2 * Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software Foundation,
24 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/dmapool.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/ioport.h>
32 #include <linux/sched.h>
33 #include <linux/vmalloc.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/hrtimer.h>
37 #include <linux/list.h>
38 #include <linux/interrupt.h>
39 #include <linux/usb.h>
40 #include <linux/usb/hcd.h>
41 #include <linux/moduleparam.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/debugfs.h>
44 #include <linux/slab.h>
45 #include <linux/uaccess.h>
46 #include <linux/platform_device.h>
49 #include <asm/byteorder.h>
51 #include <asm/unaligned.h>
53 /*-------------------------------------------------------------------------*/
54 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
55 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
57 static const char hcd_name
[] = "fotg210_hcd";
59 #undef FOTG210_URB_TRACE
63 /* magic numbers that can affect system performance */
64 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
65 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
66 #define FOTG210_TUNE_RL_TT 0
67 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
68 #define FOTG210_TUNE_MULT_TT 1
70 * Some drivers think it's safe to schedule isochronous transfers more than
71 * 256 ms into the future (partly as a result of an old bug in the scheduling
72 * code). In an attempt to avoid trouble, we will use a minimum scheduling
73 * length of 512 frames instead of 256.
75 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
77 /* Initial IRQ latency: faster than hw default */
78 static int log2_irq_thresh
; /* 0 to 6 */
79 module_param(log2_irq_thresh
, int, S_IRUGO
);
80 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
82 /* initial park setting: slower than hw default */
84 module_param(park
, uint
, S_IRUGO
);
85 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
87 /* for link power management(LPM) feature */
88 static unsigned int hird
;
89 module_param(hird
, int, S_IRUGO
);
90 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
92 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
96 /*-------------------------------------------------------------------------*/
98 #define fotg210_dbg(fotg210, fmt, args...) \
99 dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
100 #define fotg210_err(fotg210, fmt, args...) \
101 dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
102 #define fotg210_info(fotg210, fmt, args...) \
103 dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
104 #define fotg210_warn(fotg210, fmt, args...) \
105 dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
107 /* check the values in the HCSPARAMS register
108 * (host controller _Structural_ parameters)
109 * see EHCI spec, Table 2-4 for each value
111 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
113 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
116 "%s hcs_params 0x%x ports=%d\n",
122 /* check the values in the HCCPARAMS register
123 * (host controller _Capability_ parameters)
124 * see EHCI Spec, Table 2-5 for each value
126 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
128 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
131 "%s hcc_params %04x uframes %s%s\n",
134 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
135 HCC_CANPARK(params
) ? " park" : "");
138 static void __maybe_unused
139 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
141 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
142 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
143 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
144 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
145 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
147 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
148 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
149 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
150 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
151 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
154 static void __maybe_unused
155 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
157 struct fotg210_qh_hw
*hw
= qh
->hw
;
159 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
,
160 qh
, hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
, hw
->hw_current
);
161 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
164 static void __maybe_unused
165 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
167 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n",
168 label
, itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
171 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
172 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
173 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
174 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
175 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
176 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
177 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
178 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
179 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
181 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
182 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
183 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
184 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
185 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
186 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
187 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
188 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
189 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
190 itd
->index
[0], itd
->index
[1], itd
->index
[2],
191 itd
->index
[3], itd
->index
[4], itd
->index
[5],
192 itd
->index
[6], itd
->index
[7]);
195 static int __maybe_unused
196 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
198 return scnprintf(buf
, len
,
199 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
200 label
, label
[0] ? " " : "", status
,
201 (status
& STS_ASS
) ? " Async" : "",
202 (status
& STS_PSS
) ? " Periodic" : "",
203 (status
& STS_RECL
) ? " Recl" : "",
204 (status
& STS_HALT
) ? " Halt" : "",
205 (status
& STS_IAA
) ? " IAA" : "",
206 (status
& STS_FATAL
) ? " FATAL" : "",
207 (status
& STS_FLR
) ? " FLR" : "",
208 (status
& STS_PCD
) ? " PCD" : "",
209 (status
& STS_ERR
) ? " ERR" : "",
210 (status
& STS_INT
) ? " INT" : ""
214 static int __maybe_unused
215 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
217 return scnprintf(buf
, len
,
218 "%s%sintrenable %02x%s%s%s%s%s%s",
219 label
, label
[0] ? " " : "", enable
,
220 (enable
& STS_IAA
) ? " IAA" : "",
221 (enable
& STS_FATAL
) ? " FATAL" : "",
222 (enable
& STS_FLR
) ? " FLR" : "",
223 (enable
& STS_PCD
) ? " PCD" : "",
224 (enable
& STS_ERR
) ? " ERR" : "",
225 (enable
& STS_INT
) ? " INT" : ""
229 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
232 dbg_command_buf(char *buf
, unsigned len
, const char *label
, u32 command
)
234 return scnprintf(buf
, len
,
235 "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
237 label
, label
[0] ? " " : "", command
,
238 (command
& CMD_PARK
) ? " park" : "(park)",
239 CMD_PARK_CNT(command
),
240 (command
>> 16) & 0x3f,
241 (command
& CMD_IAAD
) ? " IAAD" : "",
242 (command
& CMD_ASE
) ? " Async" : "",
243 (command
& CMD_PSE
) ? " Periodic" : "",
244 fls_strings
[(command
>> 2) & 0x3],
245 (command
& CMD_RESET
) ? " Reset" : "",
246 (command
& CMD_RUN
) ? "RUN" : "HALT"
251 *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
, u32 status
)
255 /* signaling state */
256 switch (status
& (3 << 10)) {
262 break; /* low speed */
272 "%s%sport:%d status %06x %d "
273 "sig=%s%s%s%s%s%s%s%s",
274 label
, label
[0] ? " " : "", port
, status
,
275 status
>>25,/*device address */
277 (status
& PORT_RESET
) ? " RESET" : "",
278 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
279 (status
& PORT_RESUME
) ? " RESUME" : "",
280 (status
& PORT_PEC
) ? " PEC" : "",
281 (status
& PORT_PE
) ? " PE" : "",
282 (status
& PORT_CSC
) ? " CSC" : "",
283 (status
& PORT_CONNECT
) ? " CONNECT" : "");
287 /* functions have the "wrong" filename when they're output... */
288 #define dbg_status(fotg210, label, status) { \
290 dbg_status_buf(_buf, sizeof(_buf), label, status); \
291 fotg210_dbg(fotg210, "%s\n", _buf); \
294 #define dbg_cmd(fotg210, label, command) { \
296 dbg_command_buf(_buf, sizeof(_buf), label, command); \
297 fotg210_dbg(fotg210, "%s\n", _buf); \
300 #define dbg_port(fotg210, label, port, status) { \
302 fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
305 /*-------------------------------------------------------------------------*/
307 /* troubleshooting help: expose state in debugfs */
309 static int debug_async_open(struct inode
*, struct file
*);
310 static int debug_periodic_open(struct inode
*, struct file
*);
311 static int debug_registers_open(struct inode
*, struct file
*);
312 static int debug_async_open(struct inode
*, struct file
*);
314 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
315 static int debug_close(struct inode
*, struct file
*);
317 static const struct file_operations debug_async_fops
= {
318 .owner
= THIS_MODULE
,
319 .open
= debug_async_open
,
320 .read
= debug_output
,
321 .release
= debug_close
,
322 .llseek
= default_llseek
,
324 static const struct file_operations debug_periodic_fops
= {
325 .owner
= THIS_MODULE
,
326 .open
= debug_periodic_open
,
327 .read
= debug_output
,
328 .release
= debug_close
,
329 .llseek
= default_llseek
,
331 static const struct file_operations debug_registers_fops
= {
332 .owner
= THIS_MODULE
,
333 .open
= debug_registers_open
,
334 .read
= debug_output
,
335 .release
= debug_close
,
336 .llseek
= default_llseek
,
339 static struct dentry
*fotg210_debug_root
;
341 struct debug_buffer
{
342 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
344 struct mutex mutex
; /* protect filling of buffer */
345 size_t count
; /* number of characters filled into buffer */
350 #define speed_char(info1)({ char tmp; \
351 switch (info1 & (3 << 12)) { \
352 case QH_FULL_SPEED: \
356 case QH_HIGH_SPEED: \
362 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
364 __u32 v
= hc32_to_cpu(fotg210
, token
);
366 if (v
& QTD_STS_ACTIVE
)
368 if (v
& QTD_STS_HALT
)
370 if (!IS_SHORT_READ(v
))
372 /* tries to advance through hw_alt_next */
376 static void qh_lines(
377 struct fotg210_hcd
*fotg210
,
378 struct fotg210_qh
*qh
,
385 struct fotg210_qtd
*td
;
387 unsigned size
= *sizep
;
390 __le32 list_end
= FOTG210_LIST_END(fotg210
);
391 struct fotg210_qh_hw
*hw
= qh
->hw
;
393 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
396 mark
= token_mark(fotg210
, hw
->hw_token
);
397 if (mark
== '/') { /* qh_alt_next controls qh advance? */
398 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
))
399 == fotg210
->async
->hw
->hw_alt_next
)
400 mark
= '#'; /* blocked */
401 else if (hw
->hw_alt_next
== list_end
)
402 mark
= '.'; /* use hw_qtd_next */
403 /* else alt_next points to some other qtd */
405 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
406 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
407 temp
= scnprintf(next
, size
,
408 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
409 qh
, scratch
& 0x007f,
411 (scratch
>> 8) & 0x000f,
412 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
413 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
414 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
416 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
420 /* hc may be modifying the list as we read it ... */
421 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
422 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
424 if (hw_curr
== td
->qtd_dma
)
426 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
428 else if (QTD_LENGTH(scratch
)) {
429 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
431 else if (td
->hw_alt_next
!= list_end
)
434 temp
= snprintf(next
, size
,
435 "\n\t%p%c%s len=%d %08x urb %p",
436 td
, mark
, ({ char *tmp
;
437 switch ((scratch
>>8)&0x03) {
451 (scratch
>> 16) & 0x7fff,
462 temp
= snprintf(next
, size
, "\n");
473 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
476 struct fotg210_hcd
*fotg210
;
480 struct fotg210_qh
*qh
;
482 hcd
= bus_to_hcd(buf
->bus
);
483 fotg210
= hcd_to_fotg210(hcd
);
484 next
= buf
->output_buf
;
485 size
= buf
->alloc_size
;
489 /* dumps a snapshot of the async schedule.
490 * usually empty except for long-term bulk reads, or head.
491 * one QH per line, and TDs we know about
493 spin_lock_irqsave(&fotg210
->lock
, flags
);
494 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
496 qh_lines(fotg210
, qh
, &next
, &size
);
497 if (fotg210
->async_unlink
&& size
> 0) {
498 temp
= scnprintf(next
, size
, "\nunlink =\n");
502 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
503 qh
= qh
->unlink_next
)
504 qh_lines(fotg210
, qh
, &next
, &size
);
506 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
508 return strlen(buf
->output_buf
);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
515 struct fotg210_hcd
*fotg210
;
517 union fotg210_shadow p
, *seen
;
518 unsigned temp
, size
, seen_count
;
523 seen
= kmalloc(DBG_SCHED_LIMIT
* sizeof(*seen
), GFP_ATOMIC
);
528 hcd
= bus_to_hcd(buf
->bus
);
529 fotg210
= hcd_to_fotg210(hcd
);
530 next
= buf
->output_buf
;
531 size
= buf
->alloc_size
;
533 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
537 /* dump a snapshot of the periodic schedule.
538 * iso changes, interrupt usually doesn't.
540 spin_lock_irqsave(&fotg210
->lock
, flags
);
541 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
542 p
= fotg210
->pshadow
[i
];
545 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
547 temp
= scnprintf(next
, size
, "%4d: ", i
);
552 struct fotg210_qh_hw
*hw
;
554 switch (hc32_to_cpu(fotg210
, tag
)) {
557 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
559 hc32_to_cpup(fotg210
,
562 & (QH_CMASK
| QH_SMASK
),
566 /* don't repeat what follows this qh */
567 for (temp
= 0; temp
< seen_count
; temp
++) {
568 if (seen
[temp
].ptr
!= p
.ptr
)
570 if (p
.qh
->qh_next
.ptr
) {
571 temp
= scnprintf(next
, size
,
578 /* show more info the first time around */
579 if (temp
== seen_count
) {
580 u32 scratch
= hc32_to_cpup(fotg210
,
582 struct fotg210_qtd
*qtd
;
585 /* count tds, get ep direction */
587 list_for_each_entry(qtd
,
591 switch (0x03 & (hc32_to_cpu(
593 qtd
->hw_token
) >> 8)) {
603 temp
= scnprintf(next
, size
,
608 (scratch
>> 8) & 0x000f, type
,
609 p
.qh
->usecs
, p
.qh
->c_usecs
,
611 0x7ff & (scratch
>> 16));
613 if (seen_count
< DBG_SCHED_LIMIT
)
614 seen
[seen_count
++].qh
= p
.qh
;
617 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
621 temp
= scnprintf(next
, size
,
622 " fstn-%8x/%p", p
.fstn
->hw_prev
,
624 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
625 p
= p
.fstn
->fstn_next
;
628 temp
= scnprintf(next
, size
,
630 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
638 temp
= scnprintf(next
, size
, "\n");
642 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
645 return buf
->alloc_size
- size
;
647 #undef DBG_SCHED_LIMIT
649 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
651 switch (fotg210
->rh_state
) {
652 case FOTG210_RH_HALTED
:
654 case FOTG210_RH_SUSPENDED
:
656 case FOTG210_RH_RUNNING
:
658 case FOTG210_RH_STOPPING
:
664 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
667 struct fotg210_hcd
*fotg210
;
669 unsigned temp
, size
, i
;
670 char *next
, scratch
[80];
671 static const char fmt
[] = "%*s\n";
672 static const char label
[] = "";
674 hcd
= bus_to_hcd(buf
->bus
);
675 fotg210
= hcd_to_fotg210(hcd
);
676 next
= buf
->output_buf
;
677 size
= buf
->alloc_size
;
679 spin_lock_irqsave(&fotg210
->lock
, flags
);
681 if (!HCD_HW_ACCESSIBLE(hcd
)) {
682 size
= scnprintf(next
, size
,
683 "bus %s, device %s\n"
685 "SUSPENDED(no register access)\n",
686 hcd
->self
.controller
->bus
->name
,
687 dev_name(hcd
->self
.controller
),
692 /* Capability Registers */
693 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
694 &fotg210
->caps
->hc_capbase
));
695 temp
= scnprintf(next
, size
,
696 "bus %s, device %s\n"
698 "EHCI %x.%02x, rh state %s\n",
699 hcd
->self
.controller
->bus
->name
,
700 dev_name(hcd
->self
.controller
),
702 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
706 /* FIXME interpret both types of params */
707 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
708 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
712 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
713 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
717 /* Operational Registers */
718 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
719 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
720 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
724 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
725 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
726 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
730 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
731 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
732 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
736 temp
= scnprintf(next
, size
, "uframe %04x\n",
737 fotg210_read_frame_index(fotg210
));
741 if (fotg210
->async_unlink
) {
742 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
743 fotg210
->async_unlink
);
749 temp
= scnprintf(next
, size
,
750 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
751 fotg210
->stats
.normal
, fotg210
->stats
.error
, fotg210
->stats
.iaa
,
752 fotg210
->stats
.lost_iaa
);
756 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
757 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
763 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
765 return buf
->alloc_size
- size
;
768 static struct debug_buffer
*alloc_buffer(struct usb_bus
*bus
,
769 ssize_t (*fill_func
)(struct debug_buffer
*))
771 struct debug_buffer
*buf
;
773 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
777 buf
->fill_func
= fill_func
;
778 mutex_init(&buf
->mutex
);
779 buf
->alloc_size
= PAGE_SIZE
;
785 static int fill_buffer(struct debug_buffer
*buf
)
789 if (!buf
->output_buf
)
790 buf
->output_buf
= vmalloc(buf
->alloc_size
);
792 if (!buf
->output_buf
) {
797 ret
= buf
->fill_func(buf
);
808 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
809 size_t len
, loff_t
*offset
)
811 struct debug_buffer
*buf
= file
->private_data
;
814 mutex_lock(&buf
->mutex
);
815 if (buf
->count
== 0) {
816 ret
= fill_buffer(buf
);
818 mutex_unlock(&buf
->mutex
);
822 mutex_unlock(&buf
->mutex
);
824 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
825 buf
->output_buf
, buf
->count
);
832 static int debug_close(struct inode
*inode
, struct file
*file
)
834 struct debug_buffer
*buf
= file
->private_data
;
837 vfree(buf
->output_buf
);
843 static int debug_async_open(struct inode
*inode
, struct file
*file
)
845 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
847 return file
->private_data
? 0 : -ENOMEM
;
850 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
852 struct debug_buffer
*buf
;
853 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
857 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
858 file
->private_data
= buf
;
862 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
864 file
->private_data
= alloc_buffer(inode
->i_private
,
865 fill_registers_buffer
);
867 return file
->private_data
? 0 : -ENOMEM
;
870 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
872 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
874 fotg210
->debug_dir
= debugfs_create_dir(bus
->bus_name
,
876 if (!fotg210
->debug_dir
)
879 if (!debugfs_create_file("async", S_IRUGO
, fotg210
->debug_dir
, bus
,
883 if (!debugfs_create_file("periodic", S_IRUGO
, fotg210
->debug_dir
, bus
,
884 &debug_periodic_fops
))
887 if (!debugfs_create_file("registers", S_IRUGO
, fotg210
->debug_dir
, bus
,
888 &debug_registers_fops
))
894 debugfs_remove_recursive(fotg210
->debug_dir
);
897 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
899 debugfs_remove_recursive(fotg210
->debug_dir
);
902 /*-------------------------------------------------------------------------*/
905 * handshake - spin reading hc until handshake completes or fails
906 * @ptr: address of hc register to be read
907 * @mask: bits to look at in result of read
908 * @done: value of those bits when handshake succeeds
909 * @usec: timeout in microseconds
911 * Returns negative errno, or zero on success
913 * Success happens when the "mask" bits have the specified value (hardware
914 * handshake done). There are two failure modes: "usec" have passed (major
915 * hardware flakeout), or the register reads as all-ones (hardware removed).
917 * That last failure should_only happen in cases like physical cardbus eject
918 * before driver shutdown. But it also seems to be caused by bugs in cardbus
919 * bridge shutdown: shutting down the bridge before the devices using it.
921 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
922 u32 mask
, u32 done
, int usec
)
927 result
= fotg210_readl(fotg210
, ptr
);
928 if (result
== ~(u32
)0) /* card removed */
940 * Force HC to halt state from unknown (EHCI spec section 2.3).
941 * Must be called with interrupts enabled and the lock not held.
943 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
947 spin_lock_irq(&fotg210
->lock
);
949 /* disable any irqs left enabled by previous code */
950 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
953 * This routine gets called during probe before fotg210->command
954 * has been initialized, so we can't rely on its value.
956 fotg210
->command
&= ~CMD_RUN
;
957 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
958 temp
&= ~(CMD_RUN
| CMD_IAAD
);
959 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
961 spin_unlock_irq(&fotg210
->lock
);
962 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
964 return handshake(fotg210
, &fotg210
->regs
->status
,
965 STS_HALT
, STS_HALT
, 16 * 125);
969 * Reset a non-running (STS_HALT == 1) controller.
970 * Must be called with interrupts enabled and the lock not held.
972 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
975 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
977 /* If the EHCI debug controller is active, special care must be
978 * taken before and after a host controller reset */
979 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
980 fotg210
->debug
= NULL
;
982 command
|= CMD_RESET
;
983 dbg_cmd(fotg210
, "reset", command
);
984 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
985 fotg210
->rh_state
= FOTG210_RH_HALTED
;
986 fotg210
->next_statechange
= jiffies
;
987 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
988 CMD_RESET
, 0, 250 * 1000);
994 dbgp_external_startup(fotg210_to_hcd(fotg210
));
996 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
997 fotg210
->resuming_ports
= 0;
1002 * Idle the controller (turn off the schedules).
1003 * Must be called with interrupts enabled and the lock not held.
1005 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
1009 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1012 /* wait for any schedule enables/disables to take effect */
1013 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
1014 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
1017 /* then disable anything that's still active */
1018 spin_lock_irq(&fotg210
->lock
);
1019 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
1020 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1021 spin_unlock_irq(&fotg210
->lock
);
1023 /* hardware can take 16 microframes to turn off ... */
1024 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
1028 /*-------------------------------------------------------------------------*/
1030 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
1031 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
1032 static void fotg210_work(struct fotg210_hcd
*fotg210
);
1033 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
1034 struct fotg210_qh
*qh
);
1035 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
1037 /*-------------------------------------------------------------------------*/
1039 /* Set a bit in the USBCMD register */
1040 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1042 fotg210
->command
|= bit
;
1043 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1045 /* unblock posted write */
1046 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1049 /* Clear a bit in the USBCMD register */
1050 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1052 fotg210
->command
&= ~bit
;
1053 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1055 /* unblock posted write */
1056 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1059 /*-------------------------------------------------------------------------*/
1062 * EHCI timer support... Now using hrtimers.
1064 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1065 * the timer routine runs, it checks each possible event; events that are
1066 * currently enabled and whose expiration time has passed get handled.
1067 * The set of enabled events is stored as a collection of bitflags in
1068 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1069 * increasing delay values (ranging between 1 ms and 100 ms).
1071 * Rather than implementing a sorted list or tree of all pending events,
1072 * we keep track only of the lowest-numbered pending event, in
1073 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1074 * expiration time is set to the timeout value for this event.
1076 * As a result, events might not get handled right away; the actual delay
1077 * could be anywhere up to twice the requested delay. This doesn't
1078 * matter, because none of the events are especially time-critical. The
1079 * ones that matter most all have a delay of 1 ms, so they will be
1080 * handled after 2 ms at most, which is okay. In addition to this, we
1081 * allow for an expiration range of 1 ms.
1085 * Delay lengths for the hrtimer event types.
1086 * Keep this list sorted by delay length, in the same order as
1087 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1089 static unsigned event_delays_ns
[] = {
1090 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1091 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1092 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1093 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1094 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1095 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1096 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1097 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1098 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1099 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1102 /* Enable a pending hrtimer event */
1103 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1106 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1109 *timeout
= ktime_add(ktime_get(),
1110 ktime_set(0, event_delays_ns
[event
]));
1111 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1113 /* Track only the lowest-numbered pending event */
1114 if (event
< fotg210
->next_hrtimer_event
) {
1115 fotg210
->next_hrtimer_event
= event
;
1116 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1117 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1122 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1123 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1125 unsigned actual
, want
;
1127 /* Don't enable anything if the controller isn't running (e.g., died) */
1128 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1131 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1132 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1134 if (want
!= actual
) {
1136 /* Poll again later, but give up after about 20 ms */
1137 if (fotg210
->ASS_poll_count
++ < 20) {
1138 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1142 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1145 fotg210
->ASS_poll_count
= 0;
1147 /* The status is up-to-date; restart or stop the schedule as needed */
1148 if (want
== 0) { /* Stopped */
1149 if (fotg210
->async_count
> 0)
1150 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1152 } else { /* Running */
1153 if (fotg210
->async_count
== 0) {
1155 /* Turn off the schedule after a while */
1156 fotg210_enable_event(fotg210
,
1157 FOTG210_HRTIMER_DISABLE_ASYNC
,
1163 /* Turn off the async schedule after a brief delay */
1164 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1166 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1170 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1171 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1173 unsigned actual
, want
;
1175 /* Don't do anything if the controller isn't running (e.g., died) */
1176 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1179 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1180 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1182 if (want
!= actual
) {
1184 /* Poll again later, but give up after about 20 ms */
1185 if (fotg210
->PSS_poll_count
++ < 20) {
1186 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1190 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1193 fotg210
->PSS_poll_count
= 0;
1195 /* The status is up-to-date; restart or stop the schedule as needed */
1196 if (want
== 0) { /* Stopped */
1197 if (fotg210
->periodic_count
> 0)
1198 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1200 } else { /* Running */
1201 if (fotg210
->periodic_count
== 0) {
1203 /* Turn off the schedule after a while */
1204 fotg210_enable_event(fotg210
,
1205 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1211 /* Turn off the periodic schedule after a brief delay */
1212 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1214 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1218 /* Poll the STS_HALT status bit; see when a dead controller stops */
1219 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1221 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1223 /* Give up after a few milliseconds */
1224 if (fotg210
->died_poll_count
++ < 5) {
1225 /* Try again later */
1226 fotg210_enable_event(fotg210
,
1227 FOTG210_HRTIMER_POLL_DEAD
, true);
1230 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1233 /* Clean up the mess */
1234 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1235 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1236 fotg210_work(fotg210
);
1237 end_unlink_async(fotg210
);
1239 /* Not in process context, so don't try to reset the controller */
1243 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1244 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1246 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1249 * Process all the QHs on the intr_unlink list that were added
1250 * before the current unlink cycle began. The list is in
1251 * temporal order, so stop when we reach the first entry in the
1252 * current cycle. But if the root hub isn't running then
1253 * process all the QHs on the list.
1255 fotg210
->intr_unlinking
= true;
1256 while (fotg210
->intr_unlink
) {
1257 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1259 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1261 fotg210
->intr_unlink
= qh
->unlink_next
;
1262 qh
->unlink_next
= NULL
;
1263 end_unlink_intr(fotg210
, qh
);
1266 /* Handle remaining entries later */
1267 if (fotg210
->intr_unlink
) {
1268 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1270 ++fotg210
->intr_unlink_cycle
;
1272 fotg210
->intr_unlinking
= false;
1276 /* Start another free-iTDs/siTDs cycle */
1277 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1279 if (!(fotg210
->enabled_hrtimer_events
&
1280 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1281 fotg210
->last_itd_to_free
= list_entry(
1282 fotg210
->cached_itd_list
.prev
,
1283 struct fotg210_itd
, itd_list
);
1284 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1288 /* Wait for controller to stop using old iTDs and siTDs */
1289 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1291 struct fotg210_itd
*itd
, *n
;
1293 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1294 fotg210
->last_itd_to_free
= NULL
;
1296 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1297 list_del(&itd
->itd_list
);
1298 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1299 if (itd
== fotg210
->last_itd_to_free
)
1303 if (!list_empty(&fotg210
->cached_itd_list
))
1304 start_free_itds(fotg210
);
1308 /* Handle lost (or very late) IAA interrupts */
1309 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1311 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1315 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1316 * So we need this watchdog, but must protect it against both
1317 * (a) SMP races against real IAA firing and retriggering, and
1318 * (b) clean HC shutdown, when IAA watchdog was pending.
1320 if (fotg210
->async_iaa
) {
1323 /* If we get here, IAA is *REALLY* late. It's barely
1324 * conceivable that the system is so busy that CMD_IAAD
1325 * is still legitimately set, so let's be sure it's
1326 * clear before we read STS_IAA. (The HC should clear
1327 * CMD_IAAD when it sets STS_IAA.)
1329 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1332 * If IAA is set here it either legitimately triggered
1333 * after the watchdog timer expired (_way_ late, so we'll
1334 * still count it as lost) ... or a silicon erratum:
1335 * - VIA seems to set IAA without triggering the IRQ;
1336 * - IAAD potentially cleared without setting IAA.
1338 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1339 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1340 COUNT(fotg210
->stats
.lost_iaa
);
1341 fotg210_writel(fotg210
, STS_IAA
,
1342 &fotg210
->regs
->status
);
1345 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1347 end_unlink_async(fotg210
);
1352 /* Enable the I/O watchdog, if appropriate */
1353 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1355 /* Not needed if the controller isn't running or it's already enabled */
1356 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1357 (fotg210
->enabled_hrtimer_events
&
1358 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1362 * Isochronous transfers always need the watchdog.
1363 * For other sorts we use it only if the flag is set.
1365 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1366 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1367 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1373 * Handler functions for the hrtimer event types.
1374 * Keep this array in the same order as the event types indexed by
1375 * enum fotg210_hrtimer_event in fotg210.h.
1377 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1378 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1379 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1380 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1381 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1382 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1383 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1384 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1385 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1386 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1387 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1390 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1392 struct fotg210_hcd
*fotg210
=
1393 container_of(t
, struct fotg210_hcd
, hrtimer
);
1395 unsigned long events
;
1396 unsigned long flags
;
1399 spin_lock_irqsave(&fotg210
->lock
, flags
);
1401 events
= fotg210
->enabled_hrtimer_events
;
1402 fotg210
->enabled_hrtimer_events
= 0;
1403 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1406 * Check each pending event. If its time has expired, handle
1407 * the event; otherwise re-enable it.
1410 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1411 if (now
.tv64
>= fotg210
->hr_timeouts
[e
].tv64
)
1412 event_handlers
[e
](fotg210
);
1414 fotg210_enable_event(fotg210
, e
, false);
1417 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1418 return HRTIMER_NORESTART
;
1421 /*-------------------------------------------------------------------------*/
1423 #define fotg210_bus_suspend NULL
1424 #define fotg210_bus_resume NULL
1426 /*-------------------------------------------------------------------------*/
1428 static int check_reset_complete(
1429 struct fotg210_hcd
*fotg210
,
1431 u32 __iomem
*status_reg
,
1434 if (!(port_status
& PORT_CONNECT
))
1437 /* if reset finished and it's still not enabled -- handoff */
1438 if (!(port_status
& PORT_PE
)) {
1439 /* with integrated TT, there's nobody to hand it to! */
1440 fotg210_dbg(fotg210
,
1441 "Failed to enable port %d on root hub TT\n",
1445 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1452 /*-------------------------------------------------------------------------*/
1455 /* build "status change" packet (one or two bytes) from HC registers */
1458 fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1460 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1464 unsigned long flags
;
1466 /* init status to no-changes */
1469 /* Inform the core about resumes-in-progress by returning
1470 * a non-zero value even if there are no status changes.
1472 status
= fotg210
->resuming_ports
;
1474 mask
= PORT_CSC
| PORT_PEC
;
1475 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1477 /* no hub change reports (bit 0) for now (power, ...) */
1479 /* port N changes (bit N)? */
1480 spin_lock_irqsave(&fotg210
->lock
, flags
);
1482 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1485 * Return status information even for ports with OWNER set.
1486 * Otherwise hub_wq wouldn't see the disconnect event when a
1487 * high-speed device is switched over to the companion
1488 * controller by the user.
1491 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
)
1492 || (fotg210
->reset_done
[0] && time_after_eq(
1493 jiffies
, fotg210
->reset_done
[0]))) {
1497 /* FIXME autosuspend idle root hubs */
1498 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1499 return status
? retval
: 0;
1502 /*-------------------------------------------------------------------------*/
1505 fotg210_hub_descriptor(
1506 struct fotg210_hcd
*fotg210
,
1507 struct usb_hub_descriptor
*desc
1509 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1512 desc
->bDescriptorType
= USB_DT_HUB
;
1513 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1514 desc
->bHubContrCurrent
= 0;
1516 desc
->bNbrPorts
= ports
;
1517 temp
= 1 + (ports
/ 8);
1518 desc
->bDescLength
= 7 + 2 * temp
;
1520 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1521 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1522 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1524 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1525 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1526 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1529 /*-------------------------------------------------------------------------*/
1531 static int fotg210_hub_control(
1532 struct usb_hcd
*hcd
,
1539 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1540 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1541 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1542 u32 temp
, temp1
, status
;
1543 unsigned long flags
;
1548 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1549 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1550 * (track current state ourselves) ... blink for diagnostics,
1551 * power, "this is the one", etc. EHCI spec supports this.
1554 spin_lock_irqsave(&fotg210
->lock
, flags
);
1556 case ClearHubFeature
:
1558 case C_HUB_LOCAL_POWER
:
1559 case C_HUB_OVER_CURRENT
:
1560 /* no hub-wide feature/status flags */
1566 case ClearPortFeature
:
1567 if (!wIndex
|| wIndex
> ports
)
1570 temp
= fotg210_readl(fotg210
, status_reg
);
1571 temp
&= ~PORT_RWC_BITS
;
1574 * Even if OWNER is set, so the port is owned by the
1575 * companion controller, hub_wq needs to be able to clear
1576 * the port-change status bits (especially
1577 * USB_PORT_STAT_C_CONNECTION).
1581 case USB_PORT_FEAT_ENABLE
:
1582 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1584 case USB_PORT_FEAT_C_ENABLE
:
1585 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1587 case USB_PORT_FEAT_SUSPEND
:
1588 if (temp
& PORT_RESET
)
1590 if (!(temp
& PORT_SUSPEND
))
1592 if ((temp
& PORT_PE
) == 0)
1595 /* resume signaling for 20 msec */
1596 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1597 fotg210
->reset_done
[wIndex
] = jiffies
1598 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1600 case USB_PORT_FEAT_C_SUSPEND
:
1601 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1603 case USB_PORT_FEAT_C_CONNECTION
:
1604 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1606 case USB_PORT_FEAT_C_OVER_CURRENT
:
1607 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1608 &fotg210
->regs
->otgisr
);
1610 case USB_PORT_FEAT_C_RESET
:
1611 /* GetPortStatus clears reset */
1616 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1618 case GetHubDescriptor
:
1619 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1623 /* no hub-wide feature/status flags */
1625 /*cpu_to_le32s ((u32 *) buf); */
1628 if (!wIndex
|| wIndex
> ports
)
1632 temp
= fotg210_readl(fotg210
, status_reg
);
1634 /* wPortChange bits */
1635 if (temp
& PORT_CSC
)
1636 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1637 if (temp
& PORT_PEC
)
1638 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1640 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1641 if (temp1
& OTGISR_OVC
)
1642 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1644 /* whoever resumes must GetPortStatus to complete it!! */
1645 if (temp
& PORT_RESUME
) {
1647 /* Remote Wakeup received? */
1648 if (!fotg210
->reset_done
[wIndex
]) {
1649 /* resume signaling for 20 msec */
1650 fotg210
->reset_done
[wIndex
] = jiffies
1651 + msecs_to_jiffies(20);
1652 /* check the port again */
1653 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1654 fotg210
->reset_done
[wIndex
]);
1657 /* resume completed? */
1658 else if (time_after_eq(jiffies
,
1659 fotg210
->reset_done
[wIndex
])) {
1660 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1661 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1662 fotg210
->reset_done
[wIndex
] = 0;
1664 /* stop resume signaling */
1665 temp
= fotg210_readl(fotg210
, status_reg
);
1666 fotg210_writel(fotg210
,
1667 temp
& ~(PORT_RWC_BITS
| PORT_RESUME
),
1669 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1670 retval
= handshake(fotg210
, status_reg
,
1671 PORT_RESUME
, 0, 2000 /* 2msec */);
1673 fotg210_err(fotg210
,
1674 "port %d resume error %d\n",
1675 wIndex
+ 1, retval
);
1678 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1682 /* whoever resets must GetPortStatus to complete it!! */
1683 if ((temp
& PORT_RESET
)
1684 && time_after_eq(jiffies
,
1685 fotg210
->reset_done
[wIndex
])) {
1686 status
|= USB_PORT_STAT_C_RESET
<< 16;
1687 fotg210
->reset_done
[wIndex
] = 0;
1688 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1690 /* force reset to complete */
1691 fotg210_writel(fotg210
,
1692 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1694 /* REVISIT: some hardware needs 550+ usec to clear
1695 * this bit; seems too long to spin routinely...
1697 retval
= handshake(fotg210
, status_reg
,
1698 PORT_RESET
, 0, 1000);
1700 fotg210_err(fotg210
, "port %d reset error %d\n",
1701 wIndex
+ 1, retval
);
1705 /* see what we found out */
1706 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1707 fotg210_readl(fotg210
, status_reg
));
1710 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1711 fotg210
->reset_done
[wIndex
] = 0;
1712 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1715 /* transfer dedicated ports to the companion hc */
1716 if ((temp
& PORT_CONNECT
) &&
1717 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1718 temp
&= ~PORT_RWC_BITS
;
1719 fotg210_writel(fotg210
, temp
, status_reg
);
1720 fotg210_dbg(fotg210
, "port %d --> companion\n",
1722 temp
= fotg210_readl(fotg210
, status_reg
);
1726 * Even if OWNER is set, there's no harm letting hub_wq
1727 * see the wPortStatus values (they should all be 0 except
1728 * for PORT_POWER anyway).
1731 if (temp
& PORT_CONNECT
) {
1732 status
|= USB_PORT_STAT_CONNECTION
;
1733 status
|= fotg210_port_speed(fotg210
, temp
);
1736 status
|= USB_PORT_STAT_ENABLE
;
1738 /* maybe the port was unsuspended without our knowledge */
1739 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1740 status
|= USB_PORT_STAT_SUSPEND
;
1741 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1742 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1743 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1744 fotg210
->reset_done
[wIndex
] = 0;
1746 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1749 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1750 if (temp1
& OTGISR_OVC
)
1751 status
|= USB_PORT_STAT_OVERCURRENT
;
1752 if (temp
& PORT_RESET
)
1753 status
|= USB_PORT_STAT_RESET
;
1754 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1755 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1757 if (status
& ~0xffff) /* only if wPortChange is interesting */
1758 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1759 put_unaligned_le32(status
, buf
);
1763 case C_HUB_LOCAL_POWER
:
1764 case C_HUB_OVER_CURRENT
:
1765 /* no hub-wide feature/status flags */
1771 case SetPortFeature
:
1772 selector
= wIndex
>> 8;
1775 if (!wIndex
|| wIndex
> ports
)
1778 temp
= fotg210_readl(fotg210
, status_reg
);
1779 temp
&= ~PORT_RWC_BITS
;
1781 case USB_PORT_FEAT_SUSPEND
:
1782 if ((temp
& PORT_PE
) == 0
1783 || (temp
& PORT_RESET
) != 0)
1786 /* After above check the port must be connected.
1787 * Set appropriate bit thus could put phy into low power
1788 * mode if we have hostpc feature
1790 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1792 set_bit(wIndex
, &fotg210
->suspended_ports
);
1794 case USB_PORT_FEAT_RESET
:
1795 if (temp
& PORT_RESUME
)
1797 /* line status bits may report this as low speed,
1798 * which can be fine if this root hub has a
1799 * transaction translator built in.
1801 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1806 * caller must wait, then call GetPortStatus
1807 * usb 2.0 spec says 50 ms resets on root
1809 fotg210
->reset_done
[wIndex
] = jiffies
1810 + msecs_to_jiffies(50);
1811 fotg210_writel(fotg210
, temp
, status_reg
);
1814 /* For downstream facing ports (these): one hub port is put
1815 * into test mode according to USB2 11.24.2.13, then the hub
1816 * must be reset (which for root hub now means rmmod+modprobe,
1817 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1818 * about the EHCI-specific stuff.
1820 case USB_PORT_FEAT_TEST
:
1821 if (!selector
|| selector
> 5)
1823 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1824 fotg210_quiesce(fotg210
);
1825 spin_lock_irqsave(&fotg210
->lock
, flags
);
1827 /* Put all enabled ports into suspend */
1828 temp
= fotg210_readl(fotg210
, status_reg
) &
1831 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1834 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1835 fotg210_halt(fotg210
);
1836 spin_lock_irqsave(&fotg210
->lock
, flags
);
1838 temp
= fotg210_readl(fotg210
, status_reg
);
1839 temp
|= selector
<< 16;
1840 fotg210_writel(fotg210
, temp
, status_reg
);
1846 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1851 /* "stall" on error */
1854 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1858 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1864 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1869 /*-------------------------------------------------------------------------*/
1871 * There's basically three types of memory:
1872 * - data used only by the HCD ... kmalloc is fine
1873 * - async and periodic schedules, shared by HC and HCD ... these
1874 * need to use dma_pool or dma_alloc_coherent
1875 * - driver buffers, read/written by HC ... single shot DMA mapped
1877 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1878 * No memory seen by this driver is pageable.
1881 /*-------------------------------------------------------------------------*/
1883 /* Allocate the key transfer structures from the previously allocated pool */
1885 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1886 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1888 memset(qtd
, 0, sizeof(*qtd
));
1890 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1891 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1892 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1893 INIT_LIST_HEAD(&qtd
->qtd_list
);
1896 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1899 struct fotg210_qtd
*qtd
;
1902 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1904 fotg210_qtd_init(fotg210
, qtd
, dma
);
1909 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1910 struct fotg210_qtd
*qtd
)
1912 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1916 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1918 /* clean qtds first, and know this is not linked */
1919 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1920 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1924 fotg210_qtd_free(fotg210
, qh
->dummy
);
1925 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1929 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1932 struct fotg210_qh
*qh
;
1935 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1938 qh
->hw
= (struct fotg210_qh_hw
*)
1939 dma_pool_alloc(fotg210
->qh_pool
, flags
, &dma
);
1942 memset(qh
->hw
, 0, sizeof(*qh
->hw
));
1944 INIT_LIST_HEAD(&qh
->qtd_list
);
1946 /* dummy td enables safe urb queuing */
1947 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1948 if (qh
->dummy
== NULL
) {
1949 fotg210_dbg(fotg210
, "no dummy td\n");
1955 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1961 /*-------------------------------------------------------------------------*/
1963 /* The queue heads and transfer descriptors are managed from pools tied
1964 * to each of the "per device" structures.
1965 * This is the initialisation and cleanup code.
1968 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1971 qh_destroy(fotg210
, fotg210
->async
);
1972 fotg210
->async
= NULL
;
1975 qh_destroy(fotg210
, fotg210
->dummy
);
1976 fotg210
->dummy
= NULL
;
1978 /* DMA consistent memory and pools */
1979 if (fotg210
->qtd_pool
)
1980 dma_pool_destroy(fotg210
->qtd_pool
);
1981 fotg210
->qtd_pool
= NULL
;
1983 if (fotg210
->qh_pool
) {
1984 dma_pool_destroy(fotg210
->qh_pool
);
1985 fotg210
->qh_pool
= NULL
;
1988 if (fotg210
->itd_pool
)
1989 dma_pool_destroy(fotg210
->itd_pool
);
1990 fotg210
->itd_pool
= NULL
;
1992 if (fotg210
->periodic
)
1993 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1994 fotg210
->periodic_size
* sizeof(u32
),
1995 fotg210
->periodic
, fotg210
->periodic_dma
);
1996 fotg210
->periodic
= NULL
;
1998 /* shadow periodic table */
1999 kfree(fotg210
->pshadow
);
2000 fotg210
->pshadow
= NULL
;
2003 /* remember to add cleanup code (above) if you add anything here */
2004 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
2008 /* QTDs for control/bulk/intr transfers */
2009 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
2010 fotg210_to_hcd(fotg210
)->self
.controller
,
2011 sizeof(struct fotg210_qtd
),
2012 32 /* byte alignment (for hw parts) */,
2013 4096 /* can't cross 4K */);
2014 if (!fotg210
->qtd_pool
)
2017 /* QHs for control/bulk/intr transfers */
2018 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
2019 fotg210_to_hcd(fotg210
)->self
.controller
,
2020 sizeof(struct fotg210_qh_hw
),
2021 32 /* byte alignment (for hw parts) */,
2022 4096 /* can't cross 4K */);
2023 if (!fotg210
->qh_pool
)
2026 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
2027 if (!fotg210
->async
)
2030 /* ITD for high speed ISO transfers */
2031 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
2032 fotg210_to_hcd(fotg210
)->self
.controller
,
2033 sizeof(struct fotg210_itd
),
2034 64 /* byte alignment (for hw parts) */,
2035 4096 /* can't cross 4K */);
2036 if (!fotg210
->itd_pool
)
2039 /* Hardware periodic table */
2040 fotg210
->periodic
= (__le32
*)
2041 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
2042 fotg210
->periodic_size
* sizeof(__le32
),
2043 &fotg210
->periodic_dma
, 0);
2044 if (fotg210
->periodic
== NULL
)
2047 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
2048 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
2050 /* software shadow of hardware table */
2051 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
2053 if (fotg210
->pshadow
!= NULL
)
2057 fotg210_dbg(fotg210
, "couldn't init memory\n");
2058 fotg210_mem_cleanup(fotg210
);
2061 /*-------------------------------------------------------------------------*/
2063 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2065 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2066 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2067 * buffers needed for the larger number). We use one QH per endpoint, queue
2068 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2070 * ISO traffic uses "ISO TD" (itd) records, and (along with
2071 * interrupts) needs careful scheduling. Performance improvements can be
2072 * an ongoing challenge. That's in "ehci-sched.c".
2074 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2075 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2076 * (b) special fields in qh entries or (c) split iso entries. TTs will
2077 * buffer low/full speed data so the host collects it at high speed.
2080 /*-------------------------------------------------------------------------*/
2082 /* fill a qtd, returning how much of the buffer we were able to queue up */
2085 qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
, dma_addr_t buf
,
2086 size_t len
, int token
, int maxpacket
)
2091 /* one buffer entry per 4K ... first might be short or unaligned */
2092 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
2093 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
2094 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
2095 if (likely(len
< count
)) /* ... iff needed */
2101 /* per-qtd limit: from 16K to 20K (best alignment) */
2102 for (i
= 1; count
< len
&& i
< 5; i
++) {
2104 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2105 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2108 if ((count
+ 0x1000) < len
)
2114 /* short packets may only terminate transfers */
2116 count
-= (count
% maxpacket
);
2118 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2119 qtd
->length
= count
;
2124 /*-------------------------------------------------------------------------*/
2127 qh_update(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
2128 struct fotg210_qtd
*qtd
)
2130 struct fotg210_qh_hw
*hw
= qh
->hw
;
2132 /* writes to an active overlay are unsafe */
2133 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2135 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2136 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2138 /* Except for control endpoints, we make hardware maintain data
2139 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2140 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2143 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2144 unsigned is_out
, epnum
;
2146 is_out
= qh
->is_out
;
2147 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2148 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2149 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2150 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2154 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2157 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2158 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2159 * recovery (including urb dequeue) would need software changes to a QH...
2162 qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2164 struct fotg210_qtd
*qtd
;
2166 if (list_empty(&qh
->qtd_list
))
2169 qtd
= list_entry(qh
->qtd_list
.next
,
2170 struct fotg210_qtd
, qtd_list
);
2172 * first qtd may already be partially processed.
2173 * If we come here during unlink, the QH overlay region
2174 * might have reference to the just unlinked qtd. The
2175 * qtd is updated in qh_completions(). Update the QH
2178 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2179 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2185 qh_update(fotg210
, qh
, qtd
);
2188 /*-------------------------------------------------------------------------*/
2190 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2192 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2193 struct usb_host_endpoint
*ep
)
2195 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2196 struct fotg210_qh
*qh
= ep
->hcpriv
;
2197 unsigned long flags
;
2199 spin_lock_irqsave(&fotg210
->lock
, flags
);
2200 qh
->clearing_tt
= 0;
2201 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2202 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2203 qh_link_async(fotg210
, qh
);
2204 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2207 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2208 struct fotg210_qh
*qh
,
2209 struct urb
*urb
, u32 token
)
2212 /* If an async split transaction gets an error or is unlinked,
2213 * the TT buffer may be left in an indeterminate state. We
2214 * have to clear the TT buffer.
2216 * Note: this routine is never called for Isochronous transfers.
2218 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2219 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2221 "clear tt buffer port %d, a%d ep%d t%08x\n",
2222 urb
->dev
->ttport
, urb
->dev
->devnum
,
2223 usb_pipeendpoint(urb
->pipe
), token
);
2225 if (urb
->dev
->tt
->hub
!=
2226 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2227 if (usb_hub_clear_tt_buffer(urb
) == 0)
2228 qh
->clearing_tt
= 1;
2233 static int qtd_copy_status(
2234 struct fotg210_hcd
*fotg210
,
2240 int status
= -EINPROGRESS
;
2242 /* count IN/OUT bytes, not SETUP (even short packets) */
2243 if (likely(QTD_PID(token
) != 2))
2244 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2246 /* don't modify error codes */
2247 if (unlikely(urb
->unlinked
))
2250 /* force cleanup after short read; not always an error */
2251 if (unlikely(IS_SHORT_READ(token
)))
2252 status
= -EREMOTEIO
;
2254 /* serious "can't proceed" faults reported by the hardware */
2255 if (token
& QTD_STS_HALT
) {
2256 if (token
& QTD_STS_BABBLE
) {
2257 /* FIXME "must" disable babbling device's port too */
2258 status
= -EOVERFLOW
;
2259 /* CERR nonzero + halt --> stall */
2260 } else if (QTD_CERR(token
)) {
2263 /* In theory, more than one of the following bits can be set
2264 * since they are sticky and the transaction is retried.
2265 * Which to test first is rather arbitrary.
2267 } else if (token
& QTD_STS_MMF
) {
2268 /* fs/ls interrupt xfer missed the complete-split */
2270 } else if (token
& QTD_STS_DBE
) {
2271 status
= (QTD_PID(token
) == 1) /* IN ? */
2272 ? -ENOSR
/* hc couldn't read data */
2273 : -ECOMM
; /* hc couldn't write data */
2274 } else if (token
& QTD_STS_XACT
) {
2275 /* timeout, bad CRC, wrong PID, etc */
2276 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2278 usb_pipeendpoint(urb
->pipe
),
2279 usb_pipein(urb
->pipe
) ? "in" : "out");
2281 } else { /* unknown */
2285 fotg210_dbg(fotg210
,
2286 "dev%d ep%d%s qtd token %08x --> status %d\n",
2287 usb_pipedevice(urb
->pipe
),
2288 usb_pipeendpoint(urb
->pipe
),
2289 usb_pipein(urb
->pipe
) ? "in" : "out",
2297 fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
, int status
)
2298 __releases(fotg210
->lock
)
2299 __acquires(fotg210
->lock
)
2301 if (likely(urb
->hcpriv
!= NULL
)) {
2302 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2304 /* S-mask in a QH means it's an interrupt urb */
2305 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2307 /* ... update hc-wide periodic stats (for usbfs) */
2308 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2312 if (unlikely(urb
->unlinked
)) {
2313 COUNT(fotg210
->stats
.unlink
);
2315 /* report non-error and short read status as zero */
2316 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2318 COUNT(fotg210
->stats
.complete
);
2321 #ifdef FOTG210_URB_TRACE
2322 fotg210_dbg(fotg210
,
2323 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2324 __func__
, urb
->dev
->devpath
, urb
,
2325 usb_pipeendpoint(urb
->pipe
),
2326 usb_pipein(urb
->pipe
) ? "in" : "out",
2328 urb
->actual_length
, urb
->transfer_buffer_length
);
2331 /* complete() can reenter this HCD */
2332 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2333 spin_unlock(&fotg210
->lock
);
2334 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2335 spin_lock(&fotg210
->lock
);
2338 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2341 * Process and free completed qtds for a qh, returning URBs to drivers.
2342 * Chases up to qh->hw_current. Returns number of completions called,
2343 * indicating how much "real" work we did.
2346 qh_completions(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2348 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2349 struct list_head
*entry
, *tmp
;
2354 struct fotg210_qh_hw
*hw
= qh
->hw
;
2356 if (unlikely(list_empty(&qh
->qtd_list
)))
2359 /* completions (or tasks on other cpus) must never clobber HALT
2360 * till we've gone through and cleaned everything up, even when
2361 * they add urbs to this qh's queue or mark them for unlinking.
2363 * NOTE: unlinking expects to be done in queue order.
2365 * It's a bug for qh->qh_state to be anything other than
2366 * QH_STATE_IDLE, unless our caller is scan_async() or
2369 state
= qh
->qh_state
;
2370 qh
->qh_state
= QH_STATE_COMPLETING
;
2371 stopped
= (state
== QH_STATE_IDLE
);
2375 last_status
= -EINPROGRESS
;
2376 qh
->needs_rescan
= 0;
2378 /* remove de-activated QTDs from front of queue.
2379 * after faults (including short reads), cleanup this urb
2380 * then let the queue advance.
2381 * if queue is stopped, handles unlinks.
2383 list_for_each_safe(entry
, tmp
, &qh
->qtd_list
) {
2384 struct fotg210_qtd
*qtd
;
2388 qtd
= list_entry(entry
, struct fotg210_qtd
, qtd_list
);
2391 /* clean up any state from previous QTD ...*/
2393 if (likely(last
->urb
!= urb
)) {
2394 fotg210_urb_done(fotg210
, last
->urb
,
2397 last_status
= -EINPROGRESS
;
2399 fotg210_qtd_free(fotg210
, last
);
2403 /* ignore urbs submitted during completions we reported */
2407 /* hardware copies qtd out of qh overlay */
2409 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2411 /* always clean up qtds the hc de-activated */
2413 if ((token
& QTD_STS_ACTIVE
) == 0) {
2415 /* Report Data Buffer Error: non-fatal but useful */
2416 if (token
& QTD_STS_DBE
)
2417 fotg210_dbg(fotg210
,
2418 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2420 usb_endpoint_num(&urb
->ep
->desc
),
2421 usb_endpoint_dir_in(&urb
->ep
->desc
)
2423 urb
->transfer_buffer_length
,
2427 /* on STALL, error, and short reads this urb must
2428 * complete and all its qtds must be recycled.
2430 if ((token
& QTD_STS_HALT
) != 0) {
2432 /* retry transaction errors until we
2433 * reach the software xacterr limit
2435 if ((token
& QTD_STS_XACT
) &&
2436 QTD_CERR(token
) == 0 &&
2437 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2439 fotg210_dbg(fotg210
,
2440 "detected XactErr len %zu/%zu retry %d\n",
2441 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
2443 /* reset the token in the qtd and the
2444 * qh overlay (which still contains
2445 * the qtd) so that we pick up from
2448 token
&= ~QTD_STS_HALT
;
2449 token
|= QTD_STS_ACTIVE
|
2450 (FOTG210_TUNE_CERR
<< 10);
2451 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2454 hw
->hw_token
= cpu_to_hc32(fotg210
,
2460 /* magic dummy for some short reads; qh won't advance.
2461 * that silicon quirk can kick in with this dummy too.
2463 * other short reads won't stop the queue, including
2464 * control transfers (status stage handles that) or
2465 * most other single-qtd reads ... the queue stops if
2466 * URB_SHORT_NOT_OK was set so the driver submitting
2467 * the urbs could clean it up.
2469 } else if (IS_SHORT_READ(token
)
2470 && !(qtd
->hw_alt_next
2471 & FOTG210_LIST_END(fotg210
))) {
2475 /* stop scanning when we reach qtds the hc is using */
2476 } else if (likely(!stopped
2477 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2480 /* scan the whole queue for unlinks whenever it stops */
2484 /* cancel everything if we halt, suspend, etc */
2485 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2486 last_status
= -ESHUTDOWN
;
2488 /* this qtd is active; skip it unless a previous qtd
2489 * for its urb faulted, or its urb was canceled.
2491 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2494 /* qh unlinked; token in overlay may be most current */
2495 if (state
== QH_STATE_IDLE
2496 && cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2497 == hw
->hw_current
) {
2498 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2500 /* An unlink may leave an incomplete
2501 * async transaction in the TT buffer.
2502 * We have to clear it.
2504 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2509 /* unless we already know the urb's status, collect qtd status
2510 * and update count of bytes transferred. in common short read
2511 * cases with only one data qtd (including control transfers),
2512 * queue processing won't halt. but with two or more qtds (for
2513 * example, with a 32 KB transfer), when the first qtd gets a
2514 * short read the second must be removed by hand.
2516 if (last_status
== -EINPROGRESS
) {
2517 last_status
= qtd_copy_status(fotg210
, urb
,
2518 qtd
->length
, token
);
2519 if (last_status
== -EREMOTEIO
2520 && (qtd
->hw_alt_next
2521 & FOTG210_LIST_END(fotg210
)))
2522 last_status
= -EINPROGRESS
;
2524 /* As part of low/full-speed endpoint-halt processing
2525 * we must clear the TT buffer (11.17.5).
2527 if (unlikely(last_status
!= -EINPROGRESS
&&
2528 last_status
!= -EREMOTEIO
)) {
2529 /* The TT's in some hubs malfunction when they
2530 * receive this request following a STALL (they
2531 * stop sending isochronous packets). Since a
2532 * STALL can't leave the TT buffer in a busy
2533 * state (if you believe Figures 11-48 - 11-51
2534 * in the USB 2.0 spec), we won't clear the TT
2535 * buffer in this case. Strictly speaking this
2536 * is a violation of the spec.
2538 if (last_status
!= -EPIPE
)
2539 fotg210_clear_tt_buffer(fotg210
, qh
,
2544 /* if we're removing something not at the queue head,
2545 * patch the hardware queue pointer.
2547 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2548 last
= list_entry(qtd
->qtd_list
.prev
,
2549 struct fotg210_qtd
, qtd_list
);
2550 last
->hw_next
= qtd
->hw_next
;
2553 /* remove qtd; it's recycled after possible urb completion */
2554 list_del(&qtd
->qtd_list
);
2557 /* reinit the xacterr counter for the next qtd */
2561 /* last urb's completion might still need calling */
2562 if (likely(last
!= NULL
)) {
2563 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2565 fotg210_qtd_free(fotg210
, last
);
2568 /* Do we need to rescan for URBs dequeued during a giveback? */
2569 if (unlikely(qh
->needs_rescan
)) {
2570 /* If the QH is already unlinked, do the rescan now. */
2571 if (state
== QH_STATE_IDLE
)
2574 /* Otherwise we have to wait until the QH is fully unlinked.
2575 * Our caller will start an unlink if qh->needs_rescan is
2576 * set. But if an unlink has already started, nothing needs
2579 if (state
!= QH_STATE_LINKED
)
2580 qh
->needs_rescan
= 0;
2583 /* restore original state; caller must unlink or relink */
2584 qh
->qh_state
= state
;
2586 /* be sure the hardware's done with the qh before refreshing
2587 * it after fault cleanup, or recovering from silicon wrongly
2588 * overlaying the dummy qtd (which reduces DMA chatter).
2590 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2593 qh_refresh(fotg210
, qh
);
2595 case QH_STATE_LINKED
:
2596 /* We won't refresh a QH that's linked (after the HC
2597 * stopped the queue). That avoids a race:
2598 * - HC reads first part of QH;
2599 * - CPU updates that first part and the token;
2600 * - HC reads rest of that QH, including token
2601 * Result: HC gets an inconsistent image, and then
2602 * DMAs to/from the wrong memory (corrupting it).
2604 * That should be rare for interrupt transfers,
2605 * except maybe high bandwidth ...
2608 /* Tell the caller to start an unlink */
2609 qh
->needs_rescan
= 1;
2611 /* otherwise, unlink already started */
2618 /*-------------------------------------------------------------------------*/
2620 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2621 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2622 /* ... and packet size, for any kind of endpoint descriptor */
2623 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2626 * reverse of qh_urb_transaction: free a list of TDs.
2627 * used for cleanup after errors, before HC sees an URB's TDs.
2629 static void qtd_list_free(
2630 struct fotg210_hcd
*fotg210
,
2632 struct list_head
*qtd_list
2634 struct list_head
*entry
, *temp
;
2636 list_for_each_safe(entry
, temp
, qtd_list
) {
2637 struct fotg210_qtd
*qtd
;
2639 qtd
= list_entry(entry
, struct fotg210_qtd
, qtd_list
);
2640 list_del(&qtd
->qtd_list
);
2641 fotg210_qtd_free(fotg210
, qtd
);
2646 * create a list of filled qtds for this URB; won't link into qh.
2648 static struct list_head
*
2650 struct fotg210_hcd
*fotg210
,
2652 struct list_head
*head
,
2655 struct fotg210_qtd
*qtd
, *qtd_prev
;
2657 int len
, this_sg_len
, maxpacket
;
2661 struct scatterlist
*sg
;
2664 * URBs map to sequences of QTDs: one logical transaction
2666 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2669 list_add_tail(&qtd
->qtd_list
, head
);
2672 token
= QTD_STS_ACTIVE
;
2673 token
|= (FOTG210_TUNE_CERR
<< 10);
2674 /* for split transactions, SplitXState initialized to zero */
2676 len
= urb
->transfer_buffer_length
;
2677 is_input
= usb_pipein(urb
->pipe
);
2678 if (usb_pipecontrol(urb
->pipe
)) {
2680 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2681 sizeof(struct usb_ctrlrequest
),
2682 token
| (2 /* "setup" */ << 8), 8);
2684 /* ... and always at least one more pid */
2685 token
^= QTD_TOGGLE
;
2687 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2691 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2692 list_add_tail(&qtd
->qtd_list
, head
);
2694 /* for zero length DATA stages, STATUS is always IN */
2696 token
|= (1 /* "in" */ << 8);
2700 * data transfer stage: buffer setup
2702 i
= urb
->num_mapped_sgs
;
2703 if (len
> 0 && i
> 0) {
2705 buf
= sg_dma_address(sg
);
2707 /* urb->transfer_buffer_length may be smaller than the
2708 * size of the scatterlist (or vice versa)
2710 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2713 buf
= urb
->transfer_dma
;
2718 token
|= (1 /* "in" */ << 8);
2719 /* else it's already initted to "out" pid (0 << 8) */
2721 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2724 * buffer gets wrapped in one or more qtds;
2725 * last one may be "short" (including zero len)
2726 * and may serve as a control status ack
2731 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2733 this_sg_len
-= this_qtd_len
;
2734 len
-= this_qtd_len
;
2735 buf
+= this_qtd_len
;
2738 * short reads advance to a "magic" dummy instead of the next
2739 * qtd ... that forces the queue to stop, for manual cleanup.
2740 * (this will usually be overridden later.)
2743 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2745 /* qh makes control packets use qtd toggle; maybe switch it */
2746 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2747 token
^= QTD_TOGGLE
;
2749 if (likely(this_sg_len
<= 0)) {
2750 if (--i
<= 0 || len
<= 0)
2753 buf
= sg_dma_address(sg
);
2754 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2758 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2762 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2763 list_add_tail(&qtd
->qtd_list
, head
);
2767 * unless the caller requires manual cleanup after short reads,
2768 * have the alt_next mechanism keep the queue running after the
2769 * last data qtd (the only one, for control and most other cases).
2771 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
2772 || usb_pipecontrol(urb
->pipe
)))
2773 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2776 * control requests may need a terminating data "status" ack;
2777 * other OUT ones may need a terminating short packet
2780 if (likely(urb
->transfer_buffer_length
!= 0)) {
2783 if (usb_pipecontrol(urb
->pipe
)) {
2785 token
^= 0x0100; /* "in" <--> "out" */
2786 token
|= QTD_TOGGLE
; /* force DATA1 */
2787 } else if (usb_pipeout(urb
->pipe
)
2788 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2789 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2794 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2798 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2799 list_add_tail(&qtd
->qtd_list
, head
);
2801 /* never any data in such packets */
2802 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2806 /* by default, enable interrupt on urb completion */
2807 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2808 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2812 qtd_list_free(fotg210
, urb
, head
);
2816 /*-------------------------------------------------------------------------*/
2818 * Would be best to create all qh's from config descriptors,
2819 * when each interface/altsetting is established. Unlink
2820 * any previous qh and cancel its urbs first; endpoints are
2821 * implicitly reset then (data toggle too).
2822 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2827 * Each QH holds a qtd list; a QH is used for everything except iso.
2829 * For interrupt urbs, the scheduler must set the microframe scheduling
2830 * mask(s) each time the QH gets scheduled. For highspeed, that's
2831 * just one microframe in the s-mask. For split interrupt transactions
2832 * there are additional complications: c-mask, maybe FSTNs.
2834 static struct fotg210_qh
*
2836 struct fotg210_hcd
*fotg210
,
2840 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2841 u32 info1
= 0, info2
= 0;
2844 struct usb_tt
*tt
= urb
->dev
->tt
;
2845 struct fotg210_qh_hw
*hw
;
2851 * init endpoint/device data for this QH
2853 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2854 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2856 is_input
= usb_pipein(urb
->pipe
);
2857 type
= usb_pipetype(urb
->pipe
);
2858 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2860 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2861 * acts like up to 3KB, but is built from smaller packets.
2863 if (max_packet(maxp
) > 1024) {
2864 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2869 /* Compute interrupt scheduling parameters just once, and save.
2870 * - allowing for high bandwidth, how many nsec/uframe are used?
2871 * - split transactions need a second CSPLIT uframe; same question
2872 * - splits also need a schedule gap (for full/low speed I/O)
2873 * - qh has a polling interval
2875 * For control/bulk requests, the HC or TT handles these.
2877 if (type
== PIPE_INTERRUPT
) {
2878 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2880 hb_mult(maxp
) * max_packet(maxp
)));
2881 qh
->start
= NO_FRAME
;
2883 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2887 qh
->period
= urb
->interval
>> 3;
2888 if (qh
->period
== 0 && urb
->interval
!= 1) {
2889 /* NOTE interval 2 or 4 uframes could work.
2890 * But interval 1 scheduling is simpler, and
2891 * includes high bandwidth.
2894 } else if (qh
->period
> fotg210
->periodic_size
) {
2895 qh
->period
= fotg210
->periodic_size
;
2896 urb
->interval
= qh
->period
<< 3;
2901 /* gap is f(FS/LS transfer times) */
2902 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2903 is_input
, 0, maxp
) / (125 * 1000);
2905 /* FIXME this just approximates SPLIT/CSPLIT times */
2906 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2907 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2908 qh
->usecs
= HS_USECS(1);
2909 } else { /* SPLIT+DATA, gap, CSPLIT */
2910 qh
->usecs
+= HS_USECS(1);
2911 qh
->c_usecs
= HS_USECS(0);
2914 think_time
= tt
? tt
->think_time
: 0;
2915 qh
->tt_usecs
= NS_TO_US(think_time
+
2916 usb_calc_bus_time(urb
->dev
->speed
,
2917 is_input
, 0, max_packet(maxp
)));
2918 qh
->period
= urb
->interval
;
2919 if (qh
->period
> fotg210
->periodic_size
) {
2920 qh
->period
= fotg210
->periodic_size
;
2921 urb
->interval
= qh
->period
;
2926 /* support for tt scheduling, and access to toggles */
2930 switch (urb
->dev
->speed
) {
2932 info1
|= QH_LOW_SPEED
;
2935 case USB_SPEED_FULL
:
2936 /* EPS 0 means "full" */
2937 if (type
!= PIPE_INTERRUPT
)
2938 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2939 if (type
== PIPE_CONTROL
) {
2940 info1
|= QH_CONTROL_EP
; /* for TT */
2941 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2943 info1
|= maxp
<< 16;
2945 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2947 /* Some Freescale processors have an erratum in which the
2948 * port number in the queue head was 0..N-1 instead of 1..N.
2950 if (fotg210_has_fsl_portno_bug(fotg210
))
2951 info2
|= (urb
->dev
->ttport
-1) << 23;
2953 info2
|= urb
->dev
->ttport
<< 23;
2955 /* set the address of the TT; for TDI's integrated
2956 * root hub tt, leave it zeroed.
2958 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2959 info2
|= tt
->hub
->devnum
<< 16;
2961 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2965 case USB_SPEED_HIGH
: /* no TT involved */
2966 info1
|= QH_HIGH_SPEED
;
2967 if (type
== PIPE_CONTROL
) {
2968 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2969 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2970 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2971 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2972 } else if (type
== PIPE_BULK
) {
2973 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2974 /* The USB spec says that high speed bulk endpoints
2975 * always use 512 byte maxpacket. But some device
2976 * vendors decided to ignore that, and MSFT is happy
2977 * to help them do so. So now people expect to use
2978 * such nonconformant devices with Linux too; sigh.
2980 info1
|= max_packet(maxp
) << 16;
2981 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2982 } else { /* PIPE_INTERRUPT */
2983 info1
|= max_packet(maxp
) << 16;
2984 info2
|= hb_mult(maxp
) << 30;
2988 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2991 qh_destroy(fotg210
, qh
);
2995 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2997 /* init as live, toggle clear, advance to dummy */
2998 qh
->qh_state
= QH_STATE_IDLE
;
3000 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
3001 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
3002 qh
->is_out
= !is_input
;
3003 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
3004 qh_refresh(fotg210
, qh
);
3008 /*-------------------------------------------------------------------------*/
3010 static void enable_async(struct fotg210_hcd
*fotg210
)
3012 if (fotg210
->async_count
++)
3015 /* Stop waiting to turn off the async schedule */
3016 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
3018 /* Don't start the schedule until ASS is 0 */
3019 fotg210_poll_ASS(fotg210
);
3020 turn_on_io_watchdog(fotg210
);
3023 static void disable_async(struct fotg210_hcd
*fotg210
)
3025 if (--fotg210
->async_count
)
3028 /* The async schedule and async_unlink list are supposed to be empty */
3029 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
3031 /* Don't turn off the schedule until ASS is 1 */
3032 fotg210_poll_ASS(fotg210
);
3035 /* move qh (and its qtds) onto async queue; maybe enable queue. */
3037 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3039 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
3040 struct fotg210_qh
*head
;
3042 /* Don't link a QH if there's a Clear-TT-Buffer pending */
3043 if (unlikely(qh
->clearing_tt
))
3046 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
3048 /* clear halt and/or toggle; and maybe recover from silicon quirk */
3049 qh_refresh(fotg210
, qh
);
3051 /* splice right after start */
3052 head
= fotg210
->async
;
3053 qh
->qh_next
= head
->qh_next
;
3054 qh
->hw
->hw_next
= head
->hw
->hw_next
;
3057 head
->qh_next
.qh
= qh
;
3058 head
->hw
->hw_next
= dma
;
3061 qh
->qh_state
= QH_STATE_LINKED
;
3062 /* qtd completions reported later by interrupt */
3064 enable_async(fotg210
);
3067 /*-------------------------------------------------------------------------*/
3070 * For control/bulk/interrupt, return QH with these TDs appended.
3071 * Allocates and initializes the QH if necessary.
3072 * Returns null if it can't allocate a QH it needs to.
3073 * If the QH has TDs (urbs) already, that's great.
3075 static struct fotg210_qh
*qh_append_tds(
3076 struct fotg210_hcd
*fotg210
,
3078 struct list_head
*qtd_list
,
3083 struct fotg210_qh
*qh
= NULL
;
3084 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
3086 qh
= (struct fotg210_qh
*) *ptr
;
3087 if (unlikely(qh
== NULL
)) {
3088 /* can't sleep here, we have fotg210->lock... */
3089 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
3092 if (likely(qh
!= NULL
)) {
3093 struct fotg210_qtd
*qtd
;
3095 if (unlikely(list_empty(qtd_list
)))
3098 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
3101 /* control qh may need patching ... */
3102 if (unlikely(epnum
== 0)) {
3103 /* usb_reset_device() briefly reverts to address 0 */
3104 if (usb_pipedevice(urb
->pipe
) == 0)
3105 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
3108 /* just one way to queue requests: swap with the dummy qtd.
3109 * only hc or qh_refresh() ever modify the overlay.
3111 if (likely(qtd
!= NULL
)) {
3112 struct fotg210_qtd
*dummy
;
3116 /* to avoid racing the HC, use the dummy td instead of
3117 * the first td of our list (becomes new dummy). both
3118 * tds stay deactivated until we're done, when the
3119 * HC is allowed to fetch the old dummy (4.10.2).
3121 token
= qtd
->hw_token
;
3122 qtd
->hw_token
= HALT_BIT(fotg210
);
3126 dma
= dummy
->qtd_dma
;
3128 dummy
->qtd_dma
= dma
;
3130 list_del(&qtd
->qtd_list
);
3131 list_add(&dummy
->qtd_list
, qtd_list
);
3132 list_splice_tail(qtd_list
, &qh
->qtd_list
);
3134 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
3137 /* hc must see the new dummy at list end */
3139 qtd
= list_entry(qh
->qtd_list
.prev
,
3140 struct fotg210_qtd
, qtd_list
);
3141 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3143 /* let the hc process these next qtds */
3145 dummy
->hw_token
= token
;
3153 /*-------------------------------------------------------------------------*/
3157 struct fotg210_hcd
*fotg210
,
3159 struct list_head
*qtd_list
,
3163 unsigned long flags
;
3164 struct fotg210_qh
*qh
= NULL
;
3167 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3169 #ifdef FOTG210_URB_TRACE
3171 struct fotg210_qtd
*qtd
;
3172 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3173 fotg210_dbg(fotg210
,
3174 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3175 __func__
, urb
->dev
->devpath
, urb
,
3176 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
3177 urb
->transfer_buffer_length
,
3178 qtd
, urb
->ep
->hcpriv
);
3182 spin_lock_irqsave(&fotg210
->lock
, flags
);
3183 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3187 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3191 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3192 if (unlikely(qh
== NULL
)) {
3193 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3198 /* Control/bulk operations through TTs don't need scheduling,
3199 * the HC and TT handle it when the TT has a buffer ready.
3201 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3202 qh_link_async(fotg210
, qh
);
3204 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3205 if (unlikely(qh
== NULL
))
3206 qtd_list_free(fotg210
, urb
, qtd_list
);
3210 /*-------------------------------------------------------------------------*/
3212 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3213 struct fotg210_qh
*qh
)
3215 struct fotg210_qh
*prev
;
3217 /* Add to the end of the list of QHs waiting for the next IAAD */
3218 qh
->qh_state
= QH_STATE_UNLINK
;
3219 if (fotg210
->async_unlink
)
3220 fotg210
->async_unlink_last
->unlink_next
= qh
;
3222 fotg210
->async_unlink
= qh
;
3223 fotg210
->async_unlink_last
= qh
;
3225 /* Unlink it from the schedule */
3226 prev
= fotg210
->async
;
3227 while (prev
->qh_next
.qh
!= qh
)
3228 prev
= prev
->qh_next
.qh
;
3230 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3231 prev
->qh_next
= qh
->qh_next
;
3232 if (fotg210
->qh_scan_next
== qh
)
3233 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3236 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3239 * Do nothing if an IAA cycle is already running or
3240 * if one will be started shortly.
3242 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3245 /* Do all the waiting QHs at once */
3246 fotg210
->async_iaa
= fotg210
->async_unlink
;
3247 fotg210
->async_unlink
= NULL
;
3249 /* If the controller isn't running, we don't have to wait for it */
3250 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3251 if (!nested
) /* Avoid recursion */
3252 end_unlink_async(fotg210
);
3254 /* Otherwise start a new IAA cycle */
3255 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3256 /* Make sure the unlinks are all visible to the hardware */
3259 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3260 &fotg210
->regs
->command
);
3261 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3262 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3267 /* the async qh for the qtds being unlinked are now gone from the HC */
3269 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3271 struct fotg210_qh
*qh
;
3273 /* Process the idle QHs */
3275 fotg210
->async_unlinking
= true;
3276 while (fotg210
->async_iaa
) {
3277 qh
= fotg210
->async_iaa
;
3278 fotg210
->async_iaa
= qh
->unlink_next
;
3279 qh
->unlink_next
= NULL
;
3281 qh
->qh_state
= QH_STATE_IDLE
;
3282 qh
->qh_next
.qh
= NULL
;
3284 qh_completions(fotg210
, qh
);
3285 if (!list_empty(&qh
->qtd_list
) &&
3286 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3287 qh_link_async(fotg210
, qh
);
3288 disable_async(fotg210
);
3290 fotg210
->async_unlinking
= false;
3292 /* Start a new IAA cycle if any QHs are waiting for it */
3293 if (fotg210
->async_unlink
) {
3294 start_iaa_cycle(fotg210
, true);
3295 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3300 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3302 struct fotg210_qh
*qh
, *next
;
3303 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3304 bool check_unlinks_later
= false;
3306 /* Unlink all the async QHs that have been empty for a timer cycle */
3307 next
= fotg210
->async
->qh_next
.qh
;
3310 next
= qh
->qh_next
.qh
;
3312 if (list_empty(&qh
->qtd_list
) &&
3313 qh
->qh_state
== QH_STATE_LINKED
) {
3314 if (!stopped
&& qh
->unlink_cycle
==
3315 fotg210
->async_unlink_cycle
)
3316 check_unlinks_later
= true;
3318 single_unlink_async(fotg210
, qh
);
3322 /* Start a new IAA cycle if any QHs are waiting for it */
3323 if (fotg210
->async_unlink
)
3324 start_iaa_cycle(fotg210
, false);
3326 /* QHs that haven't been empty for long enough will be handled later */
3327 if (check_unlinks_later
) {
3328 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3330 ++fotg210
->async_unlink_cycle
;
3334 /* makes sure the async qh will become idle */
3335 /* caller must own fotg210->lock */
3337 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3338 struct fotg210_qh
*qh
)
3341 * If the QH isn't linked then there's nothing we can do
3342 * unless we were called during a giveback, in which case
3343 * qh_completions() has to deal with it.
3345 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3346 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3347 qh
->needs_rescan
= 1;
3351 single_unlink_async(fotg210
, qh
);
3352 start_iaa_cycle(fotg210
, false);
3355 /*-------------------------------------------------------------------------*/
3357 static void scan_async(struct fotg210_hcd
*fotg210
)
3359 struct fotg210_qh
*qh
;
3360 bool check_unlinks_later
= false;
3362 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3363 while (fotg210
->qh_scan_next
) {
3364 qh
= fotg210
->qh_scan_next
;
3365 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3367 /* clean any finished work for this qh */
3368 if (!list_empty(&qh
->qtd_list
)) {
3372 * Unlinks could happen here; completion reporting
3373 * drops the lock. That's why fotg210->qh_scan_next
3374 * always holds the next qh to scan; if the next qh
3375 * gets unlinked then fotg210->qh_scan_next is adjusted
3376 * in single_unlink_async().
3378 temp
= qh_completions(fotg210
, qh
);
3379 if (qh
->needs_rescan
) {
3380 start_unlink_async(fotg210
, qh
);
3381 } else if (list_empty(&qh
->qtd_list
)
3382 && qh
->qh_state
== QH_STATE_LINKED
) {
3383 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3384 check_unlinks_later
= true;
3385 } else if (temp
!= 0)
3391 * Unlink empty entries, reducing DMA usage as well
3392 * as HCD schedule-scanning costs. Delay for any qh
3393 * we just scanned, there's a not-unusual case that it
3394 * doesn't stay idle for long.
3396 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3397 !(fotg210
->enabled_hrtimer_events
&
3398 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3399 fotg210_enable_event(fotg210
,
3400 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3401 ++fotg210
->async_unlink_cycle
;
3404 /*-------------------------------------------------------------------------*/
3406 * EHCI scheduled transaction support: interrupt, iso, split iso
3407 * These are called "periodic" transactions in the EHCI spec.
3409 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3410 * with the "asynchronous" transaction support (control/bulk transfers).
3411 * The only real difference is in how interrupt transfers are scheduled.
3413 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3414 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3415 * pre-calculated schedule data to make appending to the queue be quick.
3418 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3420 /*-------------------------------------------------------------------------*/
3423 * periodic_next_shadow - return "next" pointer on shadow list
3424 * @periodic: host pointer to qh/itd
3425 * @tag: hardware tag for type of this record
3427 static union fotg210_shadow
*
3428 periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3429 union fotg210_shadow
*periodic
, __hc32 tag
)
3431 switch (hc32_to_cpu(fotg210
, tag
)) {
3433 return &periodic
->qh
->qh_next
;
3435 return &periodic
->fstn
->fstn_next
;
3437 return &periodic
->itd
->itd_next
;
3442 shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3443 union fotg210_shadow
*periodic
, __hc32 tag
)
3445 switch (hc32_to_cpu(fotg210
, tag
)) {
3446 /* our fotg210_shadow.qh is actually software part */
3448 return &periodic
->qh
->hw
->hw_next
;
3449 /* others are hw parts */
3451 return periodic
->hw_next
;
3455 /* caller must hold fotg210->lock */
3456 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3459 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3460 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3461 union fotg210_shadow here
= *prev_p
;
3463 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3464 while (here
.ptr
&& here
.ptr
!= ptr
) {
3465 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3466 Q_NEXT_TYPE(fotg210
, *hw_p
));
3467 hw_p
= shadow_next_periodic(fotg210
, &here
,
3468 Q_NEXT_TYPE(fotg210
, *hw_p
));
3471 /* an interrupt entry (at list end) could have been shared */
3475 /* update shadow and hardware lists ... the old "next" pointers
3476 * from ptr may still be in use, the caller updates them.
3478 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3479 Q_NEXT_TYPE(fotg210
, *hw_p
));
3481 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3482 Q_NEXT_TYPE(fotg210
, *hw_p
));
3485 /* how many of the uframe's 125 usecs are allocated? */
3486 static unsigned short
3487 periodic_usecs(struct fotg210_hcd
*fotg210
, unsigned frame
, unsigned uframe
)
3489 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3490 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3492 struct fotg210_qh_hw
*hw
;
3495 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3498 /* is it in the S-mask? */
3499 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3500 usecs
+= q
->qh
->usecs
;
3501 /* ... or C-mask? */
3502 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3504 usecs
+= q
->qh
->c_usecs
;
3505 hw_p
= &hw
->hw_next
;
3506 q
= &q
->qh
->qh_next
;
3508 /* case Q_TYPE_FSTN: */
3510 /* for "save place" FSTNs, count the relevant INTR
3511 * bandwidth from the previous frame
3513 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3514 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3516 hw_p
= &q
->fstn
->hw_next
;
3517 q
= &q
->fstn
->fstn_next
;
3520 if (q
->itd
->hw_transaction
[uframe
])
3521 usecs
+= q
->itd
->stream
->usecs
;
3522 hw_p
= &q
->itd
->hw_next
;
3523 q
= &q
->itd
->itd_next
;
3527 if (usecs
> fotg210
->uframe_periodic_max
)
3528 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3529 frame
* 8 + uframe
, usecs
);
3533 /*-------------------------------------------------------------------------*/
3535 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3537 if (!dev1
->tt
|| !dev2
->tt
)
3539 if (dev1
->tt
!= dev2
->tt
)
3541 if (dev1
->tt
->multi
)
3542 return dev1
->ttport
== dev2
->ttport
;
3547 /* return true iff the device's transaction translator is available
3548 * for a periodic transfer starting at the specified frame, using
3549 * all the uframes in the mask.
3551 static int tt_no_collision(
3552 struct fotg210_hcd
*fotg210
,
3554 struct usb_device
*dev
,
3559 if (period
== 0) /* error */
3562 /* note bandwidth wastage: split never follows csplit
3563 * (different dev or endpoint) until the next uframe.
3564 * calling convention doesn't make that distinction.
3566 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3567 union fotg210_shadow here
;
3569 struct fotg210_qh_hw
*hw
;
3571 here
= fotg210
->pshadow
[frame
];
3572 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3574 switch (hc32_to_cpu(fotg210
, type
)) {
3576 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3577 here
= here
.itd
->itd_next
;
3581 if (same_tt(dev
, here
.qh
->dev
)) {
3584 mask
= hc32_to_cpu(fotg210
,
3586 /* "knows" no gap is needed */
3591 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3592 here
= here
.qh
->qh_next
;
3594 /* case Q_TYPE_FSTN: */
3596 fotg210_dbg(fotg210
,
3597 "periodic frame %d bogus type %d\n",
3601 /* collision or error */
3610 /*-------------------------------------------------------------------------*/
3612 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3614 if (fotg210
->periodic_count
++)
3617 /* Stop waiting to turn off the periodic schedule */
3618 fotg210
->enabled_hrtimer_events
&=
3619 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3621 /* Don't start the schedule until PSS is 0 */
3622 fotg210_poll_PSS(fotg210
);
3623 turn_on_io_watchdog(fotg210
);
3626 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3628 if (--fotg210
->periodic_count
)
3631 /* Don't turn off the schedule until PSS is 1 */
3632 fotg210_poll_PSS(fotg210
);
3635 /*-------------------------------------------------------------------------*/
3637 /* periodic schedule slots have iso tds (normal or split) first, then a
3638 * sparse tree for active interrupt transfers.
3640 * this just links in a qh; caller guarantees uframe masks are set right.
3641 * no FSTN support (yet; fotg210 0.96+)
3643 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3646 unsigned period
= qh
->period
;
3648 dev_dbg(&qh
->dev
->dev
,
3649 "link qh%d-%04x/%p start %d [%d/%d us]\n",
3650 period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
)
3651 & (QH_CMASK
| QH_SMASK
),
3652 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
3654 /* high bandwidth, or otherwise every microframe */
3658 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3659 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3660 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3661 union fotg210_shadow here
= *prev
;
3664 /* skip the iso nodes at list head */
3666 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3667 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3669 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3670 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3674 /* sorting each branch by period (slow-->fast)
3675 * enables sharing interior tree nodes
3677 while (here
.ptr
&& qh
!= here
.qh
) {
3678 if (qh
->period
> here
.qh
->period
)
3680 prev
= &here
.qh
->qh_next
;
3681 hw_p
= &here
.qh
->hw
->hw_next
;
3684 /* link in this qh, unless some earlier pass did that */
3685 if (qh
!= here
.qh
) {
3688 qh
->hw
->hw_next
= *hw_p
;
3691 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3694 qh
->qh_state
= QH_STATE_LINKED
;
3697 /* update per-qh bandwidth for usbfs */
3698 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3699 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3702 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3704 /* maybe enable periodic schedule processing */
3705 ++fotg210
->intr_count
;
3706 enable_periodic(fotg210
);
3709 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3710 struct fotg210_qh
*qh
)
3716 * If qh is for a low/full-speed device, simply unlinking it
3717 * could interfere with an ongoing split transaction. To unlink
3718 * it safely would require setting the QH_INACTIVATE bit and
3719 * waiting at least one frame, as described in EHCI 4.12.2.5.
3721 * We won't bother with any of this. Instead, we assume that the
3722 * only reason for unlinking an interrupt QH while the current URB
3723 * is still active is to dequeue all the URBs (flush the whole
3726 * If rebalancing the periodic schedule is ever implemented, this
3727 * approach will no longer be valid.
3730 /* high bandwidth, or otherwise part of every microframe */
3731 period
= qh
->period
;
3735 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3736 periodic_unlink(fotg210
, i
, qh
);
3738 /* update per-qh bandwidth for usbfs */
3739 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3740 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3743 dev_dbg(&qh
->dev
->dev
,
3744 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3746 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3747 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
3749 /* qh->qh_next still "live" to HC */
3750 qh
->qh_state
= QH_STATE_UNLINK
;
3751 qh
->qh_next
.ptr
= NULL
;
3753 if (fotg210
->qh_scan_next
== qh
)
3754 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3755 struct fotg210_qh
, intr_node
);
3756 list_del(&qh
->intr_node
);
3759 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3760 struct fotg210_qh
*qh
)
3762 /* If the QH isn't linked then there's nothing we can do
3763 * unless we were called during a giveback, in which case
3764 * qh_completions() has to deal with it.
3766 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3767 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3768 qh
->needs_rescan
= 1;
3772 qh_unlink_periodic(fotg210
, qh
);
3774 /* Make sure the unlinks are visible before starting the timer */
3778 * The EHCI spec doesn't say how long it takes the controller to
3779 * stop accessing an unlinked interrupt QH. The timer delay is
3780 * 9 uframes; presumably that will be long enough.
3782 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3784 /* New entries go at the end of the intr_unlink list */
3785 if (fotg210
->intr_unlink
)
3786 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3788 fotg210
->intr_unlink
= qh
;
3789 fotg210
->intr_unlink_last
= qh
;
3791 if (fotg210
->intr_unlinking
)
3792 ; /* Avoid recursive calls */
3793 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3794 fotg210_handle_intr_unlinks(fotg210
);
3795 else if (fotg210
->intr_unlink
== qh
) {
3796 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3798 ++fotg210
->intr_unlink_cycle
;
3802 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3804 struct fotg210_qh_hw
*hw
= qh
->hw
;
3807 qh
->qh_state
= QH_STATE_IDLE
;
3808 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3810 qh_completions(fotg210
, qh
);
3812 /* reschedule QH iff another request is queued */
3813 if (!list_empty(&qh
->qtd_list
) &&
3814 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3815 rc
= qh_schedule(fotg210
, qh
);
3817 /* An error here likely indicates handshake failure
3818 * or no space left in the schedule. Neither fault
3819 * should happen often ...
3821 * FIXME kill the now-dysfunctional queued urbs
3824 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3828 /* maybe turn off periodic schedule */
3829 --fotg210
->intr_count
;
3830 disable_periodic(fotg210
);
3833 /*-------------------------------------------------------------------------*/
3835 static int check_period(
3836 struct fotg210_hcd
*fotg210
,
3844 /* complete split running into next frame?
3845 * given FSTN support, we could sometimes check...
3850 /* convert "usecs we need" to "max already claimed" */
3851 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3853 /* we "know" 2 and 4 uframe intervals were rejected; so
3854 * for period 0, check _every_ microframe in the schedule.
3856 if (unlikely(period
== 0)) {
3858 for (uframe
= 0; uframe
< 7; uframe
++) {
3859 claimed
= periodic_usecs(fotg210
, frame
,
3861 if (claimed
> usecs
)
3864 } while ((frame
+= 1) < fotg210
->periodic_size
);
3866 /* just check the specified uframe, at that period */
3869 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3870 if (claimed
> usecs
)
3872 } while ((frame
+= period
) < fotg210
->periodic_size
);
3879 static int check_intr_schedule(
3880 struct fotg210_hcd
*fotg210
,
3883 const struct fotg210_qh
*qh
,
3887 int retval
= -ENOSPC
;
3890 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3893 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3901 /* Make sure this tt's buffer is also available for CSPLITs.
3902 * We pessimize a bit; probably the typical full speed case
3903 * doesn't need the second CSPLIT.
3905 * NOTE: both SPLIT and CSPLIT could be checked in just
3908 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3909 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3911 mask
|= 1 << uframe
;
3912 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3913 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3914 qh
->period
, qh
->c_usecs
))
3916 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3917 qh
->period
, qh
->c_usecs
))
3925 /* "first fit" scheduling policy used the first time through,
3926 * or when the previous schedule slot can't be re-used.
3928 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3933 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3934 struct fotg210_qh_hw
*hw
= qh
->hw
;
3936 qh_refresh(fotg210
, qh
);
3937 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3940 /* reuse the previous schedule slots, if we can */
3941 if (frame
< qh
->period
) {
3942 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3943 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3951 /* else scan the schedule to find a group of slots such that all
3952 * uframes have enough periodic bandwidth available.
3955 /* "normal" case, uframing flexible except with splits */
3959 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3960 frame
= ++fotg210
->random_frame
% qh
->period
;
3961 for (uframe
= 0; uframe
< 8; uframe
++) {
3962 status
= check_intr_schedule(fotg210
,
3970 /* qh->period == 0 means every uframe */
3973 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3980 /* reset S-frame and (maybe) C-frame masks */
3981 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3982 hw
->hw_info2
|= qh
->period
3983 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3984 : cpu_to_hc32(fotg210
, QH_SMASK
);
3985 hw
->hw_info2
|= c_mask
;
3987 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3989 /* stuff into the periodic schedule */
3990 qh_link_periodic(fotg210
, qh
);
3995 static int intr_submit(
3996 struct fotg210_hcd
*fotg210
,
3998 struct list_head
*qtd_list
,
4002 unsigned long flags
;
4003 struct fotg210_qh
*qh
;
4005 struct list_head empty
;
4007 /* get endpoint and transfer/schedule data */
4008 epnum
= urb
->ep
->desc
.bEndpointAddress
;
4010 spin_lock_irqsave(&fotg210
->lock
, flags
);
4012 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4013 status
= -ESHUTDOWN
;
4014 goto done_not_linked
;
4016 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4017 if (unlikely(status
))
4018 goto done_not_linked
;
4020 /* get qh and force any scheduling errors */
4021 INIT_LIST_HEAD(&empty
);
4022 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
4027 if (qh
->qh_state
== QH_STATE_IDLE
) {
4028 status
= qh_schedule(fotg210
, qh
);
4033 /* then queue the urb's tds to the qh */
4034 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
4037 /* ... update usbfs periodic stats */
4038 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
4041 if (unlikely(status
))
4042 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4044 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4046 qtd_list_free(fotg210
, urb
, qtd_list
);
4051 static void scan_intr(struct fotg210_hcd
*fotg210
)
4053 struct fotg210_qh
*qh
;
4055 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
4056 &fotg210
->intr_qh_list
, intr_node
) {
4058 /* clean any finished work for this qh */
4059 if (!list_empty(&qh
->qtd_list
)) {
4063 * Unlinks could happen here; completion reporting
4064 * drops the lock. That's why fotg210->qh_scan_next
4065 * always holds the next qh to scan; if the next qh
4066 * gets unlinked then fotg210->qh_scan_next is adjusted
4067 * in qh_unlink_periodic().
4069 temp
= qh_completions(fotg210
, qh
);
4070 if (unlikely(qh
->needs_rescan
||
4071 (list_empty(&qh
->qtd_list
) &&
4072 qh
->qh_state
== QH_STATE_LINKED
)))
4073 start_unlink_intr(fotg210
, qh
);
4080 /*-------------------------------------------------------------------------*/
4082 /* fotg210_iso_stream ops work with both ITD and SITD */
4084 static struct fotg210_iso_stream
*
4085 iso_stream_alloc(gfp_t mem_flags
)
4087 struct fotg210_iso_stream
*stream
;
4089 stream
= kzalloc(sizeof(*stream
), mem_flags
);
4090 if (likely(stream
!= NULL
)) {
4091 INIT_LIST_HEAD(&stream
->td_list
);
4092 INIT_LIST_HEAD(&stream
->free_list
);
4093 stream
->next_uframe
= -1;
4100 struct fotg210_hcd
*fotg210
,
4101 struct fotg210_iso_stream
*stream
,
4102 struct usb_device
*dev
,
4108 unsigned epnum
, maxp
;
4114 * this might be a "high bandwidth" highspeed endpoint,
4115 * as encoded in the ep descriptor's wMaxPacket field
4117 epnum
= usb_pipeendpoint(pipe
);
4118 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
4119 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
4125 maxp
= max_packet(maxp
);
4126 multi
= hb_mult(maxp
);
4130 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
4131 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
4132 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
4134 /* usbfs wants to report the average usecs per frame tied up
4135 * when transfers on this endpoint are scheduled ...
4137 if (dev
->speed
== USB_SPEED_FULL
) {
4139 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
4140 is_input
, 1, maxp
));
4143 stream
->highspeed
= 1;
4144 stream
->usecs
= HS_USECS_ISO(maxp
);
4146 bandwidth
= stream
->usecs
* 8;
4147 bandwidth
/= interval
;
4149 stream
->bandwidth
= bandwidth
;
4151 stream
->bEndpointAddress
= is_input
| epnum
;
4152 stream
->interval
= interval
;
4153 stream
->maxp
= maxp
;
4156 static struct fotg210_iso_stream
*
4157 iso_stream_find(struct fotg210_hcd
*fotg210
, struct urb
*urb
)
4160 struct fotg210_iso_stream
*stream
;
4161 struct usb_host_endpoint
*ep
;
4162 unsigned long flags
;
4164 epnum
= usb_pipeendpoint(urb
->pipe
);
4165 if (usb_pipein(urb
->pipe
))
4166 ep
= urb
->dev
->ep_in
[epnum
];
4168 ep
= urb
->dev
->ep_out
[epnum
];
4170 spin_lock_irqsave(&fotg210
->lock
, flags
);
4171 stream
= ep
->hcpriv
;
4173 if (unlikely(stream
== NULL
)) {
4174 stream
= iso_stream_alloc(GFP_ATOMIC
);
4175 if (likely(stream
!= NULL
)) {
4176 ep
->hcpriv
= stream
;
4178 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
4182 /* if dev->ep[epnum] is a QH, hw is set */
4183 } else if (unlikely(stream
->hw
!= NULL
)) {
4184 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
4185 urb
->dev
->devpath
, epnum
,
4186 usb_pipein(urb
->pipe
) ? "in" : "out");
4190 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4194 /*-------------------------------------------------------------------------*/
4196 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4198 static struct fotg210_iso_sched
*
4199 iso_sched_alloc(unsigned packets
, gfp_t mem_flags
)
4201 struct fotg210_iso_sched
*iso_sched
;
4202 int size
= sizeof(*iso_sched
);
4204 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4205 iso_sched
= kzalloc(size
, mem_flags
);
4206 if (likely(iso_sched
!= NULL
))
4207 INIT_LIST_HEAD(&iso_sched
->td_list
);
4214 struct fotg210_hcd
*fotg210
,
4215 struct fotg210_iso_sched
*iso_sched
,
4216 struct fotg210_iso_stream
*stream
,
4221 dma_addr_t dma
= urb
->transfer_dma
;
4223 /* how many uframes are needed for these transfers */
4224 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4226 /* figure out per-uframe itd fields that we'll need later
4227 * when we fit new itds into the schedule.
4229 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4230 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4235 length
= urb
->iso_frame_desc
[i
].length
;
4236 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4238 trans
= FOTG210_ISOC_ACTIVE
;
4239 trans
|= buf
& 0x0fff;
4240 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4241 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4242 trans
|= FOTG210_ITD_IOC
;
4243 trans
|= length
<< 16;
4244 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4246 /* might need to cross a buffer page within a uframe */
4247 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4249 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4256 struct fotg210_iso_stream
*stream
,
4257 struct fotg210_iso_sched
*iso_sched
4262 /* caller must hold fotg210->lock!*/
4263 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4268 itd_urb_transaction(
4269 struct fotg210_iso_stream
*stream
,
4270 struct fotg210_hcd
*fotg210
,
4275 struct fotg210_itd
*itd
;
4279 struct fotg210_iso_sched
*sched
;
4280 unsigned long flags
;
4282 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4283 if (unlikely(sched
== NULL
))
4286 itd_sched_init(fotg210
, sched
, stream
, urb
);
4288 if (urb
->interval
< 8)
4289 num_itds
= 1 + (sched
->span
+ 7) / 8;
4291 num_itds
= urb
->number_of_packets
;
4293 /* allocate/init ITDs */
4294 spin_lock_irqsave(&fotg210
->lock
, flags
);
4295 for (i
= 0; i
< num_itds
; i
++) {
4298 * Use iTDs from the free list, but not iTDs that may
4299 * still be in use by the hardware.
4301 if (likely(!list_empty(&stream
->free_list
))) {
4302 itd
= list_first_entry(&stream
->free_list
,
4303 struct fotg210_itd
, itd_list
);
4304 if (itd
->frame
== fotg210
->now_frame
)
4306 list_del(&itd
->itd_list
);
4307 itd_dma
= itd
->itd_dma
;
4310 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4311 itd
= dma_pool_alloc(fotg210
->itd_pool
, mem_flags
,
4313 spin_lock_irqsave(&fotg210
->lock
, flags
);
4315 iso_sched_free(stream
, sched
);
4316 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4321 memset(itd
, 0, sizeof(*itd
));
4322 itd
->itd_dma
= itd_dma
;
4323 list_add(&itd
->itd_list
, &sched
->td_list
);
4325 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4327 /* temporarily store schedule info in hcpriv */
4328 urb
->hcpriv
= sched
;
4329 urb
->error_count
= 0;
4333 /*-------------------------------------------------------------------------*/
4337 struct fotg210_hcd
*fotg210
,
4346 /* can't commit more than uframe_periodic_max usec */
4347 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4348 > (fotg210
->uframe_periodic_max
- usecs
))
4351 /* we know urb->interval is 2^N uframes */
4353 } while (uframe
< mod
);
4358 * This scheduler plans almost as far into the future as it has actual
4359 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4360 * "as small as possible" to be cache-friendlier.) That limits the size
4361 * transfers you can stream reliably; avoid more than 64 msec per urb.
4362 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4363 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4364 * and other factors); or more than about 230 msec total (for portability,
4365 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4368 #define SCHEDULE_SLOP 80 /* microframes */
4371 iso_stream_schedule(
4372 struct fotg210_hcd
*fotg210
,
4374 struct fotg210_iso_stream
*stream
4377 u32 now
, next
, start
, period
, span
;
4379 unsigned mod
= fotg210
->periodic_size
<< 3;
4380 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4382 period
= urb
->interval
;
4385 if (span
> mod
- SCHEDULE_SLOP
) {
4386 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4391 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4393 /* Typical case: reuse current schedule, stream is still active.
4394 * Hopefully there are no gaps from the host falling behind
4395 * (irq delays etc), but if there are we'll take the next
4396 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4398 if (likely(!list_empty(&stream
->td_list
))) {
4401 /* For high speed devices, allow scheduling within the
4402 * isochronous scheduling threshold. For full speed devices
4403 * and Intel PCI-based controllers, don't (work around for
4406 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4407 next
= now
+ fotg210
->i_thresh
;
4411 /* Fell behind (by up to twice the slop amount)?
4412 * We decide based on the time of the last currently-scheduled
4413 * slot, not the time of the next available slot.
4415 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4416 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4417 start
= next
+ excess
- mod
+ period
*
4418 DIV_ROUND_UP(mod
- excess
, period
);
4420 start
= next
+ excess
+ period
;
4421 if (start
- now
>= mod
) {
4422 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4423 urb
, start
- now
- period
, period
,
4430 /* need to schedule; when's the next (u)frame we could start?
4431 * this is bigger than fotg210->i_thresh allows; scheduling itself
4432 * isn't free, the slop should handle reasonably slow cpus. it
4433 * can also help high bandwidth if the dma and irq loads don't
4434 * jump until after the queue is primed.
4438 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4440 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4442 /* find a uframe slot with enough bandwidth.
4443 * Early uframes are more precious because full-speed
4444 * iso IN transfers can't use late uframes,
4445 * and therefore they should be allocated last.
4451 /* check schedule: enough space? */
4452 if (itd_slot_ok(fotg210
, mod
, start
,
4453 stream
->usecs
, period
))
4455 } while (start
> next
&& !done
);
4457 /* no room in the schedule */
4459 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4460 urb
, now
, now
+ mod
);
4466 /* Tried to schedule too far into the future? */
4467 if (unlikely(start
- now
+ span
- period
4468 >= mod
- 2 * SCHEDULE_SLOP
)) {
4469 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4470 urb
, start
- now
, span
- period
,
4471 mod
- 2 * SCHEDULE_SLOP
);
4476 stream
->next_uframe
= start
& (mod
- 1);
4478 /* report high speed start in uframes; full speed, in frames */
4479 urb
->start_frame
= stream
->next_uframe
;
4480 if (!stream
->highspeed
)
4481 urb
->start_frame
>>= 3;
4483 /* Make sure scan_isoc() sees these */
4484 if (fotg210
->isoc_count
== 0)
4485 fotg210
->next_frame
= now
>> 3;
4489 iso_sched_free(stream
, sched
);
4494 /*-------------------------------------------------------------------------*/
4497 itd_init(struct fotg210_hcd
*fotg210
, struct fotg210_iso_stream
*stream
,
4498 struct fotg210_itd
*itd
)
4502 /* it's been recently zeroed */
4503 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4504 itd
->hw_bufp
[0] = stream
->buf0
;
4505 itd
->hw_bufp
[1] = stream
->buf1
;
4506 itd
->hw_bufp
[2] = stream
->buf2
;
4508 for (i
= 0; i
< 8; i
++)
4511 /* All other fields are filled when scheduling */
4516 struct fotg210_hcd
*fotg210
,
4517 struct fotg210_itd
*itd
,
4518 struct fotg210_iso_sched
*iso_sched
,
4523 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4524 unsigned pg
= itd
->pg
;
4527 itd
->index
[uframe
] = index
;
4529 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4530 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4531 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4532 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4534 /* iso_frame_desc[].offset must be strictly increasing */
4535 if (unlikely(uf
->cross
)) {
4536 u64 bufp
= uf
->bufp
+ 4096;
4539 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4540 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4545 itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
, struct fotg210_itd
*itd
)
4547 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4548 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4549 union fotg210_shadow here
= *prev
;
4552 /* skip any iso nodes which might belong to previous microframes */
4554 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4555 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4557 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4558 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4562 itd
->itd_next
= here
;
4563 itd
->hw_next
= *hw_p
;
4567 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4570 /* fit urb's itds into the selected schedule slot; activate as needed */
4571 static void itd_link_urb(
4572 struct fotg210_hcd
*fotg210
,
4575 struct fotg210_iso_stream
*stream
4579 unsigned next_uframe
, uframe
, frame
;
4580 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4581 struct fotg210_itd
*itd
;
4583 next_uframe
= stream
->next_uframe
& (mod
- 1);
4585 if (unlikely(list_empty(&stream
->td_list
))) {
4586 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4587 += stream
->bandwidth
;
4588 fotg210_dbg(fotg210
,
4589 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4590 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4591 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4593 next_uframe
>> 3, next_uframe
& 0x7);
4596 /* fill iTDs uframe by uframe */
4597 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4599 /* ASSERT: we have all necessary itds */
4601 /* ASSERT: no itds for this endpoint in this uframe */
4603 itd
= list_entry(iso_sched
->td_list
.next
,
4604 struct fotg210_itd
, itd_list
);
4605 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4606 itd
->stream
= stream
;
4608 itd_init(fotg210
, stream
, itd
);
4611 uframe
= next_uframe
& 0x07;
4612 frame
= next_uframe
>> 3;
4614 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4616 next_uframe
+= stream
->interval
;
4617 next_uframe
&= mod
- 1;
4620 /* link completed itds into the schedule */
4621 if (((next_uframe
>> 3) != frame
)
4622 || packet
== urb
->number_of_packets
) {
4623 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4628 stream
->next_uframe
= next_uframe
;
4630 /* don't need that schedule data any more */
4631 iso_sched_free(stream
, iso_sched
);
4634 ++fotg210
->isoc_count
;
4635 enable_periodic(fotg210
);
4638 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4639 FOTG210_ISOC_XACTERR)
4641 /* Process and recycle a completed ITD. Return true iff its urb completed,
4642 * and hence its completion callback probably added things to the hardware
4645 * Note that we carefully avoid recycling this descriptor until after any
4646 * completion callback runs, so that it won't be reused quickly. That is,
4647 * assuming (a) no more than two urbs per frame on this endpoint, and also
4648 * (b) only this endpoint's completions submit URBs. It seems some silicon
4649 * corrupts things if you reuse completed descriptors very quickly...
4651 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4653 struct urb
*urb
= itd
->urb
;
4654 struct usb_iso_packet_descriptor
*desc
;
4658 struct fotg210_iso_stream
*stream
= itd
->stream
;
4659 struct usb_device
*dev
;
4660 bool retval
= false;
4662 /* for each uframe with a packet */
4663 for (uframe
= 0; uframe
< 8; uframe
++) {
4664 if (likely(itd
->index
[uframe
] == -1))
4666 urb_index
= itd
->index
[uframe
];
4667 desc
= &urb
->iso_frame_desc
[urb_index
];
4669 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4670 itd
->hw_transaction
[uframe
] = 0;
4672 /* report transfer status */
4673 if (unlikely(t
& ISO_ERRS
)) {
4675 if (t
& FOTG210_ISOC_BUF_ERR
)
4676 desc
->status
= usb_pipein(urb
->pipe
)
4677 ? -ENOSR
/* hc couldn't read */
4678 : -ECOMM
; /* hc couldn't write */
4679 else if (t
& FOTG210_ISOC_BABBLE
)
4680 desc
->status
= -EOVERFLOW
;
4681 else /* (t & FOTG210_ISOC_XACTERR) */
4682 desc
->status
= -EPROTO
;
4684 /* HC need not update length with this error */
4685 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4686 desc
->actual_length
=
4687 fotg210_itdlen(urb
, desc
, t
);
4688 urb
->actual_length
+= desc
->actual_length
;
4690 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4692 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4693 urb
->actual_length
+= desc
->actual_length
;
4695 /* URB was too late */
4696 desc
->status
= -EXDEV
;
4700 /* handle completion now? */
4701 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4704 /* ASSERT: it's really the last itd for this urb
4705 list_for_each_entry (itd, &stream->td_list, itd_list)
4706 BUG_ON (itd->urb == urb);
4709 /* give urb back to the driver; completion often (re)submits */
4711 fotg210_urb_done(fotg210
, urb
, 0);
4715 --fotg210
->isoc_count
;
4716 disable_periodic(fotg210
);
4718 if (unlikely(list_is_singular(&stream
->td_list
))) {
4719 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4720 -= stream
->bandwidth
;
4721 fotg210_dbg(fotg210
,
4722 "deschedule devp %s ep%d%s-iso\n",
4723 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4724 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4730 /* Add to the end of the free list for later reuse */
4731 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4733 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4734 if (list_empty(&stream
->td_list
)) {
4735 list_splice_tail_init(&stream
->free_list
,
4736 &fotg210
->cached_itd_list
);
4737 start_free_itds(fotg210
);
4743 /*-------------------------------------------------------------------------*/
4745 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4748 int status
= -EINVAL
;
4749 unsigned long flags
;
4750 struct fotg210_iso_stream
*stream
;
4752 /* Get iso_stream head */
4753 stream
= iso_stream_find(fotg210
, urb
);
4754 if (unlikely(stream
== NULL
)) {
4755 fotg210_dbg(fotg210
, "can't get iso stream\n");
4758 if (unlikely(urb
->interval
!= stream
->interval
&&
4759 fotg210_port_speed(fotg210
, 0) ==
4760 USB_PORT_STAT_HIGH_SPEED
)) {
4761 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4762 stream
->interval
, urb
->interval
);
4766 #ifdef FOTG210_URB_TRACE
4767 fotg210_dbg(fotg210
,
4768 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4769 __func__
, urb
->dev
->devpath
, urb
,
4770 usb_pipeendpoint(urb
->pipe
),
4771 usb_pipein(urb
->pipe
) ? "in" : "out",
4772 urb
->transfer_buffer_length
,
4773 urb
->number_of_packets
, urb
->interval
,
4777 /* allocate ITDs w/o locking anything */
4778 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4779 if (unlikely(status
< 0)) {
4780 fotg210_dbg(fotg210
, "can't init itds\n");
4784 /* schedule ... need to lock */
4785 spin_lock_irqsave(&fotg210
->lock
, flags
);
4786 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4787 status
= -ESHUTDOWN
;
4788 goto done_not_linked
;
4790 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4791 if (unlikely(status
))
4792 goto done_not_linked
;
4793 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4794 if (likely(status
== 0))
4795 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4797 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4799 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4804 /*-------------------------------------------------------------------------*/
4806 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4808 unsigned uf
, now_frame
, frame
;
4809 unsigned fmask
= fotg210
->periodic_size
- 1;
4810 bool modified
, live
;
4813 * When running, scan from last scan point up to "now"
4814 * else clean up by scanning everything that's left.
4815 * Touches as few pages as possible: cache-friendly.
4817 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4818 uf
= fotg210_read_frame_index(fotg210
);
4819 now_frame
= (uf
>> 3) & fmask
;
4822 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4825 fotg210
->now_frame
= now_frame
;
4827 frame
= fotg210
->next_frame
;
4829 union fotg210_shadow q
, *q_p
;
4833 /* scan each element in frame's queue for completions */
4834 q_p
= &fotg210
->pshadow
[frame
];
4835 hw_p
= &fotg210
->periodic
[frame
];
4837 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4840 while (q
.ptr
!= NULL
) {
4841 switch (hc32_to_cpu(fotg210
, type
)) {
4843 /* If this ITD is still active, leave it for
4844 * later processing ... check the next entry.
4845 * No need to check for activity unless the
4848 if (frame
== now_frame
&& live
) {
4850 for (uf
= 0; uf
< 8; uf
++) {
4851 if (q
.itd
->hw_transaction
[uf
] &
4852 ITD_ACTIVE(fotg210
))
4856 q_p
= &q
.itd
->itd_next
;
4857 hw_p
= &q
.itd
->hw_next
;
4858 type
= Q_NEXT_TYPE(fotg210
,
4865 /* Take finished ITDs out of the schedule
4866 * and process them: recycle, maybe report
4867 * URB completion. HC won't cache the
4868 * pointer for much longer, if at all.
4870 *q_p
= q
.itd
->itd_next
;
4871 *hw_p
= q
.itd
->hw_next
;
4872 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4874 modified
= itd_complete(fotg210
, q
.itd
);
4878 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4879 type
, frame
, q
.ptr
);
4883 /* End of the iTDs and siTDs */
4888 /* assume completion callbacks modify the queue */
4889 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4893 /* Stop when we have reached the current frame */
4894 if (frame
== now_frame
)
4896 frame
= (frame
+ 1) & fmask
;
4898 fotg210
->next_frame
= now_frame
;
4900 /*-------------------------------------------------------------------------*/
4902 * Display / Set uframe_periodic_max
4904 static ssize_t
show_uframe_periodic_max(struct device
*dev
,
4905 struct device_attribute
*attr
,
4908 struct fotg210_hcd
*fotg210
;
4911 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4912 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4917 static ssize_t
store_uframe_periodic_max(struct device
*dev
,
4918 struct device_attribute
*attr
,
4919 const char *buf
, size_t count
)
4921 struct fotg210_hcd
*fotg210
;
4922 unsigned uframe_periodic_max
;
4923 unsigned frame
, uframe
;
4924 unsigned short allocated_max
;
4925 unsigned long flags
;
4928 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4929 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4932 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4933 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4934 uframe_periodic_max
);
4941 * lock, so that our checking does not race with possible periodic
4942 * bandwidth allocation through submitting new urbs.
4944 spin_lock_irqsave(&fotg210
->lock
, flags
);
4947 * for request to decrease max periodic bandwidth, we have to check
4948 * every microframe in the schedule to see whether the decrease is
4951 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4954 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4955 for (uframe
= 0; uframe
< 7; ++uframe
)
4956 allocated_max
= max(allocated_max
,
4957 periodic_usecs(fotg210
, frame
, uframe
));
4959 if (allocated_max
> uframe_periodic_max
) {
4960 fotg210_info(fotg210
,
4961 "cannot decrease uframe_periodic_max because "
4962 "periodic bandwidth is already allocated "
4964 allocated_max
, uframe_periodic_max
);
4969 /* increasing is always ok */
4971 fotg210_info(fotg210
, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4972 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4974 if (uframe_periodic_max
!= 100)
4975 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4977 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4981 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4985 static DEVICE_ATTR(uframe_periodic_max
, 0644, show_uframe_periodic_max
,
4986 store_uframe_periodic_max
);
4988 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4990 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4996 i
= device_create_file(controller
, &dev_attr_uframe_periodic_max
);
5001 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
5003 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
5005 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
5007 /*-------------------------------------------------------------------------*/
5009 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
5010 * The firmware seems to think that powering off is a wakeup event!
5011 * This routine turns off remote wakeup and everything else, on all ports.
5013 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
5015 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5017 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
5021 * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5022 * Must be called with interrupts enabled and the lock not held.
5024 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
5026 fotg210_halt(fotg210
);
5028 spin_lock_irq(&fotg210
->lock
);
5029 fotg210
->rh_state
= FOTG210_RH_HALTED
;
5030 fotg210_turn_off_all_ports(fotg210
);
5031 spin_unlock_irq(&fotg210
->lock
);
5034 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5035 * This forcibly disables dma and IRQs, helping kexec and other cases
5036 * where the next system software may expect clean state.
5038 static void fotg210_shutdown(struct usb_hcd
*hcd
)
5040 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5042 spin_lock_irq(&fotg210
->lock
);
5043 fotg210
->shutdown
= true;
5044 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5045 fotg210
->enabled_hrtimer_events
= 0;
5046 spin_unlock_irq(&fotg210
->lock
);
5048 fotg210_silence_controller(fotg210
);
5050 hrtimer_cancel(&fotg210
->hrtimer
);
5053 /*-------------------------------------------------------------------------*/
5056 * fotg210_work is called from some interrupts, timers, and so on.
5057 * it calls driver completion functions, after dropping fotg210->lock.
5059 static void fotg210_work(struct fotg210_hcd
*fotg210
)
5061 /* another CPU may drop fotg210->lock during a schedule scan while
5062 * it reports urb completions. this flag guards against bogus
5063 * attempts at re-entrant schedule scanning.
5065 if (fotg210
->scanning
) {
5066 fotg210
->need_rescan
= true;
5069 fotg210
->scanning
= true;
5072 fotg210
->need_rescan
= false;
5073 if (fotg210
->async_count
)
5074 scan_async(fotg210
);
5075 if (fotg210
->intr_count
> 0)
5077 if (fotg210
->isoc_count
> 0)
5079 if (fotg210
->need_rescan
)
5081 fotg210
->scanning
= false;
5083 /* the IO watchdog guards against hardware or driver bugs that
5084 * misplace IRQs, and should let us run completely without IRQs.
5085 * such lossage has been observed on both VT6202 and VT8235.
5087 turn_on_io_watchdog(fotg210
);
5091 * Called when the fotg210_hcd module is removed.
5093 static void fotg210_stop(struct usb_hcd
*hcd
)
5095 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5097 fotg210_dbg(fotg210
, "stop\n");
5099 /* no more interrupts ... */
5101 spin_lock_irq(&fotg210
->lock
);
5102 fotg210
->enabled_hrtimer_events
= 0;
5103 spin_unlock_irq(&fotg210
->lock
);
5105 fotg210_quiesce(fotg210
);
5106 fotg210_silence_controller(fotg210
);
5107 fotg210_reset(fotg210
);
5109 hrtimer_cancel(&fotg210
->hrtimer
);
5110 remove_sysfs_files(fotg210
);
5111 remove_debug_files(fotg210
);
5113 /* root hub is shut down separately (first, when possible) */
5114 spin_lock_irq(&fotg210
->lock
);
5115 end_free_itds(fotg210
);
5116 spin_unlock_irq(&fotg210
->lock
);
5117 fotg210_mem_cleanup(fotg210
);
5119 #ifdef FOTG210_STATS
5120 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5121 fotg210
->stats
.normal
, fotg210
->stats
.error
, fotg210
->stats
.iaa
,
5122 fotg210
->stats
.lost_iaa
);
5123 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
5124 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
5127 dbg_status(fotg210
, "fotg210_stop completed",
5128 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
5131 /* one-time init, only for memory state */
5132 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
5134 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5138 struct fotg210_qh_hw
*hw
;
5140 spin_lock_init(&fotg210
->lock
);
5143 * keep io watchdog by default, those good HCDs could turn off it later
5145 fotg210
->need_io_watchdog
= 1;
5147 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
5148 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
5149 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
5151 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5154 * by default set standard 80% (== 100 usec/uframe) max periodic
5155 * bandwidth as required by USB 2.0
5157 fotg210
->uframe_periodic_max
= 100;
5160 * hw default: 1K periodic list heads, one per frame.
5161 * periodic_size can shrink by USBCMD update if hcc_params allows.
5163 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
5164 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
5165 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
5167 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
5168 /* periodic schedule size can be smaller than default */
5169 switch (FOTG210_TUNE_FLS
) {
5171 fotg210
->periodic_size
= 1024;
5174 fotg210
->periodic_size
= 512;
5177 fotg210
->periodic_size
= 256;
5183 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
5187 /* controllers may cache some of the periodic schedule ... */
5188 fotg210
->i_thresh
= 2;
5191 * dedicate a qh for the async ring head, since we couldn't unlink
5192 * a 'real' qh without stopping the async schedule [4.8]. use it
5193 * as the 'reclamation list head' too.
5194 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5195 * from automatically advancing to the next td after short reads.
5197 fotg210
->async
->qh_next
.qh
= NULL
;
5198 hw
= fotg210
->async
->hw
;
5199 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
5200 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
5201 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
5202 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
5203 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
5204 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
5206 /* clear interrupt enables, set irq latency */
5207 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
5208 log2_irq_thresh
= 0;
5209 temp
= 1 << (16 + log2_irq_thresh
);
5210 if (HCC_CANPARK(hcc_params
)) {
5211 /* HW default park == 3, on hardware that supports it (like
5212 * NVidia and ALI silicon), maximizes throughput on the async
5213 * schedule by avoiding QH fetches between transfers.
5215 * With fast usb storage devices and NForce2, "park" seems to
5216 * make problems: throughput reduction (!), data errors...
5219 park
= min_t(unsigned, park
, 3);
5223 fotg210_dbg(fotg210
, "park %d\n", park
);
5225 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
5226 /* periodic schedule size can be smaller than default */
5228 temp
|= (FOTG210_TUNE_FLS
<< 2);
5230 fotg210
->command
= temp
;
5232 /* Accept arbitrarily long scatter-gather lists */
5233 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
5234 hcd
->self
.sg_tablesize
= ~0;
5238 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5239 static int fotg210_run(struct usb_hcd
*hcd
)
5241 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5245 hcd
->uses_new_polling
= 1;
5247 /* EHCI spec section 4.1 */
5249 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5250 &fotg210
->regs
->frame_list
);
5251 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5252 &fotg210
->regs
->async_next
);
5255 * hcc_params controls whether fotg210->regs->segment must (!!!)
5256 * be used; it constrains QH/ITD/SITD and QTD locations.
5257 * pci_pool consistent memory always uses segment zero.
5258 * streaming mappings for I/O buffers, like pci_map_single(),
5259 * can return segments above 4GB, if the device allows.
5261 * NOTE: the dma mask is visible through dma_supported(), so
5262 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5263 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5264 * host side drivers though.
5266 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5269 * Philips, Intel, and maybe others need CMD_RUN before the
5270 * root hub will detect new devices (why?); NEC doesn't
5272 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5273 fotg210
->command
|= CMD_RUN
;
5274 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5275 dbg_cmd(fotg210
, "init", fotg210
->command
);
5278 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5279 * are explicitly handed to companion controller(s), so no TT is
5280 * involved with the root hub. (Except where one is integrated,
5281 * and there's no companion controller unless maybe for USB OTG.)
5283 * Turning on the CF flag will transfer ownership of all ports
5284 * from the companions to the EHCI controller. If any of the
5285 * companions are in the middle of a port reset at the time, it
5286 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5287 * guarantees that no resets are in progress. After we set CF,
5288 * a short delay lets the hardware catch up; new resets shouldn't
5289 * be started before the port switching actions could complete.
5291 down_write(&ehci_cf_port_reset_rwsem
);
5292 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5293 /* unblock posted writes */
5294 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5296 up_write(&ehci_cf_port_reset_rwsem
);
5297 fotg210
->last_periodic_enable
= ktime_get_real();
5299 temp
= HC_VERSION(fotg210
,
5300 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5301 fotg210_info(fotg210
,
5302 "USB %x.%x started, EHCI %x.%02x\n",
5303 ((fotg210
->sbrn
& 0xf0)>>4), (fotg210
->sbrn
& 0x0f),
5304 temp
>> 8, temp
& 0xff);
5306 fotg210_writel(fotg210
, INTR_MASK
,
5307 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5309 /* GRR this is run-once init(), being done every time the HC starts.
5310 * So long as they're part of class devices, we can't do it init()
5311 * since the class device isn't created that early.
5313 create_debug_files(fotg210
);
5314 create_sysfs_files(fotg210
);
5319 static int fotg210_setup(struct usb_hcd
*hcd
)
5321 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5324 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5326 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5327 dbg_hcs_params(fotg210
, "reset");
5328 dbg_hcc_params(fotg210
, "reset");
5330 /* cache this readonly data; minimize chip reads */
5331 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5332 &fotg210
->caps
->hcs_params
);
5334 fotg210
->sbrn
= HCD_USB2
;
5336 /* data structure init */
5337 retval
= hcd_fotg210_init(hcd
);
5341 retval
= fotg210_halt(fotg210
);
5345 fotg210_reset(fotg210
);
5350 /*-------------------------------------------------------------------------*/
5352 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5354 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5355 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5358 spin_lock(&fotg210
->lock
);
5360 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5362 /* e.g. cardbus physical eject */
5363 if (status
== ~(u32
) 0) {
5364 fotg210_dbg(fotg210
, "device removed\n");
5369 * We don't use STS_FLR, but some controllers don't like it to
5370 * remain on, so mask it out along with the other status bits.
5372 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5375 if (!masked_status
||
5376 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5377 spin_unlock(&fotg210
->lock
);
5381 /* clear (just) interrupts */
5382 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5383 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5386 /* unrequested/ignored: Frame List Rollover */
5387 dbg_status(fotg210
, "irq", status
);
5389 /* INT, ERR, and IAA interrupt rates can be throttled */
5391 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5392 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5393 if (likely((status
& STS_ERR
) == 0))
5394 COUNT(fotg210
->stats
.normal
);
5396 COUNT(fotg210
->stats
.error
);
5400 /* complete the unlinking of some qh [4.15.2.3] */
5401 if (status
& STS_IAA
) {
5403 /* Turn off the IAA watchdog */
5404 fotg210
->enabled_hrtimer_events
&=
5405 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5408 * Mild optimization: Allow another IAAD to reset the
5409 * hrtimer, if one occurs before the next expiration.
5410 * In theory we could always cancel the hrtimer, but
5411 * tests show that about half the time it will be reset
5412 * for some other event anyway.
5414 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5415 ++fotg210
->next_hrtimer_event
;
5417 /* guard against (alleged) silicon errata */
5419 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5420 if (fotg210
->async_iaa
) {
5421 COUNT(fotg210
->stats
.iaa
);
5422 end_unlink_async(fotg210
);
5424 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5427 /* remote wakeup [4.3.1] */
5428 if (status
& STS_PCD
) {
5430 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5432 /* kick root hub later */
5433 pcd_status
= status
;
5435 /* resume root hub? */
5436 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5437 usb_hcd_resume_root_hub(hcd
);
5439 pstatus
= fotg210_readl(fotg210
, status_reg
);
5441 if (test_bit(0, &fotg210
->suspended_ports
) &&
5442 ((pstatus
& PORT_RESUME
) ||
5443 !(pstatus
& PORT_SUSPEND
)) &&
5444 (pstatus
& PORT_PE
) &&
5445 fotg210
->reset_done
[0] == 0) {
5447 /* start 20 msec resume signaling from this port,
5448 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5449 * stop that signaling. Use 5 ms extra for safety,
5450 * like usb_port_resume() does.
5452 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5453 set_bit(0, &fotg210
->resuming_ports
);
5454 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5455 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5459 /* PCI errors [4.15.2.4] */
5460 if (unlikely((status
& STS_FATAL
) != 0)) {
5461 fotg210_err(fotg210
, "fatal error\n");
5462 dbg_cmd(fotg210
, "fatal", cmd
);
5463 dbg_status(fotg210
, "fatal", status
);
5467 /* Don't let the controller do anything more */
5468 fotg210
->shutdown
= true;
5469 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5470 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5471 fotg210_writel(fotg210
, fotg210
->command
,
5472 &fotg210
->regs
->command
);
5473 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5474 fotg210_handle_controller_death(fotg210
);
5476 /* Handle completions when the controller stops */
5481 fotg210_work(fotg210
);
5482 spin_unlock(&fotg210
->lock
);
5484 usb_hcd_poll_rh_status(hcd
);
5488 /*-------------------------------------------------------------------------*/
5491 * non-error returns are a promise to giveback() the urb later
5492 * we drop ownership so next owner (or urb unlink) can get it
5494 * urb + dev is in hcd.self.controller.urb_list
5495 * we're queueing TDs onto software and hardware lists
5497 * hcd-specific init for hcpriv hasn't been done yet
5499 * NOTE: control, bulk, and interrupt share the same code to append TDs
5500 * to a (possibly active) QH, and the same QH scanning code.
5502 static int fotg210_urb_enqueue(
5503 struct usb_hcd
*hcd
,
5507 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5508 struct list_head qtd_list
;
5510 INIT_LIST_HEAD(&qtd_list
);
5512 switch (usb_pipetype(urb
->pipe
)) {
5514 /* qh_completions() code doesn't handle all the fault cases
5515 * in multi-TD control transfers. Even 1KB is rare anyway.
5517 if (urb
->transfer_buffer_length
> (16 * 1024))
5520 /* case PIPE_BULK: */
5522 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5524 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5526 case PIPE_INTERRUPT
:
5527 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5529 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5531 case PIPE_ISOCHRONOUS
:
5532 return itd_submit(fotg210
, urb
, mem_flags
);
5536 /* remove from hardware lists
5537 * completions normally happen asynchronously
5540 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5542 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5543 struct fotg210_qh
*qh
;
5544 unsigned long flags
;
5547 spin_lock_irqsave(&fotg210
->lock
, flags
);
5548 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5552 switch (usb_pipetype(urb
->pipe
)) {
5553 /* case PIPE_CONTROL: */
5554 /* case PIPE_BULK:*/
5556 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5559 switch (qh
->qh_state
) {
5560 case QH_STATE_LINKED
:
5561 case QH_STATE_COMPLETING
:
5562 start_unlink_async(fotg210
, qh
);
5564 case QH_STATE_UNLINK
:
5565 case QH_STATE_UNLINK_WAIT
:
5566 /* already started */
5569 /* QH might be waiting for a Clear-TT-Buffer */
5570 qh_completions(fotg210
, qh
);
5575 case PIPE_INTERRUPT
:
5576 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5579 switch (qh
->qh_state
) {
5580 case QH_STATE_LINKED
:
5581 case QH_STATE_COMPLETING
:
5582 start_unlink_intr(fotg210
, qh
);
5585 qh_completions(fotg210
, qh
);
5588 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5594 case PIPE_ISOCHRONOUS
:
5597 /* wait till next completion, do it then. */
5598 /* completion irqs can wait up to 1024 msec, */
5602 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5606 /*-------------------------------------------------------------------------*/
5608 /* bulk qh holds the data toggle */
5611 fotg210_endpoint_disable(struct usb_hcd
*hcd
, struct usb_host_endpoint
*ep
)
5613 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5614 unsigned long flags
;
5615 struct fotg210_qh
*qh
, *tmp
;
5617 /* ASSERT: any requests/urbs are being unlinked */
5618 /* ASSERT: nobody can be submitting urbs for this any more */
5621 spin_lock_irqsave(&fotg210
->lock
, flags
);
5626 /* endpoints can be iso streams. for now, we don't
5627 * accelerate iso completions ... so spin a while.
5629 if (qh
->hw
== NULL
) {
5630 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5632 if (!list_empty(&stream
->td_list
))
5635 /* BUG_ON(!list_empty(&stream->free_list)); */
5640 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5641 qh
->qh_state
= QH_STATE_IDLE
;
5642 switch (qh
->qh_state
) {
5643 case QH_STATE_LINKED
:
5644 case QH_STATE_COMPLETING
:
5645 for (tmp
= fotg210
->async
->qh_next
.qh
;
5647 tmp
= tmp
->qh_next
.qh
)
5649 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5650 * may already be unlinked.
5653 start_unlink_async(fotg210
, qh
);
5655 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5656 case QH_STATE_UNLINK_WAIT
:
5658 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5659 schedule_timeout_uninterruptible(1);
5661 case QH_STATE_IDLE
: /* fully unlinked */
5662 if (qh
->clearing_tt
)
5664 if (list_empty(&qh
->qtd_list
)) {
5665 qh_destroy(fotg210
, qh
);
5668 /* else FALL THROUGH */
5670 /* caller was supposed to have unlinked any requests;
5671 * that's not our job. just leak this memory.
5673 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5674 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5675 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5680 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5684 fotg210_endpoint_reset(struct usb_hcd
*hcd
, struct usb_host_endpoint
*ep
)
5686 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5687 struct fotg210_qh
*qh
;
5688 int eptype
= usb_endpoint_type(&ep
->desc
);
5689 int epnum
= usb_endpoint_num(&ep
->desc
);
5690 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5691 unsigned long flags
;
5693 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5696 spin_lock_irqsave(&fotg210
->lock
, flags
);
5699 /* For Bulk and Interrupt endpoints we maintain the toggle state
5700 * in the hardware; the toggle bits in udev aren't used at all.
5701 * When an endpoint is reset by usb_clear_halt() we must reset
5702 * the toggle bit in the QH.
5705 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5706 if (!list_empty(&qh
->qtd_list
)) {
5707 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5708 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5709 qh
->qh_state
== QH_STATE_COMPLETING
) {
5711 /* The toggle value in the QH can't be updated
5712 * while the QH is active. Unlink it now;
5713 * re-linking will call qh_refresh().
5715 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5716 start_unlink_async(fotg210
, qh
);
5718 start_unlink_intr(fotg210
, qh
);
5721 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5724 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5726 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5727 return (fotg210_read_frame_index(fotg210
) >> 3) %
5728 fotg210
->periodic_size
;
5731 /*-------------------------------------------------------------------------*/
5734 * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5735 * because its registers (and irq) are shared between host/gadget/otg
5736 * functions and in order to facilitate role switching we cannot
5737 * give the fotg210 driver exclusive access to those.
5739 MODULE_DESCRIPTION(DRIVER_DESC
);
5740 MODULE_AUTHOR(DRIVER_AUTHOR
);
5741 MODULE_LICENSE("GPL");
5743 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5744 .description
= hcd_name
,
5745 .product_desc
= "Faraday USB2.0 Host Controller",
5746 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5749 * generic hardware linkage
5752 .flags
= HCD_MEMORY
| HCD_USB2
,
5755 * basic lifecycle operations
5757 .reset
= hcd_fotg210_init
,
5758 .start
= fotg210_run
,
5759 .stop
= fotg210_stop
,
5760 .shutdown
= fotg210_shutdown
,
5763 * managing i/o requests and associated device resources
5765 .urb_enqueue
= fotg210_urb_enqueue
,
5766 .urb_dequeue
= fotg210_urb_dequeue
,
5767 .endpoint_disable
= fotg210_endpoint_disable
,
5768 .endpoint_reset
= fotg210_endpoint_reset
,
5771 * scheduling support
5773 .get_frame_number
= fotg210_get_frame
,
5778 .hub_status_data
= fotg210_hub_status_data
,
5779 .hub_control
= fotg210_hub_control
,
5780 .bus_suspend
= fotg210_bus_suspend
,
5781 .bus_resume
= fotg210_bus_resume
,
5783 .relinquish_port
= fotg210_relinquish_port
,
5784 .port_handed_over
= fotg210_port_handed_over
,
5786 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5789 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5793 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5794 &fotg210
->regs
->gmir
);
5796 value
= ioread32(&fotg210
->regs
->otgcsr
);
5797 value
&= ~OTGCSR_A_BUS_DROP
;
5798 value
|= OTGCSR_A_BUS_REQ
;
5799 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5803 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5805 * Allocates basic resources for this USB host controller, and
5806 * then invokes the start() method for the HCD associated with it
5807 * through the hotplug entry's driver_data.
5809 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5811 struct device
*dev
= &pdev
->dev
;
5812 struct usb_hcd
*hcd
;
5813 struct resource
*res
;
5815 int retval
= -ENODEV
;
5816 struct fotg210_hcd
*fotg210
;
5821 pdev
->dev
.power
.power_state
= PMSG_ON
;
5823 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5826 "Found HC with no IRQ. Check %s setup!\n",
5833 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5836 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5838 goto fail_create_hcd
;
5843 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5844 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5845 if (IS_ERR(hcd
->regs
)) {
5846 retval
= PTR_ERR(hcd
->regs
);
5850 hcd
->rsrc_start
= res
->start
;
5851 hcd
->rsrc_len
= resource_size(res
);
5853 fotg210
= hcd_to_fotg210(hcd
);
5855 fotg210
->caps
= hcd
->regs
;
5857 retval
= fotg210_setup(hcd
);
5861 fotg210_init(fotg210
);
5863 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5865 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5868 device_wakeup_enable(hcd
->self
.controller
);
5875 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5880 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5881 * @dev: USB Host Controller being removed
5884 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5886 struct device
*dev
= &pdev
->dev
;
5887 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
5892 usb_remove_hcd(hcd
);
5898 static struct platform_driver fotg210_hcd_driver
= {
5900 .name
= "fotg210-hcd",
5902 .probe
= fotg210_hcd_probe
,
5903 .remove
= fotg210_hcd_remove
,
5906 static int __init
fotg210_hcd_init(void)
5913 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5914 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5915 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5916 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5917 pr_warn(KERN_WARNING
"Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5919 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5921 sizeof(struct fotg210_qh
), sizeof(struct fotg210_qtd
),
5922 sizeof(struct fotg210_itd
));
5924 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5925 if (!fotg210_debug_root
) {
5930 retval
= platform_driver_register(&fotg210_hcd_driver
);
5935 platform_driver_unregister(&fotg210_hcd_driver
);
5937 debugfs_remove(fotg210_debug_root
);
5938 fotg210_debug_root
= NULL
;
5940 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5943 module_init(fotg210_hcd_init
);
5945 static void __exit
fotg210_hcd_cleanup(void)
5947 platform_driver_unregister(&fotg210_hcd_driver
);
5948 debugfs_remove(fotg210_debug_root
);
5949 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5951 module_exit(fotg210_hcd_cleanup
);