4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device
*dev
)
46 struct spi_device
*spi
= to_spi_device(dev
);
48 /* spi masters may cleanup for released devices */
49 if (spi
->master
->cleanup
)
50 spi
->master
->cleanup(spi
);
52 spi_master_put(spi
->master
);
57 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
59 const struct spi_device
*spi
= to_spi_device(dev
);
62 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
66 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
68 static DEVICE_ATTR_RO(modalias
);
70 static struct attribute
*spi_dev_attrs
[] = {
71 &dev_attr_modalias
.attr
,
74 ATTRIBUTE_GROUPS(spi_dev
);
76 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
80 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
81 const struct spi_device
*sdev
)
84 if (!strcmp(sdev
->modalias
, id
->name
))
91 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
93 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
95 return spi_match_id(sdrv
->id_table
, sdev
);
97 EXPORT_SYMBOL_GPL(spi_get_device_id
);
99 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
101 const struct spi_device
*spi
= to_spi_device(dev
);
102 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
104 /* Attempt an OF style match */
105 if (of_driver_match_device(dev
, drv
))
109 if (acpi_driver_match_device(dev
, drv
))
113 return !!spi_match_id(sdrv
->id_table
, spi
);
115 return strcmp(spi
->modalias
, drv
->name
) == 0;
118 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
120 const struct spi_device
*spi
= to_spi_device(dev
);
123 rc
= acpi_device_uevent_modalias(dev
, env
);
127 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
131 struct bus_type spi_bus_type
= {
133 .dev_groups
= spi_dev_groups
,
134 .match
= spi_match_device
,
135 .uevent
= spi_uevent
,
137 EXPORT_SYMBOL_GPL(spi_bus_type
);
140 static int spi_drv_probe(struct device
*dev
)
142 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
145 ret
= of_clk_set_defaults(dev
->of_node
, false);
149 ret
= dev_pm_domain_attach(dev
, true);
150 if (ret
!= -EPROBE_DEFER
) {
151 ret
= sdrv
->probe(to_spi_device(dev
));
153 dev_pm_domain_detach(dev
, true);
159 static int spi_drv_remove(struct device
*dev
)
161 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
164 ret
= sdrv
->remove(to_spi_device(dev
));
165 dev_pm_domain_detach(dev
, true);
170 static void spi_drv_shutdown(struct device
*dev
)
172 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
174 sdrv
->shutdown(to_spi_device(dev
));
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
182 int spi_register_driver(struct spi_driver
*sdrv
)
184 sdrv
->driver
.bus
= &spi_bus_type
;
186 sdrv
->driver
.probe
= spi_drv_probe
;
188 sdrv
->driver
.remove
= spi_drv_remove
;
190 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
191 return driver_register(&sdrv
->driver
);
193 EXPORT_SYMBOL_GPL(spi_register_driver
);
195 /*-------------------------------------------------------------------------*/
197 /* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
204 struct list_head list
;
205 struct spi_board_info board_info
;
208 static LIST_HEAD(board_list
);
209 static LIST_HEAD(spi_master_list
);
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
215 static DEFINE_MUTEX(board_lock
);
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately. This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master. If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
232 * Returns a pointer to the new device, or NULL.
234 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
236 struct spi_device
*spi
;
238 if (!spi_master_get(master
))
241 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
243 spi_master_put(master
);
247 spi
->master
= master
;
248 spi
->dev
.parent
= &master
->dev
;
249 spi
->dev
.bus
= &spi_bus_type
;
250 spi
->dev
.release
= spidev_release
;
251 spi
->cs_gpio
= -ENOENT
;
252 device_initialize(&spi
->dev
);
255 EXPORT_SYMBOL_GPL(spi_alloc_device
);
257 static void spi_dev_set_name(struct spi_device
*spi
)
259 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
262 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
266 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
270 static int spi_dev_check(struct device
*dev
, void *data
)
272 struct spi_device
*spi
= to_spi_device(dev
);
273 struct spi_device
*new_spi
= data
;
275 if (spi
->master
== new_spi
->master
&&
276 spi
->chip_select
== new_spi
->chip_select
)
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
285 * Companion function to spi_alloc_device. Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
288 * Returns 0 on success; negative errno on failure
290 int spi_add_device(struct spi_device
*spi
)
292 static DEFINE_MUTEX(spi_add_lock
);
293 struct spi_master
*master
= spi
->master
;
294 struct device
*dev
= master
->dev
.parent
;
297 /* Chipselects are numbered 0..max; validate. */
298 if (spi
->chip_select
>= master
->num_chipselect
) {
299 dev_err(dev
, "cs%d >= max %d\n",
301 master
->num_chipselect
);
305 /* Set the bus ID string */
306 spi_dev_set_name(spi
);
308 /* We need to make sure there's no other device with this
309 * chipselect **BEFORE** we call setup(), else we'll trash
310 * its configuration. Lock against concurrent add() calls.
312 mutex_lock(&spi_add_lock
);
314 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
316 dev_err(dev
, "chipselect %d already in use\n",
321 if (master
->cs_gpios
)
322 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
324 /* Drivers may modify this initial i/o setup, but will
325 * normally rely on the device being setup. Devices
326 * using SPI_CS_HIGH can't coexist well otherwise...
328 status
= spi_setup(spi
);
330 dev_err(dev
, "can't setup %s, status %d\n",
331 dev_name(&spi
->dev
), status
);
335 /* Device may be bound to an active driver when this returns */
336 status
= device_add(&spi
->dev
);
338 dev_err(dev
, "can't add %s, status %d\n",
339 dev_name(&spi
->dev
), status
);
341 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
344 mutex_unlock(&spi_add_lock
);
347 EXPORT_SYMBOL_GPL(spi_add_device
);
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
355 * On typical mainboards, this is purely internal; and it's not needed
356 * after board init creates the hard-wired devices. Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
361 * Returns the new device, or NULL.
363 struct spi_device
*spi_new_device(struct spi_master
*master
,
364 struct spi_board_info
*chip
)
366 struct spi_device
*proxy
;
369 /* NOTE: caller did any chip->bus_num checks necessary.
371 * Also, unless we change the return value convention to use
372 * error-or-pointer (not NULL-or-pointer), troubleshootability
373 * suggests syslogged diagnostics are best here (ugh).
376 proxy
= spi_alloc_device(master
);
380 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
382 proxy
->chip_select
= chip
->chip_select
;
383 proxy
->max_speed_hz
= chip
->max_speed_hz
;
384 proxy
->mode
= chip
->mode
;
385 proxy
->irq
= chip
->irq
;
386 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
387 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
388 proxy
->controller_data
= chip
->controller_data
;
389 proxy
->controller_state
= NULL
;
391 status
= spi_add_device(proxy
);
399 EXPORT_SYMBOL_GPL(spi_new_device
);
401 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
402 struct spi_board_info
*bi
)
404 struct spi_device
*dev
;
406 if (master
->bus_num
!= bi
->bus_num
)
409 dev
= spi_new_device(master
, bi
);
411 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table. Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined. We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
434 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
436 struct boardinfo
*bi
;
442 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
446 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
447 struct spi_master
*master
;
449 memcpy(&bi
->board_info
, info
, sizeof(*info
));
450 mutex_lock(&board_lock
);
451 list_add_tail(&bi
->list
, &board_list
);
452 list_for_each_entry(master
, &spi_master_list
, list
)
453 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
454 mutex_unlock(&board_lock
);
460 /*-------------------------------------------------------------------------*/
462 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
464 if (spi
->mode
& SPI_CS_HIGH
)
467 if (spi
->cs_gpio
>= 0)
468 gpio_set_value(spi
->cs_gpio
, !enable
);
469 else if (spi
->master
->set_cs
)
470 spi
->master
->set_cs(spi
, !enable
);
473 #ifdef CONFIG_HAS_DMA
474 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
475 struct sg_table
*sgt
, void *buf
, size_t len
,
476 enum dma_data_direction dir
)
478 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
479 const int desc_len
= vmalloced_buf
? PAGE_SIZE
: master
->max_dma_len
;
480 const int sgs
= DIV_ROUND_UP(len
, desc_len
);
481 struct page
*vm_page
;
486 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
490 for (i
= 0; i
< sgs
; i
++) {
491 min
= min_t(size_t, len
, desc_len
);
494 vm_page
= vmalloc_to_page(buf
);
499 sg_set_page(&sgt
->sgl
[i
], vm_page
,
500 min
, offset_in_page(buf
));
503 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
511 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
524 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
525 struct sg_table
*sgt
, enum dma_data_direction dir
)
527 if (sgt
->orig_nents
) {
528 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
533 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
535 struct device
*tx_dev
, *rx_dev
;
536 struct spi_transfer
*xfer
;
539 if (!master
->can_dma
)
542 tx_dev
= master
->dma_tx
->device
->dev
;
543 rx_dev
= master
->dma_rx
->device
->dev
;
545 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
546 if (!master
->can_dma(master
, msg
->spi
, xfer
))
549 if (xfer
->tx_buf
!= NULL
) {
550 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
551 (void *)xfer
->tx_buf
, xfer
->len
,
557 if (xfer
->rx_buf
!= NULL
) {
558 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
559 xfer
->rx_buf
, xfer
->len
,
562 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
569 master
->cur_msg_mapped
= true;
574 static int __spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
576 struct spi_transfer
*xfer
;
577 struct device
*tx_dev
, *rx_dev
;
579 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
582 tx_dev
= master
->dma_tx
->device
->dev
;
583 rx_dev
= master
->dma_rx
->device
->dev
;
585 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
586 if (!master
->can_dma(master
, msg
->spi
, xfer
))
589 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
590 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
595 #else /* !CONFIG_HAS_DMA */
596 static inline int __spi_map_msg(struct spi_master
*master
,
597 struct spi_message
*msg
)
602 static inline int __spi_unmap_msg(struct spi_master
*master
,
603 struct spi_message
*msg
)
607 #endif /* !CONFIG_HAS_DMA */
609 static inline int spi_unmap_msg(struct spi_master
*master
,
610 struct spi_message
*msg
)
612 struct spi_transfer
*xfer
;
614 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
616 * Restore the original value of tx_buf or rx_buf if they are
619 if (xfer
->tx_buf
== master
->dummy_tx
)
621 if (xfer
->rx_buf
== master
->dummy_rx
)
625 return __spi_unmap_msg(master
, msg
);
628 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
630 struct spi_transfer
*xfer
;
632 unsigned int max_tx
, max_rx
;
634 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
638 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
639 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
641 max_tx
= max(xfer
->len
, max_tx
);
642 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
644 max_rx
= max(xfer
->len
, max_rx
);
648 tmp
= krealloc(master
->dummy_tx
, max_tx
,
649 GFP_KERNEL
| GFP_DMA
);
652 master
->dummy_tx
= tmp
;
653 memset(tmp
, 0, max_tx
);
657 tmp
= krealloc(master
->dummy_rx
, max_rx
,
658 GFP_KERNEL
| GFP_DMA
);
661 master
->dummy_rx
= tmp
;
664 if (max_tx
|| max_rx
) {
665 list_for_each_entry(xfer
, &msg
->transfers
,
668 xfer
->tx_buf
= master
->dummy_tx
;
670 xfer
->rx_buf
= master
->dummy_rx
;
675 return __spi_map_msg(master
, msg
);
679 * spi_transfer_one_message - Default implementation of transfer_one_message()
681 * This is a standard implementation of transfer_one_message() for
682 * drivers which impelment a transfer_one() operation. It provides
683 * standard handling of delays and chip select management.
685 static int spi_transfer_one_message(struct spi_master
*master
,
686 struct spi_message
*msg
)
688 struct spi_transfer
*xfer
;
689 bool keep_cs
= false;
691 unsigned long ms
= 1;
693 spi_set_cs(msg
->spi
, true);
695 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
696 trace_spi_transfer_start(msg
, xfer
);
698 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
699 reinit_completion(&master
->xfer_completion
);
701 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
703 dev_err(&msg
->spi
->dev
,
704 "SPI transfer failed: %d\n", ret
);
710 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
711 ms
+= ms
+ 100; /* some tolerance */
713 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
714 msecs_to_jiffies(ms
));
718 dev_err(&msg
->spi
->dev
,
719 "SPI transfer timed out\n");
720 msg
->status
= -ETIMEDOUT
;
724 dev_err(&msg
->spi
->dev
,
725 "Bufferless transfer has length %u\n",
729 trace_spi_transfer_stop(msg
, xfer
);
731 if (msg
->status
!= -EINPROGRESS
)
734 if (xfer
->delay_usecs
)
735 udelay(xfer
->delay_usecs
);
737 if (xfer
->cs_change
) {
738 if (list_is_last(&xfer
->transfer_list
,
742 spi_set_cs(msg
->spi
, false);
744 spi_set_cs(msg
->spi
, true);
748 msg
->actual_length
+= xfer
->len
;
752 if (ret
!= 0 || !keep_cs
)
753 spi_set_cs(msg
->spi
, false);
755 if (msg
->status
== -EINPROGRESS
)
758 if (msg
->status
&& master
->handle_err
)
759 master
->handle_err(master
, msg
);
761 spi_finalize_current_message(master
);
767 * spi_finalize_current_transfer - report completion of a transfer
768 * @master: the master reporting completion
770 * Called by SPI drivers using the core transfer_one_message()
771 * implementation to notify it that the current interrupt driven
772 * transfer has finished and the next one may be scheduled.
774 void spi_finalize_current_transfer(struct spi_master
*master
)
776 complete(&master
->xfer_completion
);
778 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
781 * __spi_pump_messages - function which processes spi message queue
782 * @master: master to process queue for
783 * @in_kthread: true if we are in the context of the message pump thread
785 * This function checks if there is any spi message in the queue that
786 * needs processing and if so call out to the driver to initialize hardware
787 * and transfer each message.
789 * Note that it is called both from the kthread itself and also from
790 * inside spi_sync(); the queue extraction handling at the top of the
791 * function should deal with this safely.
793 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
)
796 bool was_busy
= false;
800 spin_lock_irqsave(&master
->queue_lock
, flags
);
802 /* Make sure we are not already running a message */
803 if (master
->cur_msg
) {
804 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
808 /* If another context is idling the device then defer */
809 if (master
->idling
) {
810 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
811 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
815 /* Check if the queue is idle */
816 if (list_empty(&master
->queue
) || !master
->running
) {
818 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
822 /* Only do teardown in the thread */
824 queue_kthread_work(&master
->kworker
,
825 &master
->pump_messages
);
826 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
830 master
->busy
= false;
831 master
->idling
= true;
832 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
834 kfree(master
->dummy_rx
);
835 master
->dummy_rx
= NULL
;
836 kfree(master
->dummy_tx
);
837 master
->dummy_tx
= NULL
;
838 if (master
->unprepare_transfer_hardware
&&
839 master
->unprepare_transfer_hardware(master
))
840 dev_err(&master
->dev
,
841 "failed to unprepare transfer hardware\n");
842 if (master
->auto_runtime_pm
) {
843 pm_runtime_mark_last_busy(master
->dev
.parent
);
844 pm_runtime_put_autosuspend(master
->dev
.parent
);
846 trace_spi_master_idle(master
);
848 spin_lock_irqsave(&master
->queue_lock
, flags
);
849 master
->idling
= false;
850 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
854 /* Extract head of queue */
856 list_first_entry(&master
->queue
, struct spi_message
, queue
);
858 list_del_init(&master
->cur_msg
->queue
);
863 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
865 if (!was_busy
&& master
->auto_runtime_pm
) {
866 ret
= pm_runtime_get_sync(master
->dev
.parent
);
868 dev_err(&master
->dev
, "Failed to power device: %d\n",
875 trace_spi_master_busy(master
);
877 if (!was_busy
&& master
->prepare_transfer_hardware
) {
878 ret
= master
->prepare_transfer_hardware(master
);
880 dev_err(&master
->dev
,
881 "failed to prepare transfer hardware\n");
883 if (master
->auto_runtime_pm
)
884 pm_runtime_put(master
->dev
.parent
);
889 trace_spi_message_start(master
->cur_msg
);
891 if (master
->prepare_message
) {
892 ret
= master
->prepare_message(master
, master
->cur_msg
);
894 dev_err(&master
->dev
,
895 "failed to prepare message: %d\n", ret
);
896 master
->cur_msg
->status
= ret
;
897 spi_finalize_current_message(master
);
900 master
->cur_msg_prepared
= true;
903 ret
= spi_map_msg(master
, master
->cur_msg
);
905 master
->cur_msg
->status
= ret
;
906 spi_finalize_current_message(master
);
910 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
912 dev_err(&master
->dev
,
913 "failed to transfer one message from queue\n");
919 * spi_pump_messages - kthread work function which processes spi message queue
920 * @work: pointer to kthread work struct contained in the master struct
922 static void spi_pump_messages(struct kthread_work
*work
)
924 struct spi_master
*master
=
925 container_of(work
, struct spi_master
, pump_messages
);
927 __spi_pump_messages(master
, true);
930 static int spi_init_queue(struct spi_master
*master
)
932 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
934 master
->running
= false;
935 master
->busy
= false;
937 init_kthread_worker(&master
->kworker
);
938 master
->kworker_task
= kthread_run(kthread_worker_fn
,
939 &master
->kworker
, "%s",
940 dev_name(&master
->dev
));
941 if (IS_ERR(master
->kworker_task
)) {
942 dev_err(&master
->dev
, "failed to create message pump task\n");
943 return PTR_ERR(master
->kworker_task
);
945 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
948 * Master config will indicate if this controller should run the
949 * message pump with high (realtime) priority to reduce the transfer
950 * latency on the bus by minimising the delay between a transfer
951 * request and the scheduling of the message pump thread. Without this
952 * setting the message pump thread will remain at default priority.
955 dev_info(&master
->dev
,
956 "will run message pump with realtime priority\n");
957 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
964 * spi_get_next_queued_message() - called by driver to check for queued
966 * @master: the master to check for queued messages
968 * If there are more messages in the queue, the next message is returned from
971 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
973 struct spi_message
*next
;
976 /* get a pointer to the next message, if any */
977 spin_lock_irqsave(&master
->queue_lock
, flags
);
978 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
980 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
984 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
987 * spi_finalize_current_message() - the current message is complete
988 * @master: the master to return the message to
990 * Called by the driver to notify the core that the message in the front of the
991 * queue is complete and can be removed from the queue.
993 void spi_finalize_current_message(struct spi_master
*master
)
995 struct spi_message
*mesg
;
999 spin_lock_irqsave(&master
->queue_lock
, flags
);
1000 mesg
= master
->cur_msg
;
1001 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1003 spi_unmap_msg(master
, mesg
);
1005 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1006 ret
= master
->unprepare_message(master
, mesg
);
1008 dev_err(&master
->dev
,
1009 "failed to unprepare message: %d\n", ret
);
1013 spin_lock_irqsave(&master
->queue_lock
, flags
);
1014 master
->cur_msg
= NULL
;
1015 master
->cur_msg_prepared
= false;
1016 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1017 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1019 trace_spi_message_done(mesg
);
1023 mesg
->complete(mesg
->context
);
1025 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1027 static int spi_start_queue(struct spi_master
*master
)
1029 unsigned long flags
;
1031 spin_lock_irqsave(&master
->queue_lock
, flags
);
1033 if (master
->running
|| master
->busy
) {
1034 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1038 master
->running
= true;
1039 master
->cur_msg
= NULL
;
1040 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1042 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1047 static int spi_stop_queue(struct spi_master
*master
)
1049 unsigned long flags
;
1050 unsigned limit
= 500;
1053 spin_lock_irqsave(&master
->queue_lock
, flags
);
1056 * This is a bit lame, but is optimized for the common execution path.
1057 * A wait_queue on the master->busy could be used, but then the common
1058 * execution path (pump_messages) would be required to call wake_up or
1059 * friends on every SPI message. Do this instead.
1061 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1062 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1063 usleep_range(10000, 11000);
1064 spin_lock_irqsave(&master
->queue_lock
, flags
);
1067 if (!list_empty(&master
->queue
) || master
->busy
)
1070 master
->running
= false;
1072 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1075 dev_warn(&master
->dev
,
1076 "could not stop message queue\n");
1082 static int spi_destroy_queue(struct spi_master
*master
)
1086 ret
= spi_stop_queue(master
);
1089 * flush_kthread_worker will block until all work is done.
1090 * If the reason that stop_queue timed out is that the work will never
1091 * finish, then it does no good to call flush/stop thread, so
1095 dev_err(&master
->dev
, "problem destroying queue\n");
1099 flush_kthread_worker(&master
->kworker
);
1100 kthread_stop(master
->kworker_task
);
1105 static int __spi_queued_transfer(struct spi_device
*spi
,
1106 struct spi_message
*msg
,
1109 struct spi_master
*master
= spi
->master
;
1110 unsigned long flags
;
1112 spin_lock_irqsave(&master
->queue_lock
, flags
);
1114 if (!master
->running
) {
1115 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1118 msg
->actual_length
= 0;
1119 msg
->status
= -EINPROGRESS
;
1121 list_add_tail(&msg
->queue
, &master
->queue
);
1122 if (!master
->busy
&& need_pump
)
1123 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1125 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1130 * spi_queued_transfer - transfer function for queued transfers
1131 * @spi: spi device which is requesting transfer
1132 * @msg: spi message which is to handled is queued to driver queue
1134 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1136 return __spi_queued_transfer(spi
, msg
, true);
1139 static int spi_master_initialize_queue(struct spi_master
*master
)
1143 master
->transfer
= spi_queued_transfer
;
1144 if (!master
->transfer_one_message
)
1145 master
->transfer_one_message
= spi_transfer_one_message
;
1147 /* Initialize and start queue */
1148 ret
= spi_init_queue(master
);
1150 dev_err(&master
->dev
, "problem initializing queue\n");
1151 goto err_init_queue
;
1153 master
->queued
= true;
1154 ret
= spi_start_queue(master
);
1156 dev_err(&master
->dev
, "problem starting queue\n");
1157 goto err_start_queue
;
1163 spi_destroy_queue(master
);
1168 /*-------------------------------------------------------------------------*/
1170 #if defined(CONFIG_OF)
1171 static struct spi_device
*
1172 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1174 struct spi_device
*spi
;
1178 /* Alloc an spi_device */
1179 spi
= spi_alloc_device(master
);
1181 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1187 /* Select device driver */
1188 rc
= of_modalias_node(nc
, spi
->modalias
,
1189 sizeof(spi
->modalias
));
1191 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1196 /* Device address */
1197 rc
= of_property_read_u32(nc
, "reg", &value
);
1199 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1203 spi
->chip_select
= value
;
1205 /* Mode (clock phase/polarity/etc.) */
1206 if (of_find_property(nc
, "spi-cpha", NULL
))
1207 spi
->mode
|= SPI_CPHA
;
1208 if (of_find_property(nc
, "spi-cpol", NULL
))
1209 spi
->mode
|= SPI_CPOL
;
1210 if (of_find_property(nc
, "spi-cs-high", NULL
))
1211 spi
->mode
|= SPI_CS_HIGH
;
1212 if (of_find_property(nc
, "spi-3wire", NULL
))
1213 spi
->mode
|= SPI_3WIRE
;
1214 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1215 spi
->mode
|= SPI_LSB_FIRST
;
1217 /* Device DUAL/QUAD mode */
1218 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1223 spi
->mode
|= SPI_TX_DUAL
;
1226 spi
->mode
|= SPI_TX_QUAD
;
1229 dev_warn(&master
->dev
,
1230 "spi-tx-bus-width %d not supported\n",
1236 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1241 spi
->mode
|= SPI_RX_DUAL
;
1244 spi
->mode
|= SPI_RX_QUAD
;
1247 dev_warn(&master
->dev
,
1248 "spi-rx-bus-width %d not supported\n",
1255 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1257 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1261 spi
->max_speed_hz
= value
;
1264 spi
->irq
= irq_of_parse_and_map(nc
, 0);
1266 /* Store a pointer to the node in the device structure */
1268 spi
->dev
.of_node
= nc
;
1270 /* Register the new device */
1271 rc
= spi_add_device(spi
);
1273 dev_err(&master
->dev
, "spi_device register error %s\n",
1286 * of_register_spi_devices() - Register child devices onto the SPI bus
1287 * @master: Pointer to spi_master device
1289 * Registers an spi_device for each child node of master node which has a 'reg'
1292 static void of_register_spi_devices(struct spi_master
*master
)
1294 struct spi_device
*spi
;
1295 struct device_node
*nc
;
1297 if (!master
->dev
.of_node
)
1300 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1301 spi
= of_register_spi_device(master
, nc
);
1303 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1308 static void of_register_spi_devices(struct spi_master
*master
) { }
1312 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1314 struct spi_device
*spi
= data
;
1316 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1317 struct acpi_resource_spi_serialbus
*sb
;
1319 sb
= &ares
->data
.spi_serial_bus
;
1320 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1321 spi
->chip_select
= sb
->device_selection
;
1322 spi
->max_speed_hz
= sb
->connection_speed
;
1324 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1325 spi
->mode
|= SPI_CPHA
;
1326 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1327 spi
->mode
|= SPI_CPOL
;
1328 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1329 spi
->mode
|= SPI_CS_HIGH
;
1331 } else if (spi
->irq
< 0) {
1334 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1338 /* Always tell the ACPI core to skip this resource */
1342 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1343 void *data
, void **return_value
)
1345 struct spi_master
*master
= data
;
1346 struct list_head resource_list
;
1347 struct acpi_device
*adev
;
1348 struct spi_device
*spi
;
1351 if (acpi_bus_get_device(handle
, &adev
))
1353 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1356 spi
= spi_alloc_device(master
);
1358 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1359 dev_name(&adev
->dev
));
1360 return AE_NO_MEMORY
;
1363 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1366 INIT_LIST_HEAD(&resource_list
);
1367 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1368 acpi_spi_add_resource
, spi
);
1369 acpi_dev_free_resource_list(&resource_list
);
1371 if (ret
< 0 || !spi
->max_speed_hz
) {
1376 adev
->power
.flags
.ignore_parent
= true;
1377 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1378 if (spi_add_device(spi
)) {
1379 adev
->power
.flags
.ignore_parent
= false;
1380 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1381 dev_name(&adev
->dev
));
1388 static void acpi_register_spi_devices(struct spi_master
*master
)
1393 handle
= ACPI_HANDLE(master
->dev
.parent
);
1397 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1398 acpi_spi_add_device
, NULL
,
1400 if (ACPI_FAILURE(status
))
1401 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1404 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1405 #endif /* CONFIG_ACPI */
1407 static void spi_master_release(struct device
*dev
)
1409 struct spi_master
*master
;
1411 master
= container_of(dev
, struct spi_master
, dev
);
1415 static struct class spi_master_class
= {
1416 .name
= "spi_master",
1417 .owner
= THIS_MODULE
,
1418 .dev_release
= spi_master_release
,
1424 * spi_alloc_master - allocate SPI master controller
1425 * @dev: the controller, possibly using the platform_bus
1426 * @size: how much zeroed driver-private data to allocate; the pointer to this
1427 * memory is in the driver_data field of the returned device,
1428 * accessible with spi_master_get_devdata().
1429 * Context: can sleep
1431 * This call is used only by SPI master controller drivers, which are the
1432 * only ones directly touching chip registers. It's how they allocate
1433 * an spi_master structure, prior to calling spi_register_master().
1435 * This must be called from context that can sleep. It returns the SPI
1436 * master structure on success, else NULL.
1438 * The caller is responsible for assigning the bus number and initializing
1439 * the master's methods before calling spi_register_master(); and (after errors
1440 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1443 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1445 struct spi_master
*master
;
1450 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1454 device_initialize(&master
->dev
);
1455 master
->bus_num
= -1;
1456 master
->num_chipselect
= 1;
1457 master
->dev
.class = &spi_master_class
;
1458 master
->dev
.parent
= get_device(dev
);
1459 spi_master_set_devdata(master
, &master
[1]);
1463 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1466 static int of_spi_register_master(struct spi_master
*master
)
1469 struct device_node
*np
= master
->dev
.of_node
;
1474 nb
= of_gpio_named_count(np
, "cs-gpios");
1475 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1477 /* Return error only for an incorrectly formed cs-gpios property */
1478 if (nb
== 0 || nb
== -ENOENT
)
1483 cs
= devm_kzalloc(&master
->dev
,
1484 sizeof(int) * master
->num_chipselect
,
1486 master
->cs_gpios
= cs
;
1488 if (!master
->cs_gpios
)
1491 for (i
= 0; i
< master
->num_chipselect
; i
++)
1494 for (i
= 0; i
< nb
; i
++)
1495 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1500 static int of_spi_register_master(struct spi_master
*master
)
1507 * spi_register_master - register SPI master controller
1508 * @master: initialized master, originally from spi_alloc_master()
1509 * Context: can sleep
1511 * SPI master controllers connect to their drivers using some non-SPI bus,
1512 * such as the platform bus. The final stage of probe() in that code
1513 * includes calling spi_register_master() to hook up to this SPI bus glue.
1515 * SPI controllers use board specific (often SOC specific) bus numbers,
1516 * and board-specific addressing for SPI devices combines those numbers
1517 * with chip select numbers. Since SPI does not directly support dynamic
1518 * device identification, boards need configuration tables telling which
1519 * chip is at which address.
1521 * This must be called from context that can sleep. It returns zero on
1522 * success, else a negative error code (dropping the master's refcount).
1523 * After a successful return, the caller is responsible for calling
1524 * spi_unregister_master().
1526 int spi_register_master(struct spi_master
*master
)
1528 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1529 struct device
*dev
= master
->dev
.parent
;
1530 struct boardinfo
*bi
;
1531 int status
= -ENODEV
;
1537 status
= of_spi_register_master(master
);
1541 /* even if it's just one always-selected device, there must
1542 * be at least one chipselect
1544 if (master
->num_chipselect
== 0)
1547 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1548 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1550 /* convention: dynamically assigned bus IDs count down from the max */
1551 if (master
->bus_num
< 0) {
1552 /* FIXME switch to an IDR based scheme, something like
1553 * I2C now uses, so we can't run out of "dynamic" IDs
1555 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1559 INIT_LIST_HEAD(&master
->queue
);
1560 spin_lock_init(&master
->queue_lock
);
1561 spin_lock_init(&master
->bus_lock_spinlock
);
1562 mutex_init(&master
->bus_lock_mutex
);
1563 master
->bus_lock_flag
= 0;
1564 init_completion(&master
->xfer_completion
);
1565 if (!master
->max_dma_len
)
1566 master
->max_dma_len
= INT_MAX
;
1568 /* register the device, then userspace will see it.
1569 * registration fails if the bus ID is in use.
1571 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1572 status
= device_add(&master
->dev
);
1575 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1576 dynamic
? " (dynamic)" : "");
1578 /* If we're using a queued driver, start the queue */
1579 if (master
->transfer
)
1580 dev_info(dev
, "master is unqueued, this is deprecated\n");
1582 status
= spi_master_initialize_queue(master
);
1584 device_del(&master
->dev
);
1589 mutex_lock(&board_lock
);
1590 list_add_tail(&master
->list
, &spi_master_list
);
1591 list_for_each_entry(bi
, &board_list
, list
)
1592 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1593 mutex_unlock(&board_lock
);
1595 /* Register devices from the device tree and ACPI */
1596 of_register_spi_devices(master
);
1597 acpi_register_spi_devices(master
);
1601 EXPORT_SYMBOL_GPL(spi_register_master
);
1603 static void devm_spi_unregister(struct device
*dev
, void *res
)
1605 spi_unregister_master(*(struct spi_master
**)res
);
1609 * dev_spi_register_master - register managed SPI master controller
1610 * @dev: device managing SPI master
1611 * @master: initialized master, originally from spi_alloc_master()
1612 * Context: can sleep
1614 * Register a SPI device as with spi_register_master() which will
1615 * automatically be unregister
1617 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1619 struct spi_master
**ptr
;
1622 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1626 ret
= spi_register_master(master
);
1629 devres_add(dev
, ptr
);
1636 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1638 static int __unregister(struct device
*dev
, void *null
)
1640 spi_unregister_device(to_spi_device(dev
));
1645 * spi_unregister_master - unregister SPI master controller
1646 * @master: the master being unregistered
1647 * Context: can sleep
1649 * This call is used only by SPI master controller drivers, which are the
1650 * only ones directly touching chip registers.
1652 * This must be called from context that can sleep.
1654 void spi_unregister_master(struct spi_master
*master
)
1658 if (master
->queued
) {
1659 if (spi_destroy_queue(master
))
1660 dev_err(&master
->dev
, "queue remove failed\n");
1663 mutex_lock(&board_lock
);
1664 list_del(&master
->list
);
1665 mutex_unlock(&board_lock
);
1667 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1668 device_unregister(&master
->dev
);
1670 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1672 int spi_master_suspend(struct spi_master
*master
)
1676 /* Basically no-ops for non-queued masters */
1677 if (!master
->queued
)
1680 ret
= spi_stop_queue(master
);
1682 dev_err(&master
->dev
, "queue stop failed\n");
1686 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1688 int spi_master_resume(struct spi_master
*master
)
1692 if (!master
->queued
)
1695 ret
= spi_start_queue(master
);
1697 dev_err(&master
->dev
, "queue restart failed\n");
1701 EXPORT_SYMBOL_GPL(spi_master_resume
);
1703 static int __spi_master_match(struct device
*dev
, const void *data
)
1705 struct spi_master
*m
;
1706 const u16
*bus_num
= data
;
1708 m
= container_of(dev
, struct spi_master
, dev
);
1709 return m
->bus_num
== *bus_num
;
1713 * spi_busnum_to_master - look up master associated with bus_num
1714 * @bus_num: the master's bus number
1715 * Context: can sleep
1717 * This call may be used with devices that are registered after
1718 * arch init time. It returns a refcounted pointer to the relevant
1719 * spi_master (which the caller must release), or NULL if there is
1720 * no such master registered.
1722 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1725 struct spi_master
*master
= NULL
;
1727 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1728 __spi_master_match
);
1730 master
= container_of(dev
, struct spi_master
, dev
);
1731 /* reference got in class_find_device */
1734 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1737 /*-------------------------------------------------------------------------*/
1739 /* Core methods for SPI master protocol drivers. Some of the
1740 * other core methods are currently defined as inline functions.
1744 * spi_setup - setup SPI mode and clock rate
1745 * @spi: the device whose settings are being modified
1746 * Context: can sleep, and no requests are queued to the device
1748 * SPI protocol drivers may need to update the transfer mode if the
1749 * device doesn't work with its default. They may likewise need
1750 * to update clock rates or word sizes from initial values. This function
1751 * changes those settings, and must be called from a context that can sleep.
1752 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1753 * effect the next time the device is selected and data is transferred to
1754 * or from it. When this function returns, the spi device is deselected.
1756 * Note that this call will fail if the protocol driver specifies an option
1757 * that the underlying controller or its driver does not support. For
1758 * example, not all hardware supports wire transfers using nine bit words,
1759 * LSB-first wire encoding, or active-high chipselects.
1761 int spi_setup(struct spi_device
*spi
)
1763 unsigned bad_bits
, ugly_bits
;
1766 /* check mode to prevent that DUAL and QUAD set at the same time
1768 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
1769 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
1771 "setup: can not select dual and quad at the same time\n");
1774 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1776 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
1777 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
1779 /* help drivers fail *cleanly* when they need options
1780 * that aren't supported with their current master
1782 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1783 ugly_bits
= bad_bits
&
1784 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
1787 "setup: ignoring unsupported mode bits %x\n",
1789 spi
->mode
&= ~ugly_bits
;
1790 bad_bits
&= ~ugly_bits
;
1793 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1798 if (!spi
->bits_per_word
)
1799 spi
->bits_per_word
= 8;
1801 if (!spi
->max_speed_hz
)
1802 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
1804 spi_set_cs(spi
, false);
1806 if (spi
->master
->setup
)
1807 status
= spi
->master
->setup(spi
);
1809 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1810 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1811 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1812 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1813 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1814 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1815 spi
->bits_per_word
, spi
->max_speed_hz
,
1820 EXPORT_SYMBOL_GPL(spi_setup
);
1822 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
1824 struct spi_master
*master
= spi
->master
;
1825 struct spi_transfer
*xfer
;
1828 if (list_empty(&message
->transfers
))
1831 /* Half-duplex links include original MicroWire, and ones with
1832 * only one data pin like SPI_3WIRE (switches direction) or where
1833 * either MOSI or MISO is missing. They can also be caused by
1834 * software limitations.
1836 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1837 || (spi
->mode
& SPI_3WIRE
)) {
1838 unsigned flags
= master
->flags
;
1840 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1841 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1843 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1845 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1851 * Set transfer bits_per_word and max speed as spi device default if
1852 * it is not set for this transfer.
1853 * Set transfer tx_nbits and rx_nbits as single transfer default
1854 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1856 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1857 message
->frame_length
+= xfer
->len
;
1858 if (!xfer
->bits_per_word
)
1859 xfer
->bits_per_word
= spi
->bits_per_word
;
1861 if (!xfer
->speed_hz
)
1862 xfer
->speed_hz
= spi
->max_speed_hz
;
1864 if (master
->max_speed_hz
&&
1865 xfer
->speed_hz
> master
->max_speed_hz
)
1866 xfer
->speed_hz
= master
->max_speed_hz
;
1868 if (master
->bits_per_word_mask
) {
1869 /* Only 32 bits fit in the mask */
1870 if (xfer
->bits_per_word
> 32)
1872 if (!(master
->bits_per_word_mask
&
1873 BIT(xfer
->bits_per_word
- 1)))
1878 * SPI transfer length should be multiple of SPI word size
1879 * where SPI word size should be power-of-two multiple
1881 if (xfer
->bits_per_word
<= 8)
1883 else if (xfer
->bits_per_word
<= 16)
1888 /* No partial transfers accepted */
1889 if (xfer
->len
% w_size
)
1892 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
1893 xfer
->speed_hz
< master
->min_speed_hz
)
1896 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
1897 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
1898 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
1899 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
1900 /* check transfer tx/rx_nbits:
1901 * 1. check the value matches one of single, dual and quad
1902 * 2. check tx/rx_nbits match the mode in spi_device
1905 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
1906 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
1907 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
1909 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
1910 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
1912 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
1913 !(spi
->mode
& SPI_TX_QUAD
))
1916 /* check transfer rx_nbits */
1918 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
1919 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
1920 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
1922 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
1923 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
1925 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
1926 !(spi
->mode
& SPI_RX_QUAD
))
1931 message
->status
= -EINPROGRESS
;
1936 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1938 struct spi_master
*master
= spi
->master
;
1942 trace_spi_message_submit(message
);
1944 return master
->transfer(spi
, message
);
1948 * spi_async - asynchronous SPI transfer
1949 * @spi: device with which data will be exchanged
1950 * @message: describes the data transfers, including completion callback
1951 * Context: any (irqs may be blocked, etc)
1953 * This call may be used in_irq and other contexts which can't sleep,
1954 * as well as from task contexts which can sleep.
1956 * The completion callback is invoked in a context which can't sleep.
1957 * Before that invocation, the value of message->status is undefined.
1958 * When the callback is issued, message->status holds either zero (to
1959 * indicate complete success) or a negative error code. After that
1960 * callback returns, the driver which issued the transfer request may
1961 * deallocate the associated memory; it's no longer in use by any SPI
1962 * core or controller driver code.
1964 * Note that although all messages to a spi_device are handled in
1965 * FIFO order, messages may go to different devices in other orders.
1966 * Some device might be higher priority, or have various "hard" access
1967 * time requirements, for example.
1969 * On detection of any fault during the transfer, processing of
1970 * the entire message is aborted, and the device is deselected.
1971 * Until returning from the associated message completion callback,
1972 * no other spi_message queued to that device will be processed.
1973 * (This rule applies equally to all the synchronous transfer calls,
1974 * which are wrappers around this core asynchronous primitive.)
1976 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1978 struct spi_master
*master
= spi
->master
;
1980 unsigned long flags
;
1982 ret
= __spi_validate(spi
, message
);
1986 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1988 if (master
->bus_lock_flag
)
1991 ret
= __spi_async(spi
, message
);
1993 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1997 EXPORT_SYMBOL_GPL(spi_async
);
2000 * spi_async_locked - version of spi_async with exclusive bus usage
2001 * @spi: device with which data will be exchanged
2002 * @message: describes the data transfers, including completion callback
2003 * Context: any (irqs may be blocked, etc)
2005 * This call may be used in_irq and other contexts which can't sleep,
2006 * as well as from task contexts which can sleep.
2008 * The completion callback is invoked in a context which can't sleep.
2009 * Before that invocation, the value of message->status is undefined.
2010 * When the callback is issued, message->status holds either zero (to
2011 * indicate complete success) or a negative error code. After that
2012 * callback returns, the driver which issued the transfer request may
2013 * deallocate the associated memory; it's no longer in use by any SPI
2014 * core or controller driver code.
2016 * Note that although all messages to a spi_device are handled in
2017 * FIFO order, messages may go to different devices in other orders.
2018 * Some device might be higher priority, or have various "hard" access
2019 * time requirements, for example.
2021 * On detection of any fault during the transfer, processing of
2022 * the entire message is aborted, and the device is deselected.
2023 * Until returning from the associated message completion callback,
2024 * no other spi_message queued to that device will be processed.
2025 * (This rule applies equally to all the synchronous transfer calls,
2026 * which are wrappers around this core asynchronous primitive.)
2028 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2030 struct spi_master
*master
= spi
->master
;
2032 unsigned long flags
;
2034 ret
= __spi_validate(spi
, message
);
2038 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2040 ret
= __spi_async(spi
, message
);
2042 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2047 EXPORT_SYMBOL_GPL(spi_async_locked
);
2050 /*-------------------------------------------------------------------------*/
2052 /* Utility methods for SPI master protocol drivers, layered on
2053 * top of the core. Some other utility methods are defined as
2057 static void spi_complete(void *arg
)
2062 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2065 DECLARE_COMPLETION_ONSTACK(done
);
2067 struct spi_master
*master
= spi
->master
;
2068 unsigned long flags
;
2070 status
= __spi_validate(spi
, message
);
2074 message
->complete
= spi_complete
;
2075 message
->context
= &done
;
2079 mutex_lock(&master
->bus_lock_mutex
);
2081 /* If we're not using the legacy transfer method then we will
2082 * try to transfer in the calling context so special case.
2083 * This code would be less tricky if we could remove the
2084 * support for driver implemented message queues.
2086 if (master
->transfer
== spi_queued_transfer
) {
2087 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2089 trace_spi_message_submit(message
);
2091 status
= __spi_queued_transfer(spi
, message
, false);
2093 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2095 status
= spi_async_locked(spi
, message
);
2099 mutex_unlock(&master
->bus_lock_mutex
);
2102 /* Push out the messages in the calling context if we
2105 if (master
->transfer
== spi_queued_transfer
)
2106 __spi_pump_messages(master
, false);
2108 wait_for_completion(&done
);
2109 status
= message
->status
;
2111 message
->context
= NULL
;
2116 * spi_sync - blocking/synchronous SPI data transfers
2117 * @spi: device with which data will be exchanged
2118 * @message: describes the data transfers
2119 * Context: can sleep
2121 * This call may only be used from a context that may sleep. The sleep
2122 * is non-interruptible, and has no timeout. Low-overhead controller
2123 * drivers may DMA directly into and out of the message buffers.
2125 * Note that the SPI device's chip select is active during the message,
2126 * and then is normally disabled between messages. Drivers for some
2127 * frequently-used devices may want to minimize costs of selecting a chip,
2128 * by leaving it selected in anticipation that the next message will go
2129 * to the same chip. (That may increase power usage.)
2131 * Also, the caller is guaranteeing that the memory associated with the
2132 * message will not be freed before this call returns.
2134 * It returns zero on success, else a negative error code.
2136 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2138 return __spi_sync(spi
, message
, 0);
2140 EXPORT_SYMBOL_GPL(spi_sync
);
2143 * spi_sync_locked - version of spi_sync with exclusive bus usage
2144 * @spi: device with which data will be exchanged
2145 * @message: describes the data transfers
2146 * Context: can sleep
2148 * This call may only be used from a context that may sleep. The sleep
2149 * is non-interruptible, and has no timeout. Low-overhead controller
2150 * drivers may DMA directly into and out of the message buffers.
2152 * This call should be used by drivers that require exclusive access to the
2153 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2154 * be released by a spi_bus_unlock call when the exclusive access is over.
2156 * It returns zero on success, else a negative error code.
2158 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2160 return __spi_sync(spi
, message
, 1);
2162 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2165 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2166 * @master: SPI bus master that should be locked for exclusive bus access
2167 * Context: can sleep
2169 * This call may only be used from a context that may sleep. The sleep
2170 * is non-interruptible, and has no timeout.
2172 * This call should be used by drivers that require exclusive access to the
2173 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2174 * exclusive access is over. Data transfer must be done by spi_sync_locked
2175 * and spi_async_locked calls when the SPI bus lock is held.
2177 * It returns zero on success, else a negative error code.
2179 int spi_bus_lock(struct spi_master
*master
)
2181 unsigned long flags
;
2183 mutex_lock(&master
->bus_lock_mutex
);
2185 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2186 master
->bus_lock_flag
= 1;
2187 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2189 /* mutex remains locked until spi_bus_unlock is called */
2193 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2196 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2197 * @master: SPI bus master that was locked for exclusive bus access
2198 * Context: can sleep
2200 * This call may only be used from a context that may sleep. The sleep
2201 * is non-interruptible, and has no timeout.
2203 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2206 * It returns zero on success, else a negative error code.
2208 int spi_bus_unlock(struct spi_master
*master
)
2210 master
->bus_lock_flag
= 0;
2212 mutex_unlock(&master
->bus_lock_mutex
);
2216 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2218 /* portable code must never pass more than 32 bytes */
2219 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2224 * spi_write_then_read - SPI synchronous write followed by read
2225 * @spi: device with which data will be exchanged
2226 * @txbuf: data to be written (need not be dma-safe)
2227 * @n_tx: size of txbuf, in bytes
2228 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2229 * @n_rx: size of rxbuf, in bytes
2230 * Context: can sleep
2232 * This performs a half duplex MicroWire style transaction with the
2233 * device, sending txbuf and then reading rxbuf. The return value
2234 * is zero for success, else a negative errno status code.
2235 * This call may only be used from a context that may sleep.
2237 * Parameters to this routine are always copied using a small buffer;
2238 * portable code should never use this for more than 32 bytes.
2239 * Performance-sensitive or bulk transfer code should instead use
2240 * spi_{async,sync}() calls with dma-safe buffers.
2242 int spi_write_then_read(struct spi_device
*spi
,
2243 const void *txbuf
, unsigned n_tx
,
2244 void *rxbuf
, unsigned n_rx
)
2246 static DEFINE_MUTEX(lock
);
2249 struct spi_message message
;
2250 struct spi_transfer x
[2];
2253 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2254 * copying here, (as a pure convenience thing), but we can
2255 * keep heap costs out of the hot path unless someone else is
2256 * using the pre-allocated buffer or the transfer is too large.
2258 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2259 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2260 GFP_KERNEL
| GFP_DMA
);
2267 spi_message_init(&message
);
2268 memset(x
, 0, sizeof(x
));
2271 spi_message_add_tail(&x
[0], &message
);
2275 spi_message_add_tail(&x
[1], &message
);
2278 memcpy(local_buf
, txbuf
, n_tx
);
2279 x
[0].tx_buf
= local_buf
;
2280 x
[1].rx_buf
= local_buf
+ n_tx
;
2283 status
= spi_sync(spi
, &message
);
2285 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2287 if (x
[0].tx_buf
== buf
)
2288 mutex_unlock(&lock
);
2294 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2296 /*-------------------------------------------------------------------------*/
2298 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2299 static int __spi_of_device_match(struct device
*dev
, void *data
)
2301 return dev
->of_node
== data
;
2304 /* must call put_device() when done with returned spi_device device */
2305 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
2307 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
2308 __spi_of_device_match
);
2309 return dev
? to_spi_device(dev
) : NULL
;
2312 static int __spi_of_master_match(struct device
*dev
, const void *data
)
2314 return dev
->of_node
== data
;
2317 /* the spi masters are not using spi_bus, so we find it with another way */
2318 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
2322 dev
= class_find_device(&spi_master_class
, NULL
, node
,
2323 __spi_of_master_match
);
2327 /* reference got in class_find_device */
2328 return container_of(dev
, struct spi_master
, dev
);
2331 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
2334 struct of_reconfig_data
*rd
= arg
;
2335 struct spi_master
*master
;
2336 struct spi_device
*spi
;
2338 switch (of_reconfig_get_state_change(action
, arg
)) {
2339 case OF_RECONFIG_CHANGE_ADD
:
2340 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
2342 return NOTIFY_OK
; /* not for us */
2344 spi
= of_register_spi_device(master
, rd
->dn
);
2345 put_device(&master
->dev
);
2348 pr_err("%s: failed to create for '%s'\n",
2349 __func__
, rd
->dn
->full_name
);
2350 return notifier_from_errno(PTR_ERR(spi
));
2354 case OF_RECONFIG_CHANGE_REMOVE
:
2355 /* find our device by node */
2356 spi
= of_find_spi_device_by_node(rd
->dn
);
2358 return NOTIFY_OK
; /* no? not meant for us */
2360 /* unregister takes one ref away */
2361 spi_unregister_device(spi
);
2363 /* and put the reference of the find */
2364 put_device(&spi
->dev
);
2371 static struct notifier_block spi_of_notifier
= {
2372 .notifier_call
= of_spi_notify
,
2374 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2375 extern struct notifier_block spi_of_notifier
;
2376 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2378 static int __init
spi_init(void)
2382 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2388 status
= bus_register(&spi_bus_type
);
2392 status
= class_register(&spi_master_class
);
2396 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
2397 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
2402 bus_unregister(&spi_bus_type
);
2410 /* board_info is normally registered in arch_initcall(),
2411 * but even essential drivers wait till later
2413 * REVISIT only boardinfo really needs static linking. the rest (device and
2414 * driver registration) _could_ be dynamically linked (modular) ... costs
2415 * include needing to have boardinfo data structures be much more public.
2417 postcore_initcall(spi_init
);