigned i, count;
291 unsigned int written_words;
292 unsigned fifo_words_left;
293 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
295 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
298 if (tspi->is_packed) {
299 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300 written_words = min(fifo_words_left, tspi->curr_dma_words);
301 nbytes = written_words * tspi->bytes_per_word;
302 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303 for (count = 0; count < max_n_32bit; count++) {
304 u32 x = 0;
306 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307 x |= (u32)(*tx_buf++) << (i * 8);
308 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
310 } else {
311 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
312 written_words = max_n_32bit;
313 nbytes = written_words * tspi->bytes_per_word;
314 for (count = 0; count < max_n_32bit; count++) {
315 u32 x = 0;
317 for (i = 0; nbytes && (i < tspi->bytes_per_word);
318 i++, nbytes--)
319 x |= (u32)(*tx_buf++) << (i * 8);
320 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
323 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324 return written_words;
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328 struct tegra_spi_data *tspi, struct spi_transfer *t)
330 unsigned rx_full_count;
331 u32 fifo_status;
332 unsigned i, count;
333 unsigned int read_words = 0;
334 unsigned len;
335 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
337 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339 if (tspi->is_packed) {
340 len = tspi->curr_dma_words * tspi->bytes_per_word;
341 for (count = 0; count < rx_full_count; count++) {
342 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
344 for (i = 0; len && (i < 4); i++, len--)
345 *rx_buf++ = (x >> i*8) & 0xFF;
347 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
348 read_words += tspi->curr_dma_words;
349 } else {
350 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
352 for (count = 0; count < rx_full_count; count++) {
353 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
355 for (i = 0; (i < tspi->bytes_per_word); i++)
356 *rx_buf++ = (x >> (i*8)) & 0xFF;
358 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
359 read_words += rx_full_count;
361 return read_words;
364 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
365 struct tegra_spi_data *tspi, struct spi_transfer *t)
367 /* Make the dma buffer to read by cpu */
368 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
369 tspi->dma_buf_size, DMA_TO_DEVICE);
371 if (tspi->is_packed) {
372 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
374 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
375 } else {
376 unsigned int i;
377 unsigned int count;
378 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
379 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
381 for (count = 0; count < tspi->curr_dma_words; count++) {
382 u32 x = 0;
384 for (i = 0; consume && (i < tspi->bytes_per_word);
385 i++, consume--)
386 x |= (u32)(*tx_buf++) << (i * 8);
387 tspi->tx_dma_buf[count] = x;
390 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
392 /* Make the dma buffer to read by dma */
393 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
394 tspi->dma_buf_size, DMA_TO_DEVICE);
397 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
398 struct tegra_spi_data *tspi, struct spi_transfer *t)
400 /* Make the dma buffer to read by cpu */
401 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
402 tspi->dma_buf_size, DMA_FROM_DEVICE);
404 if (tspi->is_packed) {
405 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
407 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
408 } else {
409 unsigned int i;
410 unsigned int count;
411 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
412 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
414 for (count = 0; count < tspi->curr_dma_words; count++) {
415 u32 x = tspi->rx_dma_buf[count] & rx_mask;
417 for (i = 0; (i < tspi->bytes_per_word); i++)
418 *rx_buf++ = (x >> (i*8)) & 0xFF;
421 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
423 /* Make the dma buffer to read by dma */
424 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
425 tspi->dma_buf_size, DMA_FROM_DEVICE);
428 static void tegra_spi_dma_complete(void *args)
430 struct completion *dma_complete = args;
432 complete(dma_complete);
435 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
437 reinit_completion(&tspi->tx_dma_complete);
438 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
439 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
440 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
441 if (!tspi->tx_dma_desc) {
442 dev_err(tspi->dev, "Not able to get desc for Tx\n");
443 return -EIO;
446 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
447 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
449 dmaengine_submit(tspi->tx_dma_desc);
450 dma_async_issue_pending(tspi->tx_dma_chan);
451 return 0;
454 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
456 reinit_completion(&tspi->rx_dma_complete);
457 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
458 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
459 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
460 if (!tspi->rx_dma_desc) {
461 dev_err(tspi->dev, "Not able to get desc for Rx\n");
462 return -EIO;
465 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
466 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
468 dmaengine_submit(tspi->rx_dma_desc);
469 dma_async_issue_pending(tspi->rx_dma_chan);
470 return 0;
473 static int tegra_spi_start_dma_based_transfer(
474 struct tegra_spi_data *tspi, struct spi_transfer *t)
476 u32 val;
477 unsigned int len;
478 int ret = 0;
479 u32 status;
481 /* Make sure that Rx and Tx fifo are empty */
482 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
483 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
484 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
485 (unsigned)status);
486 return -EIO;
489 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
490 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
492 if (tspi->is_packed)
493 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
494 4) * 4;
495 else
496 len = tspi->curr_dma_words * 4;
498 /* Set attention level based on length of transfer */
499 if (len & 0xF)
500 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
501 else if (((len) >> 4) & 0x1)
502 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
503 else
504 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
506 if (tspi->cur_direction & DATA_DIR_TX)
507 val |= SPI_IE_TX;
509 if (tspi->cur_direction & DATA_DIR_RX)
510 val |= SPI_IE_RX;
512 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
513 tspi->dma_control_reg = val;
515 if (tspi->cur_direction & DATA_DIR_TX) {
516 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
517 ret = tegra_spi_start_tx_dma(tspi, len);
518 if (ret < 0) {
519 dev_err(tspi->dev,
520 "Starting tx dma failed, err %d\n", ret);
521 return ret;
525 if (tspi->cur_direction & DATA_DIR_RX) {
526 /* Make the dma buffer to read by dma */
527 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
528 tspi->dma_buf_size, DMA_FROM_DEVICE);
530 ret = tegra_spi_start_rx_dma(tspi, len);
531 if (ret < 0) {
532 dev_err(tspi->dev,
533 "Starting rx dma failed, err %d\n", ret);
534 if (tspi->cur_direction & DATA_DIR_TX)
535 dmaengine_terminate_all(tspi->tx_dma_chan);
536 return ret;
539 tspi->is_curr_dma_xfer = true;
540 tspi->dma_control_reg = val;
542 val |= SPI_DMA_EN;
543 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
544 return ret;
547 static int tegra_spi_start_cpu_based_transfer(
548 struct tegra_spi_data *tspi, struct spi_transfer *t)
550 u32 val;
551 unsigned cur_words;
553 if (tspi->cur_direction & DATA_DIR_TX)
554 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
555 else
556 cur_words = tspi->curr_dma_words;
558 val = SPI_DMA_BLK_SET(cur_words - 1);
559 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
561 val = 0;
562 if (tspi->cur_direction & DATA_DIR_TX)
563 val |= SPI_IE_TX;
565 if (tspi->cur_direction & DATA_DIR_RX)
566 val |= SPI_IE_RX;
568 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
569 tspi->dma_control_reg = val;
571 tspi->is_curr_dma_xfer = false;
573 val |= SPI_DMA_EN;
574 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
575 return 0;
578 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
579 bool dma_to_memory)
581 struct dma_chan *dma_chan;
582 u32 *dma_buf;
583 dma_addr_t dma_phys;
584 int ret;
585 struct dma_slave_config dma_sconfig;
587 dma_chan = dma_request_slave_channel_reason(tspi->dev,
588 dma_to_memory ? "rx" : "tx");
589 if (IS_ERR(dma_chan)) {
590 ret = PTR_ERR(dma_chan);
591 if (ret != -EPROBE_DEFER)
592 dev_err(tspi->dev,
593 "Dma channel is not available: %d\n", ret);
594 return ret;
597 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
598 &dma_phys, GFP_KERNEL);
599 if (!dma_buf) {
600 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
601 dma_release_channel(dma_chan);
602 return -ENOMEM;
605 if (dma_to_memory) {
606 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
607 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
608 dma_sconfig.src_maxburst = 0;
609 } else {
610 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
611 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
612 dma_sconfig.dst_maxburst = 0;
615 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
616 if (ret)
617 goto scrub;
618 if (dma_to_memory) {
619 tspi->rx_dma_chan = dma_chan;
620 tspi->rx_dma_buf = dma_buf;
621 tspi->rx_dma_phys = dma_phys;
622 } else {
623 tspi->tx_dma_chan = dma_chan;
624 tspi->tx_dma_buf = dma_buf;
625 tspi->tx_dma_phys = dma_phys;
627 return 0;
629 scrub:
630 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
631 dma_release_channel(dma_chan);
632 return ret;
635 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
636 bool dma_to_memory)
638 u32 *dma_buf;
639 dma_addr_t dma_phys;
640 struct dma_chan *dma_chan;
642 if (dma_to_memory) {
643 dma_buf = tspi->rx_dma_buf;
644 dma_chan = tspi->rx_dma_chan;
645 dma_phys = tspi->rx_dma_phys;
646 tspi->rx_dma_chan = NULL;
647 tspi->rx_dma_buf = NULL;
648 } else {
649 dma_buf = tspi->tx_dma_buf;
650 dma_chan = tspi->tx_dma_chan;
651 dma_phys = tspi->tx_dma_phys;
652 tspi->tx_dma_buf = NULL;
653 tspi->tx_dma_chan = NULL;
655 if (!dma_chan)
656 return;
658 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
659 dma_release_channel(dma_chan);
662 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
663 struct spi_transfer *t, bool is_first_of_msg)
665 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
666 u32 speed = t->speed_hz;
667 u8 bits_per_word = t->bits_per_word;
668 u32 command1;
669 int req_mode;
671 if (speed != tspi->cur_speed) {
672 clk_set_rate(tspi->clk, speed);
673 tspi->cur_speed = speed;
676 tspi->cur_spi = spi;
677 tspi->cur_pos = 0;
678 tspi->cur_rx_pos = 0;
679 tspi->cur_tx_pos = 0;
680 tspi->curr_xfer = t;
682 if (is_first_of_msg) {
683 tegra_spi_clear_status(tspi);
685 command1 = tspi->def_command1_reg;
686 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
688 command1 &= ~SPI_CONTROL_MODE_MASK;
689 req_mode = spi->mode & 0x3;
690 if (req_mode == SPI_MODE_0)
691 command1 |= SPI_CONTROL_MODE_0;
692 else if (req_mode == SPI_MODE_1)
693 command1 |= SPI_CONTROL_MODE_1;
694 else if (req_mode == SPI_MODE_2)
695 command1 |= SPI_CONTROL_MODE_2;
696 else if (req_mode == SPI_MODE_3)
697 command1 |= SPI_CONTROL_MODE_3;
699 if (tspi->cs_control) {
700 if (tspi->cs_control != spi)
701 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
702 tspi->cs_control = NULL;
703 } else
704 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
706 command1 |= SPI_CS_SW_HW;
707 if (spi->mode & SPI_CS_HIGH)
708 command1 |= SPI_CS_SS_VAL;
709 else
710 command1 &= ~SPI_CS_SS_VAL;
712 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
713 } else {
714 command1 = tspi->command1_reg;
715 command1 &= ~SPI_BIT_LENGTH(~0);
716 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
719 return command1;
722 static int tegra_spi_start_transfer_one(struct spi_device *spi,
723 struct spi_transfer *t, u32 command1)
725 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
726 unsigned total_fifo_words;
727 int ret;
729 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
731 if (tspi->is_packed)
732 command1 |= SPI_PACKED;
734 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
735 tspi->cur_direction = 0;
736 if (t->rx_buf) {
737 command1 |= SPI_RX_EN;
738 tspi->cur_direction |= DATA_DIR_RX;
740 if (t->tx_buf) {
741 command1 |= SPI_TX_EN;
742 tspi->cur_direction |= DATA_DIR_TX;
744 command1 |= SPI_CS_SEL(spi->chip_select);
745 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
746 tspi->command1_reg = command1;
748 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
749 tspi->def_command1_reg, (unsigned)command1);
751 if (total_fifo_words > SPI_FIFO_DEPTH)
752 ret = tegra_spi_start_dma_based_transfer(tspi, t);
753 else
754 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
755 return ret;
758 static int tegra_spi_setup(struct spi_device *spi)
760 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
761 u32 val;
762 unsigned long flags;
763 int ret;
765 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
766 spi->bits_per_word,
767 spi->mode & SPI_CPOL ? "" : "~",
768 spi->mode & SPI_CPHA ? "" : "~",
769 spi->max_speed_hz);
771 ret = pm_runtime_get_sync(tspi->dev);
772 if (ret < 0) {
773 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
774 return ret;
777 spin_lock_irqsave(&tspi->lock, flags);
778 val = tspi->def_command1_reg;
779 if (spi->mode & SPI_CS_HIGH)
780 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
781 else
782 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
783 tspi->def_command1_reg = val;
784 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
785 spin_unlock_irqrestore(&tspi->lock, flags);
787 pm_runtime_put(tspi->dev);
788 return 0;
791 static void tegra_spi_transfer_delay(int delay)
793 if (!delay)
794 return;
796 if (delay >= 1000)
797 mdelay(delay / 1000);
799 udelay(delay % 1000);
802 static int tegra_spi_transfer_one_message(struct spi_master *master,
803 struct spi_message *msg)
805 bool is_first_msg = true;
806 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
807 struct spi_transfer *xfer;
808 struct spi_device *spi = msg->spi;
809 int ret;
810 bool skip = false;
812 msg->status = 0;
813 msg->actual_length = 0;
815 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816 u32 cmd1;
818 reinit_completion(&tspi->xfer_completion);
820 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
822 if (!xfer->len) {
823 ret = 0;
824 skip = true;
825 goto complete_xfer;
828 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
829 if (ret < 0) {
830 dev_err(tspi->dev,
831 "spi can not start transfer, err %d\n", ret);
832 goto complete_xfer;
835 is_first_msg = false;
836 ret = wait_for_completion_timeout(&tspi->xfer_completion,
837 SPI_DMA_TIMEOUT);
838 if (WARN_ON(ret == 0)) {
839 dev_err(tspi->dev,
840 "spi trasfer timeout, err %d\n", ret);
841 ret = -EIO;
842 goto complete_xfer;
845 if (tspi->tx_status || tspi->rx_status) {
846 dev_err(tspi->dev, "Error in Transfer\n");
847 ret = -EIO;
848 goto complete_xfer;
850 msg->actual_length += xfer->len;
852 complete_xfer:
853 if (ret < 0 || skip) {
854 tegra_spi_writel(tspi, tspi->def_command1_reg,
855 SPI_COMMAND1);
856 tegra_spi_transfer_delay(xfer->delay_usecs);
857 goto exit;
858 } else if (list_is_last(&xfer->transfer_list,
859 &msg->transfers)) {
860 if (xfer->cs_change)
861 tspi->cs_control = spi;
862 else {
863 tegra_spi_writel(tspi, tspi->def_command1_reg,
864 SPI_COMMAND1);
865 tegra_spi_transfer_delay(xfer->delay_usecs);
867 } else if (xfer->cs_change) {
868 tegra_spi_writel(tspi, tspi->def_command1_reg,
869 SPI_COMMAND1);
870 tegra_spi_transfer_delay(xfer->delay_usecs);
874 ret = 0;
875 exit:
876 msg->status = ret;
877 spi_finalize_current_message(master);
878 return ret;
881 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
883 struct spi_transfer *t = tspi->curr_xfer;
884 unsigned long flags;
886 spin_lock_irqsave(&tspi->lock, flags);
887 if (tspi->tx_status || tspi->rx_status) {
888 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
889 tspi->status_reg);
890 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
891 tspi->command1_reg, tspi->dma_control_reg);
892 reset_control_assert(tspi->rst);
893 udelay(2);
894 reset_control_deassert(tspi->rst);
895 complete(&tspi->xfer_completion);
896 goto exit;
899 if (tspi->cur_direction & DATA_DIR_RX)
900 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
902 if (tspi->cur_direction & DATA_DIR_TX)
903 tspi->cur_pos = tspi->cur_tx_pos;
904 else
905 tspi->cur_pos = tspi->cur_rx_pos;
907 if (tspi->cur_pos == t->len) {
908 complete(&tspi->xfer_completion);
909 goto exit;
912 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
913 tegra_spi_start_cpu_based_transfer(tspi, t);
914 exit:
915 spin_unlock_irqrestore(&tspi->lock, flags);
916 return IRQ_HANDLED;
919 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
921 struct spi_transfer *t = tspi->curr_xfer;
922 long wait_status;
923 int err = 0;
924 unsigned total_fifo_words;
925 unsigned long flags;
927 /* Abort dmas if any error */
928 if (tspi->cur_direction & DATA_DIR_TX) {
929 if (tspi->tx_status) {
930 dmaengine_terminate_all(tspi->tx_dma_chan);
931 err += 1;
932 } else {
933 wait_status = wait_for_completion_interruptible_timeout(
934 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
935 if (wait_status <= 0) {
936 dmaengine_terminate_all(tspi->tx_dma_chan);
937 dev_err(tspi->dev, "TxDma Xfer failed\n");
938 err += 1;
943 if (tspi->cur_direction & DATA_DIR_RX) {
944 if (tspi->rx_status) {
945 dmaengine_terminate_all(tspi->rx_dma_chan);
946 err += 2;
947 } else {
948 wait_status = wait_for_completion_interruptible_timeout(
949 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
950 if (wait_status <= 0) {
951 dmaengine_terminate_all(tspi->rx_dma_chan);
952 dev_err(tspi->dev, "RxDma Xfer failed\n");
953 err += 2;
958 spin_lock_irqsave(&tspi->lock, flags);
959 if (err) {
960 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
961 tspi->status_reg);
962 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
963 tspi->command1_reg, tspi->dma_control_reg);
964 reset_control_assert(tspi->rst);
965 udelay(2);
966 reset_control_deassert(tspi->rst);
967 complete(&tspi->xfer_completion);
968 spin_unlock_irqrestore(&tspi->lock, flags);
969 return IRQ_HANDLED;
972 if (tspi->cur_direction & DATA_DIR_RX)
973 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
975 if (tspi->cur_direction & DATA_DIR_TX)
976 tspi->cur_pos = tspi->cur_tx_pos;
977 else
978 tspi->cur_pos = tspi->cur_rx_pos;
980 if (tspi->cur_pos == t->len) {
981 complete(&tspi->xfer_completion);
982 goto exit;
985 /* Continue transfer in current message */
986 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
987 tspi, t);
988 if (total_fifo_words > SPI_FIFO_DEPTH)
989 err = tegra_spi_start_dma_based_transfer(tspi, t);
990 else
991 err = tegra_spi_start_cpu_based_transfer(tspi, t);
993 exit:
994 spin_unlock_irqrestore(&tspi->lock, flags);
995 return IRQ_HANDLED;
998 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1000 struct tegra_spi_data *tspi = context_data;
1002 if (!tspi->is_curr_dma_xfer)
1003 return handle_cpu_based_xfer(tspi);
1004 return handle_dma_based_xfer(tspi);
1007 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1009 struct tegra_spi_data *tspi = context_data;
1011 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1012 if (tspi->cur_direction & DATA_DIR_TX)
1013 tspi->tx_status = tspi->status_reg &
1014 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1016 if (tspi->cur_direction & DATA_DIR_RX)
1017 tspi->rx_status = tspi->status_reg &
1018 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1019 tegra_spi_clear_status(tspi);
1021 return IRQ_WAKE_THREAD;
1024 static const struct of_device_id tegra_spi_of_match[] = {
1025 { .compatible = "nvidia,tegra114-spi", },
1028 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1030 static int tegra_spi_probe(struct platform_device *pdev)
1032 struct spi_master *master;
1033 struct tegra_spi_data *tspi;
1034 struct resource *r;
1035 int ret, spi_irq;
1037 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1038 if (!master) {
1039 dev_err(&pdev->dev, "master allocation failed\n");
1040 return -ENOMEM;
1042 platform_set_drvdata(pdev, master);
1043 tspi = spi_master_get_devdata(master);
1045 if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1046 &master->max_speed_hz))
1047 master->max_speed_hz = 25000000; /* 25MHz */
1049 /* the spi->mode bits understood by this driver: */
1050 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051 master->setup = tegra_spi_setup;
1052 master->transfer_one_message = tegra_spi_transfer_one_message;
1053 master->num_chipselect = MAX_CHIP_SELECT;
1054 master->auto_runtime_pm = true;
1056 tspi->master = master;
1057 tspi->dev = &pdev->dev;
1058 spin_lock_init(&tspi->lock);
1060 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1061 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1062 if (IS_ERR(tspi->base)) {
1063 ret = PTR_ERR(tspi->base);
1064 goto exit_free_master;
1066 tspi->phys = r->start;
1068 spi_irq = platform_get_irq(pdev, 0);
1069 tspi->irq = spi_irq;
1070 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1071 tegra_spi_isr_thread, IRQF_ONESHOT,
1072 dev_name(&pdev->dev), tspi);
1073 if (ret < 0) {
1074 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1075 tspi->irq);
1076 goto exit_free_master;
1079 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1080 if (IS_ERR(tspi->clk)) {
1081 dev_err(&pdev->dev, "can not get clock\n");
1082 ret = PTR_ERR(tspi->clk);
1083 goto exit_free_irq;
1086 tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1087 if (IS_ERR(tspi->rst)) {
1088 dev_err(&pdev->dev, "can not get reset\n");
1089 ret = PTR_ERR(tspi->rst);
1090 goto exit_free_irq;
1093 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1096 ret = tegra_spi_init_dma_param(tspi, true);
1097 if (ret < 0)
1098 goto exit_free_irq;
1099 ret = tegra_spi_init_dma_param(tspi, false);
1100 if (ret < 0)
1101 goto exit_rx_dma_free;
1102 tspi->max_buf_size = tspi->dma_buf_size;
1103 init_completion(&tspi->tx_dma_complete);
1104 init_completion(&tspi->rx_dma_complete);
1106 init_completion(&tspi->xfer_completion);
1108 pm_runtime_enable(&pdev->dev);
1109 if (!pm_runtime_enabled(&pdev->dev)) {
1110 ret = tegra_spi_runtime_resume(&pdev->dev);
1111 if (ret)
1112 goto exit_pm_disable;
1115 ret = pm_runtime_get_sync(&pdev->dev);
1116 if (ret < 0) {
1117 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1118 goto exit_pm_disable;
1120 tspi->def_command1_reg = SPI_M_S;
1121 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1122 pm_runtime_put(&pdev->dev);
1124 master->dev.of_node = pdev->dev.of_node;
1125 ret = devm_spi_register_master(&pdev->dev, master);
1126 if (ret < 0) {
1127 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1128 goto exit_pm_disable;
1130 return ret;
1132 exit_pm_disable:
1133 pm_runtime_disable(&pdev->dev);
1134 if (!pm_runtime_status_suspended(&pdev->dev))
1135 tegra_spi_runtime_suspend(&pdev->dev);
1136 tegra_spi_deinit_dma_param(tspi, false);
1137 exit_rx_dma_free:
1138 tegra_spi_deinit_dma_param(tspi, true);
1139 exit_free_irq:
1140 free_irq(spi_irq, tspi);
1141 exit_free_master:
1142 spi_master_put(master);
1143 return ret;
1146 static int tegra_spi_remove(struct platform_device *pdev)
1148 struct spi_master *master = platform_get_drvdata(pdev);
1149 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1151 free_irq(tspi->irq, tspi);
1153 if (tspi->tx_dma_chan)
1154 tegra_spi_deinit_dma_param(tspi, false);
1156 if (tspi->rx_dma_chan)
1157 tegra_spi_deinit_dma_param(tspi, true);
1159 pm_runtime_disable(&pdev->dev);
1160 if (!pm_runtime_status_suspended(&pdev->dev))
1161 tegra_spi_runtime_suspend(&pdev->dev);
1163 return 0;
1166 #ifdef CONFIG_PM_SLEEP
1167 static int tegra_spi_suspend(struct device *dev)
1169 struct spi_master *master = dev_get_drvdata(dev);
1171 return spi_master_suspend(master);
1174 static int tegra_spi_resume(struct device *dev)
1176 struct spi_master *master = dev_get_drvdata(dev);
1177 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1178 int ret;
1180 ret = pm_runtime_get_sync(dev);
1181 if (ret < 0) {
1182 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1183 return ret;
1185 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1186 pm_runtime_put(dev);
1188 return spi_master_resume(master);
1190 #endif
1192 static int tegra_spi_runtime_suspend(struct device *dev)
1194 struct spi_master *master = dev_get_drvdata(dev);
1195 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1197 /* Flush all write which are in PPSB queue by reading back */
1198 tegra_spi_readl(tspi, SPI_COMMAND1);
1200 clk_disable_unprepare(tspi->clk);
1201 return 0;
1204 static int tegra_spi_runtime_resume(struct device *dev)
1206 struct spi_master *master = dev_get_drvdata(dev);
1207 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1208 int ret;
1210 ret = clk_prepare_enable(tspi->clk);
1211 if (ret < 0) {
1212 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1213 return ret;
1215 return 0;
1218 static const struct dev_pm_ops tegra_spi_pm_ops = {
1219 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1220 tegra_spi_runtime_resume, NULL)
1221 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1223 static struct platform_driver tegra_spi_driver = {
1224 .driver = {
1225 .name = "spi-tegra114",
1226 .pm = &tegra_spi_pm_ops,
1227 .of_match_table = tegra_spi_of_match,
1229 .probe = tegra_spi_probe,
1230 .remove = tegra_spi_remove,
1232 module_platform_driver(tegra_spi_driver);
1234 MODULE_ALIAS("platform:spi-tegra114");
1235 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1236 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1237 MODULE_LICENSE("GPL v2");