Linux 4.2.1
[linux/fpc-iii.git] / drivers / usb / storage / sddr09.c
blobb74603689b9e87f14412b2d20df2b043a47c0453
1 /* Driver for SanDisk SDDR-09 SmartMedia reader
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
30 * Known vendor commands: 12 bytes, first byte is opcode
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
51 #include "usb.h"
52 #include "transport.h"
53 #include "protocol.h"
54 #include "debug.h"
55 #include "scsiglue.h"
57 #define DRV_NAME "ums-sddr09"
59 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
60 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
61 MODULE_LICENSE("GPL");
63 static int usb_stor_sddr09_dpcm_init(struct us_data *us);
64 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
65 static int usb_stor_sddr09_init(struct us_data *us);
69 * The table of devices
71 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
72 vendorName, productName, useProtocol, useTransport, \
73 initFunction, flags) \
74 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
75 .driver_info = (flags) }
77 static struct usb_device_id sddr09_usb_ids[] = {
78 # include "unusual_sddr09.h"
79 { } /* Terminating entry */
81 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
83 #undef UNUSUAL_DEV
86 * The flags table
88 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
89 vendor_name, product_name, use_protocol, use_transport, \
90 init_function, Flags) \
91 { \
92 .vendorName = vendor_name, \
93 .productName = product_name, \
94 .useProtocol = use_protocol, \
95 .useTransport = use_transport, \
96 .initFunction = init_function, \
99 static struct us_unusual_dev sddr09_unusual_dev_list[] = {
100 # include "unusual_sddr09.h"
101 { } /* Terminating entry */
104 #undef UNUSUAL_DEV
107 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
108 #define LSB_of(s) ((s)&0xFF)
109 #define MSB_of(s) ((s)>>8)
112 * First some stuff that does not belong here:
113 * data on SmartMedia and other cards, completely
114 * unrelated to this driver.
115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
118 struct nand_flash_dev {
119 int model_id;
120 int chipshift; /* 1<<cs bytes total capacity */
121 char pageshift; /* 1<<ps bytes in a page */
122 char blockshift; /* 1<<bs pages in an erase block */
123 char zoneshift; /* 1<<zs blocks in a zone */
124 /* # of logical blocks is 125/128 of this */
125 char pageadrlen; /* length of an address in bytes - 1 */
129 * NAND Flash Manufacturer ID Codes
131 #define NAND_MFR_AMD 0x01
132 #define NAND_MFR_NATSEMI 0x8f
133 #define NAND_MFR_TOSHIBA 0x98
134 #define NAND_MFR_SAMSUNG 0xec
136 static inline char *nand_flash_manufacturer(int manuf_id) {
137 switch(manuf_id) {
138 case NAND_MFR_AMD:
139 return "AMD";
140 case NAND_MFR_NATSEMI:
141 return "NATSEMI";
142 case NAND_MFR_TOSHIBA:
143 return "Toshiba";
144 case NAND_MFR_SAMSUNG:
145 return "Samsung";
146 default:
147 return "unknown";
152 * It looks like it is unnecessary to attach manufacturer to the
153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
158 static struct nand_flash_dev nand_flash_ids[] = {
159 /* NAND flash */
160 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
169 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
170 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
171 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
172 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
174 /* MASK ROM */
175 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
176 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
177 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
178 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
179 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
180 { 0,}
183 static struct nand_flash_dev *
184 nand_find_id(unsigned char id) {
185 int i;
187 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
188 if (nand_flash_ids[i].model_id == id)
189 return &(nand_flash_ids[i]);
190 return NULL;
194 * ECC computation.
196 static unsigned char parity[256];
197 static unsigned char ecc2[256];
199 static void nand_init_ecc(void) {
200 int i, j, a;
202 parity[0] = 0;
203 for (i = 1; i < 256; i++)
204 parity[i] = (parity[i&(i-1)] ^ 1);
206 for (i = 0; i < 256; i++) {
207 a = 0;
208 for (j = 0; j < 8; j++) {
209 if (i & (1<<j)) {
210 if ((j & 1) == 0)
211 a ^= 0x04;
212 if ((j & 2) == 0)
213 a ^= 0x10;
214 if ((j & 4) == 0)
215 a ^= 0x40;
218 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
222 /* compute 3-byte ecc on 256 bytes */
223 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
224 int i, j, a;
225 unsigned char par = 0, bit, bits[8] = {0};
227 /* collect 16 checksum bits */
228 for (i = 0; i < 256; i++) {
229 par ^= data[i];
230 bit = parity[data[i]];
231 for (j = 0; j < 8; j++)
232 if ((i & (1<<j)) == 0)
233 bits[j] ^= bit;
236 /* put 4+4+4 = 12 bits in the ecc */
237 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
238 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
240 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
241 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
243 ecc[2] = ecc2[par];
246 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
247 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
250 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
251 memcpy(data, ecc, 3);
255 * The actual driver starts here.
258 struct sddr09_card_info {
259 unsigned long capacity; /* Size of card in bytes */
260 int pagesize; /* Size of page in bytes */
261 int pageshift; /* log2 of pagesize */
262 int blocksize; /* Size of block in pages */
263 int blockshift; /* log2 of blocksize */
264 int blockmask; /* 2^blockshift - 1 */
265 int *lba_to_pba; /* logical to physical map */
266 int *pba_to_lba; /* physical to logical map */
267 int lbact; /* number of available pages */
268 int flags;
269 #define SDDR09_WP 1 /* write protected */
273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
275 * so the reader makes up the remaining 48. Don't know whether these numbers
276 * depend on the card. For now a constant.
278 #define CONTROL_SHIFT 6
281 * On my Combo CF/SM reader, the SM reader has LUN 1.
282 * (and things fail with LUN 0).
283 * It seems LUN is irrelevant for others.
285 #define LUN 1
286 #define LUNBITS (LUN << 5)
289 * LBA and PBA are unsigned ints. Special values.
291 #define UNDEF 0xffffffff
292 #define SPARE 0xfffffffe
293 #define UNUSABLE 0xfffffffd
295 static const int erase_bad_lba_entries = 0;
297 /* send vendor interface command (0x41) */
298 /* called for requests 0, 1, 8 */
299 static int
300 sddr09_send_command(struct us_data *us,
301 unsigned char request,
302 unsigned char direction,
303 unsigned char *xfer_data,
304 unsigned int xfer_len) {
305 unsigned int pipe;
306 unsigned char requesttype = (0x41 | direction);
307 int rc;
309 // Get the receive or send control pipe number
311 if (direction == USB_DIR_IN)
312 pipe = us->recv_ctrl_pipe;
313 else
314 pipe = us->send_ctrl_pipe;
316 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
317 0, 0, xfer_data, xfer_len);
318 switch (rc) {
319 case USB_STOR_XFER_GOOD: return 0;
320 case USB_STOR_XFER_STALLED: return -EPIPE;
321 default: return -EIO;
325 static int
326 sddr09_send_scsi_command(struct us_data *us,
327 unsigned char *command,
328 unsigned int command_len) {
329 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
332 #if 0
334 * Test Unit Ready Command: 12 bytes.
335 * byte 0: opcode: 00
337 static int
338 sddr09_test_unit_ready(struct us_data *us) {
339 unsigned char *command = us->iobuf;
340 int result;
342 memset(command, 0, 6);
343 command[1] = LUNBITS;
345 result = sddr09_send_scsi_command(us, command, 6);
347 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
349 return result;
351 #endif
354 * Request Sense Command: 12 bytes.
355 * byte 0: opcode: 03
356 * byte 4: data length
358 static int
359 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
360 unsigned char *command = us->iobuf;
361 int result;
363 memset(command, 0, 12);
364 command[0] = 0x03;
365 command[1] = LUNBITS;
366 command[4] = buflen;
368 result = sddr09_send_scsi_command(us, command, 12);
369 if (result)
370 return result;
372 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
373 sensebuf, buflen, NULL);
374 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
378 * Read Command: 12 bytes.
379 * byte 0: opcode: E8
380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
381 * 10: read both, 11: read pagewise control.
382 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
383 * bytes 2-5: address (interpretation depends on byte 1, see below)
384 * bytes 10-11: count (idem)
386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
387 * A read data command gets data in 512-byte pages.
388 * A read control command gets control in 64-byte chunks.
389 * A read both command gets data+control in 576-byte chunks.
391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
392 * next block, while read pagewise control jumps to the next page after
393 * reading a group of 64 control bytes.
394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
399 static int
400 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
401 int nr_of_pages, int bulklen, unsigned char *buf,
402 int use_sg) {
404 unsigned char *command = us->iobuf;
405 int result;
407 command[0] = 0xE8;
408 command[1] = LUNBITS | x;
409 command[2] = MSB_of(fromaddress>>16);
410 command[3] = LSB_of(fromaddress>>16);
411 command[4] = MSB_of(fromaddress & 0xFFFF);
412 command[5] = LSB_of(fromaddress & 0xFFFF);
413 command[6] = 0;
414 command[7] = 0;
415 command[8] = 0;
416 command[9] = 0;
417 command[10] = MSB_of(nr_of_pages);
418 command[11] = LSB_of(nr_of_pages);
420 result = sddr09_send_scsi_command(us, command, 12);
422 if (result) {
423 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
424 x, result);
425 return result;
428 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
429 buf, bulklen, use_sg, NULL);
431 if (result != USB_STOR_XFER_GOOD) {
432 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
433 x, result);
434 return -EIO;
436 return 0;
440 * Read Data
442 * fromaddress counts data shorts:
443 * increasing it by 256 shifts the bytestream by 512 bytes;
444 * the last 8 bits are ignored.
446 * nr_of_pages counts pages of size (1 << pageshift).
448 static int
449 sddr09_read20(struct us_data *us, unsigned long fromaddress,
450 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
451 int bulklen = nr_of_pages << pageshift;
453 /* The last 8 bits of fromaddress are ignored. */
454 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
455 buf, use_sg);
459 * Read Blockwise Control
461 * fromaddress gives the starting position (as in read data;
462 * the last 8 bits are ignored); increasing it by 32*256 shifts
463 * the output stream by 64 bytes.
465 * count counts control groups of size (1 << controlshift).
466 * For me, controlshift = 6. Is this constant?
468 * After getting one control group, jump to the next block
469 * (fromaddress += 8192).
471 static int
472 sddr09_read21(struct us_data *us, unsigned long fromaddress,
473 int count, int controlshift, unsigned char *buf, int use_sg) {
475 int bulklen = (count << controlshift);
476 return sddr09_readX(us, 1, fromaddress, count, bulklen,
477 buf, use_sg);
481 * Read both Data and Control
483 * fromaddress counts data shorts, ignoring control:
484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
485 * the last 8 bits are ignored.
487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
489 static int
490 sddr09_read22(struct us_data *us, unsigned long fromaddress,
491 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
493 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
494 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
495 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
496 buf, use_sg);
499 #if 0
501 * Read Pagewise Control
503 * fromaddress gives the starting position (as in read data;
504 * the last 8 bits are ignored); increasing it by 256 shifts
505 * the output stream by 64 bytes.
507 * count counts control groups of size (1 << controlshift).
508 * For me, controlshift = 6. Is this constant?
510 * After getting one control group, jump to the next page
511 * (fromaddress += 256).
513 static int
514 sddr09_read23(struct us_data *us, unsigned long fromaddress,
515 int count, int controlshift, unsigned char *buf, int use_sg) {
517 int bulklen = (count << controlshift);
518 return sddr09_readX(us, 3, fromaddress, count, bulklen,
519 buf, use_sg);
521 #endif
524 * Erase Command: 12 bytes.
525 * byte 0: opcode: EA
526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
529 * The byte address being erased is 2*Eaddress.
530 * The CIS cannot be erased.
532 static int
533 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
534 unsigned char *command = us->iobuf;
535 int result;
537 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
539 memset(command, 0, 12);
540 command[0] = 0xEA;
541 command[1] = LUNBITS;
542 command[6] = MSB_of(Eaddress>>16);
543 command[7] = LSB_of(Eaddress>>16);
544 command[8] = MSB_of(Eaddress & 0xFFFF);
545 command[9] = LSB_of(Eaddress & 0xFFFF);
547 result = sddr09_send_scsi_command(us, command, 12);
549 if (result)
550 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
551 result);
553 return result;
557 * Write CIS Command: 12 bytes.
558 * byte 0: opcode: EE
559 * bytes 2-5: write address in shorts
560 * bytes 10-11: sector count
562 * This writes at the indicated address. Don't know how it differs
563 * from E9. Maybe it does not erase? However, it will also write to
564 * the CIS.
566 * When two such commands on the same page follow each other directly,
567 * the second one is not done.
571 * Write Command: 12 bytes.
572 * byte 0: opcode: E9
573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
577 * If write address equals erase address, the erase is done first,
578 * otherwise the write is done first. When erase address equals zero
579 * no erase is done?
581 static int
582 sddr09_writeX(struct us_data *us,
583 unsigned long Waddress, unsigned long Eaddress,
584 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
586 unsigned char *command = us->iobuf;
587 int result;
589 command[0] = 0xE9;
590 command[1] = LUNBITS;
592 command[2] = MSB_of(Waddress>>16);
593 command[3] = LSB_of(Waddress>>16);
594 command[4] = MSB_of(Waddress & 0xFFFF);
595 command[5] = LSB_of(Waddress & 0xFFFF);
597 command[6] = MSB_of(Eaddress>>16);
598 command[7] = LSB_of(Eaddress>>16);
599 command[8] = MSB_of(Eaddress & 0xFFFF);
600 command[9] = LSB_of(Eaddress & 0xFFFF);
602 command[10] = MSB_of(nr_of_pages);
603 command[11] = LSB_of(nr_of_pages);
605 result = sddr09_send_scsi_command(us, command, 12);
607 if (result) {
608 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
609 result);
610 return result;
613 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
614 buf, bulklen, use_sg, NULL);
616 if (result != USB_STOR_XFER_GOOD) {
617 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
618 result);
619 return -EIO;
621 return 0;
624 /* erase address, write same address */
625 static int
626 sddr09_write_inplace(struct us_data *us, unsigned long address,
627 int nr_of_pages, int pageshift, unsigned char *buf,
628 int use_sg) {
629 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
630 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
631 buf, use_sg);
634 #if 0
636 * Read Scatter Gather Command: 3+4n bytes.
637 * byte 0: opcode E7
638 * byte 2: n
639 * bytes 4i-1,4i,4i+1: page address
640 * byte 4i+2: page count
641 * (i=1..n)
643 * This reads several pages from the card to a single memory buffer.
644 * The last two bits of byte 1 have the same meaning as for E8.
646 static int
647 sddr09_read_sg_test_only(struct us_data *us) {
648 unsigned char *command = us->iobuf;
649 int result, bulklen, nsg, ct;
650 unsigned char *buf;
651 unsigned long address;
653 nsg = bulklen = 0;
654 command[0] = 0xE7;
655 command[1] = LUNBITS;
656 command[2] = 0;
657 address = 040000; ct = 1;
658 nsg++;
659 bulklen += (ct << 9);
660 command[4*nsg+2] = ct;
661 command[4*nsg+1] = ((address >> 9) & 0xFF);
662 command[4*nsg+0] = ((address >> 17) & 0xFF);
663 command[4*nsg-1] = ((address >> 25) & 0xFF);
665 address = 0340000; ct = 1;
666 nsg++;
667 bulklen += (ct << 9);
668 command[4*nsg+2] = ct;
669 command[4*nsg+1] = ((address >> 9) & 0xFF);
670 command[4*nsg+0] = ((address >> 17) & 0xFF);
671 command[4*nsg-1] = ((address >> 25) & 0xFF);
673 address = 01000000; ct = 2;
674 nsg++;
675 bulklen += (ct << 9);
676 command[4*nsg+2] = ct;
677 command[4*nsg+1] = ((address >> 9) & 0xFF);
678 command[4*nsg+0] = ((address >> 17) & 0xFF);
679 command[4*nsg-1] = ((address >> 25) & 0xFF);
681 command[2] = nsg;
683 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
685 if (result) {
686 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
687 result);
688 return result;
691 buf = kmalloc(bulklen, GFP_NOIO);
692 if (!buf)
693 return -ENOMEM;
695 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
696 buf, bulklen, NULL);
697 kfree(buf);
698 if (result != USB_STOR_XFER_GOOD) {
699 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
700 result);
701 return -EIO;
704 return 0;
706 #endif
709 * Read Status Command: 12 bytes.
710 * byte 0: opcode: EC
712 * Returns 64 bytes, all zero except for the first.
713 * bit 0: 1: Error
714 * bit 5: 1: Suspended
715 * bit 6: 1: Ready
716 * bit 7: 1: Not write-protected
719 static int
720 sddr09_read_status(struct us_data *us, unsigned char *status) {
722 unsigned char *command = us->iobuf;
723 unsigned char *data = us->iobuf;
724 int result;
726 usb_stor_dbg(us, "Reading status...\n");
728 memset(command, 0, 12);
729 command[0] = 0xEC;
730 command[1] = LUNBITS;
732 result = sddr09_send_scsi_command(us, command, 12);
733 if (result)
734 return result;
736 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, 64, NULL);
738 *status = data[0];
739 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
742 static int
743 sddr09_read_data(struct us_data *us,
744 unsigned long address,
745 unsigned int sectors) {
747 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
748 unsigned char *buffer;
749 unsigned int lba, maxlba, pba;
750 unsigned int page, pages;
751 unsigned int len, offset;
752 struct scatterlist *sg;
753 int result;
755 // Figure out the initial LBA and page
756 lba = address >> info->blockshift;
757 page = (address & info->blockmask);
758 maxlba = info->capacity >> (info->pageshift + info->blockshift);
759 if (lba >= maxlba)
760 return -EIO;
762 // Since we only read in one block at a time, we have to create
763 // a bounce buffer and move the data a piece at a time between the
764 // bounce buffer and the actual transfer buffer.
766 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
767 buffer = kmalloc(len, GFP_NOIO);
768 if (buffer == NULL) {
769 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
770 return -ENOMEM;
773 // This could be made much more efficient by checking for
774 // contiguous LBA's. Another exercise left to the student.
776 result = 0;
777 offset = 0;
778 sg = NULL;
780 while (sectors > 0) {
782 /* Find number of pages we can read in this block */
783 pages = min(sectors, info->blocksize - page);
784 len = pages << info->pageshift;
786 /* Not overflowing capacity? */
787 if (lba >= maxlba) {
788 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
789 lba, maxlba);
790 result = -EIO;
791 break;
794 /* Find where this lba lives on disk */
795 pba = info->lba_to_pba[lba];
797 if (pba == UNDEF) { /* this lba was never written */
799 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
800 pages, lba, page);
802 /* This is not really an error. It just means
803 that the block has never been written.
804 Instead of returning an error
805 it is better to return all zero data. */
807 memset(buffer, 0, len);
809 } else {
810 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
811 pages, pba, lba, page);
813 address = ((pba << info->blockshift) + page) <<
814 info->pageshift;
816 result = sddr09_read20(us, address>>1,
817 pages, info->pageshift, buffer, 0);
818 if (result)
819 break;
822 // Store the data in the transfer buffer
823 usb_stor_access_xfer_buf(buffer, len, us->srb,
824 &sg, &offset, TO_XFER_BUF);
826 page = 0;
827 lba++;
828 sectors -= pages;
831 kfree(buffer);
832 return result;
835 static unsigned int
836 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
837 static unsigned int lastpba = 1;
838 int zonestart, end, i;
840 zonestart = (lba/1000) << 10;
841 end = info->capacity >> (info->blockshift + info->pageshift);
842 end -= zonestart;
843 if (end > 1024)
844 end = 1024;
846 for (i = lastpba+1; i < end; i++) {
847 if (info->pba_to_lba[zonestart+i] == UNDEF) {
848 lastpba = i;
849 return zonestart+i;
852 for (i = 0; i <= lastpba; i++) {
853 if (info->pba_to_lba[zonestart+i] == UNDEF) {
854 lastpba = i;
855 return zonestart+i;
858 return 0;
861 static int
862 sddr09_write_lba(struct us_data *us, unsigned int lba,
863 unsigned int page, unsigned int pages,
864 unsigned char *ptr, unsigned char *blockbuffer) {
866 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
867 unsigned long address;
868 unsigned int pba, lbap;
869 unsigned int pagelen;
870 unsigned char *bptr, *cptr, *xptr;
871 unsigned char ecc[3];
872 int i, result, isnew;
874 lbap = ((lba % 1000) << 1) | 0x1000;
875 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
876 lbap ^= 1;
877 pba = info->lba_to_pba[lba];
878 isnew = 0;
880 if (pba == UNDEF) {
881 pba = sddr09_find_unused_pba(info, lba);
882 if (!pba) {
883 printk(KERN_WARNING
884 "sddr09_write_lba: Out of unused blocks\n");
885 return -ENOSPC;
887 info->pba_to_lba[pba] = lba;
888 info->lba_to_pba[lba] = pba;
889 isnew = 1;
892 if (pba == 1) {
893 /* Maybe it is impossible to write to PBA 1.
894 Fake success, but don't do anything. */
895 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
896 return 0;
899 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
901 /* read old contents */
902 address = (pba << (info->pageshift + info->blockshift));
903 result = sddr09_read22(us, address>>1, info->blocksize,
904 info->pageshift, blockbuffer, 0);
905 if (result)
906 return result;
908 /* check old contents and fill lba */
909 for (i = 0; i < info->blocksize; i++) {
910 bptr = blockbuffer + i*pagelen;
911 cptr = bptr + info->pagesize;
912 nand_compute_ecc(bptr, ecc);
913 if (!nand_compare_ecc(cptr+13, ecc)) {
914 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
915 i, pba);
916 nand_store_ecc(cptr+13, ecc);
918 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
919 if (!nand_compare_ecc(cptr+8, ecc)) {
920 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
921 i, pba);
922 nand_store_ecc(cptr+8, ecc);
924 cptr[6] = cptr[11] = MSB_of(lbap);
925 cptr[7] = cptr[12] = LSB_of(lbap);
928 /* copy in new stuff and compute ECC */
929 xptr = ptr;
930 for (i = page; i < page+pages; i++) {
931 bptr = blockbuffer + i*pagelen;
932 cptr = bptr + info->pagesize;
933 memcpy(bptr, xptr, info->pagesize);
934 xptr += info->pagesize;
935 nand_compute_ecc(bptr, ecc);
936 nand_store_ecc(cptr+13, ecc);
937 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
938 nand_store_ecc(cptr+8, ecc);
941 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
943 result = sddr09_write_inplace(us, address>>1, info->blocksize,
944 info->pageshift, blockbuffer, 0);
946 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
948 #if 0
950 unsigned char status = 0;
951 int result2 = sddr09_read_status(us, &status);
952 if (result2)
953 usb_stor_dbg(us, "cannot read status\n");
954 else if (status != 0xc0)
955 usb_stor_dbg(us, "status after write: 0x%x\n", status);
957 #endif
959 #if 0
961 int result2 = sddr09_test_unit_ready(us);
963 #endif
965 return result;
968 static int
969 sddr09_write_data(struct us_data *us,
970 unsigned long address,
971 unsigned int sectors) {
973 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
974 unsigned int lba, maxlba, page, pages;
975 unsigned int pagelen, blocklen;
976 unsigned char *blockbuffer;
977 unsigned char *buffer;
978 unsigned int len, offset;
979 struct scatterlist *sg;
980 int result;
982 // Figure out the initial LBA and page
983 lba = address >> info->blockshift;
984 page = (address & info->blockmask);
985 maxlba = info->capacity >> (info->pageshift + info->blockshift);
986 if (lba >= maxlba)
987 return -EIO;
989 // blockbuffer is used for reading in the old data, overwriting
990 // with the new data, and performing ECC calculations
992 /* TODO: instead of doing kmalloc/kfree for each write,
993 add a bufferpointer to the info structure */
995 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
996 blocklen = (pagelen << info->blockshift);
997 blockbuffer = kmalloc(blocklen, GFP_NOIO);
998 if (!blockbuffer) {
999 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000 return -ENOMEM;
1003 // Since we don't write the user data directly to the device,
1004 // we have to create a bounce buffer and move the data a piece
1005 // at a time between the bounce buffer and the actual transfer buffer.
1007 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008 buffer = kmalloc(len, GFP_NOIO);
1009 if (buffer == NULL) {
1010 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011 kfree(blockbuffer);
1012 return -ENOMEM;
1015 result = 0;
1016 offset = 0;
1017 sg = NULL;
1019 while (sectors > 0) {
1021 // Write as many sectors as possible in this block
1023 pages = min(sectors, info->blocksize - page);
1024 len = (pages << info->pageshift);
1026 /* Not overflowing capacity? */
1027 if (lba >= maxlba) {
1028 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029 lba, maxlba);
1030 result = -EIO;
1031 break;
1034 // Get the data from the transfer buffer
1035 usb_stor_access_xfer_buf(buffer, len, us->srb,
1036 &sg, &offset, FROM_XFER_BUF);
1038 result = sddr09_write_lba(us, lba, page, pages,
1039 buffer, blockbuffer);
1040 if (result)
1041 break;
1043 page = 0;
1044 lba++;
1045 sectors -= pages;
1048 kfree(buffer);
1049 kfree(blockbuffer);
1051 return result;
1054 static int
1055 sddr09_read_control(struct us_data *us,
1056 unsigned long address,
1057 unsigned int blocks,
1058 unsigned char *content,
1059 int use_sg) {
1061 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062 address, blocks);
1064 return sddr09_read21(us, address, blocks,
1065 CONTROL_SHIFT, content, use_sg);
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1078 static int
1079 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080 unsigned char *command = us->iobuf;
1081 unsigned char *content = us->iobuf;
1082 int result, i;
1084 memset(command, 0, 12);
1085 command[0] = 0xED;
1086 command[1] = LUNBITS;
1088 result = sddr09_send_scsi_command(us, command, 12);
1089 if (result)
1090 return result;
1092 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093 content, 64, NULL);
1095 for (i = 0; i < 4; i++)
1096 deviceID[i] = content[i];
1098 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1101 static int
1102 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103 int result;
1104 unsigned char status;
1106 result = sddr09_read_status(us, &status);
1107 if (result) {
1108 usb_stor_dbg(us, "read_status fails\n");
1109 return result;
1111 usb_stor_dbg(us, "status 0x%02X", status);
1112 if ((status & 0x80) == 0) {
1113 info->flags |= SDDR09_WP; /* write protected */
1114 US_DEBUGPX(" WP");
1116 if (status & 0x40)
1117 US_DEBUGPX(" Ready");
1118 if (status & LUNBITS)
1119 US_DEBUGPX(" Suspended");
1120 if (status & 0x1)
1121 US_DEBUGPX(" Error");
1122 US_DEBUGPX("\n");
1123 return 0;
1126 #if 0
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1131 static int
1132 sddr09_reset(struct us_data *us) {
1134 unsigned char *command = us->iobuf;
1136 memset(command, 0, 12);
1137 command[0] = 0xEB;
1138 command[1] = LUNBITS;
1140 return sddr09_send_scsi_command(us, command, 12);
1142 #endif
1144 static struct nand_flash_dev *
1145 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146 struct nand_flash_dev *cardinfo;
1147 unsigned char deviceID[4];
1148 char blurbtxt[256];
1149 int result;
1151 usb_stor_dbg(us, "Reading capacity...\n");
1153 result = sddr09_read_deviceID(us, deviceID);
1155 if (result) {
1156 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157 printk(KERN_WARNING "sddr09: could not read card info\n");
1158 return NULL;
1161 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1163 /* Byte 0 is the manufacturer */
1164 sprintf(blurbtxt + strlen(blurbtxt),
1165 ": Manuf. %s",
1166 nand_flash_manufacturer(deviceID[0]));
1168 /* Byte 1 is the device type */
1169 cardinfo = nand_find_id(deviceID[1]);
1170 if (cardinfo) {
1171 /* MB or MiB? It is neither. A 16 MB card has
1172 17301504 raw bytes, of which 16384000 are
1173 usable for user data. */
1174 sprintf(blurbtxt + strlen(blurbtxt),
1175 ", %d MB", 1<<(cardinfo->chipshift - 20));
1176 } else {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", type unrecognized");
1181 /* Byte 2 is code to signal availability of 128-bit ID */
1182 if (deviceID[2] == 0xa5) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", 128-bit ID");
1187 /* Byte 3 announces the availability of another read ID command */
1188 if (deviceID[3] == 0xc0) {
1189 sprintf(blurbtxt + strlen(blurbtxt),
1190 ", extra cmd");
1193 if (flags & SDDR09_WP)
1194 sprintf(blurbtxt + strlen(blurbtxt),
1195 ", WP");
1197 printk(KERN_WARNING "%s\n", blurbtxt);
1199 return cardinfo;
1202 static int
1203 sddr09_read_map(struct us_data *us) {
1205 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206 int numblocks, alloc_len, alloc_blocks;
1207 int i, j, result;
1208 unsigned char *buffer, *buffer_end, *ptr;
1209 unsigned int lba, lbact;
1211 if (!info->capacity)
1212 return -1;
1214 // size of a block is 1 << (blockshift + pageshift) bytes
1215 // divide into the total capacity to get the number of blocks
1217 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1219 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220 // but only use a 64 KB buffer
1221 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1222 #define SDDR09_READ_MAP_BUFSZ 65536
1224 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226 buffer = kmalloc(alloc_len, GFP_NOIO);
1227 if (buffer == NULL) {
1228 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229 result = -1;
1230 goto done;
1232 buffer_end = buffer + alloc_len;
1234 #undef SDDR09_READ_MAP_BUFSZ
1236 kfree(info->lba_to_pba);
1237 kfree(info->pba_to_lba);
1238 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1241 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243 result = -1;
1244 goto done;
1247 for (i = 0; i < numblocks; i++)
1248 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1251 * Define lba-pba translation table
1254 ptr = buffer_end;
1255 for (i = 0; i < numblocks; i++) {
1256 ptr += (1 << CONTROL_SHIFT);
1257 if (ptr >= buffer_end) {
1258 unsigned long address;
1260 address = i << (info->pageshift + info->blockshift);
1261 result = sddr09_read_control(
1262 us, address>>1,
1263 min(alloc_blocks, numblocks - i),
1264 buffer, 0);
1265 if (result) {
1266 result = -1;
1267 goto done;
1269 ptr = buffer;
1272 if (i == 0 || i == 1) {
1273 info->pba_to_lba[i] = UNUSABLE;
1274 continue;
1277 /* special PBAs have control field 0^16 */
1278 for (j = 0; j < 16; j++)
1279 if (ptr[j] != 0)
1280 goto nonz;
1281 info->pba_to_lba[i] = UNUSABLE;
1282 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1284 continue;
1286 nonz:
1287 /* unwritten PBAs have control field FF^16 */
1288 for (j = 0; j < 16; j++)
1289 if (ptr[j] != 0xff)
1290 goto nonff;
1291 continue;
1293 nonff:
1294 /* normal PBAs start with six FFs */
1295 if (j < 6) {
1296 printk(KERN_WARNING
1297 "sddr09: PBA %d has no logical mapping: "
1298 "reserved area = %02X%02X%02X%02X "
1299 "data status %02X block status %02X\n",
1300 i, ptr[0], ptr[1], ptr[2], ptr[3],
1301 ptr[4], ptr[5]);
1302 info->pba_to_lba[i] = UNUSABLE;
1303 continue;
1306 if ((ptr[6] >> 4) != 0x01) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has invalid address field "
1309 "%02X%02X/%02X%02X\n",
1310 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311 info->pba_to_lba[i] = UNUSABLE;
1312 continue;
1315 /* check even parity */
1316 if (parity[ptr[6] ^ ptr[7]]) {
1317 printk(KERN_WARNING
1318 "sddr09: Bad parity in LBA for block %d"
1319 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320 info->pba_to_lba[i] = UNUSABLE;
1321 continue;
1324 lba = short_pack(ptr[7], ptr[6]);
1325 lba = (lba & 0x07FF) >> 1;
1328 * Every 1024 physical blocks ("zone"), the LBA numbers
1329 * go back to zero, but are within a higher block of LBA's.
1330 * Also, there is a maximum of 1000 LBA's per zone.
1331 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332 * which are really LBA 1000-1999. This allows for 24 bad
1333 * or special physical blocks per zone.
1336 if (lba >= 1000) {
1337 printk(KERN_WARNING
1338 "sddr09: Bad low LBA %d for block %d\n",
1339 lba, i);
1340 goto possibly_erase;
1343 lba += 1000*(i/0x400);
1345 if (info->lba_to_pba[lba] != UNDEF) {
1346 printk(KERN_WARNING
1347 "sddr09: LBA %d seen for PBA %d and %d\n",
1348 lba, info->lba_to_pba[lba], i);
1349 goto possibly_erase;
1352 info->pba_to_lba[i] = lba;
1353 info->lba_to_pba[lba] = i;
1354 continue;
1356 possibly_erase:
1357 if (erase_bad_lba_entries) {
1358 unsigned long address;
1360 address = (i << (info->pageshift + info->blockshift));
1361 sddr09_erase(us, address>>1);
1362 info->pba_to_lba[i] = UNDEF;
1363 } else
1364 info->pba_to_lba[i] = UNUSABLE;
1368 * Approximate capacity. This is not entirely correct yet,
1369 * since a zone with less than 1000 usable pages leads to
1370 * missing LBAs. Especially if it is the last zone, some
1371 * LBAs can be past capacity.
1373 lbact = 0;
1374 for (i = 0; i < numblocks; i += 1024) {
1375 int ct = 0;
1377 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378 if (info->pba_to_lba[i+j] != UNUSABLE) {
1379 if (ct >= 1000)
1380 info->pba_to_lba[i+j] = SPARE;
1381 else
1382 ct++;
1385 lbact += ct;
1387 info->lbact = lbact;
1388 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389 result = 0;
1391 done:
1392 if (result != 0) {
1393 kfree(info->lba_to_pba);
1394 kfree(info->pba_to_lba);
1395 info->lba_to_pba = NULL;
1396 info->pba_to_lba = NULL;
1398 kfree(buffer);
1399 return result;
1402 static void
1403 sddr09_card_info_destructor(void *extra) {
1404 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1406 if (!info)
1407 return;
1409 kfree(info->lba_to_pba);
1410 kfree(info->pba_to_lba);
1413 static int
1414 sddr09_common_init(struct us_data *us) {
1415 int result;
1417 /* set the configuration -- STALL is an acceptable response here */
1418 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420 us->pusb_dev->actconfig->desc.bConfigurationValue);
1421 return -EINVAL;
1424 result = usb_reset_configuration(us->pusb_dev);
1425 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426 if (result == -EPIPE) {
1427 usb_stor_dbg(us, "-- stall on control interface\n");
1428 } else if (result != 0) {
1429 /* it's not a stall, but another error -- time to bail */
1430 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1431 return -EINVAL;
1434 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435 if (!us->extra)
1436 return -ENOMEM;
1437 us->extra_destructor = sddr09_card_info_destructor;
1439 nand_init_ecc();
1440 return 0;
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1449 static int
1450 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451 int result;
1452 unsigned char *data = us->iobuf;
1454 result = sddr09_common_init(us);
1455 if (result)
1456 return result;
1458 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459 if (result) {
1460 usb_stor_dbg(us, "send_command fails\n");
1461 return result;
1464 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465 // get 07 02
1467 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468 if (result) {
1469 usb_stor_dbg(us, "2nd send_command fails\n");
1470 return result;
1473 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474 // get 07 00
1476 result = sddr09_request_sense(us, data, 18);
1477 if (result == 0 && data[2] != 0) {
1478 int j;
1479 for (j=0; j<18; j++)
1480 printk(" %02X", data[j]);
1481 printk("\n");
1482 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483 // 70: current command
1484 // sense key 0, sense code 0, extd sense code 0
1485 // additional transfer length * = sizeof(data) - 7
1486 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487 // sense key 06, sense code 28: unit attention,
1488 // not ready to ready transition
1491 // test unit ready
1493 return 0; /* not result */
1497 * Transport for the Microtech DPCM-USB
1499 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1501 int ret;
1503 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1505 switch (srb->device->lun) {
1506 case 0:
1509 * LUN 0 corresponds to the CompactFlash card reader.
1511 ret = usb_stor_CB_transport(srb, us);
1512 break;
1514 case 1:
1517 * LUN 1 corresponds to the SmartMedia card reader.
1521 * Set the LUN to 0 (just in case).
1523 srb->device->lun = 0;
1524 ret = sddr09_transport(srb, us);
1525 srb->device->lun = 1;
1526 break;
1528 default:
1529 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530 ret = USB_STOR_TRANSPORT_ERROR;
1531 break;
1533 return ret;
1538 * Transport for the Sandisk SDDR-09
1540 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1542 static unsigned char sensekey = 0, sensecode = 0;
1543 static unsigned char havefakesense = 0;
1544 int result, i;
1545 unsigned char *ptr = us->iobuf;
1546 unsigned long capacity;
1547 unsigned int page, pages;
1549 struct sddr09_card_info *info;
1551 static unsigned char inquiry_response[8] = {
1552 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1555 /* note: no block descriptor support */
1556 static unsigned char mode_page_01[19] = {
1557 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558 0x01, 0x0A,
1559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1562 info = (struct sddr09_card_info *)us->extra;
1564 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565 /* for a faked command, we have to follow with a faked sense */
1566 memset(ptr, 0, 18);
1567 ptr[0] = 0x70;
1568 ptr[2] = sensekey;
1569 ptr[7] = 11;
1570 ptr[12] = sensecode;
1571 usb_stor_set_xfer_buf(ptr, 18, srb);
1572 sensekey = sensecode = havefakesense = 0;
1573 return USB_STOR_TRANSPORT_GOOD;
1576 havefakesense = 1;
1578 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1579 respond to INQUIRY commands */
1581 if (srb->cmnd[0] == INQUIRY) {
1582 memcpy(ptr, inquiry_response, 8);
1583 fill_inquiry_response(us, ptr, 36);
1584 return USB_STOR_TRANSPORT_GOOD;
1587 if (srb->cmnd[0] == READ_CAPACITY) {
1588 struct nand_flash_dev *cardinfo;
1590 sddr09_get_wp(us, info); /* read WP bit */
1592 cardinfo = sddr09_get_cardinfo(us, info->flags);
1593 if (!cardinfo) {
1594 /* probably no media */
1595 init_error:
1596 sensekey = 0x02; /* not ready */
1597 sensecode = 0x3a; /* medium not present */
1598 return USB_STOR_TRANSPORT_FAILED;
1601 info->capacity = (1 << cardinfo->chipshift);
1602 info->pageshift = cardinfo->pageshift;
1603 info->pagesize = (1 << info->pageshift);
1604 info->blockshift = cardinfo->blockshift;
1605 info->blocksize = (1 << info->blockshift);
1606 info->blockmask = info->blocksize - 1;
1608 // map initialization, must follow get_cardinfo()
1609 if (sddr09_read_map(us)) {
1610 /* probably out of memory */
1611 goto init_error;
1614 // Report capacity
1616 capacity = (info->lbact << info->blockshift) - 1;
1618 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1620 // Report page size
1622 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623 usb_stor_set_xfer_buf(ptr, 8, srb);
1625 return USB_STOR_TRANSPORT_GOOD;
1628 if (srb->cmnd[0] == MODE_SENSE_10) {
1629 int modepage = (srb->cmnd[2] & 0x3F);
1631 /* They ask for the Read/Write error recovery page,
1632 or for all pages. */
1633 /* %% We should check DBD %% */
1634 if (modepage == 0x01 || modepage == 0x3F) {
1635 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636 modepage);
1638 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642 return USB_STOR_TRANSPORT_GOOD;
1645 sensekey = 0x05; /* illegal request */
1646 sensecode = 0x24; /* invalid field in CDB */
1647 return USB_STOR_TRANSPORT_FAILED;
1650 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651 return USB_STOR_TRANSPORT_GOOD;
1653 havefakesense = 0;
1655 if (srb->cmnd[0] == READ_10) {
1657 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658 page <<= 16;
1659 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1662 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663 page, pages);
1665 result = sddr09_read_data(us, page, pages);
1666 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667 USB_STOR_TRANSPORT_ERROR);
1670 if (srb->cmnd[0] == WRITE_10) {
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1677 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678 page, pages);
1680 result = sddr09_write_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1685 /* catch-all for all other commands, except
1686 * pass TEST_UNIT_READY and REQUEST_SENSE through
1688 if (srb->cmnd[0] != TEST_UNIT_READY &&
1689 srb->cmnd[0] != REQUEST_SENSE) {
1690 sensekey = 0x05; /* illegal request */
1691 sensecode = 0x20; /* invalid command */
1692 havefakesense = 1;
1693 return USB_STOR_TRANSPORT_FAILED;
1696 for (; srb->cmd_len<12; srb->cmd_len++)
1697 srb->cmnd[srb->cmd_len] = 0;
1699 srb->cmnd[1] = LUNBITS;
1701 ptr[0] = 0;
1702 for (i=0; i<12; i++)
1703 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1705 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1707 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708 if (result) {
1709 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710 result);
1711 return USB_STOR_TRANSPORT_ERROR;
1714 if (scsi_bufflen(srb) == 0)
1715 return USB_STOR_TRANSPORT_GOOD;
1717 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718 srb->sc_data_direction == DMA_FROM_DEVICE) {
1719 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1722 usb_stor_dbg(us, "%s %d bytes\n",
1723 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724 "sending" : "receiving",
1725 scsi_bufflen(srb));
1727 result = usb_stor_bulk_srb(us, pipe, srb);
1729 return (result == USB_STOR_XFER_GOOD ?
1730 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1733 return USB_STOR_TRANSPORT_GOOD;
1737 * Initialization routine for the sddr09 subdriver
1739 static int
1740 usb_stor_sddr09_init(struct us_data *us) {
1741 return sddr09_common_init(us);
1744 static struct scsi_host_template sddr09_host_template;
1746 static int sddr09_probe(struct usb_interface *intf,
1747 const struct usb_device_id *id)
1749 struct us_data *us;
1750 int result;
1752 result = usb_stor_probe1(&us, intf, id,
1753 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754 &sddr09_host_template);
1755 if (result)
1756 return result;
1758 if (us->protocol == USB_PR_DPCM_USB) {
1759 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760 us->transport = dpcm_transport;
1761 us->transport_reset = usb_stor_CB_reset;
1762 us->max_lun = 1;
1763 } else {
1764 us->transport_name = "EUSB/SDDR09";
1765 us->transport = sddr09_transport;
1766 us->transport_reset = usb_stor_CB_reset;
1767 us->max_lun = 0;
1770 result = usb_stor_probe2(us);
1771 return result;
1774 static struct usb_driver sddr09_driver = {
1775 .name = DRV_NAME,
1776 .probe = sddr09_probe,
1777 .disconnect = usb_stor_disconnect,
1778 .suspend = usb_stor_suspend,
1779 .resume = usb_stor_resume,
1780 .reset_resume = usb_stor_reset_resume,
1781 .pre_reset = usb_stor_pre_reset,
1782 .post_reset = usb_stor_post_reset,
1783 .id_table = sddr09_usb_ids,
1784 .soft_unbind = 1,
1785 .no_dynamic_id = 1,
1788 module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);