Linux 4.2.1
[linux/fpc-iii.git] / drivers / usb / gadget / udc / amd5536udc.c
blobde7e5e2ccf1c8956fcce928901e4a7cc1b4a4d09
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
27 /* debug control */
28 /* #define UDC_VERBOSE */
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/list.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioctl.h>
47 #include <linux/fs.h>
48 #include <linux/dmapool.h>
49 #include <linux/moduleparam.h>
50 #include <linux/device.h>
51 #include <linux/io.h>
52 #include <linux/irq.h>
53 #include <linux/prefetch.h>
55 #include <asm/byteorder.h>
56 #include <asm/unaligned.h>
58 /* gadget stack */
59 #include <linux/usb/ch9.h>
60 #include <linux/usb/gadget.h>
62 /* udc specific */
63 #include "amd5536udc.h"
66 static void udc_tasklet_disconnect(unsigned long);
67 static void empty_req_queue(struct udc_ep *);
68 static int udc_probe(struct udc *dev);
69 static void udc_basic_init(struct udc *dev);
70 static void udc_setup_endpoints(struct udc *dev);
71 static void udc_soft_reset(struct udc *dev);
72 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
73 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
74 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
75 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
76 unsigned long buf_len, gfp_t gfp_flags);
77 static int udc_remote_wakeup(struct udc *dev);
78 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
79 static void udc_pci_remove(struct pci_dev *pdev);
81 /* description */
82 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
83 static const char name[] = "amd5536udc";
85 /* structure to hold endpoint function pointers */
86 static const struct usb_ep_ops udc_ep_ops;
88 /* received setup data */
89 static union udc_setup_data setup_data;
91 /* pointer to device object */
92 static struct udc *udc;
94 /* irq spin lock for soft reset */
95 static DEFINE_SPINLOCK(udc_irq_spinlock);
96 /* stall spin lock */
97 static DEFINE_SPINLOCK(udc_stall_spinlock);
100 * slave mode: pending bytes in rx fifo after nyet,
101 * used if EPIN irq came but no req was available
103 static unsigned int udc_rxfifo_pending;
105 /* count soft resets after suspend to avoid loop */
106 static int soft_reset_occured;
107 static int soft_reset_after_usbreset_occured;
109 /* timer */
110 static struct timer_list udc_timer;
111 static int stop_timer;
113 /* set_rde -- Is used to control enabling of RX DMA. Problem is
114 * that UDC has only one bit (RDE) to enable/disable RX DMA for
115 * all OUT endpoints. So we have to handle race conditions like
116 * when OUT data reaches the fifo but no request was queued yet.
117 * This cannot be solved by letting the RX DMA disabled until a
118 * request gets queued because there may be other OUT packets
119 * in the FIFO (important for not blocking control traffic).
120 * The value of set_rde controls the correspondig timer.
122 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
123 * set_rde 0 == do not touch RDE, do no start the RDE timer
124 * set_rde 1 == timer function will look whether FIFO has data
125 * set_rde 2 == set by timer function to enable RX DMA on next call
127 static int set_rde = -1;
129 static DECLARE_COMPLETION(on_exit);
130 static struct timer_list udc_pollstall_timer;
131 static int stop_pollstall_timer;
132 static DECLARE_COMPLETION(on_pollstall_exit);
134 /* tasklet for usb disconnect */
135 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
136 (unsigned long) &udc);
139 /* endpoint names used for print */
140 static const char ep0_string[] = "ep0in";
141 static const char *const ep_string[] = {
142 ep0_string,
143 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
144 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
145 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
146 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
147 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
148 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
149 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
152 /* DMA usage flag */
153 static bool use_dma = 1;
154 /* packet per buffer dma */
155 static bool use_dma_ppb = 1;
156 /* with per descr. update */
157 static bool use_dma_ppb_du;
158 /* buffer fill mode */
159 static int use_dma_bufferfill_mode;
160 /* full speed only mode */
161 static bool use_fullspeed;
162 /* tx buffer size for high speed */
163 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
165 /* module parameters */
166 module_param(use_dma, bool, S_IRUGO);
167 MODULE_PARM_DESC(use_dma, "true for DMA");
168 module_param(use_dma_ppb, bool, S_IRUGO);
169 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
170 module_param(use_dma_ppb_du, bool, S_IRUGO);
171 MODULE_PARM_DESC(use_dma_ppb_du,
172 "true for DMA in packet per buffer mode with descriptor update");
173 module_param(use_fullspeed, bool, S_IRUGO);
174 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
176 /*---------------------------------------------------------------------------*/
177 /* Prints UDC device registers and endpoint irq registers */
178 static void print_regs(struct udc *dev)
180 DBG(dev, "------- Device registers -------\n");
181 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
182 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
183 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
184 DBG(dev, "\n");
185 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
186 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
187 DBG(dev, "\n");
188 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
189 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
190 DBG(dev, "\n");
191 DBG(dev, "USE DMA = %d\n", use_dma);
192 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
193 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
194 "WITHOUT desc. update)\n");
195 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
196 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
197 DBG(dev, "DMA mode = PPBDU (packet per buffer "
198 "WITH desc. update)\n");
199 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
201 if (use_dma && use_dma_bufferfill_mode) {
202 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
203 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
205 if (!use_dma)
206 dev_info(&dev->pdev->dev, "FIFO mode\n");
207 DBG(dev, "-------------------------------------------------------\n");
210 /* Masks unused interrupts */
211 static int udc_mask_unused_interrupts(struct udc *dev)
213 u32 tmp;
215 /* mask all dev interrupts */
216 tmp = AMD_BIT(UDC_DEVINT_SVC) |
217 AMD_BIT(UDC_DEVINT_ENUM) |
218 AMD_BIT(UDC_DEVINT_US) |
219 AMD_BIT(UDC_DEVINT_UR) |
220 AMD_BIT(UDC_DEVINT_ES) |
221 AMD_BIT(UDC_DEVINT_SI) |
222 AMD_BIT(UDC_DEVINT_SOF)|
223 AMD_BIT(UDC_DEVINT_SC);
224 writel(tmp, &dev->regs->irqmsk);
226 /* mask all ep interrupts */
227 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
229 return 0;
232 /* Enables endpoint 0 interrupts */
233 static int udc_enable_ep0_interrupts(struct udc *dev)
235 u32 tmp;
237 DBG(dev, "udc_enable_ep0_interrupts()\n");
239 /* read irq mask */
240 tmp = readl(&dev->regs->ep_irqmsk);
241 /* enable ep0 irq's */
242 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
243 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
244 writel(tmp, &dev->regs->ep_irqmsk);
246 return 0;
249 /* Enables device interrupts for SET_INTF and SET_CONFIG */
250 static int udc_enable_dev_setup_interrupts(struct udc *dev)
252 u32 tmp;
254 DBG(dev, "enable device interrupts for setup data\n");
256 /* read irq mask */
257 tmp = readl(&dev->regs->irqmsk);
259 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
260 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
261 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
262 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
263 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
264 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
265 writel(tmp, &dev->regs->irqmsk);
267 return 0;
270 /* Calculates fifo start of endpoint based on preceding endpoints */
271 static int udc_set_txfifo_addr(struct udc_ep *ep)
273 struct udc *dev;
274 u32 tmp;
275 int i;
277 if (!ep || !(ep->in))
278 return -EINVAL;
280 dev = ep->dev;
281 ep->txfifo = dev->txfifo;
283 /* traverse ep's */
284 for (i = 0; i < ep->num; i++) {
285 if (dev->ep[i].regs) {
286 /* read fifo size */
287 tmp = readl(&dev->ep[i].regs->bufin_framenum);
288 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
289 ep->txfifo += tmp;
292 return 0;
295 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
296 static u32 cnak_pending;
298 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
300 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
301 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
302 cnak_pending |= 1 << (num);
303 ep->naking = 1;
304 } else
305 cnak_pending = cnak_pending & (~(1 << (num)));
309 /* Enables endpoint, is called by gadget driver */
310 static int
311 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
313 struct udc_ep *ep;
314 struct udc *dev;
315 u32 tmp;
316 unsigned long iflags;
317 u8 udc_csr_epix;
318 unsigned maxpacket;
320 if (!usbep
321 || usbep->name == ep0_string
322 || !desc
323 || desc->bDescriptorType != USB_DT_ENDPOINT)
324 return -EINVAL;
326 ep = container_of(usbep, struct udc_ep, ep);
327 dev = ep->dev;
329 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
331 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
332 return -ESHUTDOWN;
334 spin_lock_irqsave(&dev->lock, iflags);
335 ep->ep.desc = desc;
337 ep->halted = 0;
339 /* set traffic type */
340 tmp = readl(&dev->ep[ep->num].regs->ctl);
341 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
342 writel(tmp, &dev->ep[ep->num].regs->ctl);
344 /* set max packet size */
345 maxpacket = usb_endpoint_maxp(desc);
346 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
347 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
348 ep->ep.maxpacket = maxpacket;
349 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
351 /* IN ep */
352 if (ep->in) {
354 /* ep ix in UDC CSR register space */
355 udc_csr_epix = ep->num;
357 /* set buffer size (tx fifo entries) */
358 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
359 /* double buffering: fifo size = 2 x max packet size */
360 tmp = AMD_ADDBITS(
361 tmp,
362 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
363 / UDC_DWORD_BYTES,
364 UDC_EPIN_BUFF_SIZE);
365 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
367 /* calc. tx fifo base addr */
368 udc_set_txfifo_addr(ep);
370 /* flush fifo */
371 tmp = readl(&ep->regs->ctl);
372 tmp |= AMD_BIT(UDC_EPCTL_F);
373 writel(tmp, &ep->regs->ctl);
375 /* OUT ep */
376 } else {
377 /* ep ix in UDC CSR register space */
378 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
380 /* set max packet size UDC CSR */
381 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
382 tmp = AMD_ADDBITS(tmp, maxpacket,
383 UDC_CSR_NE_MAX_PKT);
384 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
386 if (use_dma && !ep->in) {
387 /* alloc and init BNA dummy request */
388 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
389 ep->bna_occurred = 0;
392 if (ep->num != UDC_EP0OUT_IX)
393 dev->data_ep_enabled = 1;
396 /* set ep values */
397 tmp = readl(&dev->csr->ne[udc_csr_epix]);
398 /* max packet */
399 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
400 /* ep number */
401 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
402 /* ep direction */
403 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
404 /* ep type */
405 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
406 /* ep config */
407 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
408 /* ep interface */
409 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
410 /* ep alt */
411 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
412 /* write reg */
413 writel(tmp, &dev->csr->ne[udc_csr_epix]);
415 /* enable ep irq */
416 tmp = readl(&dev->regs->ep_irqmsk);
417 tmp &= AMD_UNMASK_BIT(ep->num);
418 writel(tmp, &dev->regs->ep_irqmsk);
421 * clear NAK by writing CNAK
422 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
424 if (!use_dma || ep->in) {
425 tmp = readl(&ep->regs->ctl);
426 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
427 writel(tmp, &ep->regs->ctl);
428 ep->naking = 0;
429 UDC_QUEUE_CNAK(ep, ep->num);
431 tmp = desc->bEndpointAddress;
432 DBG(dev, "%s enabled\n", usbep->name);
434 spin_unlock_irqrestore(&dev->lock, iflags);
435 return 0;
438 /* Resets endpoint */
439 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
441 u32 tmp;
443 VDBG(ep->dev, "ep-%d reset\n", ep->num);
444 ep->ep.desc = NULL;
445 ep->ep.ops = &udc_ep_ops;
446 INIT_LIST_HEAD(&ep->queue);
448 usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
449 /* set NAK */
450 tmp = readl(&ep->regs->ctl);
451 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
452 writel(tmp, &ep->regs->ctl);
453 ep->naking = 1;
455 /* disable interrupt */
456 tmp = readl(&regs->ep_irqmsk);
457 tmp |= AMD_BIT(ep->num);
458 writel(tmp, &regs->ep_irqmsk);
460 if (ep->in) {
461 /* unset P and IN bit of potential former DMA */
462 tmp = readl(&ep->regs->ctl);
463 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
464 writel(tmp, &ep->regs->ctl);
466 tmp = readl(&ep->regs->sts);
467 tmp |= AMD_BIT(UDC_EPSTS_IN);
468 writel(tmp, &ep->regs->sts);
470 /* flush the fifo */
471 tmp = readl(&ep->regs->ctl);
472 tmp |= AMD_BIT(UDC_EPCTL_F);
473 writel(tmp, &ep->regs->ctl);
476 /* reset desc pointer */
477 writel(0, &ep->regs->desptr);
480 /* Disables endpoint, is called by gadget driver */
481 static int udc_ep_disable(struct usb_ep *usbep)
483 struct udc_ep *ep = NULL;
484 unsigned long iflags;
486 if (!usbep)
487 return -EINVAL;
489 ep = container_of(usbep, struct udc_ep, ep);
490 if (usbep->name == ep0_string || !ep->ep.desc)
491 return -EINVAL;
493 DBG(ep->dev, "Disable ep-%d\n", ep->num);
495 spin_lock_irqsave(&ep->dev->lock, iflags);
496 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
497 empty_req_queue(ep);
498 ep_init(ep->dev->regs, ep);
499 spin_unlock_irqrestore(&ep->dev->lock, iflags);
501 return 0;
504 /* Allocates request packet, called by gadget driver */
505 static struct usb_request *
506 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
508 struct udc_request *req;
509 struct udc_data_dma *dma_desc;
510 struct udc_ep *ep;
512 if (!usbep)
513 return NULL;
515 ep = container_of(usbep, struct udc_ep, ep);
517 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
518 req = kzalloc(sizeof(struct udc_request), gfp);
519 if (!req)
520 return NULL;
522 req->req.dma = DMA_DONT_USE;
523 INIT_LIST_HEAD(&req->queue);
525 if (ep->dma) {
526 /* ep0 in requests are allocated from data pool here */
527 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
528 &req->td_phys);
529 if (!dma_desc) {
530 kfree(req);
531 return NULL;
534 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
535 "td_phys = %lx\n",
536 req, dma_desc,
537 (unsigned long)req->td_phys);
538 /* prevent from using desc. - set HOST BUSY */
539 dma_desc->status = AMD_ADDBITS(dma_desc->status,
540 UDC_DMA_STP_STS_BS_HOST_BUSY,
541 UDC_DMA_STP_STS_BS);
542 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
543 req->td_data = dma_desc;
544 req->td_data_last = NULL;
545 req->chain_len = 1;
548 return &req->req;
551 /* Frees request packet, called by gadget driver */
552 static void
553 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
555 struct udc_ep *ep;
556 struct udc_request *req;
558 if (!usbep || !usbreq)
559 return;
561 ep = container_of(usbep, struct udc_ep, ep);
562 req = container_of(usbreq, struct udc_request, req);
563 VDBG(ep->dev, "free_req req=%p\n", req);
564 BUG_ON(!list_empty(&req->queue));
565 if (req->td_data) {
566 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
568 /* free dma chain if created */
569 if (req->chain_len > 1)
570 udc_free_dma_chain(ep->dev, req);
572 pci_pool_free(ep->dev->data_requests, req->td_data,
573 req->td_phys);
575 kfree(req);
578 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
579 static void udc_init_bna_dummy(struct udc_request *req)
581 if (req) {
582 /* set last bit */
583 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
584 /* set next pointer to itself */
585 req->td_data->next = req->td_phys;
586 /* set HOST BUSY */
587 req->td_data->status
588 = AMD_ADDBITS(req->td_data->status,
589 UDC_DMA_STP_STS_BS_DMA_DONE,
590 UDC_DMA_STP_STS_BS);
591 #ifdef UDC_VERBOSE
592 pr_debug("bna desc = %p, sts = %08x\n",
593 req->td_data, req->td_data->status);
594 #endif
598 /* Allocate BNA dummy descriptor */
599 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
601 struct udc_request *req = NULL;
602 struct usb_request *_req = NULL;
604 /* alloc the dummy request */
605 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
606 if (_req) {
607 req = container_of(_req, struct udc_request, req);
608 ep->bna_dummy_req = req;
609 udc_init_bna_dummy(req);
611 return req;
614 /* Write data to TX fifo for IN packets */
615 static void
616 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
618 u8 *req_buf;
619 u32 *buf;
620 int i, j;
621 unsigned bytes = 0;
622 unsigned remaining = 0;
624 if (!req || !ep)
625 return;
627 req_buf = req->buf + req->actual;
628 prefetch(req_buf);
629 remaining = req->length - req->actual;
631 buf = (u32 *) req_buf;
633 bytes = ep->ep.maxpacket;
634 if (bytes > remaining)
635 bytes = remaining;
637 /* dwords first */
638 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
639 writel(*(buf + i), ep->txfifo);
641 /* remaining bytes must be written by byte access */
642 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
643 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
644 ep->txfifo);
647 /* dummy write confirm */
648 writel(0, &ep->regs->confirm);
651 /* Read dwords from RX fifo for OUT transfers */
652 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
654 int i;
656 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
658 for (i = 0; i < dwords; i++)
659 *(buf + i) = readl(dev->rxfifo);
660 return 0;
663 /* Read bytes from RX fifo for OUT transfers */
664 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
666 int i, j;
667 u32 tmp;
669 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
671 /* dwords first */
672 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
673 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
675 /* remaining bytes must be read by byte access */
676 if (bytes % UDC_DWORD_BYTES) {
677 tmp = readl(dev->rxfifo);
678 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
679 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
680 tmp = tmp >> UDC_BITS_PER_BYTE;
684 return 0;
687 /* Read data from RX fifo for OUT transfers */
688 static int
689 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
691 u8 *buf;
692 unsigned buf_space;
693 unsigned bytes = 0;
694 unsigned finished = 0;
696 /* received number bytes */
697 bytes = readl(&ep->regs->sts);
698 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
700 buf_space = req->req.length - req->req.actual;
701 buf = req->req.buf + req->req.actual;
702 if (bytes > buf_space) {
703 if ((buf_space % ep->ep.maxpacket) != 0) {
704 DBG(ep->dev,
705 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
706 ep->ep.name, bytes, buf_space);
707 req->req.status = -EOVERFLOW;
709 bytes = buf_space;
711 req->req.actual += bytes;
713 /* last packet ? */
714 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
715 || ((req->req.actual == req->req.length) && !req->req.zero))
716 finished = 1;
718 /* read rx fifo bytes */
719 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
720 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
722 return finished;
725 /* create/re-init a DMA descriptor or a DMA descriptor chain */
726 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
728 int retval = 0;
729 u32 tmp;
731 VDBG(ep->dev, "prep_dma\n");
732 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
733 ep->num, req->td_data);
735 /* set buffer pointer */
736 req->td_data->bufptr = req->req.dma;
738 /* set last bit */
739 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
741 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
742 if (use_dma_ppb) {
744 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
745 if (retval != 0) {
746 if (retval == -ENOMEM)
747 DBG(ep->dev, "Out of DMA memory\n");
748 return retval;
750 if (ep->in) {
751 if (req->req.length == ep->ep.maxpacket) {
752 /* write tx bytes */
753 req->td_data->status =
754 AMD_ADDBITS(req->td_data->status,
755 ep->ep.maxpacket,
756 UDC_DMA_IN_STS_TXBYTES);
763 if (ep->in) {
764 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
765 "maxpacket=%d ep%d\n",
766 use_dma_ppb, req->req.length,
767 ep->ep.maxpacket, ep->num);
769 * if bytes < max packet then tx bytes must
770 * be written in packet per buffer mode
772 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
773 || ep->num == UDC_EP0OUT_IX
774 || ep->num == UDC_EP0IN_IX) {
775 /* write tx bytes */
776 req->td_data->status =
777 AMD_ADDBITS(req->td_data->status,
778 req->req.length,
779 UDC_DMA_IN_STS_TXBYTES);
780 /* reset frame num */
781 req->td_data->status =
782 AMD_ADDBITS(req->td_data->status,
784 UDC_DMA_IN_STS_FRAMENUM);
786 /* set HOST BUSY */
787 req->td_data->status =
788 AMD_ADDBITS(req->td_data->status,
789 UDC_DMA_STP_STS_BS_HOST_BUSY,
790 UDC_DMA_STP_STS_BS);
791 } else {
792 VDBG(ep->dev, "OUT set host ready\n");
793 /* set HOST READY */
794 req->td_data->status =
795 AMD_ADDBITS(req->td_data->status,
796 UDC_DMA_STP_STS_BS_HOST_READY,
797 UDC_DMA_STP_STS_BS);
800 /* clear NAK by writing CNAK */
801 if (ep->naking) {
802 tmp = readl(&ep->regs->ctl);
803 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
804 writel(tmp, &ep->regs->ctl);
805 ep->naking = 0;
806 UDC_QUEUE_CNAK(ep, ep->num);
811 return retval;
814 /* Completes request packet ... caller MUST hold lock */
815 static void
816 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
817 __releases(ep->dev->lock)
818 __acquires(ep->dev->lock)
820 struct udc *dev;
821 unsigned halted;
823 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
825 dev = ep->dev;
826 /* unmap DMA */
827 if (ep->dma)
828 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
830 halted = ep->halted;
831 ep->halted = 1;
833 /* set new status if pending */
834 if (req->req.status == -EINPROGRESS)
835 req->req.status = sts;
837 /* remove from ep queue */
838 list_del_init(&req->queue);
840 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
841 &req->req, req->req.length, ep->ep.name, sts);
843 spin_unlock(&dev->lock);
844 usb_gadget_giveback_request(&ep->ep, &req->req);
845 spin_lock(&dev->lock);
846 ep->halted = halted;
849 /* frees pci pool descriptors of a DMA chain */
850 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
853 int ret_val = 0;
854 struct udc_data_dma *td;
855 struct udc_data_dma *td_last = NULL;
856 unsigned int i;
858 DBG(dev, "free chain req = %p\n", req);
860 /* do not free first desc., will be done by free for request */
861 td_last = req->td_data;
862 td = phys_to_virt(td_last->next);
864 for (i = 1; i < req->chain_len; i++) {
866 pci_pool_free(dev->data_requests, td,
867 (dma_addr_t) td_last->next);
868 td_last = td;
869 td = phys_to_virt(td_last->next);
872 return ret_val;
875 /* Iterates to the end of a DMA chain and returns last descriptor */
876 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
878 struct udc_data_dma *td;
880 td = req->td_data;
881 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
882 td = phys_to_virt(td->next);
884 return td;
888 /* Iterates to the end of a DMA chain and counts bytes received */
889 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
891 struct udc_data_dma *td;
892 u32 count;
894 td = req->td_data;
895 /* received number bytes */
896 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
898 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
899 td = phys_to_virt(td->next);
900 /* received number bytes */
901 if (td) {
902 count += AMD_GETBITS(td->status,
903 UDC_DMA_OUT_STS_RXBYTES);
907 return count;
911 /* Creates or re-inits a DMA chain */
912 static int udc_create_dma_chain(
913 struct udc_ep *ep,
914 struct udc_request *req,
915 unsigned long buf_len, gfp_t gfp_flags
918 unsigned long bytes = req->req.length;
919 unsigned int i;
920 dma_addr_t dma_addr;
921 struct udc_data_dma *td = NULL;
922 struct udc_data_dma *last = NULL;
923 unsigned long txbytes;
924 unsigned create_new_chain = 0;
925 unsigned len;
927 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
928 bytes, buf_len);
929 dma_addr = DMA_DONT_USE;
931 /* unset L bit in first desc for OUT */
932 if (!ep->in)
933 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
935 /* alloc only new desc's if not already available */
936 len = req->req.length / ep->ep.maxpacket;
937 if (req->req.length % ep->ep.maxpacket)
938 len++;
940 if (len > req->chain_len) {
941 /* shorter chain already allocated before */
942 if (req->chain_len > 1)
943 udc_free_dma_chain(ep->dev, req);
944 req->chain_len = len;
945 create_new_chain = 1;
948 td = req->td_data;
949 /* gen. required number of descriptors and buffers */
950 for (i = buf_len; i < bytes; i += buf_len) {
951 /* create or determine next desc. */
952 if (create_new_chain) {
954 td = pci_pool_alloc(ep->dev->data_requests,
955 gfp_flags, &dma_addr);
956 if (!td)
957 return -ENOMEM;
959 td->status = 0;
960 } else if (i == buf_len) {
961 /* first td */
962 td = (struct udc_data_dma *) phys_to_virt(
963 req->td_data->next);
964 td->status = 0;
965 } else {
966 td = (struct udc_data_dma *) phys_to_virt(last->next);
967 td->status = 0;
971 if (td)
972 td->bufptr = req->req.dma + i; /* assign buffer */
973 else
974 break;
976 /* short packet ? */
977 if ((bytes - i) >= buf_len) {
978 txbytes = buf_len;
979 } else {
980 /* short packet */
981 txbytes = bytes - i;
984 /* link td and assign tx bytes */
985 if (i == buf_len) {
986 if (create_new_chain)
987 req->td_data->next = dma_addr;
989 else
990 req->td_data->next = virt_to_phys(td);
992 /* write tx bytes */
993 if (ep->in) {
994 /* first desc */
995 req->td_data->status =
996 AMD_ADDBITS(req->td_data->status,
997 ep->ep.maxpacket,
998 UDC_DMA_IN_STS_TXBYTES);
999 /* second desc */
1000 td->status = AMD_ADDBITS(td->status,
1001 txbytes,
1002 UDC_DMA_IN_STS_TXBYTES);
1004 } else {
1005 if (create_new_chain)
1006 last->next = dma_addr;
1008 else
1009 last->next = virt_to_phys(td);
1011 if (ep->in) {
1012 /* write tx bytes */
1013 td->status = AMD_ADDBITS(td->status,
1014 txbytes,
1015 UDC_DMA_IN_STS_TXBYTES);
1018 last = td;
1020 /* set last bit */
1021 if (td) {
1022 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1023 /* last desc. points to itself */
1024 req->td_data_last = td;
1027 return 0;
1030 /* Enabling RX DMA */
1031 static void udc_set_rde(struct udc *dev)
1033 u32 tmp;
1035 VDBG(dev, "udc_set_rde()\n");
1036 /* stop RDE timer */
1037 if (timer_pending(&udc_timer)) {
1038 set_rde = 0;
1039 mod_timer(&udc_timer, jiffies - 1);
1041 /* set RDE */
1042 tmp = readl(&dev->regs->ctl);
1043 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1044 writel(tmp, &dev->regs->ctl);
1047 /* Queues a request packet, called by gadget driver */
1048 static int
1049 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1051 int retval = 0;
1052 u8 open_rxfifo = 0;
1053 unsigned long iflags;
1054 struct udc_ep *ep;
1055 struct udc_request *req;
1056 struct udc *dev;
1057 u32 tmp;
1059 /* check the inputs */
1060 req = container_of(usbreq, struct udc_request, req);
1062 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1063 || !list_empty(&req->queue))
1064 return -EINVAL;
1066 ep = container_of(usbep, struct udc_ep, ep);
1067 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1068 return -EINVAL;
1070 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1071 dev = ep->dev;
1073 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1074 return -ESHUTDOWN;
1076 /* map dma (usually done before) */
1077 if (ep->dma) {
1078 VDBG(dev, "DMA map req %p\n", req);
1079 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1080 if (retval)
1081 return retval;
1084 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1085 usbep->name, usbreq, usbreq->length,
1086 req->td_data, usbreq->buf);
1088 spin_lock_irqsave(&dev->lock, iflags);
1089 usbreq->actual = 0;
1090 usbreq->status = -EINPROGRESS;
1091 req->dma_done = 0;
1093 /* on empty queue just do first transfer */
1094 if (list_empty(&ep->queue)) {
1095 /* zlp */
1096 if (usbreq->length == 0) {
1097 /* IN zlp's are handled by hardware */
1098 complete_req(ep, req, 0);
1099 VDBG(dev, "%s: zlp\n", ep->ep.name);
1101 * if set_config or set_intf is waiting for ack by zlp
1102 * then set CSR_DONE
1104 if (dev->set_cfg_not_acked) {
1105 tmp = readl(&dev->regs->ctl);
1106 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1107 writel(tmp, &dev->regs->ctl);
1108 dev->set_cfg_not_acked = 0;
1110 /* setup command is ACK'ed now by zlp */
1111 if (dev->waiting_zlp_ack_ep0in) {
1112 /* clear NAK by writing CNAK in EP0_IN */
1113 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1114 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1115 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1116 dev->ep[UDC_EP0IN_IX].naking = 0;
1117 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1118 UDC_EP0IN_IX);
1119 dev->waiting_zlp_ack_ep0in = 0;
1121 goto finished;
1123 if (ep->dma) {
1124 retval = prep_dma(ep, req, GFP_ATOMIC);
1125 if (retval != 0)
1126 goto finished;
1127 /* write desc pointer to enable DMA */
1128 if (ep->in) {
1129 /* set HOST READY */
1130 req->td_data->status =
1131 AMD_ADDBITS(req->td_data->status,
1132 UDC_DMA_IN_STS_BS_HOST_READY,
1133 UDC_DMA_IN_STS_BS);
1136 /* disabled rx dma while descriptor update */
1137 if (!ep->in) {
1138 /* stop RDE timer */
1139 if (timer_pending(&udc_timer)) {
1140 set_rde = 0;
1141 mod_timer(&udc_timer, jiffies - 1);
1143 /* clear RDE */
1144 tmp = readl(&dev->regs->ctl);
1145 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1146 writel(tmp, &dev->regs->ctl);
1147 open_rxfifo = 1;
1150 * if BNA occurred then let BNA dummy desc.
1151 * point to current desc.
1153 if (ep->bna_occurred) {
1154 VDBG(dev, "copy to BNA dummy desc.\n");
1155 memcpy(ep->bna_dummy_req->td_data,
1156 req->td_data,
1157 sizeof(struct udc_data_dma));
1160 /* write desc pointer */
1161 writel(req->td_phys, &ep->regs->desptr);
1163 /* clear NAK by writing CNAK */
1164 if (ep->naking) {
1165 tmp = readl(&ep->regs->ctl);
1166 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1167 writel(tmp, &ep->regs->ctl);
1168 ep->naking = 0;
1169 UDC_QUEUE_CNAK(ep, ep->num);
1172 if (ep->in) {
1173 /* enable ep irq */
1174 tmp = readl(&dev->regs->ep_irqmsk);
1175 tmp &= AMD_UNMASK_BIT(ep->num);
1176 writel(tmp, &dev->regs->ep_irqmsk);
1178 } else if (ep->in) {
1179 /* enable ep irq */
1180 tmp = readl(&dev->regs->ep_irqmsk);
1181 tmp &= AMD_UNMASK_BIT(ep->num);
1182 writel(tmp, &dev->regs->ep_irqmsk);
1185 } else if (ep->dma) {
1188 * prep_dma not used for OUT ep's, this is not possible
1189 * for PPB modes, because of chain creation reasons
1191 if (ep->in) {
1192 retval = prep_dma(ep, req, GFP_ATOMIC);
1193 if (retval != 0)
1194 goto finished;
1197 VDBG(dev, "list_add\n");
1198 /* add request to ep queue */
1199 if (req) {
1201 list_add_tail(&req->queue, &ep->queue);
1203 /* open rxfifo if out data queued */
1204 if (open_rxfifo) {
1205 /* enable DMA */
1206 req->dma_going = 1;
1207 udc_set_rde(dev);
1208 if (ep->num != UDC_EP0OUT_IX)
1209 dev->data_ep_queued = 1;
1211 /* stop OUT naking */
1212 if (!ep->in) {
1213 if (!use_dma && udc_rxfifo_pending) {
1214 DBG(dev, "udc_queue(): pending bytes in "
1215 "rxfifo after nyet\n");
1217 * read pending bytes afer nyet:
1218 * referring to isr
1220 if (udc_rxfifo_read(ep, req)) {
1221 /* finish */
1222 complete_req(ep, req, 0);
1224 udc_rxfifo_pending = 0;
1230 finished:
1231 spin_unlock_irqrestore(&dev->lock, iflags);
1232 return retval;
1235 /* Empty request queue of an endpoint; caller holds spinlock */
1236 static void empty_req_queue(struct udc_ep *ep)
1238 struct udc_request *req;
1240 ep->halted = 1;
1241 while (!list_empty(&ep->queue)) {
1242 req = list_entry(ep->queue.next,
1243 struct udc_request,
1244 queue);
1245 complete_req(ep, req, -ESHUTDOWN);
1249 /* Dequeues a request packet, called by gadget driver */
1250 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1252 struct udc_ep *ep;
1253 struct udc_request *req;
1254 unsigned halted;
1255 unsigned long iflags;
1257 ep = container_of(usbep, struct udc_ep, ep);
1258 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259 && ep->num != UDC_EP0OUT_IX)))
1260 return -EINVAL;
1262 req = container_of(usbreq, struct udc_request, req);
1264 spin_lock_irqsave(&ep->dev->lock, iflags);
1265 halted = ep->halted;
1266 ep->halted = 1;
1267 /* request in processing or next one */
1268 if (ep->queue.next == &req->queue) {
1269 if (ep->dma && req->dma_going) {
1270 if (ep->in)
1271 ep->cancel_transfer = 1;
1272 else {
1273 u32 tmp;
1274 u32 dma_sts;
1275 /* stop potential receive DMA */
1276 tmp = readl(&udc->regs->ctl);
1277 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278 &udc->regs->ctl);
1280 * Cancel transfer later in ISR
1281 * if descriptor was touched.
1283 dma_sts = AMD_GETBITS(req->td_data->status,
1284 UDC_DMA_OUT_STS_BS);
1285 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286 ep->cancel_transfer = 1;
1287 else {
1288 udc_init_bna_dummy(ep->req);
1289 writel(ep->bna_dummy_req->td_phys,
1290 &ep->regs->desptr);
1292 writel(tmp, &udc->regs->ctl);
1296 complete_req(ep, req, -ECONNRESET);
1297 ep->halted = halted;
1299 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300 return 0;
1303 /* Halt or clear halt of endpoint */
1304 static int
1305 udc_set_halt(struct usb_ep *usbep, int halt)
1307 struct udc_ep *ep;
1308 u32 tmp;
1309 unsigned long iflags;
1310 int retval = 0;
1312 if (!usbep)
1313 return -EINVAL;
1315 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1317 ep = container_of(usbep, struct udc_ep, ep);
1318 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319 return -EINVAL;
1320 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321 return -ESHUTDOWN;
1323 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324 /* halt or clear halt */
1325 if (halt) {
1326 if (ep->num == 0)
1327 ep->dev->stall_ep0in = 1;
1328 else {
1330 * set STALL
1331 * rxfifo empty not taken into acount
1333 tmp = readl(&ep->regs->ctl);
1334 tmp |= AMD_BIT(UDC_EPCTL_S);
1335 writel(tmp, &ep->regs->ctl);
1336 ep->halted = 1;
1338 /* setup poll timer */
1339 if (!timer_pending(&udc_pollstall_timer)) {
1340 udc_pollstall_timer.expires = jiffies +
1341 HZ * UDC_POLLSTALL_TIMER_USECONDS
1342 / (1000 * 1000);
1343 if (!stop_pollstall_timer) {
1344 DBG(ep->dev, "start polltimer\n");
1345 add_timer(&udc_pollstall_timer);
1349 } else {
1350 /* ep is halted by set_halt() before */
1351 if (ep->halted) {
1352 tmp = readl(&ep->regs->ctl);
1353 /* clear stall bit */
1354 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355 /* clear NAK by writing CNAK */
1356 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357 writel(tmp, &ep->regs->ctl);
1358 ep->halted = 0;
1359 UDC_QUEUE_CNAK(ep, ep->num);
1362 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363 return retval;
1366 /* gadget interface */
1367 static const struct usb_ep_ops udc_ep_ops = {
1368 .enable = udc_ep_enable,
1369 .disable = udc_ep_disable,
1371 .alloc_request = udc_alloc_request,
1372 .free_request = udc_free_request,
1374 .queue = udc_queue,
1375 .dequeue = udc_dequeue,
1377 .set_halt = udc_set_halt,
1378 /* fifo ops not implemented */
1381 /*-------------------------------------------------------------------------*/
1383 /* Get frame counter (not implemented) */
1384 static int udc_get_frame(struct usb_gadget *gadget)
1386 return -EOPNOTSUPP;
1389 /* Remote wakeup gadget interface */
1390 static int udc_wakeup(struct usb_gadget *gadget)
1392 struct udc *dev;
1394 if (!gadget)
1395 return -EINVAL;
1396 dev = container_of(gadget, struct udc, gadget);
1397 udc_remote_wakeup(dev);
1399 return 0;
1402 static int amd5536_udc_start(struct usb_gadget *g,
1403 struct usb_gadget_driver *driver);
1404 static int amd5536_udc_stop(struct usb_gadget *g);
1406 static const struct usb_gadget_ops udc_ops = {
1407 .wakeup = udc_wakeup,
1408 .get_frame = udc_get_frame,
1409 .udc_start = amd5536_udc_start,
1410 .udc_stop = amd5536_udc_stop,
1413 /* Setups endpoint parameters, adds endpoints to linked list */
1414 static void make_ep_lists(struct udc *dev)
1416 /* make gadget ep lists */
1417 INIT_LIST_HEAD(&dev->gadget.ep_list);
1418 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1419 &dev->gadget.ep_list);
1420 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1421 &dev->gadget.ep_list);
1422 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1423 &dev->gadget.ep_list);
1425 /* fifo config */
1426 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1427 if (dev->gadget.speed == USB_SPEED_FULL)
1428 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1429 else if (dev->gadget.speed == USB_SPEED_HIGH)
1430 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1431 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1434 /* init registers at driver load time */
1435 static int startup_registers(struct udc *dev)
1437 u32 tmp;
1439 /* init controller by soft reset */
1440 udc_soft_reset(dev);
1442 /* mask not needed interrupts */
1443 udc_mask_unused_interrupts(dev);
1445 /* put into initial config */
1446 udc_basic_init(dev);
1447 /* link up all endpoints */
1448 udc_setup_endpoints(dev);
1450 /* program speed */
1451 tmp = readl(&dev->regs->cfg);
1452 if (use_fullspeed)
1453 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1454 else
1455 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1456 writel(tmp, &dev->regs->cfg);
1458 return 0;
1461 /* Inits UDC context */
1462 static void udc_basic_init(struct udc *dev)
1464 u32 tmp;
1466 DBG(dev, "udc_basic_init()\n");
1468 dev->gadget.speed = USB_SPEED_UNKNOWN;
1470 /* stop RDE timer */
1471 if (timer_pending(&udc_timer)) {
1472 set_rde = 0;
1473 mod_timer(&udc_timer, jiffies - 1);
1475 /* stop poll stall timer */
1476 if (timer_pending(&udc_pollstall_timer))
1477 mod_timer(&udc_pollstall_timer, jiffies - 1);
1478 /* disable DMA */
1479 tmp = readl(&dev->regs->ctl);
1480 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1481 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1482 writel(tmp, &dev->regs->ctl);
1484 /* enable dynamic CSR programming */
1485 tmp = readl(&dev->regs->cfg);
1486 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1487 /* set self powered */
1488 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1489 /* set remote wakeupable */
1490 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1491 writel(tmp, &dev->regs->cfg);
1493 make_ep_lists(dev);
1495 dev->data_ep_enabled = 0;
1496 dev->data_ep_queued = 0;
1499 /* Sets initial endpoint parameters */
1500 static void udc_setup_endpoints(struct udc *dev)
1502 struct udc_ep *ep;
1503 u32 tmp;
1504 u32 reg;
1506 DBG(dev, "udc_setup_endpoints()\n");
1508 /* read enum speed */
1509 tmp = readl(&dev->regs->sts);
1510 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1511 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1512 dev->gadget.speed = USB_SPEED_HIGH;
1513 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1514 dev->gadget.speed = USB_SPEED_FULL;
1516 /* set basic ep parameters */
1517 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1518 ep = &dev->ep[tmp];
1519 ep->dev = dev;
1520 ep->ep.name = ep_string[tmp];
1521 ep->num = tmp;
1522 /* txfifo size is calculated at enable time */
1523 ep->txfifo = dev->txfifo;
1525 /* fifo size */
1526 if (tmp < UDC_EPIN_NUM) {
1527 ep->fifo_depth = UDC_TXFIFO_SIZE;
1528 ep->in = 1;
1529 } else {
1530 ep->fifo_depth = UDC_RXFIFO_SIZE;
1531 ep->in = 0;
1534 ep->regs = &dev->ep_regs[tmp];
1536 * ep will be reset only if ep was not enabled before to avoid
1537 * disabling ep interrupts when ENUM interrupt occurs but ep is
1538 * not enabled by gadget driver
1540 if (!ep->ep.desc)
1541 ep_init(dev->regs, ep);
1543 if (use_dma) {
1545 * ep->dma is not really used, just to indicate that
1546 * DMA is active: remove this
1547 * dma regs = dev control regs
1549 ep->dma = &dev->regs->ctl;
1551 /* nak OUT endpoints until enable - not for ep0 */
1552 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1553 && tmp > UDC_EPIN_NUM) {
1554 /* set NAK */
1555 reg = readl(&dev->ep[tmp].regs->ctl);
1556 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1557 writel(reg, &dev->ep[tmp].regs->ctl);
1558 dev->ep[tmp].naking = 1;
1563 /* EP0 max packet */
1564 if (dev->gadget.speed == USB_SPEED_FULL) {
1565 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1566 UDC_FS_EP0IN_MAX_PKT_SIZE);
1567 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1568 UDC_FS_EP0OUT_MAX_PKT_SIZE);
1569 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1570 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1571 UDC_EP0IN_MAX_PKT_SIZE);
1572 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1573 UDC_EP0OUT_MAX_PKT_SIZE);
1577 * with suspend bug workaround, ep0 params for gadget driver
1578 * are set at gadget driver bind() call
1580 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1581 dev->ep[UDC_EP0IN_IX].halted = 0;
1582 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1584 /* init cfg/alt/int */
1585 dev->cur_config = 0;
1586 dev->cur_intf = 0;
1587 dev->cur_alt = 0;
1590 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1591 static void usb_connect(struct udc *dev)
1594 dev_info(&dev->pdev->dev, "USB Connect\n");
1596 dev->connected = 1;
1598 /* put into initial config */
1599 udc_basic_init(dev);
1601 /* enable device setup interrupts */
1602 udc_enable_dev_setup_interrupts(dev);
1606 * Calls gadget with disconnect event and resets the UDC and makes
1607 * initial bringup to be ready for ep0 events
1609 static void usb_disconnect(struct udc *dev)
1612 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1614 dev->connected = 0;
1616 /* mask interrupts */
1617 udc_mask_unused_interrupts(dev);
1619 /* REVISIT there doesn't seem to be a point to having this
1620 * talk to a tasklet ... do it directly, we already hold
1621 * the spinlock needed to process the disconnect.
1624 tasklet_schedule(&disconnect_tasklet);
1627 /* Tasklet for disconnect to be outside of interrupt context */
1628 static void udc_tasklet_disconnect(unsigned long par)
1630 struct udc *dev = (struct udc *)(*((struct udc **) par));
1631 u32 tmp;
1633 DBG(dev, "Tasklet disconnect\n");
1634 spin_lock_irq(&dev->lock);
1636 if (dev->driver) {
1637 spin_unlock(&dev->lock);
1638 dev->driver->disconnect(&dev->gadget);
1639 spin_lock(&dev->lock);
1641 /* empty queues */
1642 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1643 empty_req_queue(&dev->ep[tmp]);
1647 /* disable ep0 */
1648 ep_init(dev->regs,
1649 &dev->ep[UDC_EP0IN_IX]);
1652 if (!soft_reset_occured) {
1653 /* init controller by soft reset */
1654 udc_soft_reset(dev);
1655 soft_reset_occured++;
1658 /* re-enable dev interrupts */
1659 udc_enable_dev_setup_interrupts(dev);
1660 /* back to full speed ? */
1661 if (use_fullspeed) {
1662 tmp = readl(&dev->regs->cfg);
1663 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1664 writel(tmp, &dev->regs->cfg);
1667 spin_unlock_irq(&dev->lock);
1670 /* Reset the UDC core */
1671 static void udc_soft_reset(struct udc *dev)
1673 unsigned long flags;
1675 DBG(dev, "Soft reset\n");
1677 * reset possible waiting interrupts, because int.
1678 * status is lost after soft reset,
1679 * ep int. status reset
1681 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1682 /* device int. status reset */
1683 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1685 spin_lock_irqsave(&udc_irq_spinlock, flags);
1686 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1687 readl(&dev->regs->cfg);
1688 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1692 /* RDE timer callback to set RDE bit */
1693 static void udc_timer_function(unsigned long v)
1695 u32 tmp;
1697 spin_lock_irq(&udc_irq_spinlock);
1699 if (set_rde > 0) {
1701 * open the fifo if fifo was filled on last timer call
1702 * conditionally
1704 if (set_rde > 1) {
1705 /* set RDE to receive setup data */
1706 tmp = readl(&udc->regs->ctl);
1707 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1708 writel(tmp, &udc->regs->ctl);
1709 set_rde = -1;
1710 } else if (readl(&udc->regs->sts)
1711 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1713 * if fifo empty setup polling, do not just
1714 * open the fifo
1716 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1717 if (!stop_timer)
1718 add_timer(&udc_timer);
1719 } else {
1721 * fifo contains data now, setup timer for opening
1722 * the fifo when timer expires to be able to receive
1723 * setup packets, when data packets gets queued by
1724 * gadget layer then timer will forced to expire with
1725 * set_rde=0 (RDE is set in udc_queue())
1727 set_rde++;
1728 /* debug: lhadmot_timer_start = 221070 */
1729 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1730 if (!stop_timer)
1731 add_timer(&udc_timer);
1734 } else
1735 set_rde = -1; /* RDE was set by udc_queue() */
1736 spin_unlock_irq(&udc_irq_spinlock);
1737 if (stop_timer)
1738 complete(&on_exit);
1742 /* Handle halt state, used in stall poll timer */
1743 static void udc_handle_halt_state(struct udc_ep *ep)
1745 u32 tmp;
1746 /* set stall as long not halted */
1747 if (ep->halted == 1) {
1748 tmp = readl(&ep->regs->ctl);
1749 /* STALL cleared ? */
1750 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1752 * FIXME: MSC spec requires that stall remains
1753 * even on receivng of CLEAR_FEATURE HALT. So
1754 * we would set STALL again here to be compliant.
1755 * But with current mass storage drivers this does
1756 * not work (would produce endless host retries).
1757 * So we clear halt on CLEAR_FEATURE.
1759 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1760 tmp |= AMD_BIT(UDC_EPCTL_S);
1761 writel(tmp, &ep->regs->ctl);*/
1763 /* clear NAK by writing CNAK */
1764 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1765 writel(tmp, &ep->regs->ctl);
1766 ep->halted = 0;
1767 UDC_QUEUE_CNAK(ep, ep->num);
1772 /* Stall timer callback to poll S bit and set it again after */
1773 static void udc_pollstall_timer_function(unsigned long v)
1775 struct udc_ep *ep;
1776 int halted = 0;
1778 spin_lock_irq(&udc_stall_spinlock);
1780 * only one IN and OUT endpoints are handled
1781 * IN poll stall
1783 ep = &udc->ep[UDC_EPIN_IX];
1784 udc_handle_halt_state(ep);
1785 if (ep->halted)
1786 halted = 1;
1787 /* OUT poll stall */
1788 ep = &udc->ep[UDC_EPOUT_IX];
1789 udc_handle_halt_state(ep);
1790 if (ep->halted)
1791 halted = 1;
1793 /* setup timer again when still halted */
1794 if (!stop_pollstall_timer && halted) {
1795 udc_pollstall_timer.expires = jiffies +
1796 HZ * UDC_POLLSTALL_TIMER_USECONDS
1797 / (1000 * 1000);
1798 add_timer(&udc_pollstall_timer);
1800 spin_unlock_irq(&udc_stall_spinlock);
1802 if (stop_pollstall_timer)
1803 complete(&on_pollstall_exit);
1806 /* Inits endpoint 0 so that SETUP packets are processed */
1807 static void activate_control_endpoints(struct udc *dev)
1809 u32 tmp;
1811 DBG(dev, "activate_control_endpoints\n");
1813 /* flush fifo */
1814 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1815 tmp |= AMD_BIT(UDC_EPCTL_F);
1816 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1818 /* set ep0 directions */
1819 dev->ep[UDC_EP0IN_IX].in = 1;
1820 dev->ep[UDC_EP0OUT_IX].in = 0;
1822 /* set buffer size (tx fifo entries) of EP0_IN */
1823 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1824 if (dev->gadget.speed == USB_SPEED_FULL)
1825 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1826 UDC_EPIN_BUFF_SIZE);
1827 else if (dev->gadget.speed == USB_SPEED_HIGH)
1828 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1829 UDC_EPIN_BUFF_SIZE);
1830 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1832 /* set max packet size of EP0_IN */
1833 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1834 if (dev->gadget.speed == USB_SPEED_FULL)
1835 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1836 UDC_EP_MAX_PKT_SIZE);
1837 else if (dev->gadget.speed == USB_SPEED_HIGH)
1838 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1839 UDC_EP_MAX_PKT_SIZE);
1840 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1842 /* set max packet size of EP0_OUT */
1843 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1844 if (dev->gadget.speed == USB_SPEED_FULL)
1845 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1846 UDC_EP_MAX_PKT_SIZE);
1847 else if (dev->gadget.speed == USB_SPEED_HIGH)
1848 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1849 UDC_EP_MAX_PKT_SIZE);
1850 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1852 /* set max packet size of EP0 in UDC CSR */
1853 tmp = readl(&dev->csr->ne[0]);
1854 if (dev->gadget.speed == USB_SPEED_FULL)
1855 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1856 UDC_CSR_NE_MAX_PKT);
1857 else if (dev->gadget.speed == USB_SPEED_HIGH)
1858 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1859 UDC_CSR_NE_MAX_PKT);
1860 writel(tmp, &dev->csr->ne[0]);
1862 if (use_dma) {
1863 dev->ep[UDC_EP0OUT_IX].td->status |=
1864 AMD_BIT(UDC_DMA_OUT_STS_L);
1865 /* write dma desc address */
1866 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1867 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1868 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1869 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1870 /* stop RDE timer */
1871 if (timer_pending(&udc_timer)) {
1872 set_rde = 0;
1873 mod_timer(&udc_timer, jiffies - 1);
1875 /* stop pollstall timer */
1876 if (timer_pending(&udc_pollstall_timer))
1877 mod_timer(&udc_pollstall_timer, jiffies - 1);
1878 /* enable DMA */
1879 tmp = readl(&dev->regs->ctl);
1880 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1881 | AMD_BIT(UDC_DEVCTL_RDE)
1882 | AMD_BIT(UDC_DEVCTL_TDE);
1883 if (use_dma_bufferfill_mode)
1884 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1885 else if (use_dma_ppb_du)
1886 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1887 writel(tmp, &dev->regs->ctl);
1890 /* clear NAK by writing CNAK for EP0IN */
1891 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1892 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1893 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1894 dev->ep[UDC_EP0IN_IX].naking = 0;
1895 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1897 /* clear NAK by writing CNAK for EP0OUT */
1898 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1899 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1900 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1901 dev->ep[UDC_EP0OUT_IX].naking = 0;
1902 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1905 /* Make endpoint 0 ready for control traffic */
1906 static int setup_ep0(struct udc *dev)
1908 activate_control_endpoints(dev);
1909 /* enable ep0 interrupts */
1910 udc_enable_ep0_interrupts(dev);
1911 /* enable device setup interrupts */
1912 udc_enable_dev_setup_interrupts(dev);
1914 return 0;
1917 /* Called by gadget driver to register itself */
1918 static int amd5536_udc_start(struct usb_gadget *g,
1919 struct usb_gadget_driver *driver)
1921 struct udc *dev = to_amd5536_udc(g);
1922 u32 tmp;
1924 driver->driver.bus = NULL;
1925 dev->driver = driver;
1927 /* Some gadget drivers use both ep0 directions.
1928 * NOTE: to gadget driver, ep0 is just one endpoint...
1930 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1931 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1933 /* get ready for ep0 traffic */
1934 setup_ep0(dev);
1936 /* clear SD */
1937 tmp = readl(&dev->regs->ctl);
1938 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1939 writel(tmp, &dev->regs->ctl);
1941 usb_connect(dev);
1943 return 0;
1946 /* shutdown requests and disconnect from gadget */
1947 static void
1948 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1949 __releases(dev->lock)
1950 __acquires(dev->lock)
1952 int tmp;
1954 /* empty queues and init hardware */
1955 udc_basic_init(dev);
1957 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1958 empty_req_queue(&dev->ep[tmp]);
1960 udc_setup_endpoints(dev);
1963 /* Called by gadget driver to unregister itself */
1964 static int amd5536_udc_stop(struct usb_gadget *g)
1966 struct udc *dev = to_amd5536_udc(g);
1967 unsigned long flags;
1968 u32 tmp;
1970 spin_lock_irqsave(&dev->lock, flags);
1971 udc_mask_unused_interrupts(dev);
1972 shutdown(dev, NULL);
1973 spin_unlock_irqrestore(&dev->lock, flags);
1975 dev->driver = NULL;
1977 /* set SD */
1978 tmp = readl(&dev->regs->ctl);
1979 tmp |= AMD_BIT(UDC_DEVCTL_SD);
1980 writel(tmp, &dev->regs->ctl);
1982 return 0;
1985 /* Clear pending NAK bits */
1986 static void udc_process_cnak_queue(struct udc *dev)
1988 u32 tmp;
1989 u32 reg;
1991 /* check epin's */
1992 DBG(dev, "CNAK pending queue processing\n");
1993 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
1994 if (cnak_pending & (1 << tmp)) {
1995 DBG(dev, "CNAK pending for ep%d\n", tmp);
1996 /* clear NAK by writing CNAK */
1997 reg = readl(&dev->ep[tmp].regs->ctl);
1998 reg |= AMD_BIT(UDC_EPCTL_CNAK);
1999 writel(reg, &dev->ep[tmp].regs->ctl);
2000 dev->ep[tmp].naking = 0;
2001 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2004 /* ... and ep0out */
2005 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2006 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2007 /* clear NAK by writing CNAK */
2008 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2009 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2010 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2011 dev->ep[UDC_EP0OUT_IX].naking = 0;
2012 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2013 dev->ep[UDC_EP0OUT_IX].num);
2017 /* Enabling RX DMA after setup packet */
2018 static void udc_ep0_set_rde(struct udc *dev)
2020 if (use_dma) {
2022 * only enable RXDMA when no data endpoint enabled
2023 * or data is queued
2025 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2026 udc_set_rde(dev);
2027 } else {
2029 * setup timer for enabling RDE (to not enable
2030 * RXFIFO DMA for data endpoints to early)
2032 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2033 udc_timer.expires =
2034 jiffies + HZ/UDC_RDE_TIMER_DIV;
2035 set_rde = 1;
2036 if (!stop_timer)
2037 add_timer(&udc_timer);
2044 /* Interrupt handler for data OUT traffic */
2045 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2047 irqreturn_t ret_val = IRQ_NONE;
2048 u32 tmp;
2049 struct udc_ep *ep;
2050 struct udc_request *req;
2051 unsigned int count;
2052 struct udc_data_dma *td = NULL;
2053 unsigned dma_done;
2055 VDBG(dev, "ep%d irq\n", ep_ix);
2056 ep = &dev->ep[ep_ix];
2058 tmp = readl(&ep->regs->sts);
2059 if (use_dma) {
2060 /* BNA event ? */
2061 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2062 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2063 ep->num, readl(&ep->regs->desptr));
2064 /* clear BNA */
2065 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2066 if (!ep->cancel_transfer)
2067 ep->bna_occurred = 1;
2068 else
2069 ep->cancel_transfer = 0;
2070 ret_val = IRQ_HANDLED;
2071 goto finished;
2074 /* HE event ? */
2075 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2076 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2078 /* clear HE */
2079 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2080 ret_val = IRQ_HANDLED;
2081 goto finished;
2084 if (!list_empty(&ep->queue)) {
2086 /* next request */
2087 req = list_entry(ep->queue.next,
2088 struct udc_request, queue);
2089 } else {
2090 req = NULL;
2091 udc_rxfifo_pending = 1;
2093 VDBG(dev, "req = %p\n", req);
2094 /* fifo mode */
2095 if (!use_dma) {
2097 /* read fifo */
2098 if (req && udc_rxfifo_read(ep, req)) {
2099 ret_val = IRQ_HANDLED;
2101 /* finish */
2102 complete_req(ep, req, 0);
2103 /* next request */
2104 if (!list_empty(&ep->queue) && !ep->halted) {
2105 req = list_entry(ep->queue.next,
2106 struct udc_request, queue);
2107 } else
2108 req = NULL;
2111 /* DMA */
2112 } else if (!ep->cancel_transfer && req != NULL) {
2113 ret_val = IRQ_HANDLED;
2115 /* check for DMA done */
2116 if (!use_dma_ppb) {
2117 dma_done = AMD_GETBITS(req->td_data->status,
2118 UDC_DMA_OUT_STS_BS);
2119 /* packet per buffer mode - rx bytes */
2120 } else {
2122 * if BNA occurred then recover desc. from
2123 * BNA dummy desc.
2125 if (ep->bna_occurred) {
2126 VDBG(dev, "Recover desc. from BNA dummy\n");
2127 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2128 sizeof(struct udc_data_dma));
2129 ep->bna_occurred = 0;
2130 udc_init_bna_dummy(ep->req);
2132 td = udc_get_last_dma_desc(req);
2133 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2135 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2136 /* buffer fill mode - rx bytes */
2137 if (!use_dma_ppb) {
2138 /* received number bytes */
2139 count = AMD_GETBITS(req->td_data->status,
2140 UDC_DMA_OUT_STS_RXBYTES);
2141 VDBG(dev, "rx bytes=%u\n", count);
2142 /* packet per buffer mode - rx bytes */
2143 } else {
2144 VDBG(dev, "req->td_data=%p\n", req->td_data);
2145 VDBG(dev, "last desc = %p\n", td);
2146 /* received number bytes */
2147 if (use_dma_ppb_du) {
2148 /* every desc. counts bytes */
2149 count = udc_get_ppbdu_rxbytes(req);
2150 } else {
2151 /* last desc. counts bytes */
2152 count = AMD_GETBITS(td->status,
2153 UDC_DMA_OUT_STS_RXBYTES);
2154 if (!count && req->req.length
2155 == UDC_DMA_MAXPACKET) {
2157 * on 64k packets the RXBYTES
2158 * field is zero
2160 count = UDC_DMA_MAXPACKET;
2163 VDBG(dev, "last desc rx bytes=%u\n", count);
2166 tmp = req->req.length - req->req.actual;
2167 if (count > tmp) {
2168 if ((tmp % ep->ep.maxpacket) != 0) {
2169 DBG(dev, "%s: rx %db, space=%db\n",
2170 ep->ep.name, count, tmp);
2171 req->req.status = -EOVERFLOW;
2173 count = tmp;
2175 req->req.actual += count;
2176 req->dma_going = 0;
2177 /* complete request */
2178 complete_req(ep, req, 0);
2180 /* next request */
2181 if (!list_empty(&ep->queue) && !ep->halted) {
2182 req = list_entry(ep->queue.next,
2183 struct udc_request,
2184 queue);
2186 * DMA may be already started by udc_queue()
2187 * called by gadget drivers completion
2188 * routine. This happens when queue
2189 * holds one request only.
2191 if (req->dma_going == 0) {
2192 /* next dma */
2193 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2194 goto finished;
2195 /* write desc pointer */
2196 writel(req->td_phys,
2197 &ep->regs->desptr);
2198 req->dma_going = 1;
2199 /* enable DMA */
2200 udc_set_rde(dev);
2202 } else {
2204 * implant BNA dummy descriptor to allow
2205 * RXFIFO opening by RDE
2207 if (ep->bna_dummy_req) {
2208 /* write desc pointer */
2209 writel(ep->bna_dummy_req->td_phys,
2210 &ep->regs->desptr);
2211 ep->bna_occurred = 0;
2215 * schedule timer for setting RDE if queue
2216 * remains empty to allow ep0 packets pass
2217 * through
2219 if (set_rde != 0
2220 && !timer_pending(&udc_timer)) {
2221 udc_timer.expires =
2222 jiffies
2223 + HZ*UDC_RDE_TIMER_SECONDS;
2224 set_rde = 1;
2225 if (!stop_timer)
2226 add_timer(&udc_timer);
2228 if (ep->num != UDC_EP0OUT_IX)
2229 dev->data_ep_queued = 0;
2232 } else {
2234 * RX DMA must be reenabled for each desc in PPBDU mode
2235 * and must be enabled for PPBNDU mode in case of BNA
2237 udc_set_rde(dev);
2240 } else if (ep->cancel_transfer) {
2241 ret_val = IRQ_HANDLED;
2242 ep->cancel_transfer = 0;
2245 /* check pending CNAKS */
2246 if (cnak_pending) {
2247 /* CNAk processing when rxfifo empty only */
2248 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2249 udc_process_cnak_queue(dev);
2252 /* clear OUT bits in ep status */
2253 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2254 finished:
2255 return ret_val;
2258 /* Interrupt handler for data IN traffic */
2259 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2261 irqreturn_t ret_val = IRQ_NONE;
2262 u32 tmp;
2263 u32 epsts;
2264 struct udc_ep *ep;
2265 struct udc_request *req;
2266 struct udc_data_dma *td;
2267 unsigned dma_done;
2268 unsigned len;
2270 ep = &dev->ep[ep_ix];
2272 epsts = readl(&ep->regs->sts);
2273 if (use_dma) {
2274 /* BNA ? */
2275 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2276 dev_err(&dev->pdev->dev,
2277 "BNA ep%din occurred - DESPTR = %08lx\n",
2278 ep->num,
2279 (unsigned long) readl(&ep->regs->desptr));
2281 /* clear BNA */
2282 writel(epsts, &ep->regs->sts);
2283 ret_val = IRQ_HANDLED;
2284 goto finished;
2287 /* HE event ? */
2288 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2289 dev_err(&dev->pdev->dev,
2290 "HE ep%dn occurred - DESPTR = %08lx\n",
2291 ep->num, (unsigned long) readl(&ep->regs->desptr));
2293 /* clear HE */
2294 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2295 ret_val = IRQ_HANDLED;
2296 goto finished;
2299 /* DMA completion */
2300 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2301 VDBG(dev, "TDC set- completion\n");
2302 ret_val = IRQ_HANDLED;
2303 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2304 req = list_entry(ep->queue.next,
2305 struct udc_request, queue);
2307 * length bytes transferred
2308 * check dma done of last desc. in PPBDU mode
2310 if (use_dma_ppb_du) {
2311 td = udc_get_last_dma_desc(req);
2312 if (td) {
2313 dma_done =
2314 AMD_GETBITS(td->status,
2315 UDC_DMA_IN_STS_BS);
2316 /* don't care DMA done */
2317 req->req.actual = req->req.length;
2319 } else {
2320 /* assume all bytes transferred */
2321 req->req.actual = req->req.length;
2324 if (req->req.actual == req->req.length) {
2325 /* complete req */
2326 complete_req(ep, req, 0);
2327 req->dma_going = 0;
2328 /* further request available ? */
2329 if (list_empty(&ep->queue)) {
2330 /* disable interrupt */
2331 tmp = readl(&dev->regs->ep_irqmsk);
2332 tmp |= AMD_BIT(ep->num);
2333 writel(tmp, &dev->regs->ep_irqmsk);
2337 ep->cancel_transfer = 0;
2341 * status reg has IN bit set and TDC not set (if TDC was handled,
2342 * IN must not be handled (UDC defect) ?
2344 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2345 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2346 ret_val = IRQ_HANDLED;
2347 if (!list_empty(&ep->queue)) {
2348 /* next request */
2349 req = list_entry(ep->queue.next,
2350 struct udc_request, queue);
2351 /* FIFO mode */
2352 if (!use_dma) {
2353 /* write fifo */
2354 udc_txfifo_write(ep, &req->req);
2355 len = req->req.length - req->req.actual;
2356 if (len > ep->ep.maxpacket)
2357 len = ep->ep.maxpacket;
2358 req->req.actual += len;
2359 if (req->req.actual == req->req.length
2360 || (len != ep->ep.maxpacket)) {
2361 /* complete req */
2362 complete_req(ep, req, 0);
2364 /* DMA */
2365 } else if (req && !req->dma_going) {
2366 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2367 req, req->td_data);
2368 if (req->td_data) {
2370 req->dma_going = 1;
2373 * unset L bit of first desc.
2374 * for chain
2376 if (use_dma_ppb && req->req.length >
2377 ep->ep.maxpacket) {
2378 req->td_data->status &=
2379 AMD_CLEAR_BIT(
2380 UDC_DMA_IN_STS_L);
2383 /* write desc pointer */
2384 writel(req->td_phys, &ep->regs->desptr);
2386 /* set HOST READY */
2387 req->td_data->status =
2388 AMD_ADDBITS(
2389 req->td_data->status,
2390 UDC_DMA_IN_STS_BS_HOST_READY,
2391 UDC_DMA_IN_STS_BS);
2393 /* set poll demand bit */
2394 tmp = readl(&ep->regs->ctl);
2395 tmp |= AMD_BIT(UDC_EPCTL_P);
2396 writel(tmp, &ep->regs->ctl);
2400 } else if (!use_dma && ep->in) {
2401 /* disable interrupt */
2402 tmp = readl(
2403 &dev->regs->ep_irqmsk);
2404 tmp |= AMD_BIT(ep->num);
2405 writel(tmp,
2406 &dev->regs->ep_irqmsk);
2409 /* clear status bits */
2410 writel(epsts, &ep->regs->sts);
2412 finished:
2413 return ret_val;
2417 /* Interrupt handler for Control OUT traffic */
2418 static irqreturn_t udc_control_out_isr(struct udc *dev)
2419 __releases(dev->lock)
2420 __acquires(dev->lock)
2422 irqreturn_t ret_val = IRQ_NONE;
2423 u32 tmp;
2424 int setup_supported;
2425 u32 count;
2426 int set = 0;
2427 struct udc_ep *ep;
2428 struct udc_ep *ep_tmp;
2430 ep = &dev->ep[UDC_EP0OUT_IX];
2432 /* clear irq */
2433 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2435 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2436 /* check BNA and clear if set */
2437 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2438 VDBG(dev, "ep0: BNA set\n");
2439 writel(AMD_BIT(UDC_EPSTS_BNA),
2440 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2441 ep->bna_occurred = 1;
2442 ret_val = IRQ_HANDLED;
2443 goto finished;
2446 /* type of data: SETUP or DATA 0 bytes */
2447 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2448 VDBG(dev, "data_typ = %x\n", tmp);
2450 /* setup data */
2451 if (tmp == UDC_EPSTS_OUT_SETUP) {
2452 ret_val = IRQ_HANDLED;
2454 ep->dev->stall_ep0in = 0;
2455 dev->waiting_zlp_ack_ep0in = 0;
2457 /* set NAK for EP0_IN */
2458 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2459 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2460 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2461 dev->ep[UDC_EP0IN_IX].naking = 1;
2462 /* get setup data */
2463 if (use_dma) {
2465 /* clear OUT bits in ep status */
2466 writel(UDC_EPSTS_OUT_CLEAR,
2467 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2469 setup_data.data[0] =
2470 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2471 setup_data.data[1] =
2472 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2473 /* set HOST READY */
2474 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2475 UDC_DMA_STP_STS_BS_HOST_READY;
2476 } else {
2477 /* read fifo */
2478 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2481 /* determine direction of control data */
2482 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2483 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2484 /* enable RDE */
2485 udc_ep0_set_rde(dev);
2486 set = 0;
2487 } else {
2488 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2490 * implant BNA dummy descriptor to allow RXFIFO opening
2491 * by RDE
2493 if (ep->bna_dummy_req) {
2494 /* write desc pointer */
2495 writel(ep->bna_dummy_req->td_phys,
2496 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2497 ep->bna_occurred = 0;
2500 set = 1;
2501 dev->ep[UDC_EP0OUT_IX].naking = 1;
2503 * setup timer for enabling RDE (to not enable
2504 * RXFIFO DMA for data to early)
2506 set_rde = 1;
2507 if (!timer_pending(&udc_timer)) {
2508 udc_timer.expires = jiffies +
2509 HZ/UDC_RDE_TIMER_DIV;
2510 if (!stop_timer)
2511 add_timer(&udc_timer);
2516 * mass storage reset must be processed here because
2517 * next packet may be a CLEAR_FEATURE HALT which would not
2518 * clear the stall bit when no STALL handshake was received
2519 * before (autostall can cause this)
2521 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2522 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2523 DBG(dev, "MSC Reset\n");
2525 * clear stall bits
2526 * only one IN and OUT endpoints are handled
2528 ep_tmp = &udc->ep[UDC_EPIN_IX];
2529 udc_set_halt(&ep_tmp->ep, 0);
2530 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2531 udc_set_halt(&ep_tmp->ep, 0);
2534 /* call gadget with setup data received */
2535 spin_unlock(&dev->lock);
2536 setup_supported = dev->driver->setup(&dev->gadget,
2537 &setup_data.request);
2538 spin_lock(&dev->lock);
2540 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2541 /* ep0 in returns data (not zlp) on IN phase */
2542 if (setup_supported >= 0 && setup_supported <
2543 UDC_EP0IN_MAXPACKET) {
2544 /* clear NAK by writing CNAK in EP0_IN */
2545 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2546 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2547 dev->ep[UDC_EP0IN_IX].naking = 0;
2548 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2550 /* if unsupported request then stall */
2551 } else if (setup_supported < 0) {
2552 tmp |= AMD_BIT(UDC_EPCTL_S);
2553 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2554 } else
2555 dev->waiting_zlp_ack_ep0in = 1;
2558 /* clear NAK by writing CNAK in EP0_OUT */
2559 if (!set) {
2560 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2561 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2562 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2563 dev->ep[UDC_EP0OUT_IX].naking = 0;
2564 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2567 if (!use_dma) {
2568 /* clear OUT bits in ep status */
2569 writel(UDC_EPSTS_OUT_CLEAR,
2570 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2573 /* data packet 0 bytes */
2574 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2575 /* clear OUT bits in ep status */
2576 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2578 /* get setup data: only 0 packet */
2579 if (use_dma) {
2580 /* no req if 0 packet, just reactivate */
2581 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2582 VDBG(dev, "ZLP\n");
2584 /* set HOST READY */
2585 dev->ep[UDC_EP0OUT_IX].td->status =
2586 AMD_ADDBITS(
2587 dev->ep[UDC_EP0OUT_IX].td->status,
2588 UDC_DMA_OUT_STS_BS_HOST_READY,
2589 UDC_DMA_OUT_STS_BS);
2590 /* enable RDE */
2591 udc_ep0_set_rde(dev);
2592 ret_val = IRQ_HANDLED;
2594 } else {
2595 /* control write */
2596 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2597 /* re-program desc. pointer for possible ZLPs */
2598 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2599 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2600 /* enable RDE */
2601 udc_ep0_set_rde(dev);
2603 } else {
2605 /* received number bytes */
2606 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2607 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2608 /* out data for fifo mode not working */
2609 count = 0;
2611 /* 0 packet or real data ? */
2612 if (count != 0) {
2613 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2614 } else {
2615 /* dummy read confirm */
2616 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2617 ret_val = IRQ_HANDLED;
2622 /* check pending CNAKS */
2623 if (cnak_pending) {
2624 /* CNAk processing when rxfifo empty only */
2625 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2626 udc_process_cnak_queue(dev);
2629 finished:
2630 return ret_val;
2633 /* Interrupt handler for Control IN traffic */
2634 static irqreturn_t udc_control_in_isr(struct udc *dev)
2636 irqreturn_t ret_val = IRQ_NONE;
2637 u32 tmp;
2638 struct udc_ep *ep;
2639 struct udc_request *req;
2640 unsigned len;
2642 ep = &dev->ep[UDC_EP0IN_IX];
2644 /* clear irq */
2645 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2647 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2648 /* DMA completion */
2649 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2650 VDBG(dev, "isr: TDC clear\n");
2651 ret_val = IRQ_HANDLED;
2653 /* clear TDC bit */
2654 writel(AMD_BIT(UDC_EPSTS_TDC),
2655 &dev->ep[UDC_EP0IN_IX].regs->sts);
2657 /* status reg has IN bit set ? */
2658 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2659 ret_val = IRQ_HANDLED;
2661 if (ep->dma) {
2662 /* clear IN bit */
2663 writel(AMD_BIT(UDC_EPSTS_IN),
2664 &dev->ep[UDC_EP0IN_IX].regs->sts);
2666 if (dev->stall_ep0in) {
2667 DBG(dev, "stall ep0in\n");
2668 /* halt ep0in */
2669 tmp = readl(&ep->regs->ctl);
2670 tmp |= AMD_BIT(UDC_EPCTL_S);
2671 writel(tmp, &ep->regs->ctl);
2672 } else {
2673 if (!list_empty(&ep->queue)) {
2674 /* next request */
2675 req = list_entry(ep->queue.next,
2676 struct udc_request, queue);
2678 if (ep->dma) {
2679 /* write desc pointer */
2680 writel(req->td_phys, &ep->regs->desptr);
2681 /* set HOST READY */
2682 req->td_data->status =
2683 AMD_ADDBITS(
2684 req->td_data->status,
2685 UDC_DMA_STP_STS_BS_HOST_READY,
2686 UDC_DMA_STP_STS_BS);
2688 /* set poll demand bit */
2689 tmp =
2690 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2691 tmp |= AMD_BIT(UDC_EPCTL_P);
2692 writel(tmp,
2693 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2695 /* all bytes will be transferred */
2696 req->req.actual = req->req.length;
2698 /* complete req */
2699 complete_req(ep, req, 0);
2701 } else {
2702 /* write fifo */
2703 udc_txfifo_write(ep, &req->req);
2705 /* lengh bytes transferred */
2706 len = req->req.length - req->req.actual;
2707 if (len > ep->ep.maxpacket)
2708 len = ep->ep.maxpacket;
2710 req->req.actual += len;
2711 if (req->req.actual == req->req.length
2712 || (len != ep->ep.maxpacket)) {
2713 /* complete req */
2714 complete_req(ep, req, 0);
2720 ep->halted = 0;
2721 dev->stall_ep0in = 0;
2722 if (!ep->dma) {
2723 /* clear IN bit */
2724 writel(AMD_BIT(UDC_EPSTS_IN),
2725 &dev->ep[UDC_EP0IN_IX].regs->sts);
2729 return ret_val;
2733 /* Interrupt handler for global device events */
2734 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2735 __releases(dev->lock)
2736 __acquires(dev->lock)
2738 irqreturn_t ret_val = IRQ_NONE;
2739 u32 tmp;
2740 u32 cfg;
2741 struct udc_ep *ep;
2742 u16 i;
2743 u8 udc_csr_epix;
2745 /* SET_CONFIG irq ? */
2746 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2747 ret_val = IRQ_HANDLED;
2749 /* read config value */
2750 tmp = readl(&dev->regs->sts);
2751 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2752 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2753 dev->cur_config = cfg;
2754 dev->set_cfg_not_acked = 1;
2756 /* make usb request for gadget driver */
2757 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2758 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2759 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2761 /* programm the NE registers */
2762 for (i = 0; i < UDC_EP_NUM; i++) {
2763 ep = &dev->ep[i];
2764 if (ep->in) {
2766 /* ep ix in UDC CSR register space */
2767 udc_csr_epix = ep->num;
2770 /* OUT ep */
2771 } else {
2772 /* ep ix in UDC CSR register space */
2773 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2776 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2777 /* ep cfg */
2778 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2779 UDC_CSR_NE_CFG);
2780 /* write reg */
2781 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2783 /* clear stall bits */
2784 ep->halted = 0;
2785 tmp = readl(&ep->regs->ctl);
2786 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2787 writel(tmp, &ep->regs->ctl);
2789 /* call gadget zero with setup data received */
2790 spin_unlock(&dev->lock);
2791 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2792 spin_lock(&dev->lock);
2794 } /* SET_INTERFACE ? */
2795 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2796 ret_val = IRQ_HANDLED;
2798 dev->set_cfg_not_acked = 1;
2799 /* read interface and alt setting values */
2800 tmp = readl(&dev->regs->sts);
2801 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2802 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2804 /* make usb request for gadget driver */
2805 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2806 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2807 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2808 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2809 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2811 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2812 dev->cur_alt, dev->cur_intf);
2814 /* programm the NE registers */
2815 for (i = 0; i < UDC_EP_NUM; i++) {
2816 ep = &dev->ep[i];
2817 if (ep->in) {
2819 /* ep ix in UDC CSR register space */
2820 udc_csr_epix = ep->num;
2823 /* OUT ep */
2824 } else {
2825 /* ep ix in UDC CSR register space */
2826 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2829 /* UDC CSR reg */
2830 /* set ep values */
2831 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2832 /* ep interface */
2833 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2834 UDC_CSR_NE_INTF);
2835 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2836 /* ep alt */
2837 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2838 UDC_CSR_NE_ALT);
2839 /* write reg */
2840 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2842 /* clear stall bits */
2843 ep->halted = 0;
2844 tmp = readl(&ep->regs->ctl);
2845 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2846 writel(tmp, &ep->regs->ctl);
2849 /* call gadget zero with setup data received */
2850 spin_unlock(&dev->lock);
2851 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2852 spin_lock(&dev->lock);
2854 } /* USB reset */
2855 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2856 DBG(dev, "USB Reset interrupt\n");
2857 ret_val = IRQ_HANDLED;
2859 /* allow soft reset when suspend occurs */
2860 soft_reset_occured = 0;
2862 dev->waiting_zlp_ack_ep0in = 0;
2863 dev->set_cfg_not_acked = 0;
2865 /* mask not needed interrupts */
2866 udc_mask_unused_interrupts(dev);
2868 /* call gadget to resume and reset configs etc. */
2869 spin_unlock(&dev->lock);
2870 if (dev->sys_suspended && dev->driver->resume) {
2871 dev->driver->resume(&dev->gadget);
2872 dev->sys_suspended = 0;
2874 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2875 spin_lock(&dev->lock);
2877 /* disable ep0 to empty req queue */
2878 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2879 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2881 /* soft reset when rxfifo not empty */
2882 tmp = readl(&dev->regs->sts);
2883 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2884 && !soft_reset_after_usbreset_occured) {
2885 udc_soft_reset(dev);
2886 soft_reset_after_usbreset_occured++;
2890 * DMA reset to kill potential old DMA hw hang,
2891 * POLL bit is already reset by ep_init() through
2892 * disconnect()
2894 DBG(dev, "DMA machine reset\n");
2895 tmp = readl(&dev->regs->cfg);
2896 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2897 writel(tmp, &dev->regs->cfg);
2899 /* put into initial config */
2900 udc_basic_init(dev);
2902 /* enable device setup interrupts */
2903 udc_enable_dev_setup_interrupts(dev);
2905 /* enable suspend interrupt */
2906 tmp = readl(&dev->regs->irqmsk);
2907 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2908 writel(tmp, &dev->regs->irqmsk);
2910 } /* USB suspend */
2911 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2912 DBG(dev, "USB Suspend interrupt\n");
2913 ret_val = IRQ_HANDLED;
2914 if (dev->driver->suspend) {
2915 spin_unlock(&dev->lock);
2916 dev->sys_suspended = 1;
2917 dev->driver->suspend(&dev->gadget);
2918 spin_lock(&dev->lock);
2920 } /* new speed ? */
2921 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2922 DBG(dev, "ENUM interrupt\n");
2923 ret_val = IRQ_HANDLED;
2924 soft_reset_after_usbreset_occured = 0;
2926 /* disable ep0 to empty req queue */
2927 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2928 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2930 /* link up all endpoints */
2931 udc_setup_endpoints(dev);
2932 dev_info(&dev->pdev->dev, "Connect: %s\n",
2933 usb_speed_string(dev->gadget.speed));
2935 /* init ep 0 */
2936 activate_control_endpoints(dev);
2938 /* enable ep0 interrupts */
2939 udc_enable_ep0_interrupts(dev);
2941 /* session valid change interrupt */
2942 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2943 DBG(dev, "USB SVC interrupt\n");
2944 ret_val = IRQ_HANDLED;
2946 /* check that session is not valid to detect disconnect */
2947 tmp = readl(&dev->regs->sts);
2948 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2949 /* disable suspend interrupt */
2950 tmp = readl(&dev->regs->irqmsk);
2951 tmp |= AMD_BIT(UDC_DEVINT_US);
2952 writel(tmp, &dev->regs->irqmsk);
2953 DBG(dev, "USB Disconnect (session valid low)\n");
2954 /* cleanup on disconnect */
2955 usb_disconnect(udc);
2960 return ret_val;
2963 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2964 static irqreturn_t udc_irq(int irq, void *pdev)
2966 struct udc *dev = pdev;
2967 u32 reg;
2968 u16 i;
2969 u32 ep_irq;
2970 irqreturn_t ret_val = IRQ_NONE;
2972 spin_lock(&dev->lock);
2974 /* check for ep irq */
2975 reg = readl(&dev->regs->ep_irqsts);
2976 if (reg) {
2977 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2978 ret_val |= udc_control_out_isr(dev);
2979 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2980 ret_val |= udc_control_in_isr(dev);
2983 * data endpoint
2984 * iterate ep's
2986 for (i = 1; i < UDC_EP_NUM; i++) {
2987 ep_irq = 1 << i;
2988 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2989 continue;
2991 /* clear irq status */
2992 writel(ep_irq, &dev->regs->ep_irqsts);
2994 /* irq for out ep ? */
2995 if (i > UDC_EPIN_NUM)
2996 ret_val |= udc_data_out_isr(dev, i);
2997 else
2998 ret_val |= udc_data_in_isr(dev, i);
3004 /* check for dev irq */
3005 reg = readl(&dev->regs->irqsts);
3006 if (reg) {
3007 /* clear irq */
3008 writel(reg, &dev->regs->irqsts);
3009 ret_val |= udc_dev_isr(dev, reg);
3013 spin_unlock(&dev->lock);
3014 return ret_val;
3017 /* Tears down device */
3018 static void gadget_release(struct device *pdev)
3020 struct amd5536udc *dev = dev_get_drvdata(pdev);
3021 kfree(dev);
3024 /* Cleanup on device remove */
3025 static void udc_remove(struct udc *dev)
3027 /* remove timer */
3028 stop_timer++;
3029 if (timer_pending(&udc_timer))
3030 wait_for_completion(&on_exit);
3031 if (udc_timer.data)
3032 del_timer_sync(&udc_timer);
3033 /* remove pollstall timer */
3034 stop_pollstall_timer++;
3035 if (timer_pending(&udc_pollstall_timer))
3036 wait_for_completion(&on_pollstall_exit);
3037 if (udc_pollstall_timer.data)
3038 del_timer_sync(&udc_pollstall_timer);
3039 udc = NULL;
3042 /* Reset all pci context */
3043 static void udc_pci_remove(struct pci_dev *pdev)
3045 struct udc *dev;
3047 dev = pci_get_drvdata(pdev);
3049 usb_del_gadget_udc(&udc->gadget);
3050 /* gadget driver must not be registered */
3051 BUG_ON(dev->driver != NULL);
3053 /* dma pool cleanup */
3054 if (dev->data_requests)
3055 pci_pool_destroy(dev->data_requests);
3057 if (dev->stp_requests) {
3058 /* cleanup DMA desc's for ep0in */
3059 pci_pool_free(dev->stp_requests,
3060 dev->ep[UDC_EP0OUT_IX].td_stp,
3061 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3062 pci_pool_free(dev->stp_requests,
3063 dev->ep[UDC_EP0OUT_IX].td,
3064 dev->ep[UDC_EP0OUT_IX].td_phys);
3066 pci_pool_destroy(dev->stp_requests);
3069 /* reset controller */
3070 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3071 if (dev->irq_registered)
3072 free_irq(pdev->irq, dev);
3073 if (dev->regs)
3074 iounmap(dev->regs);
3075 if (dev->mem_region)
3076 release_mem_region(pci_resource_start(pdev, 0),
3077 pci_resource_len(pdev, 0));
3078 if (dev->active)
3079 pci_disable_device(pdev);
3081 udc_remove(dev);
3084 /* create dma pools on init */
3085 static int init_dma_pools(struct udc *dev)
3087 struct udc_stp_dma *td_stp;
3088 struct udc_data_dma *td_data;
3089 int retval;
3091 /* consistent DMA mode setting ? */
3092 if (use_dma_ppb) {
3093 use_dma_bufferfill_mode = 0;
3094 } else {
3095 use_dma_ppb_du = 0;
3096 use_dma_bufferfill_mode = 1;
3099 /* DMA setup */
3100 dev->data_requests = dma_pool_create("data_requests", NULL,
3101 sizeof(struct udc_data_dma), 0, 0);
3102 if (!dev->data_requests) {
3103 DBG(dev, "can't get request data pool\n");
3104 retval = -ENOMEM;
3105 goto finished;
3108 /* EP0 in dma regs = dev control regs */
3109 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3111 /* dma desc for setup data */
3112 dev->stp_requests = dma_pool_create("setup requests", NULL,
3113 sizeof(struct udc_stp_dma), 0, 0);
3114 if (!dev->stp_requests) {
3115 DBG(dev, "can't get stp request pool\n");
3116 retval = -ENOMEM;
3117 goto finished;
3119 /* setup */
3120 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3121 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3122 if (td_stp == NULL) {
3123 retval = -ENOMEM;
3124 goto finished;
3126 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3128 /* data: 0 packets !? */
3129 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3130 &dev->ep[UDC_EP0OUT_IX].td_phys);
3131 if (td_data == NULL) {
3132 retval = -ENOMEM;
3133 goto finished;
3135 dev->ep[UDC_EP0OUT_IX].td = td_data;
3136 return 0;
3138 finished:
3139 return retval;
3142 /* Called by pci bus driver to init pci context */
3143 static int udc_pci_probe(
3144 struct pci_dev *pdev,
3145 const struct pci_device_id *id
3148 struct udc *dev;
3149 unsigned long resource;
3150 unsigned long len;
3151 int retval = 0;
3153 /* one udc only */
3154 if (udc) {
3155 dev_dbg(&pdev->dev, "already probed\n");
3156 return -EBUSY;
3159 /* init */
3160 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3161 if (!dev) {
3162 retval = -ENOMEM;
3163 goto finished;
3166 /* pci setup */
3167 if (pci_enable_device(pdev) < 0) {
3168 kfree(dev);
3169 dev = NULL;
3170 retval = -ENODEV;
3171 goto finished;
3173 dev->active = 1;
3175 /* PCI resource allocation */
3176 resource = pci_resource_start(pdev, 0);
3177 len = pci_resource_len(pdev, 0);
3179 if (!request_mem_region(resource, len, name)) {
3180 dev_dbg(&pdev->dev, "pci device used already\n");
3181 kfree(dev);
3182 dev = NULL;
3183 retval = -EBUSY;
3184 goto finished;
3186 dev->mem_region = 1;
3188 dev->virt_addr = ioremap_nocache(resource, len);
3189 if (dev->virt_addr == NULL) {
3190 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3191 kfree(dev);
3192 dev = NULL;
3193 retval = -EFAULT;
3194 goto finished;
3197 if (!pdev->irq) {
3198 dev_err(&pdev->dev, "irq not set\n");
3199 kfree(dev);
3200 dev = NULL;
3201 retval = -ENODEV;
3202 goto finished;
3205 spin_lock_init(&dev->lock);
3206 /* udc csr registers base */
3207 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3208 /* dev registers base */
3209 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3210 /* ep registers base */
3211 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3212 /* fifo's base */
3213 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3214 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3216 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3217 dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3218 kfree(dev);
3219 dev = NULL;
3220 retval = -EBUSY;
3221 goto finished;
3223 dev->irq_registered = 1;
3225 pci_set_drvdata(pdev, dev);
3227 /* chip revision for Hs AMD5536 */
3228 dev->chiprev = pdev->revision;
3230 pci_set_master(pdev);
3231 pci_try_set_mwi(pdev);
3233 /* init dma pools */
3234 if (use_dma) {
3235 retval = init_dma_pools(dev);
3236 if (retval != 0)
3237 goto finished;
3240 dev->phys_addr = resource;
3241 dev->irq = pdev->irq;
3242 dev->pdev = pdev;
3244 /* general probing */
3245 if (udc_probe(dev) == 0)
3246 return 0;
3248 finished:
3249 if (dev)
3250 udc_pci_remove(pdev);
3251 return retval;
3254 /* general probe */
3255 static int udc_probe(struct udc *dev)
3257 char tmp[128];
3258 u32 reg;
3259 int retval;
3261 /* mark timer as not initialized */
3262 udc_timer.data = 0;
3263 udc_pollstall_timer.data = 0;
3265 /* device struct setup */
3266 dev->gadget.ops = &udc_ops;
3268 dev_set_name(&dev->gadget.dev, "gadget");
3269 dev->gadget.name = name;
3270 dev->gadget.max_speed = USB_SPEED_HIGH;
3272 /* init registers, interrupts, ... */
3273 startup_registers(dev);
3275 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3277 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3278 dev_info(&dev->pdev->dev,
3279 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3280 tmp, dev->phys_addr, dev->chiprev,
3281 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3282 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3283 if (dev->chiprev == UDC_HSA0_REV) {
3284 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3285 retval = -ENODEV;
3286 goto finished;
3288 dev_info(&dev->pdev->dev,
3289 "driver version: %s(for Geode5536 B1)\n", tmp);
3290 udc = dev;
3292 retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
3293 gadget_release);
3294 if (retval)
3295 goto finished;
3297 /* timer init */
3298 init_timer(&udc_timer);
3299 udc_timer.function = udc_timer_function;
3300 udc_timer.data = 1;
3301 /* timer pollstall init */
3302 init_timer(&udc_pollstall_timer);
3303 udc_pollstall_timer.function = udc_pollstall_timer_function;
3304 udc_pollstall_timer.data = 1;
3306 /* set SD */
3307 reg = readl(&dev->regs->ctl);
3308 reg |= AMD_BIT(UDC_DEVCTL_SD);
3309 writel(reg, &dev->regs->ctl);
3311 /* print dev register info */
3312 print_regs(dev);
3314 return 0;
3316 finished:
3317 return retval;
3320 /* Initiates a remote wakeup */
3321 static int udc_remote_wakeup(struct udc *dev)
3323 unsigned long flags;
3324 u32 tmp;
3326 DBG(dev, "UDC initiates remote wakeup\n");
3328 spin_lock_irqsave(&dev->lock, flags);
3330 tmp = readl(&dev->regs->ctl);
3331 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3332 writel(tmp, &dev->regs->ctl);
3333 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3334 writel(tmp, &dev->regs->ctl);
3336 spin_unlock_irqrestore(&dev->lock, flags);
3337 return 0;
3340 /* PCI device parameters */
3341 static const struct pci_device_id pci_id[] = {
3343 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3344 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3345 .class_mask = 0xffffffff,
3349 MODULE_DEVICE_TABLE(pci, pci_id);
3351 /* PCI functions */
3352 static struct pci_driver udc_pci_driver = {
3353 .name = (char *) name,
3354 .id_table = pci_id,
3355 .probe = udc_pci_probe,
3356 .remove = udc_pci_remove,
3359 module_pci_driver(udc_pci_driver);
3361 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3362 MODULE_AUTHOR("Thomas Dahlmann");
3363 MODULE_LICENSE("GPL");