2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*root
, u64 bytenr
,
79 u64 num_bytes
, int alloc
);
80 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 struct btrfs_delayed_ref_node
*node
, u64 parent
,
83 u64 root_objectid
, u64 owner_objectid
,
84 u64 owner_offset
, int refs_to_drop
,
85 struct btrfs_delayed_extent_op
*extra_op
);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
87 struct extent_buffer
*leaf
,
88 struct btrfs_extent_item
*ei
);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, u64 owner
, u64 offset
,
93 struct btrfs_key
*ins
, int ref_mod
);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
,
96 u64 parent
, u64 root_objectid
,
97 u64 flags
, struct btrfs_disk_key
*key
,
98 int level
, struct btrfs_key
*ins
,
100 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*extent_root
, u64 flags
,
103 static int find_next_key(struct btrfs_path
*path
, int level
,
104 struct btrfs_key
*key
);
105 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
106 int dump_block_groups
);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
108 u64 num_bytes
, int reserve
,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
112 int btrfs_pin_extent(struct btrfs_root
*root
,
113 u64 bytenr
, u64 num_bytes
, int reserved
);
116 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
119 return cache
->cached
== BTRFS_CACHE_FINISHED
||
120 cache
->cached
== BTRFS_CACHE_ERROR
;
123 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
125 return (cache
->flags
& bits
) == bits
;
128 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
130 atomic_inc(&cache
->count
);
133 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
135 if (atomic_dec_and_test(&cache
->count
)) {
136 WARN_ON(cache
->pinned
> 0);
137 WARN_ON(cache
->reserved
> 0);
138 kfree(cache
->free_space_ctl
);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
148 struct btrfs_block_group_cache
*block_group
)
151 struct rb_node
*parent
= NULL
;
152 struct btrfs_block_group_cache
*cache
;
154 spin_lock(&info
->block_group_cache_lock
);
155 p
= &info
->block_group_cache_tree
.rb_node
;
159 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
161 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
163 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
166 spin_unlock(&info
->block_group_cache_lock
);
171 rb_link_node(&block_group
->cache_node
, parent
, p
);
172 rb_insert_color(&block_group
->cache_node
,
173 &info
->block_group_cache_tree
);
175 if (info
->first_logical_byte
> block_group
->key
.objectid
)
176 info
->first_logical_byte
= block_group
->key
.objectid
;
178 spin_unlock(&info
->block_group_cache_lock
);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache
*
188 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
191 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
195 spin_lock(&info
->block_group_cache_lock
);
196 n
= info
->block_group_cache_tree
.rb_node
;
199 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
201 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
202 start
= cache
->key
.objectid
;
204 if (bytenr
< start
) {
205 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
208 } else if (bytenr
> start
) {
209 if (contains
&& bytenr
<= end
) {
220 btrfs_get_block_group(ret
);
221 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
222 info
->first_logical_byte
= ret
->key
.objectid
;
224 spin_unlock(&info
->block_group_cache_lock
);
229 static int add_excluded_extent(struct btrfs_root
*root
,
230 u64 start
, u64 num_bytes
)
232 u64 end
= start
+ num_bytes
- 1;
233 set_extent_bits(&root
->fs_info
->freed_extents
[0],
234 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
235 set_extent_bits(&root
->fs_info
->freed_extents
[1],
236 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
240 static void free_excluded_extents(struct btrfs_root
*root
,
241 struct btrfs_block_group_cache
*cache
)
245 start
= cache
->key
.objectid
;
246 end
= start
+ cache
->key
.offset
- 1;
248 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
249 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
250 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
251 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
254 static int exclude_super_stripes(struct btrfs_root
*root
,
255 struct btrfs_block_group_cache
*cache
)
262 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
263 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
264 cache
->bytes_super
+= stripe_len
;
265 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
271 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
272 bytenr
= btrfs_sb_offset(i
);
273 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
274 cache
->key
.objectid
, bytenr
,
275 0, &logical
, &nr
, &stripe_len
);
282 if (logical
[nr
] > cache
->key
.objectid
+
286 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
290 if (start
< cache
->key
.objectid
) {
291 start
= cache
->key
.objectid
;
292 len
= (logical
[nr
] + stripe_len
) - start
;
294 len
= min_t(u64
, stripe_len
,
295 cache
->key
.objectid
+
296 cache
->key
.offset
- start
);
299 cache
->bytes_super
+= len
;
300 ret
= add_excluded_extent(root
, start
, len
);
312 static struct btrfs_caching_control
*
313 get_caching_control(struct btrfs_block_group_cache
*cache
)
315 struct btrfs_caching_control
*ctl
;
317 spin_lock(&cache
->lock
);
318 if (!cache
->caching_ctl
) {
319 spin_unlock(&cache
->lock
);
323 ctl
= cache
->caching_ctl
;
324 atomic_inc(&ctl
->count
);
325 spin_unlock(&cache
->lock
);
329 static void put_caching_control(struct btrfs_caching_control
*ctl
)
331 if (atomic_dec_and_test(&ctl
->count
))
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
340 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
341 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
343 u64 extent_start
, extent_end
, size
, total_added
= 0;
346 while (start
< end
) {
347 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
348 &extent_start
, &extent_end
,
349 EXTENT_DIRTY
| EXTENT_UPTODATE
,
354 if (extent_start
<= start
) {
355 start
= extent_end
+ 1;
356 } else if (extent_start
> start
&& extent_start
< end
) {
357 size
= extent_start
- start
;
359 ret
= btrfs_add_free_space(block_group
, start
,
361 BUG_ON(ret
); /* -ENOMEM or logic error */
362 start
= extent_end
+ 1;
371 ret
= btrfs_add_free_space(block_group
, start
, size
);
372 BUG_ON(ret
); /* -ENOMEM or logic error */
378 static noinline
void caching_thread(struct btrfs_work
*work
)
380 struct btrfs_block_group_cache
*block_group
;
381 struct btrfs_fs_info
*fs_info
;
382 struct btrfs_caching_control
*caching_ctl
;
383 struct btrfs_root
*extent_root
;
384 struct btrfs_path
*path
;
385 struct extent_buffer
*leaf
;
386 struct btrfs_key key
;
392 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
393 block_group
= caching_ctl
->block_group
;
394 fs_info
= block_group
->fs_info
;
395 extent_root
= fs_info
->extent_root
;
397 path
= btrfs_alloc_path();
401 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
409 path
->skip_locking
= 1;
410 path
->search_commit_root
= 1;
415 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
417 mutex_lock(&caching_ctl
->mutex
);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info
->commit_root_sem
);
422 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
426 leaf
= path
->nodes
[0];
427 nritems
= btrfs_header_nritems(leaf
);
430 if (btrfs_fs_closing(fs_info
) > 1) {
435 if (path
->slots
[0] < nritems
) {
436 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
438 ret
= find_next_key(path
, 0, &key
);
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
444 caching_ctl
->progress
= last
;
445 btrfs_release_path(path
);
446 up_read(&fs_info
->commit_root_sem
);
447 mutex_unlock(&caching_ctl
->mutex
);
452 ret
= btrfs_next_leaf(extent_root
, path
);
457 leaf
= path
->nodes
[0];
458 nritems
= btrfs_header_nritems(leaf
);
462 if (key
.objectid
< last
) {
465 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
467 caching_ctl
->progress
= last
;
468 btrfs_release_path(path
);
472 if (key
.objectid
< block_group
->key
.objectid
) {
477 if (key
.objectid
>= block_group
->key
.objectid
+
478 block_group
->key
.offset
)
481 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
482 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
483 total_found
+= add_new_free_space(block_group
,
486 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
487 last
= key
.objectid
+
488 fs_info
->tree_root
->nodesize
;
490 last
= key
.objectid
+ key
.offset
;
492 if (total_found
> (1024 * 1024 * 2)) {
494 wake_up(&caching_ctl
->wait
);
501 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
502 block_group
->key
.objectid
+
503 block_group
->key
.offset
);
504 caching_ctl
->progress
= (u64
)-1;
506 spin_lock(&block_group
->lock
);
507 block_group
->caching_ctl
= NULL
;
508 block_group
->cached
= BTRFS_CACHE_FINISHED
;
509 spin_unlock(&block_group
->lock
);
512 btrfs_free_path(path
);
513 up_read(&fs_info
->commit_root_sem
);
515 free_excluded_extents(extent_root
, block_group
);
517 mutex_unlock(&caching_ctl
->mutex
);
520 spin_lock(&block_group
->lock
);
521 block_group
->caching_ctl
= NULL
;
522 block_group
->cached
= BTRFS_CACHE_ERROR
;
523 spin_unlock(&block_group
->lock
);
525 wake_up(&caching_ctl
->wait
);
527 put_caching_control(caching_ctl
);
528 btrfs_put_block_group(block_group
);
531 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
535 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
536 struct btrfs_caching_control
*caching_ctl
;
539 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
543 INIT_LIST_HEAD(&caching_ctl
->list
);
544 mutex_init(&caching_ctl
->mutex
);
545 init_waitqueue_head(&caching_ctl
->wait
);
546 caching_ctl
->block_group
= cache
;
547 caching_ctl
->progress
= cache
->key
.objectid
;
548 atomic_set(&caching_ctl
->count
, 1);
549 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
550 caching_thread
, NULL
, NULL
);
552 spin_lock(&cache
->lock
);
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
565 while (cache
->cached
== BTRFS_CACHE_FAST
) {
566 struct btrfs_caching_control
*ctl
;
568 ctl
= cache
->caching_ctl
;
569 atomic_inc(&ctl
->count
);
570 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
571 spin_unlock(&cache
->lock
);
575 finish_wait(&ctl
->wait
, &wait
);
576 put_caching_control(ctl
);
577 spin_lock(&cache
->lock
);
580 if (cache
->cached
!= BTRFS_CACHE_NO
) {
581 spin_unlock(&cache
->lock
);
585 WARN_ON(cache
->caching_ctl
);
586 cache
->caching_ctl
= caching_ctl
;
587 cache
->cached
= BTRFS_CACHE_FAST
;
588 spin_unlock(&cache
->lock
);
590 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
591 mutex_lock(&caching_ctl
->mutex
);
592 ret
= load_free_space_cache(fs_info
, cache
);
594 spin_lock(&cache
->lock
);
596 cache
->caching_ctl
= NULL
;
597 cache
->cached
= BTRFS_CACHE_FINISHED
;
598 cache
->last_byte_to_unpin
= (u64
)-1;
599 caching_ctl
->progress
= (u64
)-1;
601 if (load_cache_only
) {
602 cache
->caching_ctl
= NULL
;
603 cache
->cached
= BTRFS_CACHE_NO
;
605 cache
->cached
= BTRFS_CACHE_STARTED
;
606 cache
->has_caching_ctl
= 1;
609 spin_unlock(&cache
->lock
);
610 mutex_unlock(&caching_ctl
->mutex
);
612 wake_up(&caching_ctl
->wait
);
614 put_caching_control(caching_ctl
);
615 free_excluded_extents(fs_info
->extent_root
, cache
);
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
623 spin_lock(&cache
->lock
);
624 if (load_cache_only
) {
625 cache
->caching_ctl
= NULL
;
626 cache
->cached
= BTRFS_CACHE_NO
;
628 cache
->cached
= BTRFS_CACHE_STARTED
;
629 cache
->has_caching_ctl
= 1;
631 spin_unlock(&cache
->lock
);
632 wake_up(&caching_ctl
->wait
);
635 if (load_cache_only
) {
636 put_caching_control(caching_ctl
);
640 down_write(&fs_info
->commit_root_sem
);
641 atomic_inc(&caching_ctl
->count
);
642 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
643 up_write(&fs_info
->commit_root_sem
);
645 btrfs_get_block_group(cache
);
647 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
653 * return the block group that starts at or after bytenr
655 static struct btrfs_block_group_cache
*
656 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
658 struct btrfs_block_group_cache
*cache
;
660 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
666 * return the block group that contains the given bytenr
668 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
669 struct btrfs_fs_info
*info
,
672 struct btrfs_block_group_cache
*cache
;
674 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
679 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
682 struct list_head
*head
= &info
->space_info
;
683 struct btrfs_space_info
*found
;
685 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
688 list_for_each_entry_rcu(found
, head
, list
) {
689 if (found
->flags
& flags
) {
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
702 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
704 struct list_head
*head
= &info
->space_info
;
705 struct btrfs_space_info
*found
;
708 list_for_each_entry_rcu(found
, head
, list
)
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
717 struct btrfs_key key
;
718 struct btrfs_path
*path
;
720 path
= btrfs_alloc_path();
724 key
.objectid
= start
;
726 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
727 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
729 btrfs_free_path(path
);
734 * helper function to lookup reference count and flags of a tree block.
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
743 struct btrfs_root
*root
, u64 bytenr
,
744 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
746 struct btrfs_delayed_ref_head
*head
;
747 struct btrfs_delayed_ref_root
*delayed_refs
;
748 struct btrfs_path
*path
;
749 struct btrfs_extent_item
*ei
;
750 struct extent_buffer
*leaf
;
751 struct btrfs_key key
;
758 * If we don't have skinny metadata, don't bother doing anything
761 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
762 offset
= root
->nodesize
;
766 path
= btrfs_alloc_path();
771 path
->skip_locking
= 1;
772 path
->search_commit_root
= 1;
776 key
.objectid
= bytenr
;
779 key
.type
= BTRFS_METADATA_ITEM_KEY
;
781 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
783 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
788 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
789 if (path
->slots
[0]) {
791 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
793 if (key
.objectid
== bytenr
&&
794 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
795 key
.offset
== root
->nodesize
)
801 leaf
= path
->nodes
[0];
802 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
803 if (item_size
>= sizeof(*ei
)) {
804 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
805 struct btrfs_extent_item
);
806 num_refs
= btrfs_extent_refs(leaf
, ei
);
807 extent_flags
= btrfs_extent_flags(leaf
, ei
);
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0
*ei0
;
811 BUG_ON(item_size
!= sizeof(*ei0
));
812 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
813 struct btrfs_extent_item_v0
);
814 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
815 /* FIXME: this isn't correct for data */
816 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
821 BUG_ON(num_refs
== 0);
831 delayed_refs
= &trans
->transaction
->delayed_refs
;
832 spin_lock(&delayed_refs
->lock
);
833 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
835 if (!mutex_trylock(&head
->mutex
)) {
836 atomic_inc(&head
->node
.refs
);
837 spin_unlock(&delayed_refs
->lock
);
839 btrfs_release_path(path
);
842 * Mutex was contended, block until it's released and try
845 mutex_lock(&head
->mutex
);
846 mutex_unlock(&head
->mutex
);
847 btrfs_put_delayed_ref(&head
->node
);
850 spin_lock(&head
->lock
);
851 if (head
->extent_op
&& head
->extent_op
->update_flags
)
852 extent_flags
|= head
->extent_op
->flags_to_set
;
854 BUG_ON(num_refs
== 0);
856 num_refs
+= head
->node
.ref_mod
;
857 spin_unlock(&head
->lock
);
858 mutex_unlock(&head
->mutex
);
860 spin_unlock(&delayed_refs
->lock
);
862 WARN_ON(num_refs
== 0);
866 *flags
= extent_flags
;
868 btrfs_free_path(path
);
873 * Back reference rules. Back refs have three main goals:
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
904 * When a tree block is COW'd through a tree, there are four cases:
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
924 * Back Reference Key composing:
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
931 * File extents can be referenced by:
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
937 * The extent ref structure for the implicit back refs has fields for:
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
944 * The key offset for the implicit back refs is hash of the first
947 * The extent ref structure for the full back refs has field for:
949 * - number of pointers in the tree leaf
951 * The key offset for the implicit back refs is the first byte of
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
957 * (root_key.objectid, inode objectid, offset in file, 1)
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 * Btree extents can be referenced by:
966 * - Different subvolumes
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
980 struct btrfs_root
*root
,
981 struct btrfs_path
*path
,
982 u64 owner
, u32 extra_size
)
984 struct btrfs_extent_item
*item
;
985 struct btrfs_extent_item_v0
*ei0
;
986 struct btrfs_extent_ref_v0
*ref0
;
987 struct btrfs_tree_block_info
*bi
;
988 struct extent_buffer
*leaf
;
989 struct btrfs_key key
;
990 struct btrfs_key found_key
;
991 u32 new_size
= sizeof(*item
);
995 leaf
= path
->nodes
[0];
996 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
998 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
999 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1000 struct btrfs_extent_item_v0
);
1001 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1003 if (owner
== (u64
)-1) {
1005 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1006 ret
= btrfs_next_leaf(root
, path
);
1009 BUG_ON(ret
> 0); /* Corruption */
1010 leaf
= path
->nodes
[0];
1012 btrfs_item_key_to_cpu(leaf
, &found_key
,
1014 BUG_ON(key
.objectid
!= found_key
.objectid
);
1015 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1019 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1020 struct btrfs_extent_ref_v0
);
1021 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1025 btrfs_release_path(path
);
1027 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1028 new_size
+= sizeof(*bi
);
1030 new_size
-= sizeof(*ei0
);
1031 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1032 new_size
+ extra_size
, 1);
1035 BUG_ON(ret
); /* Corruption */
1037 btrfs_extend_item(root
, path
, new_size
);
1039 leaf
= path
->nodes
[0];
1040 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1041 btrfs_set_extent_refs(leaf
, item
, refs
);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf
, item
, 0);
1044 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1045 btrfs_set_extent_flags(leaf
, item
,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1048 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1051 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1053 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1055 btrfs_mark_buffer_dirty(leaf
);
1060 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1062 u32 high_crc
= ~(u32
)0;
1063 u32 low_crc
= ~(u32
)0;
1066 lenum
= cpu_to_le64(root_objectid
);
1067 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1068 lenum
= cpu_to_le64(owner
);
1069 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1070 lenum
= cpu_to_le64(offset
);
1071 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1073 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1076 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1077 struct btrfs_extent_data_ref
*ref
)
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1080 btrfs_extent_data_ref_objectid(leaf
, ref
),
1081 btrfs_extent_data_ref_offset(leaf
, ref
));
1084 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1085 struct btrfs_extent_data_ref
*ref
,
1086 u64 root_objectid
, u64 owner
, u64 offset
)
1088 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1089 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1090 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1095 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1096 struct btrfs_root
*root
,
1097 struct btrfs_path
*path
,
1098 u64 bytenr
, u64 parent
,
1100 u64 owner
, u64 offset
)
1102 struct btrfs_key key
;
1103 struct btrfs_extent_data_ref
*ref
;
1104 struct extent_buffer
*leaf
;
1110 key
.objectid
= bytenr
;
1112 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1113 key
.offset
= parent
;
1115 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1116 key
.offset
= hash_extent_data_ref(root_objectid
,
1121 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1132 btrfs_release_path(path
);
1133 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1144 leaf
= path
->nodes
[0];
1145 nritems
= btrfs_header_nritems(leaf
);
1147 if (path
->slots
[0] >= nritems
) {
1148 ret
= btrfs_next_leaf(root
, path
);
1154 leaf
= path
->nodes
[0];
1155 nritems
= btrfs_header_nritems(leaf
);
1159 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1160 if (key
.objectid
!= bytenr
||
1161 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1164 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1165 struct btrfs_extent_data_ref
);
1167 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1170 btrfs_release_path(path
);
1182 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1183 struct btrfs_root
*root
,
1184 struct btrfs_path
*path
,
1185 u64 bytenr
, u64 parent
,
1186 u64 root_objectid
, u64 owner
,
1187 u64 offset
, int refs_to_add
)
1189 struct btrfs_key key
;
1190 struct extent_buffer
*leaf
;
1195 key
.objectid
= bytenr
;
1197 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1198 key
.offset
= parent
;
1199 size
= sizeof(struct btrfs_shared_data_ref
);
1201 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1202 key
.offset
= hash_extent_data_ref(root_objectid
,
1204 size
= sizeof(struct btrfs_extent_data_ref
);
1207 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1208 if (ret
&& ret
!= -EEXIST
)
1211 leaf
= path
->nodes
[0];
1213 struct btrfs_shared_data_ref
*ref
;
1214 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1215 struct btrfs_shared_data_ref
);
1217 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1219 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1220 num_refs
+= refs_to_add
;
1221 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1224 struct btrfs_extent_data_ref
*ref
;
1225 while (ret
== -EEXIST
) {
1226 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1227 struct btrfs_extent_data_ref
);
1228 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1231 btrfs_release_path(path
);
1233 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1235 if (ret
&& ret
!= -EEXIST
)
1238 leaf
= path
->nodes
[0];
1240 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_extent_data_ref
);
1243 btrfs_set_extent_data_ref_root(leaf
, ref
,
1245 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1246 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1247 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1249 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1250 num_refs
+= refs_to_add
;
1251 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1254 btrfs_mark_buffer_dirty(leaf
);
1257 btrfs_release_path(path
);
1261 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1262 struct btrfs_root
*root
,
1263 struct btrfs_path
*path
,
1264 int refs_to_drop
, int *last_ref
)
1266 struct btrfs_key key
;
1267 struct btrfs_extent_data_ref
*ref1
= NULL
;
1268 struct btrfs_shared_data_ref
*ref2
= NULL
;
1269 struct extent_buffer
*leaf
;
1273 leaf
= path
->nodes
[0];
1274 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1276 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1277 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1278 struct btrfs_extent_data_ref
);
1279 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1280 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1281 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1282 struct btrfs_shared_data_ref
);
1283 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1286 struct btrfs_extent_ref_v0
*ref0
;
1287 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1288 struct btrfs_extent_ref_v0
);
1289 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1295 BUG_ON(num_refs
< refs_to_drop
);
1296 num_refs
-= refs_to_drop
;
1298 if (num_refs
== 0) {
1299 ret
= btrfs_del_item(trans
, root
, path
);
1302 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1303 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1304 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1305 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 struct btrfs_extent_ref_v0
*ref0
;
1309 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1310 struct btrfs_extent_ref_v0
);
1311 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1314 btrfs_mark_buffer_dirty(leaf
);
1319 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1320 struct btrfs_path
*path
,
1321 struct btrfs_extent_inline_ref
*iref
)
1323 struct btrfs_key key
;
1324 struct extent_buffer
*leaf
;
1325 struct btrfs_extent_data_ref
*ref1
;
1326 struct btrfs_shared_data_ref
*ref2
;
1329 leaf
= path
->nodes
[0];
1330 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1332 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1333 BTRFS_EXTENT_DATA_REF_KEY
) {
1334 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1335 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1337 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1338 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1340 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1341 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1342 struct btrfs_extent_data_ref
);
1343 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1344 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1345 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1346 struct btrfs_shared_data_ref
);
1347 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1350 struct btrfs_extent_ref_v0
*ref0
;
1351 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1352 struct btrfs_extent_ref_v0
);
1353 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1361 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1362 struct btrfs_root
*root
,
1363 struct btrfs_path
*path
,
1364 u64 bytenr
, u64 parent
,
1367 struct btrfs_key key
;
1370 key
.objectid
= bytenr
;
1372 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1373 key
.offset
= parent
;
1375 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1376 key
.offset
= root_objectid
;
1379 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret
== -ENOENT
&& parent
) {
1384 btrfs_release_path(path
);
1385 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1386 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1394 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1395 struct btrfs_root
*root
,
1396 struct btrfs_path
*path
,
1397 u64 bytenr
, u64 parent
,
1400 struct btrfs_key key
;
1403 key
.objectid
= bytenr
;
1405 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1406 key
.offset
= parent
;
1408 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1409 key
.offset
= root_objectid
;
1412 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1413 btrfs_release_path(path
);
1417 static inline int extent_ref_type(u64 parent
, u64 owner
)
1420 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1422 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1424 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1427 type
= BTRFS_SHARED_DATA_REF_KEY
;
1429 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1434 static int find_next_key(struct btrfs_path
*path
, int level
,
1435 struct btrfs_key
*key
)
1438 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1439 if (!path
->nodes
[level
])
1441 if (path
->slots
[level
] + 1 >=
1442 btrfs_header_nritems(path
->nodes
[level
]))
1445 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1446 path
->slots
[level
] + 1);
1448 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1449 path
->slots
[level
] + 1);
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1470 struct btrfs_root
*root
,
1471 struct btrfs_path
*path
,
1472 struct btrfs_extent_inline_ref
**ref_ret
,
1473 u64 bytenr
, u64 num_bytes
,
1474 u64 parent
, u64 root_objectid
,
1475 u64 owner
, u64 offset
, int insert
)
1477 struct btrfs_key key
;
1478 struct extent_buffer
*leaf
;
1479 struct btrfs_extent_item
*ei
;
1480 struct btrfs_extent_inline_ref
*iref
;
1490 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1493 key
.objectid
= bytenr
;
1494 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1495 key
.offset
= num_bytes
;
1497 want
= extent_ref_type(parent
, owner
);
1499 extra_size
= btrfs_extent_inline_ref_size(want
);
1500 path
->keep_locks
= 1;
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1508 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1509 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1514 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1524 if (ret
> 0 && skinny_metadata
) {
1525 skinny_metadata
= false;
1526 if (path
->slots
[0]) {
1528 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1530 if (key
.objectid
== bytenr
&&
1531 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1532 key
.offset
== num_bytes
)
1536 key
.objectid
= bytenr
;
1537 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1538 key
.offset
= num_bytes
;
1539 btrfs_release_path(path
);
1544 if (ret
&& !insert
) {
1547 } else if (WARN_ON(ret
)) {
1552 leaf
= path
->nodes
[0];
1553 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size
< sizeof(*ei
)) {
1560 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1566 leaf
= path
->nodes
[0];
1567 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1570 BUG_ON(item_size
< sizeof(*ei
));
1572 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1573 flags
= btrfs_extent_flags(leaf
, ei
);
1575 ptr
= (unsigned long)(ei
+ 1);
1576 end
= (unsigned long)ei
+ item_size
;
1578 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1579 ptr
+= sizeof(struct btrfs_tree_block_info
);
1589 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1590 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1594 ptr
+= btrfs_extent_inline_ref_size(type
);
1598 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1599 struct btrfs_extent_data_ref
*dref
;
1600 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1601 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1606 if (hash_extent_data_ref_item(leaf
, dref
) <
1607 hash_extent_data_ref(root_objectid
, owner
, offset
))
1611 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1613 if (parent
== ref_offset
) {
1617 if (ref_offset
< parent
)
1620 if (root_objectid
== ref_offset
) {
1624 if (ref_offset
< root_objectid
)
1628 ptr
+= btrfs_extent_inline_ref_size(type
);
1630 if (err
== -ENOENT
&& insert
) {
1631 if (item_size
+ extra_size
>=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1642 if (find_next_key(path
, 0, &key
) == 0 &&
1643 key
.objectid
== bytenr
&&
1644 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1649 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1652 path
->keep_locks
= 0;
1653 btrfs_unlock_up_safe(path
, 1);
1659 * helper to add new inline back ref
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root
*root
,
1663 struct btrfs_path
*path
,
1664 struct btrfs_extent_inline_ref
*iref
,
1665 u64 parent
, u64 root_objectid
,
1666 u64 owner
, u64 offset
, int refs_to_add
,
1667 struct btrfs_delayed_extent_op
*extent_op
)
1669 struct extent_buffer
*leaf
;
1670 struct btrfs_extent_item
*ei
;
1673 unsigned long item_offset
;
1678 leaf
= path
->nodes
[0];
1679 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1680 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1682 type
= extent_ref_type(parent
, owner
);
1683 size
= btrfs_extent_inline_ref_size(type
);
1685 btrfs_extend_item(root
, path
, size
);
1687 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1688 refs
= btrfs_extent_refs(leaf
, ei
);
1689 refs
+= refs_to_add
;
1690 btrfs_set_extent_refs(leaf
, ei
, refs
);
1692 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1694 ptr
= (unsigned long)ei
+ item_offset
;
1695 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1696 if (ptr
< end
- size
)
1697 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1700 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1701 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1702 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1703 struct btrfs_extent_data_ref
*dref
;
1704 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1705 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1706 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1707 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1708 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1709 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1710 struct btrfs_shared_data_ref
*sref
;
1711 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1712 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1713 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1714 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1715 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1717 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1719 btrfs_mark_buffer_dirty(leaf
);
1722 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1723 struct btrfs_root
*root
,
1724 struct btrfs_path
*path
,
1725 struct btrfs_extent_inline_ref
**ref_ret
,
1726 u64 bytenr
, u64 num_bytes
, u64 parent
,
1727 u64 root_objectid
, u64 owner
, u64 offset
)
1731 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1732 bytenr
, num_bytes
, parent
,
1733 root_objectid
, owner
, offset
, 0);
1737 btrfs_release_path(path
);
1740 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1741 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1744 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1745 root_objectid
, owner
, offset
);
1751 * helper to update/remove inline back ref
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root
*root
,
1755 struct btrfs_path
*path
,
1756 struct btrfs_extent_inline_ref
*iref
,
1758 struct btrfs_delayed_extent_op
*extent_op
,
1761 struct extent_buffer
*leaf
;
1762 struct btrfs_extent_item
*ei
;
1763 struct btrfs_extent_data_ref
*dref
= NULL
;
1764 struct btrfs_shared_data_ref
*sref
= NULL
;
1772 leaf
= path
->nodes
[0];
1773 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1774 refs
= btrfs_extent_refs(leaf
, ei
);
1775 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1776 refs
+= refs_to_mod
;
1777 btrfs_set_extent_refs(leaf
, ei
, refs
);
1779 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1781 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1783 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1784 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1785 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1786 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1787 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1788 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1791 BUG_ON(refs_to_mod
!= -1);
1794 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1795 refs
+= refs_to_mod
;
1798 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1799 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1801 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1804 size
= btrfs_extent_inline_ref_size(type
);
1805 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1806 ptr
= (unsigned long)iref
;
1807 end
= (unsigned long)ei
+ item_size
;
1808 if (ptr
+ size
< end
)
1809 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1812 btrfs_truncate_item(root
, path
, item_size
, 1);
1814 btrfs_mark_buffer_dirty(leaf
);
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1819 struct btrfs_root
*root
,
1820 struct btrfs_path
*path
,
1821 u64 bytenr
, u64 num_bytes
, u64 parent
,
1822 u64 root_objectid
, u64 owner
,
1823 u64 offset
, int refs_to_add
,
1824 struct btrfs_delayed_extent_op
*extent_op
)
1826 struct btrfs_extent_inline_ref
*iref
;
1829 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1830 bytenr
, num_bytes
, parent
,
1831 root_objectid
, owner
, offset
, 1);
1833 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1834 update_inline_extent_backref(root
, path
, iref
,
1835 refs_to_add
, extent_op
, NULL
);
1836 } else if (ret
== -ENOENT
) {
1837 setup_inline_extent_backref(root
, path
, iref
, parent
,
1838 root_objectid
, owner
, offset
,
1839 refs_to_add
, extent_op
);
1845 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1846 struct btrfs_root
*root
,
1847 struct btrfs_path
*path
,
1848 u64 bytenr
, u64 parent
, u64 root_objectid
,
1849 u64 owner
, u64 offset
, int refs_to_add
)
1852 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1853 BUG_ON(refs_to_add
!= 1);
1854 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1855 parent
, root_objectid
);
1857 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1858 parent
, root_objectid
,
1859 owner
, offset
, refs_to_add
);
1864 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1865 struct btrfs_root
*root
,
1866 struct btrfs_path
*path
,
1867 struct btrfs_extent_inline_ref
*iref
,
1868 int refs_to_drop
, int is_data
, int *last_ref
)
1872 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1874 update_inline_extent_backref(root
, path
, iref
,
1875 -refs_to_drop
, NULL
, last_ref
);
1876 } else if (is_data
) {
1877 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1881 ret
= btrfs_del_item(trans
, root
, path
);
1886 static int btrfs_issue_discard(struct block_device
*bdev
,
1889 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1892 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1893 u64 num_bytes
, u64
*actual_bytes
)
1896 u64 discarded_bytes
= 0;
1897 struct btrfs_bio
*bbio
= NULL
;
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1902 bytenr
, &num_bytes
, &bbio
, 0);
1903 /* Error condition is -ENOMEM */
1905 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1909 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1910 if (!stripe
->dev
->can_discard
)
1913 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1917 discarded_bytes
+= stripe
->length
;
1918 else if (ret
!= -EOPNOTSUPP
)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1928 btrfs_put_bbio(bbio
);
1932 *actual_bytes
= discarded_bytes
;
1935 if (ret
== -EOPNOTSUPP
)
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1942 struct btrfs_root
*root
,
1943 u64 bytenr
, u64 num_bytes
, u64 parent
,
1944 u64 root_objectid
, u64 owner
, u64 offset
,
1948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1950 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1951 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1953 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1954 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1956 parent
, root_objectid
, (int)owner
,
1957 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1959 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1961 parent
, root_objectid
, owner
, offset
,
1962 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1968 struct btrfs_root
*root
,
1969 struct btrfs_delayed_ref_node
*node
,
1970 u64 parent
, u64 root_objectid
,
1971 u64 owner
, u64 offset
, int refs_to_add
,
1972 struct btrfs_delayed_extent_op
*extent_op
)
1974 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1975 struct btrfs_path
*path
;
1976 struct extent_buffer
*leaf
;
1977 struct btrfs_extent_item
*item
;
1978 struct btrfs_key key
;
1979 u64 bytenr
= node
->bytenr
;
1980 u64 num_bytes
= node
->num_bytes
;
1983 int no_quota
= node
->no_quota
;
1985 path
= btrfs_alloc_path();
1989 if (!is_fstree(root_objectid
) || !root
->fs_info
->quota_enabled
)
1993 path
->leave_spinning
= 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
1996 bytenr
, num_bytes
, parent
,
1997 root_objectid
, owner
, offset
,
1998 refs_to_add
, extent_op
);
1999 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2003 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 * inline extent ref, so just update the reference count and add a
2007 leaf
= path
->nodes
[0];
2008 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2009 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2010 refs
= btrfs_extent_refs(leaf
, item
);
2011 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2013 __run_delayed_extent_op(extent_op
, leaf
, item
);
2015 btrfs_mark_buffer_dirty(leaf
);
2016 btrfs_release_path(path
);
2019 path
->leave_spinning
= 1;
2020 /* now insert the actual backref */
2021 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2022 path
, bytenr
, parent
, root_objectid
,
2023 owner
, offset
, refs_to_add
);
2025 btrfs_abort_transaction(trans
, root
, ret
);
2027 btrfs_free_path(path
);
2031 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2032 struct btrfs_root
*root
,
2033 struct btrfs_delayed_ref_node
*node
,
2034 struct btrfs_delayed_extent_op
*extent_op
,
2035 int insert_reserved
)
2038 struct btrfs_delayed_data_ref
*ref
;
2039 struct btrfs_key ins
;
2044 ins
.objectid
= node
->bytenr
;
2045 ins
.offset
= node
->num_bytes
;
2046 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2048 ref
= btrfs_delayed_node_to_data_ref(node
);
2049 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2051 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2052 parent
= ref
->parent
;
2053 ref_root
= ref
->root
;
2055 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2057 flags
|= extent_op
->flags_to_set
;
2058 ret
= alloc_reserved_file_extent(trans
, root
,
2059 parent
, ref_root
, flags
,
2060 ref
->objectid
, ref
->offset
,
2061 &ins
, node
->ref_mod
);
2062 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2063 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2064 ref_root
, ref
->objectid
,
2065 ref
->offset
, node
->ref_mod
,
2067 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2068 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2069 ref_root
, ref
->objectid
,
2070 ref
->offset
, node
->ref_mod
,
2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2079 struct extent_buffer
*leaf
,
2080 struct btrfs_extent_item
*ei
)
2082 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2083 if (extent_op
->update_flags
) {
2084 flags
|= extent_op
->flags_to_set
;
2085 btrfs_set_extent_flags(leaf
, ei
, flags
);
2088 if (extent_op
->update_key
) {
2089 struct btrfs_tree_block_info
*bi
;
2090 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2091 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2092 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2096 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2097 struct btrfs_root
*root
,
2098 struct btrfs_delayed_ref_node
*node
,
2099 struct btrfs_delayed_extent_op
*extent_op
)
2101 struct btrfs_key key
;
2102 struct btrfs_path
*path
;
2103 struct btrfs_extent_item
*ei
;
2104 struct extent_buffer
*leaf
;
2108 int metadata
= !extent_op
->is_data
;
2113 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2116 path
= btrfs_alloc_path();
2120 key
.objectid
= node
->bytenr
;
2123 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2124 key
.offset
= extent_op
->level
;
2126 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2127 key
.offset
= node
->num_bytes
;
2132 path
->leave_spinning
= 1;
2133 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2141 if (path
->slots
[0] > 0) {
2143 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2145 if (key
.objectid
== node
->bytenr
&&
2146 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2147 key
.offset
== node
->num_bytes
)
2151 btrfs_release_path(path
);
2154 key
.objectid
= node
->bytenr
;
2155 key
.offset
= node
->num_bytes
;
2156 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2165 leaf
= path
->nodes
[0];
2166 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 if (item_size
< sizeof(*ei
)) {
2169 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2175 leaf
= path
->nodes
[0];
2176 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2179 BUG_ON(item_size
< sizeof(*ei
));
2180 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2181 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2183 btrfs_mark_buffer_dirty(leaf
);
2185 btrfs_free_path(path
);
2189 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2190 struct btrfs_root
*root
,
2191 struct btrfs_delayed_ref_node
*node
,
2192 struct btrfs_delayed_extent_op
*extent_op
,
2193 int insert_reserved
)
2196 struct btrfs_delayed_tree_ref
*ref
;
2197 struct btrfs_key ins
;
2200 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2203 ref
= btrfs_delayed_node_to_tree_ref(node
);
2204 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2206 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2207 parent
= ref
->parent
;
2208 ref_root
= ref
->root
;
2210 ins
.objectid
= node
->bytenr
;
2211 if (skinny_metadata
) {
2212 ins
.offset
= ref
->level
;
2213 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2215 ins
.offset
= node
->num_bytes
;
2216 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2219 BUG_ON(node
->ref_mod
!= 1);
2220 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2221 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2222 ret
= alloc_reserved_tree_block(trans
, root
,
2224 extent_op
->flags_to_set
,
2228 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2229 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2233 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2234 ret
= __btrfs_free_extent(trans
, root
, node
,
2236 ref
->level
, 0, 1, extent_op
);
2243 /* helper function to actually process a single delayed ref entry */
2244 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2245 struct btrfs_root
*root
,
2246 struct btrfs_delayed_ref_node
*node
,
2247 struct btrfs_delayed_extent_op
*extent_op
,
2248 int insert_reserved
)
2252 if (trans
->aborted
) {
2253 if (insert_reserved
)
2254 btrfs_pin_extent(root
, node
->bytenr
,
2255 node
->num_bytes
, 1);
2259 if (btrfs_delayed_ref_is_head(node
)) {
2260 struct btrfs_delayed_ref_head
*head
;
2262 * we've hit the end of the chain and we were supposed
2263 * to insert this extent into the tree. But, it got
2264 * deleted before we ever needed to insert it, so all
2265 * we have to do is clean up the accounting
2268 head
= btrfs_delayed_node_to_head(node
);
2269 trace_run_delayed_ref_head(node
, head
, node
->action
);
2271 if (insert_reserved
) {
2272 btrfs_pin_extent(root
, node
->bytenr
,
2273 node
->num_bytes
, 1);
2274 if (head
->is_data
) {
2275 ret
= btrfs_del_csums(trans
, root
,
2283 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2284 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2285 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2287 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2288 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2289 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2296 static inline struct btrfs_delayed_ref_node
*
2297 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2299 struct btrfs_delayed_ref_node
*ref
;
2301 if (list_empty(&head
->ref_list
))
2305 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2306 * This is to prevent a ref count from going down to zero, which deletes
2307 * the extent item from the extent tree, when there still are references
2308 * to add, which would fail because they would not find the extent item.
2310 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2311 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2315 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2320 * Returns 0 on success or if called with an already aborted transaction.
2321 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2323 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2324 struct btrfs_root
*root
,
2327 struct btrfs_delayed_ref_root
*delayed_refs
;
2328 struct btrfs_delayed_ref_node
*ref
;
2329 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2330 struct btrfs_delayed_extent_op
*extent_op
;
2331 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2332 ktime_t start
= ktime_get();
2334 unsigned long count
= 0;
2335 unsigned long actual_count
= 0;
2336 int must_insert_reserved
= 0;
2338 delayed_refs
= &trans
->transaction
->delayed_refs
;
2344 spin_lock(&delayed_refs
->lock
);
2345 locked_ref
= btrfs_select_ref_head(trans
);
2347 spin_unlock(&delayed_refs
->lock
);
2351 /* grab the lock that says we are going to process
2352 * all the refs for this head */
2353 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2354 spin_unlock(&delayed_refs
->lock
);
2356 * we may have dropped the spin lock to get the head
2357 * mutex lock, and that might have given someone else
2358 * time to free the head. If that's true, it has been
2359 * removed from our list and we can move on.
2361 if (ret
== -EAGAIN
) {
2368 spin_lock(&locked_ref
->lock
);
2371 * locked_ref is the head node, so we have to go one
2372 * node back for any delayed ref updates
2374 ref
= select_delayed_ref(locked_ref
);
2376 if (ref
&& ref
->seq
&&
2377 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2378 spin_unlock(&locked_ref
->lock
);
2379 btrfs_delayed_ref_unlock(locked_ref
);
2380 spin_lock(&delayed_refs
->lock
);
2381 locked_ref
->processing
= 0;
2382 delayed_refs
->num_heads_ready
++;
2383 spin_unlock(&delayed_refs
->lock
);
2391 * record the must insert reserved flag before we
2392 * drop the spin lock.
2394 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2395 locked_ref
->must_insert_reserved
= 0;
2397 extent_op
= locked_ref
->extent_op
;
2398 locked_ref
->extent_op
= NULL
;
2403 /* All delayed refs have been processed, Go ahead
2404 * and send the head node to run_one_delayed_ref,
2405 * so that any accounting fixes can happen
2407 ref
= &locked_ref
->node
;
2409 if (extent_op
&& must_insert_reserved
) {
2410 btrfs_free_delayed_extent_op(extent_op
);
2415 spin_unlock(&locked_ref
->lock
);
2416 ret
= run_delayed_extent_op(trans
, root
,
2418 btrfs_free_delayed_extent_op(extent_op
);
2422 * Need to reset must_insert_reserved if
2423 * there was an error so the abort stuff
2424 * can cleanup the reserved space
2427 if (must_insert_reserved
)
2428 locked_ref
->must_insert_reserved
= 1;
2429 locked_ref
->processing
= 0;
2430 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2431 btrfs_delayed_ref_unlock(locked_ref
);
2438 * Need to drop our head ref lock and re-aqcuire the
2439 * delayed ref lock and then re-check to make sure
2442 spin_unlock(&locked_ref
->lock
);
2443 spin_lock(&delayed_refs
->lock
);
2444 spin_lock(&locked_ref
->lock
);
2445 if (!list_empty(&locked_ref
->ref_list
) ||
2446 locked_ref
->extent_op
) {
2447 spin_unlock(&locked_ref
->lock
);
2448 spin_unlock(&delayed_refs
->lock
);
2452 delayed_refs
->num_heads
--;
2453 rb_erase(&locked_ref
->href_node
,
2454 &delayed_refs
->href_root
);
2455 spin_unlock(&delayed_refs
->lock
);
2459 list_del(&ref
->list
);
2461 atomic_dec(&delayed_refs
->num_entries
);
2463 if (!btrfs_delayed_ref_is_head(ref
)) {
2465 * when we play the delayed ref, also correct the
2468 switch (ref
->action
) {
2469 case BTRFS_ADD_DELAYED_REF
:
2470 case BTRFS_ADD_DELAYED_EXTENT
:
2471 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2473 case BTRFS_DROP_DELAYED_REF
:
2474 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2480 spin_unlock(&locked_ref
->lock
);
2482 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2483 must_insert_reserved
);
2485 btrfs_free_delayed_extent_op(extent_op
);
2487 locked_ref
->processing
= 0;
2488 btrfs_delayed_ref_unlock(locked_ref
);
2489 btrfs_put_delayed_ref(ref
);
2490 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2495 * If this node is a head, that means all the refs in this head
2496 * have been dealt with, and we will pick the next head to deal
2497 * with, so we must unlock the head and drop it from the cluster
2498 * list before we release it.
2500 if (btrfs_delayed_ref_is_head(ref
)) {
2501 if (locked_ref
->is_data
&&
2502 locked_ref
->total_ref_mod
< 0) {
2503 spin_lock(&delayed_refs
->lock
);
2504 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2505 spin_unlock(&delayed_refs
->lock
);
2507 btrfs_delayed_ref_unlock(locked_ref
);
2510 btrfs_put_delayed_ref(ref
);
2516 * We don't want to include ref heads since we can have empty ref heads
2517 * and those will drastically skew our runtime down since we just do
2518 * accounting, no actual extent tree updates.
2520 if (actual_count
> 0) {
2521 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2525 * We weigh the current average higher than our current runtime
2526 * to avoid large swings in the average.
2528 spin_lock(&delayed_refs
->lock
);
2529 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2530 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2531 spin_unlock(&delayed_refs
->lock
);
2536 #ifdef SCRAMBLE_DELAYED_REFS
2538 * Normally delayed refs get processed in ascending bytenr order. This
2539 * correlates in most cases to the order added. To expose dependencies on this
2540 * order, we start to process the tree in the middle instead of the beginning
2542 static u64
find_middle(struct rb_root
*root
)
2544 struct rb_node
*n
= root
->rb_node
;
2545 struct btrfs_delayed_ref_node
*entry
;
2548 u64 first
= 0, last
= 0;
2552 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2553 first
= entry
->bytenr
;
2557 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2558 last
= entry
->bytenr
;
2563 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2564 WARN_ON(!entry
->in_tree
);
2566 middle
= entry
->bytenr
;
2579 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2583 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2584 sizeof(struct btrfs_extent_inline_ref
));
2585 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2586 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2589 * We don't ever fill up leaves all the way so multiply by 2 just to be
2590 * closer to what we're really going to want to ouse.
2592 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2596 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2597 * would require to store the csums for that many bytes.
2599 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2602 u64 num_csums_per_leaf
;
2605 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
2606 num_csums_per_leaf
= div64_u64(csum_size
,
2607 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2608 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2609 num_csums
+= num_csums_per_leaf
- 1;
2610 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2615 struct btrfs_root
*root
)
2617 struct btrfs_block_rsv
*global_rsv
;
2618 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2619 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2620 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2621 u64 num_bytes
, num_dirty_bgs_bytes
;
2624 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2625 num_heads
= heads_to_leaves(root
, num_heads
);
2627 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2629 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2630 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2632 global_rsv
= &root
->fs_info
->global_block_rsv
;
2635 * If we can't allocate any more chunks lets make sure we have _lots_ of
2636 * wiggle room since running delayed refs can create more delayed refs.
2638 if (global_rsv
->space_info
->full
) {
2639 num_dirty_bgs_bytes
<<= 1;
2643 spin_lock(&global_rsv
->lock
);
2644 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2646 spin_unlock(&global_rsv
->lock
);
2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2651 struct btrfs_root
*root
)
2653 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2655 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2660 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2661 val
= num_entries
* avg_runtime
;
2662 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2664 if (val
>= NSEC_PER_SEC
/ 2)
2667 return btrfs_check_space_for_delayed_refs(trans
, root
);
2670 struct async_delayed_refs
{
2671 struct btrfs_root
*root
;
2675 struct completion wait
;
2676 struct btrfs_work work
;
2679 static void delayed_ref_async_start(struct btrfs_work
*work
)
2681 struct async_delayed_refs
*async
;
2682 struct btrfs_trans_handle
*trans
;
2685 async
= container_of(work
, struct async_delayed_refs
, work
);
2687 trans
= btrfs_join_transaction(async
->root
);
2688 if (IS_ERR(trans
)) {
2689 async
->error
= PTR_ERR(trans
);
2694 * trans->sync means that when we call end_transaciton, we won't
2695 * wait on delayed refs
2698 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2702 ret
= btrfs_end_transaction(trans
, async
->root
);
2703 if (ret
&& !async
->error
)
2707 complete(&async
->wait
);
2712 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2713 unsigned long count
, int wait
)
2715 struct async_delayed_refs
*async
;
2718 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2722 async
->root
= root
->fs_info
->tree_root
;
2723 async
->count
= count
;
2729 init_completion(&async
->wait
);
2731 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2732 delayed_ref_async_start
, NULL
, NULL
);
2734 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2737 wait_for_completion(&async
->wait
);
2746 * this starts processing the delayed reference count updates and
2747 * extent insertions we have queued up so far. count can be
2748 * 0, which means to process everything in the tree at the start
2749 * of the run (but not newly added entries), or it can be some target
2750 * number you'd like to process.
2752 * Returns 0 on success or if called with an aborted transaction
2753 * Returns <0 on error and aborts the transaction
2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2756 struct btrfs_root
*root
, unsigned long count
)
2758 struct rb_node
*node
;
2759 struct btrfs_delayed_ref_root
*delayed_refs
;
2760 struct btrfs_delayed_ref_head
*head
;
2762 int run_all
= count
== (unsigned long)-1;
2764 /* We'll clean this up in btrfs_cleanup_transaction */
2768 if (root
== root
->fs_info
->extent_root
)
2769 root
= root
->fs_info
->tree_root
;
2771 delayed_refs
= &trans
->transaction
->delayed_refs
;
2773 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2776 #ifdef SCRAMBLE_DELAYED_REFS
2777 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2779 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2781 btrfs_abort_transaction(trans
, root
, ret
);
2786 if (!list_empty(&trans
->new_bgs
))
2787 btrfs_create_pending_block_groups(trans
, root
);
2789 spin_lock(&delayed_refs
->lock
);
2790 node
= rb_first(&delayed_refs
->href_root
);
2792 spin_unlock(&delayed_refs
->lock
);
2795 count
= (unsigned long)-1;
2798 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2800 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2801 struct btrfs_delayed_ref_node
*ref
;
2804 atomic_inc(&ref
->refs
);
2806 spin_unlock(&delayed_refs
->lock
);
2808 * Mutex was contended, block until it's
2809 * released and try again
2811 mutex_lock(&head
->mutex
);
2812 mutex_unlock(&head
->mutex
);
2814 btrfs_put_delayed_ref(ref
);
2820 node
= rb_next(node
);
2822 spin_unlock(&delayed_refs
->lock
);
2827 assert_qgroups_uptodate(trans
);
2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2832 struct btrfs_root
*root
,
2833 u64 bytenr
, u64 num_bytes
, u64 flags
,
2834 int level
, int is_data
)
2836 struct btrfs_delayed_extent_op
*extent_op
;
2839 extent_op
= btrfs_alloc_delayed_extent_op();
2843 extent_op
->flags_to_set
= flags
;
2844 extent_op
->update_flags
= 1;
2845 extent_op
->update_key
= 0;
2846 extent_op
->is_data
= is_data
? 1 : 0;
2847 extent_op
->level
= level
;
2849 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2850 num_bytes
, extent_op
);
2852 btrfs_free_delayed_extent_op(extent_op
);
2856 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2857 struct btrfs_root
*root
,
2858 struct btrfs_path
*path
,
2859 u64 objectid
, u64 offset
, u64 bytenr
)
2861 struct btrfs_delayed_ref_head
*head
;
2862 struct btrfs_delayed_ref_node
*ref
;
2863 struct btrfs_delayed_data_ref
*data_ref
;
2864 struct btrfs_delayed_ref_root
*delayed_refs
;
2867 delayed_refs
= &trans
->transaction
->delayed_refs
;
2868 spin_lock(&delayed_refs
->lock
);
2869 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2871 spin_unlock(&delayed_refs
->lock
);
2875 if (!mutex_trylock(&head
->mutex
)) {
2876 atomic_inc(&head
->node
.refs
);
2877 spin_unlock(&delayed_refs
->lock
);
2879 btrfs_release_path(path
);
2882 * Mutex was contended, block until it's released and let
2885 mutex_lock(&head
->mutex
);
2886 mutex_unlock(&head
->mutex
);
2887 btrfs_put_delayed_ref(&head
->node
);
2890 spin_unlock(&delayed_refs
->lock
);
2892 spin_lock(&head
->lock
);
2893 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2894 /* If it's a shared ref we know a cross reference exists */
2895 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2900 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2903 * If our ref doesn't match the one we're currently looking at
2904 * then we have a cross reference.
2906 if (data_ref
->root
!= root
->root_key
.objectid
||
2907 data_ref
->objectid
!= objectid
||
2908 data_ref
->offset
!= offset
) {
2913 spin_unlock(&head
->lock
);
2914 mutex_unlock(&head
->mutex
);
2918 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2919 struct btrfs_root
*root
,
2920 struct btrfs_path
*path
,
2921 u64 objectid
, u64 offset
, u64 bytenr
)
2923 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2924 struct extent_buffer
*leaf
;
2925 struct btrfs_extent_data_ref
*ref
;
2926 struct btrfs_extent_inline_ref
*iref
;
2927 struct btrfs_extent_item
*ei
;
2928 struct btrfs_key key
;
2932 key
.objectid
= bytenr
;
2933 key
.offset
= (u64
)-1;
2934 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2936 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2939 BUG_ON(ret
== 0); /* Corruption */
2942 if (path
->slots
[0] == 0)
2946 leaf
= path
->nodes
[0];
2947 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2949 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2953 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2955 if (item_size
< sizeof(*ei
)) {
2956 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2960 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2962 if (item_size
!= sizeof(*ei
) +
2963 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2966 if (btrfs_extent_generation(leaf
, ei
) <=
2967 btrfs_root_last_snapshot(&root
->root_item
))
2970 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2971 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2972 BTRFS_EXTENT_DATA_REF_KEY
)
2975 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2976 if (btrfs_extent_refs(leaf
, ei
) !=
2977 btrfs_extent_data_ref_count(leaf
, ref
) ||
2978 btrfs_extent_data_ref_root(leaf
, ref
) !=
2979 root
->root_key
.objectid
||
2980 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2981 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2990 struct btrfs_root
*root
,
2991 u64 objectid
, u64 offset
, u64 bytenr
)
2993 struct btrfs_path
*path
;
2997 path
= btrfs_alloc_path();
3002 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3004 if (ret
&& ret
!= -ENOENT
)
3007 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3009 } while (ret2
== -EAGAIN
);
3011 if (ret2
&& ret2
!= -ENOENT
) {
3016 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3019 btrfs_free_path(path
);
3020 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3025 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3026 struct btrfs_root
*root
,
3027 struct extent_buffer
*buf
,
3028 int full_backref
, int inc
)
3035 struct btrfs_key key
;
3036 struct btrfs_file_extent_item
*fi
;
3040 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3041 u64
, u64
, u64
, u64
, u64
, u64
, int);
3044 if (btrfs_test_is_dummy_root(root
))
3047 ref_root
= btrfs_header_owner(buf
);
3048 nritems
= btrfs_header_nritems(buf
);
3049 level
= btrfs_header_level(buf
);
3051 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3055 process_func
= btrfs_inc_extent_ref
;
3057 process_func
= btrfs_free_extent
;
3060 parent
= buf
->start
;
3064 for (i
= 0; i
< nritems
; i
++) {
3066 btrfs_item_key_to_cpu(buf
, &key
, i
);
3067 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3069 fi
= btrfs_item_ptr(buf
, i
,
3070 struct btrfs_file_extent_item
);
3071 if (btrfs_file_extent_type(buf
, fi
) ==
3072 BTRFS_FILE_EXTENT_INLINE
)
3074 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3078 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3079 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3080 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3081 parent
, ref_root
, key
.objectid
,
3086 bytenr
= btrfs_node_blockptr(buf
, i
);
3087 num_bytes
= root
->nodesize
;
3088 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3089 parent
, ref_root
, level
- 1, 0,
3100 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3101 struct extent_buffer
*buf
, int full_backref
)
3103 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3106 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3107 struct extent_buffer
*buf
, int full_backref
)
3109 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3112 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3113 struct btrfs_root
*root
,
3114 struct btrfs_path
*path
,
3115 struct btrfs_block_group_cache
*cache
)
3118 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3120 struct extent_buffer
*leaf
;
3122 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3129 leaf
= path
->nodes
[0];
3130 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3131 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3132 btrfs_mark_buffer_dirty(leaf
);
3134 btrfs_release_path(path
);
3139 static struct btrfs_block_group_cache
*
3140 next_block_group(struct btrfs_root
*root
,
3141 struct btrfs_block_group_cache
*cache
)
3143 struct rb_node
*node
;
3145 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3147 /* If our block group was removed, we need a full search. */
3148 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3149 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3151 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3152 btrfs_put_block_group(cache
);
3153 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3157 node
= rb_next(&cache
->cache_node
);
3158 btrfs_put_block_group(cache
);
3160 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3162 btrfs_get_block_group(cache
);
3165 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3169 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3170 struct btrfs_trans_handle
*trans
,
3171 struct btrfs_path
*path
)
3173 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3174 struct inode
*inode
= NULL
;
3176 int dcs
= BTRFS_DC_ERROR
;
3182 * If this block group is smaller than 100 megs don't bother caching the
3185 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3186 spin_lock(&block_group
->lock
);
3187 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3188 spin_unlock(&block_group
->lock
);
3195 inode
= lookup_free_space_inode(root
, block_group
, path
);
3196 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3197 ret
= PTR_ERR(inode
);
3198 btrfs_release_path(path
);
3202 if (IS_ERR(inode
)) {
3206 if (block_group
->ro
)
3209 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3215 /* We've already setup this transaction, go ahead and exit */
3216 if (block_group
->cache_generation
== trans
->transid
&&
3217 i_size_read(inode
)) {
3218 dcs
= BTRFS_DC_SETUP
;
3223 * We want to set the generation to 0, that way if anything goes wrong
3224 * from here on out we know not to trust this cache when we load up next
3227 BTRFS_I(inode
)->generation
= 0;
3228 ret
= btrfs_update_inode(trans
, root
, inode
);
3231 * So theoretically we could recover from this, simply set the
3232 * super cache generation to 0 so we know to invalidate the
3233 * cache, but then we'd have to keep track of the block groups
3234 * that fail this way so we know we _have_ to reset this cache
3235 * before the next commit or risk reading stale cache. So to
3236 * limit our exposure to horrible edge cases lets just abort the
3237 * transaction, this only happens in really bad situations
3240 btrfs_abort_transaction(trans
, root
, ret
);
3245 if (i_size_read(inode
) > 0) {
3246 ret
= btrfs_check_trunc_cache_free_space(root
,
3247 &root
->fs_info
->global_block_rsv
);
3251 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3256 spin_lock(&block_group
->lock
);
3257 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3258 !btrfs_test_opt(root
, SPACE_CACHE
)) {
3260 * don't bother trying to write stuff out _if_
3261 * a) we're not cached,
3262 * b) we're with nospace_cache mount option.
3264 dcs
= BTRFS_DC_WRITTEN
;
3265 spin_unlock(&block_group
->lock
);
3268 spin_unlock(&block_group
->lock
);
3271 * Try to preallocate enough space based on how big the block group is.
3272 * Keep in mind this has to include any pinned space which could end up
3273 * taking up quite a bit since it's not folded into the other space
3276 num_pages
= div_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3281 num_pages
*= PAGE_CACHE_SIZE
;
3283 ret
= btrfs_check_data_free_space(inode
, num_pages
, num_pages
);
3287 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3288 num_pages
, num_pages
,
3291 dcs
= BTRFS_DC_SETUP
;
3292 btrfs_free_reserved_data_space(inode
, num_pages
);
3297 btrfs_release_path(path
);
3299 spin_lock(&block_group
->lock
);
3300 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3301 block_group
->cache_generation
= trans
->transid
;
3302 block_group
->disk_cache_state
= dcs
;
3303 spin_unlock(&block_group
->lock
);
3308 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3309 struct btrfs_root
*root
)
3311 struct btrfs_block_group_cache
*cache
, *tmp
;
3312 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3313 struct btrfs_path
*path
;
3315 if (list_empty(&cur_trans
->dirty_bgs
) ||
3316 !btrfs_test_opt(root
, SPACE_CACHE
))
3319 path
= btrfs_alloc_path();
3323 /* Could add new block groups, use _safe just in case */
3324 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3326 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3327 cache_save_setup(cache
, trans
, path
);
3330 btrfs_free_path(path
);
3335 * transaction commit does final block group cache writeback during a
3336 * critical section where nothing is allowed to change the FS. This is
3337 * required in order for the cache to actually match the block group,
3338 * but can introduce a lot of latency into the commit.
3340 * So, btrfs_start_dirty_block_groups is here to kick off block group
3341 * cache IO. There's a chance we'll have to redo some of it if the
3342 * block group changes again during the commit, but it greatly reduces
3343 * the commit latency by getting rid of the easy block groups while
3344 * we're still allowing others to join the commit.
3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3347 struct btrfs_root
*root
)
3349 struct btrfs_block_group_cache
*cache
;
3350 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3353 struct btrfs_path
*path
= NULL
;
3355 struct list_head
*io
= &cur_trans
->io_bgs
;
3356 int num_started
= 0;
3359 spin_lock(&cur_trans
->dirty_bgs_lock
);
3360 if (list_empty(&cur_trans
->dirty_bgs
)) {
3361 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3364 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3365 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3369 * make sure all the block groups on our dirty list actually
3372 btrfs_create_pending_block_groups(trans
, root
);
3375 path
= btrfs_alloc_path();
3381 * cache_write_mutex is here only to save us from balance or automatic
3382 * removal of empty block groups deleting this block group while we are
3383 * writing out the cache
3385 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3386 while (!list_empty(&dirty
)) {
3387 cache
= list_first_entry(&dirty
,
3388 struct btrfs_block_group_cache
,
3391 * this can happen if something re-dirties a block
3392 * group that is already under IO. Just wait for it to
3393 * finish and then do it all again
3395 if (!list_empty(&cache
->io_list
)) {
3396 list_del_init(&cache
->io_list
);
3397 btrfs_wait_cache_io(root
, trans
, cache
,
3398 &cache
->io_ctl
, path
,
3399 cache
->key
.objectid
);
3400 btrfs_put_block_group(cache
);
3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3406 * if it should update the cache_state. Don't delete
3407 * until after we wait.
3409 * Since we're not running in the commit critical section
3410 * we need the dirty_bgs_lock to protect from update_block_group
3412 spin_lock(&cur_trans
->dirty_bgs_lock
);
3413 list_del_init(&cache
->dirty_list
);
3414 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3418 cache_save_setup(cache
, trans
, path
);
3420 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3421 cache
->io_ctl
.inode
= NULL
;
3422 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3423 if (ret
== 0 && cache
->io_ctl
.inode
) {
3428 * the cache_write_mutex is protecting
3431 list_add_tail(&cache
->io_list
, io
);
3434 * if we failed to write the cache, the
3435 * generation will be bad and life goes on
3441 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3443 * Our block group might still be attached to the list
3444 * of new block groups in the transaction handle of some
3445 * other task (struct btrfs_trans_handle->new_bgs). This
3446 * means its block group item isn't yet in the extent
3447 * tree. If this happens ignore the error, as we will
3448 * try again later in the critical section of the
3449 * transaction commit.
3451 if (ret
== -ENOENT
) {
3453 spin_lock(&cur_trans
->dirty_bgs_lock
);
3454 if (list_empty(&cache
->dirty_list
)) {
3455 list_add_tail(&cache
->dirty_list
,
3456 &cur_trans
->dirty_bgs
);
3457 btrfs_get_block_group(cache
);
3459 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3461 btrfs_abort_transaction(trans
, root
, ret
);
3465 /* if its not on the io list, we need to put the block group */
3467 btrfs_put_block_group(cache
);
3473 * Avoid blocking other tasks for too long. It might even save
3474 * us from writing caches for block groups that are going to be
3477 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3478 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3480 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3483 * go through delayed refs for all the stuff we've just kicked off
3484 * and then loop back (just once)
3486 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3487 if (!ret
&& loops
== 0) {
3489 spin_lock(&cur_trans
->dirty_bgs_lock
);
3490 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3492 * dirty_bgs_lock protects us from concurrent block group
3493 * deletes too (not just cache_write_mutex).
3495 if (!list_empty(&dirty
)) {
3496 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3499 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3502 btrfs_free_path(path
);
3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3507 struct btrfs_root
*root
)
3509 struct btrfs_block_group_cache
*cache
;
3510 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3513 struct btrfs_path
*path
;
3514 struct list_head
*io
= &cur_trans
->io_bgs
;
3515 int num_started
= 0;
3517 path
= btrfs_alloc_path();
3522 * We don't need the lock here since we are protected by the transaction
3523 * commit. We want to do the cache_save_setup first and then run the
3524 * delayed refs to make sure we have the best chance at doing this all
3527 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3528 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3529 struct btrfs_block_group_cache
,
3533 * this can happen if cache_save_setup re-dirties a block
3534 * group that is already under IO. Just wait for it to
3535 * finish and then do it all again
3537 if (!list_empty(&cache
->io_list
)) {
3538 list_del_init(&cache
->io_list
);
3539 btrfs_wait_cache_io(root
, trans
, cache
,
3540 &cache
->io_ctl
, path
,
3541 cache
->key
.objectid
);
3542 btrfs_put_block_group(cache
);
3546 * don't remove from the dirty list until after we've waited
3549 list_del_init(&cache
->dirty_list
);
3552 cache_save_setup(cache
, trans
, path
);
3555 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3557 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3558 cache
->io_ctl
.inode
= NULL
;
3559 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3560 if (ret
== 0 && cache
->io_ctl
.inode
) {
3563 list_add_tail(&cache
->io_list
, io
);
3566 * if we failed to write the cache, the
3567 * generation will be bad and life goes on
3573 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3575 btrfs_abort_transaction(trans
, root
, ret
);
3578 /* if its not on the io list, we need to put the block group */
3580 btrfs_put_block_group(cache
);
3583 while (!list_empty(io
)) {
3584 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3586 list_del_init(&cache
->io_list
);
3587 btrfs_wait_cache_io(root
, trans
, cache
,
3588 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3589 btrfs_put_block_group(cache
);
3592 btrfs_free_path(path
);
3596 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3598 struct btrfs_block_group_cache
*block_group
;
3601 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3602 if (!block_group
|| block_group
->ro
)
3605 btrfs_put_block_group(block_group
);
3609 static const char *alloc_name(u64 flags
)
3612 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3614 case BTRFS_BLOCK_GROUP_METADATA
:
3616 case BTRFS_BLOCK_GROUP_DATA
:
3618 case BTRFS_BLOCK_GROUP_SYSTEM
:
3622 return "invalid-combination";
3626 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3627 u64 total_bytes
, u64 bytes_used
,
3628 struct btrfs_space_info
**space_info
)
3630 struct btrfs_space_info
*found
;
3635 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3636 BTRFS_BLOCK_GROUP_RAID10
))
3641 found
= __find_space_info(info
, flags
);
3643 spin_lock(&found
->lock
);
3644 found
->total_bytes
+= total_bytes
;
3645 found
->disk_total
+= total_bytes
* factor
;
3646 found
->bytes_used
+= bytes_used
;
3647 found
->disk_used
+= bytes_used
* factor
;
3648 if (total_bytes
> 0)
3650 spin_unlock(&found
->lock
);
3651 *space_info
= found
;
3654 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3658 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3664 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3665 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3666 init_rwsem(&found
->groups_sem
);
3667 spin_lock_init(&found
->lock
);
3668 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3669 found
->total_bytes
= total_bytes
;
3670 found
->disk_total
= total_bytes
* factor
;
3671 found
->bytes_used
= bytes_used
;
3672 found
->disk_used
= bytes_used
* factor
;
3673 found
->bytes_pinned
= 0;
3674 found
->bytes_reserved
= 0;
3675 found
->bytes_readonly
= 0;
3676 found
->bytes_may_use
= 0;
3677 if (total_bytes
> 0)
3681 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3682 found
->chunk_alloc
= 0;
3684 init_waitqueue_head(&found
->wait
);
3685 INIT_LIST_HEAD(&found
->ro_bgs
);
3687 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3688 info
->space_info_kobj
, "%s",
3689 alloc_name(found
->flags
));
3695 *space_info
= found
;
3696 list_add_rcu(&found
->list
, &info
->space_info
);
3697 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3698 info
->data_sinfo
= found
;
3703 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3705 u64 extra_flags
= chunk_to_extended(flags
) &
3706 BTRFS_EXTENDED_PROFILE_MASK
;
3708 write_seqlock(&fs_info
->profiles_lock
);
3709 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3710 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3711 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3712 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3713 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3714 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3715 write_sequnlock(&fs_info
->profiles_lock
);
3719 * returns target flags in extended format or 0 if restripe for this
3720 * chunk_type is not in progress
3722 * should be called with either volume_mutex or balance_lock held
3724 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3726 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3732 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3733 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3734 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3735 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3736 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3737 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3738 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3739 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3740 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3747 * @flags: available profiles in extended format (see ctree.h)
3749 * Returns reduced profile in chunk format. If profile changing is in
3750 * progress (either running or paused) picks the target profile (if it's
3751 * already available), otherwise falls back to plain reducing.
3753 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3755 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
3760 * see if restripe for this chunk_type is in progress, if so
3761 * try to reduce to the target profile
3763 spin_lock(&root
->fs_info
->balance_lock
);
3764 target
= get_restripe_target(root
->fs_info
, flags
);
3766 /* pick target profile only if it's already available */
3767 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3768 spin_unlock(&root
->fs_info
->balance_lock
);
3769 return extended_to_chunk(target
);
3772 spin_unlock(&root
->fs_info
->balance_lock
);
3774 /* First, mask out the RAID levels which aren't possible */
3775 if (num_devices
== 1)
3776 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3777 BTRFS_BLOCK_GROUP_RAID5
);
3778 if (num_devices
< 3)
3779 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3780 if (num_devices
< 4)
3781 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3783 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3784 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3785 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3788 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3789 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3790 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3791 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3792 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3793 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3794 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3795 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3796 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3797 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3799 return extended_to_chunk(flags
| tmp
);
3802 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3809 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3811 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3812 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3813 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3814 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3815 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3816 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3817 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3819 return btrfs_reduce_alloc_profile(root
, flags
);
3822 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3828 flags
= BTRFS_BLOCK_GROUP_DATA
;
3829 else if (root
== root
->fs_info
->chunk_root
)
3830 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3832 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3834 ret
= get_alloc_profile(root
, flags
);
3839 * This will check the space that the inode allocates from to make sure we have
3840 * enough space for bytes.
3842 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
, u64 write_bytes
)
3844 struct btrfs_space_info
*data_sinfo
;
3845 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3846 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3849 int need_commit
= 2;
3850 int have_pinned_space
;
3852 /* make sure bytes are sectorsize aligned */
3853 bytes
= ALIGN(bytes
, root
->sectorsize
);
3855 if (btrfs_is_free_space_inode(inode
)) {
3857 ASSERT(current
->journal_info
);
3860 data_sinfo
= fs_info
->data_sinfo
;
3865 /* make sure we have enough space to handle the data first */
3866 spin_lock(&data_sinfo
->lock
);
3867 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3868 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3869 data_sinfo
->bytes_may_use
;
3871 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3872 struct btrfs_trans_handle
*trans
;
3875 * if we don't have enough free bytes in this space then we need
3876 * to alloc a new chunk.
3878 if (!data_sinfo
->full
) {
3881 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3882 spin_unlock(&data_sinfo
->lock
);
3884 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3886 * It is ugly that we don't call nolock join
3887 * transaction for the free space inode case here.
3888 * But it is safe because we only do the data space
3889 * reservation for the free space cache in the
3890 * transaction context, the common join transaction
3891 * just increase the counter of the current transaction
3892 * handler, doesn't try to acquire the trans_lock of
3895 trans
= btrfs_join_transaction(root
);
3897 return PTR_ERR(trans
);
3899 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3901 CHUNK_ALLOC_NO_FORCE
);
3902 btrfs_end_transaction(trans
, root
);
3907 have_pinned_space
= 1;
3913 data_sinfo
= fs_info
->data_sinfo
;
3919 * If we don't have enough pinned space to deal with this
3920 * allocation, and no removed chunk in current transaction,
3921 * don't bother committing the transaction.
3923 have_pinned_space
= percpu_counter_compare(
3924 &data_sinfo
->total_bytes_pinned
,
3925 used
+ bytes
- data_sinfo
->total_bytes
);
3926 spin_unlock(&data_sinfo
->lock
);
3928 /* commit the current transaction and try again */
3931 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3934 if (need_commit
> 0)
3935 btrfs_wait_ordered_roots(fs_info
, -1);
3937 trans
= btrfs_join_transaction(root
);
3939 return PTR_ERR(trans
);
3940 if (have_pinned_space
>= 0 ||
3941 trans
->transaction
->have_free_bgs
||
3943 ret
= btrfs_commit_transaction(trans
, root
);
3947 * make sure that all running delayed iput are
3950 down_write(&root
->fs_info
->delayed_iput_sem
);
3951 up_write(&root
->fs_info
->delayed_iput_sem
);
3954 btrfs_end_transaction(trans
, root
);
3958 trace_btrfs_space_reservation(root
->fs_info
,
3959 "space_info:enospc",
3960 data_sinfo
->flags
, bytes
, 1);
3963 ret
= btrfs_qgroup_reserve(root
, write_bytes
);
3966 data_sinfo
->bytes_may_use
+= bytes
;
3967 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3968 data_sinfo
->flags
, bytes
, 1);
3970 spin_unlock(&data_sinfo
->lock
);
3976 * Called if we need to clear a data reservation for this inode.
3978 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3980 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3981 struct btrfs_space_info
*data_sinfo
;
3983 /* make sure bytes are sectorsize aligned */
3984 bytes
= ALIGN(bytes
, root
->sectorsize
);
3986 data_sinfo
= root
->fs_info
->data_sinfo
;
3987 spin_lock(&data_sinfo
->lock
);
3988 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
3989 data_sinfo
->bytes_may_use
-= bytes
;
3990 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3991 data_sinfo
->flags
, bytes
, 0);
3992 spin_unlock(&data_sinfo
->lock
);
3995 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3997 struct list_head
*head
= &info
->space_info
;
3998 struct btrfs_space_info
*found
;
4001 list_for_each_entry_rcu(found
, head
, list
) {
4002 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4003 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4008 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4010 return (global
->size
<< 1);
4013 static int should_alloc_chunk(struct btrfs_root
*root
,
4014 struct btrfs_space_info
*sinfo
, int force
)
4016 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4017 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4018 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4021 if (force
== CHUNK_ALLOC_FORCE
)
4025 * We need to take into account the global rsv because for all intents
4026 * and purposes it's used space. Don't worry about locking the
4027 * global_rsv, it doesn't change except when the transaction commits.
4029 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4030 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4033 * in limited mode, we want to have some free space up to
4034 * about 1% of the FS size.
4036 if (force
== CHUNK_ALLOC_LIMITED
) {
4037 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4038 thresh
= max_t(u64
, 64 * 1024 * 1024,
4039 div_factor_fine(thresh
, 1));
4041 if (num_bytes
- num_allocated
< thresh
)
4045 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
4050 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4054 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4055 BTRFS_BLOCK_GROUP_RAID0
|
4056 BTRFS_BLOCK_GROUP_RAID5
|
4057 BTRFS_BLOCK_GROUP_RAID6
))
4058 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4059 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4062 num_dev
= 1; /* DUP or single */
4068 * If @is_allocation is true, reserve space in the system space info necessary
4069 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4072 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4073 struct btrfs_root
*root
,
4076 struct btrfs_space_info
*info
;
4083 * Needed because we can end up allocating a system chunk and for an
4084 * atomic and race free space reservation in the chunk block reserve.
4086 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4088 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4089 spin_lock(&info
->lock
);
4090 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4091 info
->bytes_reserved
- info
->bytes_readonly
-
4092 info
->bytes_may_use
;
4093 spin_unlock(&info
->lock
);
4095 num_devs
= get_profile_num_devs(root
, type
);
4097 /* num_devs device items to update and 1 chunk item to add or remove */
4098 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4099 btrfs_calc_trans_metadata_size(root
, 1);
4101 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
4102 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4103 left
, thresh
, type
);
4104 dump_space_info(info
, 0, 0);
4107 if (left
< thresh
) {
4110 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4112 * Ignore failure to create system chunk. We might end up not
4113 * needing it, as we might not need to COW all nodes/leafs from
4114 * the paths we visit in the chunk tree (they were already COWed
4115 * or created in the current transaction for example).
4117 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4121 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4122 &root
->fs_info
->chunk_block_rsv
,
4123 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4125 trans
->chunk_bytes_reserved
+= thresh
;
4129 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4130 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4132 struct btrfs_space_info
*space_info
;
4133 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4134 int wait_for_alloc
= 0;
4137 /* Don't re-enter if we're already allocating a chunk */
4138 if (trans
->allocating_chunk
)
4141 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4143 ret
= update_space_info(extent_root
->fs_info
, flags
,
4145 BUG_ON(ret
); /* -ENOMEM */
4147 BUG_ON(!space_info
); /* Logic error */
4150 spin_lock(&space_info
->lock
);
4151 if (force
< space_info
->force_alloc
)
4152 force
= space_info
->force_alloc
;
4153 if (space_info
->full
) {
4154 if (should_alloc_chunk(extent_root
, space_info
, force
))
4158 spin_unlock(&space_info
->lock
);
4162 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4163 spin_unlock(&space_info
->lock
);
4165 } else if (space_info
->chunk_alloc
) {
4168 space_info
->chunk_alloc
= 1;
4171 spin_unlock(&space_info
->lock
);
4173 mutex_lock(&fs_info
->chunk_mutex
);
4176 * The chunk_mutex is held throughout the entirety of a chunk
4177 * allocation, so once we've acquired the chunk_mutex we know that the
4178 * other guy is done and we need to recheck and see if we should
4181 if (wait_for_alloc
) {
4182 mutex_unlock(&fs_info
->chunk_mutex
);
4187 trans
->allocating_chunk
= true;
4190 * If we have mixed data/metadata chunks we want to make sure we keep
4191 * allocating mixed chunks instead of individual chunks.
4193 if (btrfs_mixed_space_info(space_info
))
4194 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4197 * if we're doing a data chunk, go ahead and make sure that
4198 * we keep a reasonable number of metadata chunks allocated in the
4201 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4202 fs_info
->data_chunk_allocations
++;
4203 if (!(fs_info
->data_chunk_allocations
%
4204 fs_info
->metadata_ratio
))
4205 force_metadata_allocation(fs_info
);
4209 * Check if we have enough space in SYSTEM chunk because we may need
4210 * to update devices.
4212 check_system_chunk(trans
, extent_root
, flags
);
4214 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4215 trans
->allocating_chunk
= false;
4217 spin_lock(&space_info
->lock
);
4218 if (ret
< 0 && ret
!= -ENOSPC
)
4221 space_info
->full
= 1;
4225 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4227 space_info
->chunk_alloc
= 0;
4228 spin_unlock(&space_info
->lock
);
4229 mutex_unlock(&fs_info
->chunk_mutex
);
4231 * When we allocate a new chunk we reserve space in the chunk block
4232 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4233 * add new nodes/leafs to it if we end up needing to do it when
4234 * inserting the chunk item and updating device items as part of the
4235 * second phase of chunk allocation, performed by
4236 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4237 * large number of new block groups to create in our transaction
4238 * handle's new_bgs list to avoid exhausting the chunk block reserve
4239 * in extreme cases - like having a single transaction create many new
4240 * block groups when starting to write out the free space caches of all
4241 * the block groups that were made dirty during the lifetime of the
4244 if (trans
->chunk_bytes_reserved
>= (2 * 1024 * 1024ull)) {
4245 btrfs_create_pending_block_groups(trans
, trans
->root
);
4246 btrfs_trans_release_chunk_metadata(trans
);
4251 static int can_overcommit(struct btrfs_root
*root
,
4252 struct btrfs_space_info
*space_info
, u64 bytes
,
4253 enum btrfs_reserve_flush_enum flush
)
4255 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4256 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4261 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4262 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4265 * We only want to allow over committing if we have lots of actual space
4266 * free, but if we don't have enough space to handle the global reserve
4267 * space then we could end up having a real enospc problem when trying
4268 * to allocate a chunk or some other such important allocation.
4270 spin_lock(&global_rsv
->lock
);
4271 space_size
= calc_global_rsv_need_space(global_rsv
);
4272 spin_unlock(&global_rsv
->lock
);
4273 if (used
+ space_size
>= space_info
->total_bytes
)
4276 used
+= space_info
->bytes_may_use
;
4278 spin_lock(&root
->fs_info
->free_chunk_lock
);
4279 avail
= root
->fs_info
->free_chunk_space
;
4280 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4283 * If we have dup, raid1 or raid10 then only half of the free
4284 * space is actually useable. For raid56, the space info used
4285 * doesn't include the parity drive, so we don't have to
4288 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4289 BTRFS_BLOCK_GROUP_RAID1
|
4290 BTRFS_BLOCK_GROUP_RAID10
))
4294 * If we aren't flushing all things, let us overcommit up to
4295 * 1/2th of the space. If we can flush, don't let us overcommit
4296 * too much, let it overcommit up to 1/8 of the space.
4298 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4303 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4308 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4309 unsigned long nr_pages
, int nr_items
)
4311 struct super_block
*sb
= root
->fs_info
->sb
;
4313 if (down_read_trylock(&sb
->s_umount
)) {
4314 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4315 up_read(&sb
->s_umount
);
4318 * We needn't worry the filesystem going from r/w to r/o though
4319 * we don't acquire ->s_umount mutex, because the filesystem
4320 * should guarantee the delalloc inodes list be empty after
4321 * the filesystem is readonly(all dirty pages are written to
4324 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4325 if (!current
->journal_info
)
4326 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4330 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4335 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4336 nr
= (int)div64_u64(to_reclaim
, bytes
);
4342 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4345 * shrink metadata reservation for delalloc
4347 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4350 struct btrfs_block_rsv
*block_rsv
;
4351 struct btrfs_space_info
*space_info
;
4352 struct btrfs_trans_handle
*trans
;
4356 unsigned long nr_pages
;
4359 enum btrfs_reserve_flush_enum flush
;
4361 /* Calc the number of the pages we need flush for space reservation */
4362 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4363 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4365 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4366 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4367 space_info
= block_rsv
->space_info
;
4369 delalloc_bytes
= percpu_counter_sum_positive(
4370 &root
->fs_info
->delalloc_bytes
);
4371 if (delalloc_bytes
== 0) {
4375 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4380 while (delalloc_bytes
&& loops
< 3) {
4381 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4382 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4383 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4385 * We need to wait for the async pages to actually start before
4388 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4392 if (max_reclaim
<= nr_pages
)
4395 max_reclaim
-= nr_pages
;
4397 wait_event(root
->fs_info
->async_submit_wait
,
4398 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4402 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4404 flush
= BTRFS_RESERVE_NO_FLUSH
;
4405 spin_lock(&space_info
->lock
);
4406 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4407 spin_unlock(&space_info
->lock
);
4410 spin_unlock(&space_info
->lock
);
4413 if (wait_ordered
&& !trans
) {
4414 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4416 time_left
= schedule_timeout_killable(1);
4420 delalloc_bytes
= percpu_counter_sum_positive(
4421 &root
->fs_info
->delalloc_bytes
);
4426 * maybe_commit_transaction - possibly commit the transaction if its ok to
4427 * @root - the root we're allocating for
4428 * @bytes - the number of bytes we want to reserve
4429 * @force - force the commit
4431 * This will check to make sure that committing the transaction will actually
4432 * get us somewhere and then commit the transaction if it does. Otherwise it
4433 * will return -ENOSPC.
4435 static int may_commit_transaction(struct btrfs_root
*root
,
4436 struct btrfs_space_info
*space_info
,
4437 u64 bytes
, int force
)
4439 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4440 struct btrfs_trans_handle
*trans
;
4442 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4449 /* See if there is enough pinned space to make this reservation */
4450 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4455 * See if there is some space in the delayed insertion reservation for
4458 if (space_info
!= delayed_rsv
->space_info
)
4461 spin_lock(&delayed_rsv
->lock
);
4462 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4463 bytes
- delayed_rsv
->size
) >= 0) {
4464 spin_unlock(&delayed_rsv
->lock
);
4467 spin_unlock(&delayed_rsv
->lock
);
4470 trans
= btrfs_join_transaction(root
);
4474 return btrfs_commit_transaction(trans
, root
);
4478 FLUSH_DELAYED_ITEMS_NR
= 1,
4479 FLUSH_DELAYED_ITEMS
= 2,
4481 FLUSH_DELALLOC_WAIT
= 4,
4486 static int flush_space(struct btrfs_root
*root
,
4487 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4488 u64 orig_bytes
, int state
)
4490 struct btrfs_trans_handle
*trans
;
4495 case FLUSH_DELAYED_ITEMS_NR
:
4496 case FLUSH_DELAYED_ITEMS
:
4497 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4498 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4502 trans
= btrfs_join_transaction(root
);
4503 if (IS_ERR(trans
)) {
4504 ret
= PTR_ERR(trans
);
4507 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4508 btrfs_end_transaction(trans
, root
);
4510 case FLUSH_DELALLOC
:
4511 case FLUSH_DELALLOC_WAIT
:
4512 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4513 state
== FLUSH_DELALLOC_WAIT
);
4516 trans
= btrfs_join_transaction(root
);
4517 if (IS_ERR(trans
)) {
4518 ret
= PTR_ERR(trans
);
4521 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4522 btrfs_get_alloc_profile(root
, 0),
4523 CHUNK_ALLOC_NO_FORCE
);
4524 btrfs_end_transaction(trans
, root
);
4529 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4540 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4541 struct btrfs_space_info
*space_info
)
4547 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4549 spin_lock(&space_info
->lock
);
4550 if (can_overcommit(root
, space_info
, to_reclaim
,
4551 BTRFS_RESERVE_FLUSH_ALL
)) {
4556 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4557 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4558 space_info
->bytes_may_use
;
4559 if (can_overcommit(root
, space_info
, 1024 * 1024,
4560 BTRFS_RESERVE_FLUSH_ALL
))
4561 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4563 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4565 if (used
> expected
)
4566 to_reclaim
= used
- expected
;
4569 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4570 space_info
->bytes_reserved
);
4572 spin_unlock(&space_info
->lock
);
4577 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4578 struct btrfs_fs_info
*fs_info
, u64 used
)
4580 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4582 /* If we're just plain full then async reclaim just slows us down. */
4583 if (space_info
->bytes_used
>= thresh
)
4586 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
4587 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4590 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4591 struct btrfs_fs_info
*fs_info
,
4596 spin_lock(&space_info
->lock
);
4598 * We run out of space and have not got any free space via flush_space,
4599 * so don't bother doing async reclaim.
4601 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4602 spin_unlock(&space_info
->lock
);
4606 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4607 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4608 space_info
->bytes_may_use
;
4609 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4610 spin_unlock(&space_info
->lock
);
4613 spin_unlock(&space_info
->lock
);
4618 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4620 struct btrfs_fs_info
*fs_info
;
4621 struct btrfs_space_info
*space_info
;
4625 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4626 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4628 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4633 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4635 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4636 to_reclaim
, flush_state
);
4638 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4641 } while (flush_state
< COMMIT_TRANS
);
4644 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4646 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4650 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4651 * @root - the root we're allocating for
4652 * @block_rsv - the block_rsv we're allocating for
4653 * @orig_bytes - the number of bytes we want
4654 * @flush - whether or not we can flush to make our reservation
4656 * This will reserve orgi_bytes number of bytes from the space info associated
4657 * with the block_rsv. If there is not enough space it will make an attempt to
4658 * flush out space to make room. It will do this by flushing delalloc if
4659 * possible or committing the transaction. If flush is 0 then no attempts to
4660 * regain reservations will be made and this will fail if there is not enough
4663 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4664 struct btrfs_block_rsv
*block_rsv
,
4666 enum btrfs_reserve_flush_enum flush
)
4668 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4670 u64 num_bytes
= orig_bytes
;
4671 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4673 bool flushing
= false;
4677 spin_lock(&space_info
->lock
);
4679 * We only want to wait if somebody other than us is flushing and we
4680 * are actually allowed to flush all things.
4682 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4683 space_info
->flush
) {
4684 spin_unlock(&space_info
->lock
);
4686 * If we have a trans handle we can't wait because the flusher
4687 * may have to commit the transaction, which would mean we would
4688 * deadlock since we are waiting for the flusher to finish, but
4689 * hold the current transaction open.
4691 if (current
->journal_info
)
4693 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4694 /* Must have been killed, return */
4698 spin_lock(&space_info
->lock
);
4702 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4703 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4704 space_info
->bytes_may_use
;
4707 * The idea here is that we've not already over-reserved the block group
4708 * then we can go ahead and save our reservation first and then start
4709 * flushing if we need to. Otherwise if we've already overcommitted
4710 * lets start flushing stuff first and then come back and try to make
4713 if (used
<= space_info
->total_bytes
) {
4714 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4715 space_info
->bytes_may_use
+= orig_bytes
;
4716 trace_btrfs_space_reservation(root
->fs_info
,
4717 "space_info", space_info
->flags
, orig_bytes
, 1);
4721 * Ok set num_bytes to orig_bytes since we aren't
4722 * overocmmitted, this way we only try and reclaim what
4725 num_bytes
= orig_bytes
;
4729 * Ok we're over committed, set num_bytes to the overcommitted
4730 * amount plus the amount of bytes that we need for this
4733 num_bytes
= used
- space_info
->total_bytes
+
4737 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4738 space_info
->bytes_may_use
+= orig_bytes
;
4739 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4740 space_info
->flags
, orig_bytes
,
4746 * Couldn't make our reservation, save our place so while we're trying
4747 * to reclaim space we can actually use it instead of somebody else
4748 * stealing it from us.
4750 * We make the other tasks wait for the flush only when we can flush
4753 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4755 space_info
->flush
= 1;
4756 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4759 * We will do the space reservation dance during log replay,
4760 * which means we won't have fs_info->fs_root set, so don't do
4761 * the async reclaim as we will panic.
4763 if (!root
->fs_info
->log_root_recovering
&&
4764 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4765 !work_busy(&root
->fs_info
->async_reclaim_work
))
4766 queue_work(system_unbound_wq
,
4767 &root
->fs_info
->async_reclaim_work
);
4769 spin_unlock(&space_info
->lock
);
4771 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4774 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4779 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4780 * would happen. So skip delalloc flush.
4782 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4783 (flush_state
== FLUSH_DELALLOC
||
4784 flush_state
== FLUSH_DELALLOC_WAIT
))
4785 flush_state
= ALLOC_CHUNK
;
4789 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4790 flush_state
< COMMIT_TRANS
)
4792 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4793 flush_state
<= COMMIT_TRANS
)
4797 if (ret
== -ENOSPC
&&
4798 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4799 struct btrfs_block_rsv
*global_rsv
=
4800 &root
->fs_info
->global_block_rsv
;
4802 if (block_rsv
!= global_rsv
&&
4803 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4807 trace_btrfs_space_reservation(root
->fs_info
,
4808 "space_info:enospc",
4809 space_info
->flags
, orig_bytes
, 1);
4811 spin_lock(&space_info
->lock
);
4812 space_info
->flush
= 0;
4813 wake_up_all(&space_info
->wait
);
4814 spin_unlock(&space_info
->lock
);
4819 static struct btrfs_block_rsv
*get_block_rsv(
4820 const struct btrfs_trans_handle
*trans
,
4821 const struct btrfs_root
*root
)
4823 struct btrfs_block_rsv
*block_rsv
= NULL
;
4825 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4826 block_rsv
= trans
->block_rsv
;
4828 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4829 block_rsv
= trans
->block_rsv
;
4831 if (root
== root
->fs_info
->uuid_root
)
4832 block_rsv
= trans
->block_rsv
;
4835 block_rsv
= root
->block_rsv
;
4838 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4843 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4847 spin_lock(&block_rsv
->lock
);
4848 if (block_rsv
->reserved
>= num_bytes
) {
4849 block_rsv
->reserved
-= num_bytes
;
4850 if (block_rsv
->reserved
< block_rsv
->size
)
4851 block_rsv
->full
= 0;
4854 spin_unlock(&block_rsv
->lock
);
4858 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4859 u64 num_bytes
, int update_size
)
4861 spin_lock(&block_rsv
->lock
);
4862 block_rsv
->reserved
+= num_bytes
;
4864 block_rsv
->size
+= num_bytes
;
4865 else if (block_rsv
->reserved
>= block_rsv
->size
)
4866 block_rsv
->full
= 1;
4867 spin_unlock(&block_rsv
->lock
);
4870 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4871 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4874 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4877 if (global_rsv
->space_info
!= dest
->space_info
)
4880 spin_lock(&global_rsv
->lock
);
4881 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4882 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4883 spin_unlock(&global_rsv
->lock
);
4886 global_rsv
->reserved
-= num_bytes
;
4887 if (global_rsv
->reserved
< global_rsv
->size
)
4888 global_rsv
->full
= 0;
4889 spin_unlock(&global_rsv
->lock
);
4891 block_rsv_add_bytes(dest
, num_bytes
, 1);
4895 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4896 struct btrfs_block_rsv
*block_rsv
,
4897 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4899 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4901 spin_lock(&block_rsv
->lock
);
4902 if (num_bytes
== (u64
)-1)
4903 num_bytes
= block_rsv
->size
;
4904 block_rsv
->size
-= num_bytes
;
4905 if (block_rsv
->reserved
>= block_rsv
->size
) {
4906 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4907 block_rsv
->reserved
= block_rsv
->size
;
4908 block_rsv
->full
= 1;
4912 spin_unlock(&block_rsv
->lock
);
4914 if (num_bytes
> 0) {
4916 spin_lock(&dest
->lock
);
4920 bytes_to_add
= dest
->size
- dest
->reserved
;
4921 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4922 dest
->reserved
+= bytes_to_add
;
4923 if (dest
->reserved
>= dest
->size
)
4925 num_bytes
-= bytes_to_add
;
4927 spin_unlock(&dest
->lock
);
4930 spin_lock(&space_info
->lock
);
4931 space_info
->bytes_may_use
-= num_bytes
;
4932 trace_btrfs_space_reservation(fs_info
, "space_info",
4933 space_info
->flags
, num_bytes
, 0);
4934 spin_unlock(&space_info
->lock
);
4939 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4940 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4944 ret
= block_rsv_use_bytes(src
, num_bytes
);
4948 block_rsv_add_bytes(dst
, num_bytes
, 1);
4952 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4954 memset(rsv
, 0, sizeof(*rsv
));
4955 spin_lock_init(&rsv
->lock
);
4959 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4960 unsigned short type
)
4962 struct btrfs_block_rsv
*block_rsv
;
4963 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4965 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4969 btrfs_init_block_rsv(block_rsv
, type
);
4970 block_rsv
->space_info
= __find_space_info(fs_info
,
4971 BTRFS_BLOCK_GROUP_METADATA
);
4975 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4976 struct btrfs_block_rsv
*rsv
)
4980 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4984 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
4989 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4990 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4991 enum btrfs_reserve_flush_enum flush
)
4998 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5000 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5007 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5008 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5016 spin_lock(&block_rsv
->lock
);
5017 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5018 if (block_rsv
->reserved
>= num_bytes
)
5020 spin_unlock(&block_rsv
->lock
);
5025 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5026 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5027 enum btrfs_reserve_flush_enum flush
)
5035 spin_lock(&block_rsv
->lock
);
5036 num_bytes
= min_reserved
;
5037 if (block_rsv
->reserved
>= num_bytes
)
5040 num_bytes
-= block_rsv
->reserved
;
5041 spin_unlock(&block_rsv
->lock
);
5046 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5048 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5055 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
5056 struct btrfs_block_rsv
*dst_rsv
,
5059 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5062 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5063 struct btrfs_block_rsv
*block_rsv
,
5066 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5067 if (global_rsv
== block_rsv
||
5068 block_rsv
->space_info
!= global_rsv
->space_info
)
5070 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5075 * helper to calculate size of global block reservation.
5076 * the desired value is sum of space used by extent tree,
5077 * checksum tree and root tree
5079 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
5081 struct btrfs_space_info
*sinfo
;
5085 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
5087 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
5088 spin_lock(&sinfo
->lock
);
5089 data_used
= sinfo
->bytes_used
;
5090 spin_unlock(&sinfo
->lock
);
5092 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5093 spin_lock(&sinfo
->lock
);
5094 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
5096 meta_used
= sinfo
->bytes_used
;
5097 spin_unlock(&sinfo
->lock
);
5099 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
5101 num_bytes
+= div_u64(data_used
+ meta_used
, 50);
5103 if (num_bytes
* 3 > meta_used
)
5104 num_bytes
= div_u64(meta_used
, 3);
5106 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
5109 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5111 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5112 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5115 num_bytes
= calc_global_metadata_size(fs_info
);
5117 spin_lock(&sinfo
->lock
);
5118 spin_lock(&block_rsv
->lock
);
5120 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
5122 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5123 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5124 sinfo
->bytes_may_use
;
5126 if (sinfo
->total_bytes
> num_bytes
) {
5127 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5128 block_rsv
->reserved
+= num_bytes
;
5129 sinfo
->bytes_may_use
+= num_bytes
;
5130 trace_btrfs_space_reservation(fs_info
, "space_info",
5131 sinfo
->flags
, num_bytes
, 1);
5134 if (block_rsv
->reserved
>= block_rsv
->size
) {
5135 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5136 sinfo
->bytes_may_use
-= num_bytes
;
5137 trace_btrfs_space_reservation(fs_info
, "space_info",
5138 sinfo
->flags
, num_bytes
, 0);
5139 block_rsv
->reserved
= block_rsv
->size
;
5140 block_rsv
->full
= 1;
5143 spin_unlock(&block_rsv
->lock
);
5144 spin_unlock(&sinfo
->lock
);
5147 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5149 struct btrfs_space_info
*space_info
;
5151 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5152 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5154 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5155 fs_info
->global_block_rsv
.space_info
= space_info
;
5156 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5157 fs_info
->trans_block_rsv
.space_info
= space_info
;
5158 fs_info
->empty_block_rsv
.space_info
= space_info
;
5159 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5161 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5162 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5163 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5164 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5165 if (fs_info
->quota_root
)
5166 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5167 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5169 update_global_block_rsv(fs_info
);
5172 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5174 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5176 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5177 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5178 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5179 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5180 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5181 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5182 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5183 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5186 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5187 struct btrfs_root
*root
)
5189 if (!trans
->block_rsv
)
5192 if (!trans
->bytes_reserved
)
5195 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5196 trans
->transid
, trans
->bytes_reserved
, 0);
5197 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5198 trans
->bytes_reserved
= 0;
5202 * To be called after all the new block groups attached to the transaction
5203 * handle have been created (btrfs_create_pending_block_groups()).
5205 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5207 struct btrfs_fs_info
*fs_info
= trans
->root
->fs_info
;
5209 if (!trans
->chunk_bytes_reserved
)
5212 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5214 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5215 trans
->chunk_bytes_reserved
);
5216 trans
->chunk_bytes_reserved
= 0;
5219 /* Can only return 0 or -ENOSPC */
5220 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5221 struct inode
*inode
)
5223 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5224 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
5225 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5228 * We need to hold space in order to delete our orphan item once we've
5229 * added it, so this takes the reservation so we can release it later
5230 * when we are truly done with the orphan item.
5232 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5233 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5234 btrfs_ino(inode
), num_bytes
, 1);
5235 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5238 void btrfs_orphan_release_metadata(struct inode
*inode
)
5240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5241 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5242 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5243 btrfs_ino(inode
), num_bytes
, 0);
5244 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5248 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5249 * root: the root of the parent directory
5250 * rsv: block reservation
5251 * items: the number of items that we need do reservation
5252 * qgroup_reserved: used to return the reserved size in qgroup
5254 * This function is used to reserve the space for snapshot/subvolume
5255 * creation and deletion. Those operations are different with the
5256 * common file/directory operations, they change two fs/file trees
5257 * and root tree, the number of items that the qgroup reserves is
5258 * different with the free space reservation. So we can not use
5259 * the space reseravtion mechanism in start_transaction().
5261 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5262 struct btrfs_block_rsv
*rsv
,
5264 u64
*qgroup_reserved
,
5265 bool use_global_rsv
)
5269 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5271 if (root
->fs_info
->quota_enabled
) {
5272 /* One for parent inode, two for dir entries */
5273 num_bytes
= 3 * root
->nodesize
;
5274 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
5281 *qgroup_reserved
= num_bytes
;
5283 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5284 rsv
->space_info
= __find_space_info(root
->fs_info
,
5285 BTRFS_BLOCK_GROUP_METADATA
);
5286 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5287 BTRFS_RESERVE_FLUSH_ALL
);
5289 if (ret
== -ENOSPC
&& use_global_rsv
)
5290 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5293 if (*qgroup_reserved
)
5294 btrfs_qgroup_free(root
, *qgroup_reserved
);
5300 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5301 struct btrfs_block_rsv
*rsv
,
5302 u64 qgroup_reserved
)
5304 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5308 * drop_outstanding_extent - drop an outstanding extent
5309 * @inode: the inode we're dropping the extent for
5310 * @num_bytes: the number of bytes we're relaseing.
5312 * This is called when we are freeing up an outstanding extent, either called
5313 * after an error or after an extent is written. This will return the number of
5314 * reserved extents that need to be freed. This must be called with
5315 * BTRFS_I(inode)->lock held.
5317 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5319 unsigned drop_inode_space
= 0;
5320 unsigned dropped_extents
= 0;
5321 unsigned num_extents
= 0;
5323 num_extents
= (unsigned)div64_u64(num_bytes
+
5324 BTRFS_MAX_EXTENT_SIZE
- 1,
5325 BTRFS_MAX_EXTENT_SIZE
);
5326 ASSERT(num_extents
);
5327 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5328 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5330 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5331 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5332 &BTRFS_I(inode
)->runtime_flags
))
5333 drop_inode_space
= 1;
5336 * If we have more or the same amount of outsanding extents than we have
5337 * reserved then we need to leave the reserved extents count alone.
5339 if (BTRFS_I(inode
)->outstanding_extents
>=
5340 BTRFS_I(inode
)->reserved_extents
)
5341 return drop_inode_space
;
5343 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5344 BTRFS_I(inode
)->outstanding_extents
;
5345 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5346 return dropped_extents
+ drop_inode_space
;
5350 * calc_csum_metadata_size - return the amount of metada space that must be
5351 * reserved/free'd for the given bytes.
5352 * @inode: the inode we're manipulating
5353 * @num_bytes: the number of bytes in question
5354 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5356 * This adjusts the number of csum_bytes in the inode and then returns the
5357 * correct amount of metadata that must either be reserved or freed. We
5358 * calculate how many checksums we can fit into one leaf and then divide the
5359 * number of bytes that will need to be checksumed by this value to figure out
5360 * how many checksums will be required. If we are adding bytes then the number
5361 * may go up and we will return the number of additional bytes that must be
5362 * reserved. If it is going down we will return the number of bytes that must
5365 * This must be called with BTRFS_I(inode)->lock held.
5367 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5370 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5371 u64 old_csums
, num_csums
;
5373 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5374 BTRFS_I(inode
)->csum_bytes
== 0)
5377 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5379 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5381 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5382 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5384 /* No change, no need to reserve more */
5385 if (old_csums
== num_csums
)
5389 return btrfs_calc_trans_metadata_size(root
,
5390 num_csums
- old_csums
);
5392 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5395 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5397 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5398 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5401 unsigned nr_extents
= 0;
5402 int extra_reserve
= 0;
5403 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5405 bool delalloc_lock
= true;
5409 /* If we are a free space inode we need to not flush since we will be in
5410 * the middle of a transaction commit. We also don't need the delalloc
5411 * mutex since we won't race with anybody. We need this mostly to make
5412 * lockdep shut its filthy mouth.
5414 if (btrfs_is_free_space_inode(inode
)) {
5415 flush
= BTRFS_RESERVE_NO_FLUSH
;
5416 delalloc_lock
= false;
5419 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5420 btrfs_transaction_in_commit(root
->fs_info
))
5421 schedule_timeout(1);
5424 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5426 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5428 spin_lock(&BTRFS_I(inode
)->lock
);
5429 nr_extents
= (unsigned)div64_u64(num_bytes
+
5430 BTRFS_MAX_EXTENT_SIZE
- 1,
5431 BTRFS_MAX_EXTENT_SIZE
);
5432 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5435 if (BTRFS_I(inode
)->outstanding_extents
>
5436 BTRFS_I(inode
)->reserved_extents
)
5437 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5438 BTRFS_I(inode
)->reserved_extents
;
5441 * Add an item to reserve for updating the inode when we complete the
5444 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5445 &BTRFS_I(inode
)->runtime_flags
)) {
5450 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5451 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5452 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5453 spin_unlock(&BTRFS_I(inode
)->lock
);
5455 if (root
->fs_info
->quota_enabled
) {
5456 ret
= btrfs_qgroup_reserve(root
, nr_extents
* root
->nodesize
);
5461 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5462 if (unlikely(ret
)) {
5463 if (root
->fs_info
->quota_enabled
)
5464 btrfs_qgroup_free(root
, nr_extents
* root
->nodesize
);
5468 spin_lock(&BTRFS_I(inode
)->lock
);
5469 if (extra_reserve
) {
5470 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5471 &BTRFS_I(inode
)->runtime_flags
);
5474 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5475 spin_unlock(&BTRFS_I(inode
)->lock
);
5478 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5481 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5482 btrfs_ino(inode
), to_reserve
, 1);
5483 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5488 spin_lock(&BTRFS_I(inode
)->lock
);
5489 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5491 * If the inodes csum_bytes is the same as the original
5492 * csum_bytes then we know we haven't raced with any free()ers
5493 * so we can just reduce our inodes csum bytes and carry on.
5495 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5496 calc_csum_metadata_size(inode
, num_bytes
, 0);
5498 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5502 * This is tricky, but first we need to figure out how much we
5503 * free'd from any free-ers that occured during this
5504 * reservation, so we reset ->csum_bytes to the csum_bytes
5505 * before we dropped our lock, and then call the free for the
5506 * number of bytes that were freed while we were trying our
5509 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5510 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5511 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5515 * Now we need to see how much we would have freed had we not
5516 * been making this reservation and our ->csum_bytes were not
5517 * artificially inflated.
5519 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5520 bytes
= csum_bytes
- orig_csum_bytes
;
5521 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5524 * Now reset ->csum_bytes to what it should be. If bytes is
5525 * more than to_free then we would have free'd more space had we
5526 * not had an artificially high ->csum_bytes, so we need to free
5527 * the remainder. If bytes is the same or less then we don't
5528 * need to do anything, the other free-ers did the correct
5531 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5532 if (bytes
> to_free
)
5533 to_free
= bytes
- to_free
;
5537 spin_unlock(&BTRFS_I(inode
)->lock
);
5539 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5542 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5543 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5544 btrfs_ino(inode
), to_free
, 0);
5547 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5552 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5553 * @inode: the inode to release the reservation for
5554 * @num_bytes: the number of bytes we're releasing
5556 * This will release the metadata reservation for an inode. This can be called
5557 * once we complete IO for a given set of bytes to release their metadata
5560 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5562 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5566 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5567 spin_lock(&BTRFS_I(inode
)->lock
);
5568 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5571 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5572 spin_unlock(&BTRFS_I(inode
)->lock
);
5574 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5576 if (btrfs_test_is_dummy_root(root
))
5579 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5580 btrfs_ino(inode
), to_free
, 0);
5582 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5587 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5588 * @inode: inode we're writing to
5589 * @num_bytes: the number of bytes we want to allocate
5591 * This will do the following things
5593 * o reserve space in the data space info for num_bytes
5594 * o reserve space in the metadata space info based on number of outstanding
5595 * extents and how much csums will be needed
5596 * o add to the inodes ->delalloc_bytes
5597 * o add it to the fs_info's delalloc inodes list.
5599 * This will return 0 for success and -ENOSPC if there is no space left.
5601 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5605 ret
= btrfs_check_data_free_space(inode
, num_bytes
, num_bytes
);
5609 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5611 btrfs_free_reserved_data_space(inode
, num_bytes
);
5619 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5620 * @inode: inode we're releasing space for
5621 * @num_bytes: the number of bytes we want to free up
5623 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5624 * called in the case that we don't need the metadata AND data reservations
5625 * anymore. So if there is an error or we insert an inline extent.
5627 * This function will release the metadata space that was not used and will
5628 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5629 * list if there are no delalloc bytes left.
5631 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5633 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5634 btrfs_free_reserved_data_space(inode
, num_bytes
);
5637 static int update_block_group(struct btrfs_trans_handle
*trans
,
5638 struct btrfs_root
*root
, u64 bytenr
,
5639 u64 num_bytes
, int alloc
)
5641 struct btrfs_block_group_cache
*cache
= NULL
;
5642 struct btrfs_fs_info
*info
= root
->fs_info
;
5643 u64 total
= num_bytes
;
5648 /* block accounting for super block */
5649 spin_lock(&info
->delalloc_root_lock
);
5650 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5652 old_val
+= num_bytes
;
5654 old_val
-= num_bytes
;
5655 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5656 spin_unlock(&info
->delalloc_root_lock
);
5659 cache
= btrfs_lookup_block_group(info
, bytenr
);
5662 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5663 BTRFS_BLOCK_GROUP_RAID1
|
5664 BTRFS_BLOCK_GROUP_RAID10
))
5669 * If this block group has free space cache written out, we
5670 * need to make sure to load it if we are removing space. This
5671 * is because we need the unpinning stage to actually add the
5672 * space back to the block group, otherwise we will leak space.
5674 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5675 cache_block_group(cache
, 1);
5677 byte_in_group
= bytenr
- cache
->key
.objectid
;
5678 WARN_ON(byte_in_group
> cache
->key
.offset
);
5680 spin_lock(&cache
->space_info
->lock
);
5681 spin_lock(&cache
->lock
);
5683 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5684 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5685 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5687 old_val
= btrfs_block_group_used(&cache
->item
);
5688 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5690 old_val
+= num_bytes
;
5691 btrfs_set_block_group_used(&cache
->item
, old_val
);
5692 cache
->reserved
-= num_bytes
;
5693 cache
->space_info
->bytes_reserved
-= num_bytes
;
5694 cache
->space_info
->bytes_used
+= num_bytes
;
5695 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5696 spin_unlock(&cache
->lock
);
5697 spin_unlock(&cache
->space_info
->lock
);
5699 old_val
-= num_bytes
;
5700 btrfs_set_block_group_used(&cache
->item
, old_val
);
5701 cache
->pinned
+= num_bytes
;
5702 cache
->space_info
->bytes_pinned
+= num_bytes
;
5703 cache
->space_info
->bytes_used
-= num_bytes
;
5704 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5705 spin_unlock(&cache
->lock
);
5706 spin_unlock(&cache
->space_info
->lock
);
5708 set_extent_dirty(info
->pinned_extents
,
5709 bytenr
, bytenr
+ num_bytes
- 1,
5710 GFP_NOFS
| __GFP_NOFAIL
);
5712 * No longer have used bytes in this block group, queue
5716 spin_lock(&info
->unused_bgs_lock
);
5717 if (list_empty(&cache
->bg_list
)) {
5718 btrfs_get_block_group(cache
);
5719 list_add_tail(&cache
->bg_list
,
5722 spin_unlock(&info
->unused_bgs_lock
);
5726 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
5727 if (list_empty(&cache
->dirty_list
)) {
5728 list_add_tail(&cache
->dirty_list
,
5729 &trans
->transaction
->dirty_bgs
);
5730 trans
->transaction
->num_dirty_bgs
++;
5731 btrfs_get_block_group(cache
);
5733 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
5735 btrfs_put_block_group(cache
);
5737 bytenr
+= num_bytes
;
5742 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5744 struct btrfs_block_group_cache
*cache
;
5747 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5748 bytenr
= root
->fs_info
->first_logical_byte
;
5749 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5751 if (bytenr
< (u64
)-1)
5754 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5758 bytenr
= cache
->key
.objectid
;
5759 btrfs_put_block_group(cache
);
5764 static int pin_down_extent(struct btrfs_root
*root
,
5765 struct btrfs_block_group_cache
*cache
,
5766 u64 bytenr
, u64 num_bytes
, int reserved
)
5768 spin_lock(&cache
->space_info
->lock
);
5769 spin_lock(&cache
->lock
);
5770 cache
->pinned
+= num_bytes
;
5771 cache
->space_info
->bytes_pinned
+= num_bytes
;
5773 cache
->reserved
-= num_bytes
;
5774 cache
->space_info
->bytes_reserved
-= num_bytes
;
5776 spin_unlock(&cache
->lock
);
5777 spin_unlock(&cache
->space_info
->lock
);
5779 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5780 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5782 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
5787 * this function must be called within transaction
5789 int btrfs_pin_extent(struct btrfs_root
*root
,
5790 u64 bytenr
, u64 num_bytes
, int reserved
)
5792 struct btrfs_block_group_cache
*cache
;
5794 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5795 BUG_ON(!cache
); /* Logic error */
5797 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5799 btrfs_put_block_group(cache
);
5804 * this function must be called within transaction
5806 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5807 u64 bytenr
, u64 num_bytes
)
5809 struct btrfs_block_group_cache
*cache
;
5812 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5817 * pull in the free space cache (if any) so that our pin
5818 * removes the free space from the cache. We have load_only set
5819 * to one because the slow code to read in the free extents does check
5820 * the pinned extents.
5822 cache_block_group(cache
, 1);
5824 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5826 /* remove us from the free space cache (if we're there at all) */
5827 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5828 btrfs_put_block_group(cache
);
5832 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5835 struct btrfs_block_group_cache
*block_group
;
5836 struct btrfs_caching_control
*caching_ctl
;
5838 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5842 cache_block_group(block_group
, 0);
5843 caching_ctl
= get_caching_control(block_group
);
5847 BUG_ON(!block_group_cache_done(block_group
));
5848 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5850 mutex_lock(&caching_ctl
->mutex
);
5852 if (start
>= caching_ctl
->progress
) {
5853 ret
= add_excluded_extent(root
, start
, num_bytes
);
5854 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5855 ret
= btrfs_remove_free_space(block_group
,
5858 num_bytes
= caching_ctl
->progress
- start
;
5859 ret
= btrfs_remove_free_space(block_group
,
5864 num_bytes
= (start
+ num_bytes
) -
5865 caching_ctl
->progress
;
5866 start
= caching_ctl
->progress
;
5867 ret
= add_excluded_extent(root
, start
, num_bytes
);
5870 mutex_unlock(&caching_ctl
->mutex
);
5871 put_caching_control(caching_ctl
);
5873 btrfs_put_block_group(block_group
);
5877 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5878 struct extent_buffer
*eb
)
5880 struct btrfs_file_extent_item
*item
;
5881 struct btrfs_key key
;
5885 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5888 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5889 btrfs_item_key_to_cpu(eb
, &key
, i
);
5890 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5892 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5893 found_type
= btrfs_file_extent_type(eb
, item
);
5894 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5896 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5898 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5899 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5900 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5907 * btrfs_update_reserved_bytes - update the block_group and space info counters
5908 * @cache: The cache we are manipulating
5909 * @num_bytes: The number of bytes in question
5910 * @reserve: One of the reservation enums
5911 * @delalloc: The blocks are allocated for the delalloc write
5913 * This is called by the allocator when it reserves space, or by somebody who is
5914 * freeing space that was never actually used on disk. For example if you
5915 * reserve some space for a new leaf in transaction A and before transaction A
5916 * commits you free that leaf, you call this with reserve set to 0 in order to
5917 * clear the reservation.
5919 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5920 * ENOSPC accounting. For data we handle the reservation through clearing the
5921 * delalloc bits in the io_tree. We have to do this since we could end up
5922 * allocating less disk space for the amount of data we have reserved in the
5923 * case of compression.
5925 * If this is a reservation and the block group has become read only we cannot
5926 * make the reservation and return -EAGAIN, otherwise this function always
5929 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5930 u64 num_bytes
, int reserve
, int delalloc
)
5932 struct btrfs_space_info
*space_info
= cache
->space_info
;
5935 spin_lock(&space_info
->lock
);
5936 spin_lock(&cache
->lock
);
5937 if (reserve
!= RESERVE_FREE
) {
5941 cache
->reserved
+= num_bytes
;
5942 space_info
->bytes_reserved
+= num_bytes
;
5943 if (reserve
== RESERVE_ALLOC
) {
5944 trace_btrfs_space_reservation(cache
->fs_info
,
5945 "space_info", space_info
->flags
,
5947 space_info
->bytes_may_use
-= num_bytes
;
5951 cache
->delalloc_bytes
+= num_bytes
;
5955 space_info
->bytes_readonly
+= num_bytes
;
5956 cache
->reserved
-= num_bytes
;
5957 space_info
->bytes_reserved
-= num_bytes
;
5960 cache
->delalloc_bytes
-= num_bytes
;
5962 spin_unlock(&cache
->lock
);
5963 spin_unlock(&space_info
->lock
);
5967 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5968 struct btrfs_root
*root
)
5970 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5971 struct btrfs_caching_control
*next
;
5972 struct btrfs_caching_control
*caching_ctl
;
5973 struct btrfs_block_group_cache
*cache
;
5975 down_write(&fs_info
->commit_root_sem
);
5977 list_for_each_entry_safe(caching_ctl
, next
,
5978 &fs_info
->caching_block_groups
, list
) {
5979 cache
= caching_ctl
->block_group
;
5980 if (block_group_cache_done(cache
)) {
5981 cache
->last_byte_to_unpin
= (u64
)-1;
5982 list_del_init(&caching_ctl
->list
);
5983 put_caching_control(caching_ctl
);
5985 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5989 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5990 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5992 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5994 up_write(&fs_info
->commit_root_sem
);
5996 update_global_block_rsv(fs_info
);
5999 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6000 const bool return_free_space
)
6002 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6003 struct btrfs_block_group_cache
*cache
= NULL
;
6004 struct btrfs_space_info
*space_info
;
6005 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6009 while (start
<= end
) {
6012 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6014 btrfs_put_block_group(cache
);
6015 cache
= btrfs_lookup_block_group(fs_info
, start
);
6016 BUG_ON(!cache
); /* Logic error */
6019 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6020 len
= min(len
, end
+ 1 - start
);
6022 if (start
< cache
->last_byte_to_unpin
) {
6023 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6024 if (return_free_space
)
6025 btrfs_add_free_space(cache
, start
, len
);
6029 space_info
= cache
->space_info
;
6031 spin_lock(&space_info
->lock
);
6032 spin_lock(&cache
->lock
);
6033 cache
->pinned
-= len
;
6034 space_info
->bytes_pinned
-= len
;
6035 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6037 space_info
->bytes_readonly
+= len
;
6040 spin_unlock(&cache
->lock
);
6041 if (!readonly
&& global_rsv
->space_info
== space_info
) {
6042 spin_lock(&global_rsv
->lock
);
6043 if (!global_rsv
->full
) {
6044 len
= min(len
, global_rsv
->size
-
6045 global_rsv
->reserved
);
6046 global_rsv
->reserved
+= len
;
6047 space_info
->bytes_may_use
+= len
;
6048 if (global_rsv
->reserved
>= global_rsv
->size
)
6049 global_rsv
->full
= 1;
6051 spin_unlock(&global_rsv
->lock
);
6053 spin_unlock(&space_info
->lock
);
6057 btrfs_put_block_group(cache
);
6061 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6062 struct btrfs_root
*root
)
6064 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6065 struct extent_io_tree
*unpin
;
6073 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6074 unpin
= &fs_info
->freed_extents
[1];
6076 unpin
= &fs_info
->freed_extents
[0];
6079 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6080 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6081 EXTENT_DIRTY
, NULL
);
6083 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6087 if (btrfs_test_opt(root
, DISCARD
))
6088 ret
= btrfs_discard_extent(root
, start
,
6089 end
+ 1 - start
, NULL
);
6091 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
6092 unpin_extent_range(root
, start
, end
, true);
6093 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6100 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6101 u64 owner
, u64 root_objectid
)
6103 struct btrfs_space_info
*space_info
;
6106 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6107 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6108 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6110 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6112 flags
= BTRFS_BLOCK_GROUP_DATA
;
6115 space_info
= __find_space_info(fs_info
, flags
);
6116 BUG_ON(!space_info
); /* Logic bug */
6117 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6121 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6122 struct btrfs_root
*root
,
6123 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6124 u64 root_objectid
, u64 owner_objectid
,
6125 u64 owner_offset
, int refs_to_drop
,
6126 struct btrfs_delayed_extent_op
*extent_op
)
6128 struct btrfs_key key
;
6129 struct btrfs_path
*path
;
6130 struct btrfs_fs_info
*info
= root
->fs_info
;
6131 struct btrfs_root
*extent_root
= info
->extent_root
;
6132 struct extent_buffer
*leaf
;
6133 struct btrfs_extent_item
*ei
;
6134 struct btrfs_extent_inline_ref
*iref
;
6137 int extent_slot
= 0;
6138 int found_extent
= 0;
6140 int no_quota
= node
->no_quota
;
6143 u64 bytenr
= node
->bytenr
;
6144 u64 num_bytes
= node
->num_bytes
;
6146 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6149 if (!info
->quota_enabled
|| !is_fstree(root_objectid
))
6152 path
= btrfs_alloc_path();
6157 path
->leave_spinning
= 1;
6159 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6160 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6163 skinny_metadata
= 0;
6165 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6166 bytenr
, num_bytes
, parent
,
6167 root_objectid
, owner_objectid
,
6170 extent_slot
= path
->slots
[0];
6171 while (extent_slot
>= 0) {
6172 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6174 if (key
.objectid
!= bytenr
)
6176 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6177 key
.offset
== num_bytes
) {
6181 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6182 key
.offset
== owner_objectid
) {
6186 if (path
->slots
[0] - extent_slot
> 5)
6190 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6191 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6192 if (found_extent
&& item_size
< sizeof(*ei
))
6195 if (!found_extent
) {
6197 ret
= remove_extent_backref(trans
, extent_root
, path
,
6199 is_data
, &last_ref
);
6201 btrfs_abort_transaction(trans
, extent_root
, ret
);
6204 btrfs_release_path(path
);
6205 path
->leave_spinning
= 1;
6207 key
.objectid
= bytenr
;
6208 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6209 key
.offset
= num_bytes
;
6211 if (!is_data
&& skinny_metadata
) {
6212 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6213 key
.offset
= owner_objectid
;
6216 ret
= btrfs_search_slot(trans
, extent_root
,
6218 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6220 * Couldn't find our skinny metadata item,
6221 * see if we have ye olde extent item.
6224 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6226 if (key
.objectid
== bytenr
&&
6227 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6228 key
.offset
== num_bytes
)
6232 if (ret
> 0 && skinny_metadata
) {
6233 skinny_metadata
= false;
6234 key
.objectid
= bytenr
;
6235 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6236 key
.offset
= num_bytes
;
6237 btrfs_release_path(path
);
6238 ret
= btrfs_search_slot(trans
, extent_root
,
6243 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6246 btrfs_print_leaf(extent_root
,
6250 btrfs_abort_transaction(trans
, extent_root
, ret
);
6253 extent_slot
= path
->slots
[0];
6255 } else if (WARN_ON(ret
== -ENOENT
)) {
6256 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6258 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6259 bytenr
, parent
, root_objectid
, owner_objectid
,
6261 btrfs_abort_transaction(trans
, extent_root
, ret
);
6264 btrfs_abort_transaction(trans
, extent_root
, ret
);
6268 leaf
= path
->nodes
[0];
6269 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6271 if (item_size
< sizeof(*ei
)) {
6272 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6273 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6276 btrfs_abort_transaction(trans
, extent_root
, ret
);
6280 btrfs_release_path(path
);
6281 path
->leave_spinning
= 1;
6283 key
.objectid
= bytenr
;
6284 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6285 key
.offset
= num_bytes
;
6287 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6290 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6292 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6295 btrfs_abort_transaction(trans
, extent_root
, ret
);
6299 extent_slot
= path
->slots
[0];
6300 leaf
= path
->nodes
[0];
6301 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6304 BUG_ON(item_size
< sizeof(*ei
));
6305 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6306 struct btrfs_extent_item
);
6307 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6308 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6309 struct btrfs_tree_block_info
*bi
;
6310 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6311 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6312 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6315 refs
= btrfs_extent_refs(leaf
, ei
);
6316 if (refs
< refs_to_drop
) {
6317 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6318 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6320 btrfs_abort_transaction(trans
, extent_root
, ret
);
6323 refs
-= refs_to_drop
;
6327 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6329 * In the case of inline back ref, reference count will
6330 * be updated by remove_extent_backref
6333 BUG_ON(!found_extent
);
6335 btrfs_set_extent_refs(leaf
, ei
, refs
);
6336 btrfs_mark_buffer_dirty(leaf
);
6339 ret
= remove_extent_backref(trans
, extent_root
, path
,
6341 is_data
, &last_ref
);
6343 btrfs_abort_transaction(trans
, extent_root
, ret
);
6347 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6351 BUG_ON(is_data
&& refs_to_drop
!=
6352 extent_data_ref_count(root
, path
, iref
));
6354 BUG_ON(path
->slots
[0] != extent_slot
);
6356 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6357 path
->slots
[0] = extent_slot
;
6363 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6366 btrfs_abort_transaction(trans
, extent_root
, ret
);
6369 btrfs_release_path(path
);
6372 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6374 btrfs_abort_transaction(trans
, extent_root
, ret
);
6379 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
6381 btrfs_abort_transaction(trans
, extent_root
, ret
);
6385 btrfs_release_path(path
);
6388 btrfs_free_path(path
);
6393 * when we free an block, it is possible (and likely) that we free the last
6394 * delayed ref for that extent as well. This searches the delayed ref tree for
6395 * a given extent, and if there are no other delayed refs to be processed, it
6396 * removes it from the tree.
6398 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6399 struct btrfs_root
*root
, u64 bytenr
)
6401 struct btrfs_delayed_ref_head
*head
;
6402 struct btrfs_delayed_ref_root
*delayed_refs
;
6405 delayed_refs
= &trans
->transaction
->delayed_refs
;
6406 spin_lock(&delayed_refs
->lock
);
6407 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6409 goto out_delayed_unlock
;
6411 spin_lock(&head
->lock
);
6412 if (!list_empty(&head
->ref_list
))
6415 if (head
->extent_op
) {
6416 if (!head
->must_insert_reserved
)
6418 btrfs_free_delayed_extent_op(head
->extent_op
);
6419 head
->extent_op
= NULL
;
6423 * waiting for the lock here would deadlock. If someone else has it
6424 * locked they are already in the process of dropping it anyway
6426 if (!mutex_trylock(&head
->mutex
))
6430 * at this point we have a head with no other entries. Go
6431 * ahead and process it.
6433 head
->node
.in_tree
= 0;
6434 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6436 atomic_dec(&delayed_refs
->num_entries
);
6439 * we don't take a ref on the node because we're removing it from the
6440 * tree, so we just steal the ref the tree was holding.
6442 delayed_refs
->num_heads
--;
6443 if (head
->processing
== 0)
6444 delayed_refs
->num_heads_ready
--;
6445 head
->processing
= 0;
6446 spin_unlock(&head
->lock
);
6447 spin_unlock(&delayed_refs
->lock
);
6449 BUG_ON(head
->extent_op
);
6450 if (head
->must_insert_reserved
)
6453 mutex_unlock(&head
->mutex
);
6454 btrfs_put_delayed_ref(&head
->node
);
6457 spin_unlock(&head
->lock
);
6460 spin_unlock(&delayed_refs
->lock
);
6464 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6465 struct btrfs_root
*root
,
6466 struct extent_buffer
*buf
,
6467 u64 parent
, int last_ref
)
6472 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6473 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6474 buf
->start
, buf
->len
,
6475 parent
, root
->root_key
.objectid
,
6476 btrfs_header_level(buf
),
6477 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
6478 BUG_ON(ret
); /* -ENOMEM */
6484 if (btrfs_header_generation(buf
) == trans
->transid
) {
6485 struct btrfs_block_group_cache
*cache
;
6487 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6488 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6493 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6495 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6496 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6497 btrfs_put_block_group(cache
);
6501 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6503 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6504 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6505 btrfs_put_block_group(cache
);
6506 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6511 add_pinned_bytes(root
->fs_info
, buf
->len
,
6512 btrfs_header_level(buf
),
6513 root
->root_key
.objectid
);
6516 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6519 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6522 /* Can return -ENOMEM */
6523 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6524 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6525 u64 owner
, u64 offset
, int no_quota
)
6528 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6530 if (btrfs_test_is_dummy_root(root
))
6533 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6536 * tree log blocks never actually go into the extent allocation
6537 * tree, just update pinning info and exit early.
6539 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6540 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6541 /* unlocks the pinned mutex */
6542 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6544 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6545 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6547 parent
, root_objectid
, (int)owner
,
6548 BTRFS_DROP_DELAYED_REF
, NULL
, no_quota
);
6550 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6552 parent
, root_objectid
, owner
,
6553 offset
, BTRFS_DROP_DELAYED_REF
,
6560 * when we wait for progress in the block group caching, its because
6561 * our allocation attempt failed at least once. So, we must sleep
6562 * and let some progress happen before we try again.
6564 * This function will sleep at least once waiting for new free space to
6565 * show up, and then it will check the block group free space numbers
6566 * for our min num_bytes. Another option is to have it go ahead
6567 * and look in the rbtree for a free extent of a given size, but this
6570 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6571 * any of the information in this block group.
6573 static noinline
void
6574 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6577 struct btrfs_caching_control
*caching_ctl
;
6579 caching_ctl
= get_caching_control(cache
);
6583 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6584 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6586 put_caching_control(caching_ctl
);
6590 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6592 struct btrfs_caching_control
*caching_ctl
;
6595 caching_ctl
= get_caching_control(cache
);
6597 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6599 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6600 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6602 put_caching_control(caching_ctl
);
6606 int __get_raid_index(u64 flags
)
6608 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6609 return BTRFS_RAID_RAID10
;
6610 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6611 return BTRFS_RAID_RAID1
;
6612 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6613 return BTRFS_RAID_DUP
;
6614 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6615 return BTRFS_RAID_RAID0
;
6616 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6617 return BTRFS_RAID_RAID5
;
6618 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6619 return BTRFS_RAID_RAID6
;
6621 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6624 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6626 return __get_raid_index(cache
->flags
);
6629 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6630 [BTRFS_RAID_RAID10
] = "raid10",
6631 [BTRFS_RAID_RAID1
] = "raid1",
6632 [BTRFS_RAID_DUP
] = "dup",
6633 [BTRFS_RAID_RAID0
] = "raid0",
6634 [BTRFS_RAID_SINGLE
] = "single",
6635 [BTRFS_RAID_RAID5
] = "raid5",
6636 [BTRFS_RAID_RAID6
] = "raid6",
6639 static const char *get_raid_name(enum btrfs_raid_types type
)
6641 if (type
>= BTRFS_NR_RAID_TYPES
)
6644 return btrfs_raid_type_names
[type
];
6647 enum btrfs_loop_type
{
6648 LOOP_CACHING_NOWAIT
= 0,
6649 LOOP_CACHING_WAIT
= 1,
6650 LOOP_ALLOC_CHUNK
= 2,
6651 LOOP_NO_EMPTY_SIZE
= 3,
6655 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6659 down_read(&cache
->data_rwsem
);
6663 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6666 btrfs_get_block_group(cache
);
6668 down_read(&cache
->data_rwsem
);
6671 static struct btrfs_block_group_cache
*
6672 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6673 struct btrfs_free_cluster
*cluster
,
6676 struct btrfs_block_group_cache
*used_bg
;
6677 bool locked
= false;
6679 spin_lock(&cluster
->refill_lock
);
6681 if (used_bg
== cluster
->block_group
)
6684 up_read(&used_bg
->data_rwsem
);
6685 btrfs_put_block_group(used_bg
);
6688 used_bg
= cluster
->block_group
;
6692 if (used_bg
== block_group
)
6695 btrfs_get_block_group(used_bg
);
6700 if (down_read_trylock(&used_bg
->data_rwsem
))
6703 spin_unlock(&cluster
->refill_lock
);
6704 down_read(&used_bg
->data_rwsem
);
6710 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
6714 up_read(&cache
->data_rwsem
);
6715 btrfs_put_block_group(cache
);
6719 * walks the btree of allocated extents and find a hole of a given size.
6720 * The key ins is changed to record the hole:
6721 * ins->objectid == start position
6722 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6723 * ins->offset == the size of the hole.
6724 * Any available blocks before search_start are skipped.
6726 * If there is no suitable free space, we will record the max size of
6727 * the free space extent currently.
6729 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6730 u64 num_bytes
, u64 empty_size
,
6731 u64 hint_byte
, struct btrfs_key
*ins
,
6732 u64 flags
, int delalloc
)
6735 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6736 struct btrfs_free_cluster
*last_ptr
= NULL
;
6737 struct btrfs_block_group_cache
*block_group
= NULL
;
6738 u64 search_start
= 0;
6739 u64 max_extent_size
= 0;
6740 int empty_cluster
= 2 * 1024 * 1024;
6741 struct btrfs_space_info
*space_info
;
6743 int index
= __get_raid_index(flags
);
6744 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6745 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6746 bool failed_cluster_refill
= false;
6747 bool failed_alloc
= false;
6748 bool use_cluster
= true;
6749 bool have_caching_bg
= false;
6751 WARN_ON(num_bytes
< root
->sectorsize
);
6752 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
6756 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6758 space_info
= __find_space_info(root
->fs_info
, flags
);
6760 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6765 * If the space info is for both data and metadata it means we have a
6766 * small filesystem and we can't use the clustering stuff.
6768 if (btrfs_mixed_space_info(space_info
))
6769 use_cluster
= false;
6771 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6772 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6773 if (!btrfs_test_opt(root
, SSD
))
6774 empty_cluster
= 64 * 1024;
6777 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6778 btrfs_test_opt(root
, SSD
)) {
6779 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6783 spin_lock(&last_ptr
->lock
);
6784 if (last_ptr
->block_group
)
6785 hint_byte
= last_ptr
->window_start
;
6786 spin_unlock(&last_ptr
->lock
);
6789 search_start
= max(search_start
, first_logical_byte(root
, 0));
6790 search_start
= max(search_start
, hint_byte
);
6795 if (search_start
== hint_byte
) {
6796 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6799 * we don't want to use the block group if it doesn't match our
6800 * allocation bits, or if its not cached.
6802 * However if we are re-searching with an ideal block group
6803 * picked out then we don't care that the block group is cached.
6805 if (block_group
&& block_group_bits(block_group
, flags
) &&
6806 block_group
->cached
!= BTRFS_CACHE_NO
) {
6807 down_read(&space_info
->groups_sem
);
6808 if (list_empty(&block_group
->list
) ||
6811 * someone is removing this block group,
6812 * we can't jump into the have_block_group
6813 * target because our list pointers are not
6816 btrfs_put_block_group(block_group
);
6817 up_read(&space_info
->groups_sem
);
6819 index
= get_block_group_index(block_group
);
6820 btrfs_lock_block_group(block_group
, delalloc
);
6821 goto have_block_group
;
6823 } else if (block_group
) {
6824 btrfs_put_block_group(block_group
);
6828 have_caching_bg
= false;
6829 down_read(&space_info
->groups_sem
);
6830 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6835 btrfs_grab_block_group(block_group
, delalloc
);
6836 search_start
= block_group
->key
.objectid
;
6839 * this can happen if we end up cycling through all the
6840 * raid types, but we want to make sure we only allocate
6841 * for the proper type.
6843 if (!block_group_bits(block_group
, flags
)) {
6844 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6845 BTRFS_BLOCK_GROUP_RAID1
|
6846 BTRFS_BLOCK_GROUP_RAID5
|
6847 BTRFS_BLOCK_GROUP_RAID6
|
6848 BTRFS_BLOCK_GROUP_RAID10
;
6851 * if they asked for extra copies and this block group
6852 * doesn't provide them, bail. This does allow us to
6853 * fill raid0 from raid1.
6855 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6860 cached
= block_group_cache_done(block_group
);
6861 if (unlikely(!cached
)) {
6862 ret
= cache_block_group(block_group
, 0);
6867 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6869 if (unlikely(block_group
->ro
))
6873 * Ok we want to try and use the cluster allocator, so
6877 struct btrfs_block_group_cache
*used_block_group
;
6878 unsigned long aligned_cluster
;
6880 * the refill lock keeps out other
6881 * people trying to start a new cluster
6883 used_block_group
= btrfs_lock_cluster(block_group
,
6886 if (!used_block_group
)
6887 goto refill_cluster
;
6889 if (used_block_group
!= block_group
&&
6890 (used_block_group
->ro
||
6891 !block_group_bits(used_block_group
, flags
)))
6892 goto release_cluster
;
6894 offset
= btrfs_alloc_from_cluster(used_block_group
,
6897 used_block_group
->key
.objectid
,
6900 /* we have a block, we're done */
6901 spin_unlock(&last_ptr
->refill_lock
);
6902 trace_btrfs_reserve_extent_cluster(root
,
6904 search_start
, num_bytes
);
6905 if (used_block_group
!= block_group
) {
6906 btrfs_release_block_group(block_group
,
6908 block_group
= used_block_group
;
6913 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6915 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6916 * set up a new clusters, so lets just skip it
6917 * and let the allocator find whatever block
6918 * it can find. If we reach this point, we
6919 * will have tried the cluster allocator
6920 * plenty of times and not have found
6921 * anything, so we are likely way too
6922 * fragmented for the clustering stuff to find
6925 * However, if the cluster is taken from the
6926 * current block group, release the cluster
6927 * first, so that we stand a better chance of
6928 * succeeding in the unclustered
6930 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6931 used_block_group
!= block_group
) {
6932 spin_unlock(&last_ptr
->refill_lock
);
6933 btrfs_release_block_group(used_block_group
,
6935 goto unclustered_alloc
;
6939 * this cluster didn't work out, free it and
6942 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6944 if (used_block_group
!= block_group
)
6945 btrfs_release_block_group(used_block_group
,
6948 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6949 spin_unlock(&last_ptr
->refill_lock
);
6950 goto unclustered_alloc
;
6953 aligned_cluster
= max_t(unsigned long,
6954 empty_cluster
+ empty_size
,
6955 block_group
->full_stripe_len
);
6957 /* allocate a cluster in this block group */
6958 ret
= btrfs_find_space_cluster(root
, block_group
,
6959 last_ptr
, search_start
,
6964 * now pull our allocation out of this
6967 offset
= btrfs_alloc_from_cluster(block_group
,
6973 /* we found one, proceed */
6974 spin_unlock(&last_ptr
->refill_lock
);
6975 trace_btrfs_reserve_extent_cluster(root
,
6976 block_group
, search_start
,
6980 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6981 && !failed_cluster_refill
) {
6982 spin_unlock(&last_ptr
->refill_lock
);
6984 failed_cluster_refill
= true;
6985 wait_block_group_cache_progress(block_group
,
6986 num_bytes
+ empty_cluster
+ empty_size
);
6987 goto have_block_group
;
6991 * at this point we either didn't find a cluster
6992 * or we weren't able to allocate a block from our
6993 * cluster. Free the cluster we've been trying
6994 * to use, and go to the next block group
6996 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6997 spin_unlock(&last_ptr
->refill_lock
);
7002 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7004 block_group
->free_space_ctl
->free_space
<
7005 num_bytes
+ empty_cluster
+ empty_size
) {
7006 if (block_group
->free_space_ctl
->free_space
>
7009 block_group
->free_space_ctl
->free_space
;
7010 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7013 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7015 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7016 num_bytes
, empty_size
,
7019 * If we didn't find a chunk, and we haven't failed on this
7020 * block group before, and this block group is in the middle of
7021 * caching and we are ok with waiting, then go ahead and wait
7022 * for progress to be made, and set failed_alloc to true.
7024 * If failed_alloc is true then we've already waited on this
7025 * block group once and should move on to the next block group.
7027 if (!offset
&& !failed_alloc
&& !cached
&&
7028 loop
> LOOP_CACHING_NOWAIT
) {
7029 wait_block_group_cache_progress(block_group
,
7030 num_bytes
+ empty_size
);
7031 failed_alloc
= true;
7032 goto have_block_group
;
7033 } else if (!offset
) {
7035 have_caching_bg
= true;
7039 search_start
= ALIGN(offset
, root
->stripesize
);
7041 /* move on to the next group */
7042 if (search_start
+ num_bytes
>
7043 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7044 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7048 if (offset
< search_start
)
7049 btrfs_add_free_space(block_group
, offset
,
7050 search_start
- offset
);
7051 BUG_ON(offset
> search_start
);
7053 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
7054 alloc_type
, delalloc
);
7055 if (ret
== -EAGAIN
) {
7056 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7060 /* we are all good, lets return */
7061 ins
->objectid
= search_start
;
7062 ins
->offset
= num_bytes
;
7064 trace_btrfs_reserve_extent(orig_root
, block_group
,
7065 search_start
, num_bytes
);
7066 btrfs_release_block_group(block_group
, delalloc
);
7069 failed_cluster_refill
= false;
7070 failed_alloc
= false;
7071 BUG_ON(index
!= get_block_group_index(block_group
));
7072 btrfs_release_block_group(block_group
, delalloc
);
7074 up_read(&space_info
->groups_sem
);
7076 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7079 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7083 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7084 * caching kthreads as we move along
7085 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7086 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7087 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7090 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7093 if (loop
== LOOP_ALLOC_CHUNK
) {
7094 struct btrfs_trans_handle
*trans
;
7097 trans
= current
->journal_info
;
7101 trans
= btrfs_join_transaction(root
);
7103 if (IS_ERR(trans
)) {
7104 ret
= PTR_ERR(trans
);
7108 ret
= do_chunk_alloc(trans
, root
, flags
,
7111 * Do not bail out on ENOSPC since we
7112 * can do more things.
7114 if (ret
< 0 && ret
!= -ENOSPC
)
7115 btrfs_abort_transaction(trans
,
7120 btrfs_end_transaction(trans
, root
);
7125 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7131 } else if (!ins
->objectid
) {
7133 } else if (ins
->objectid
) {
7138 ins
->offset
= max_extent_size
;
7142 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7143 int dump_block_groups
)
7145 struct btrfs_block_group_cache
*cache
;
7148 spin_lock(&info
->lock
);
7149 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7151 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7152 info
->bytes_reserved
- info
->bytes_readonly
,
7153 (info
->full
) ? "" : "not ");
7154 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7155 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7156 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7157 info
->bytes_reserved
, info
->bytes_may_use
,
7158 info
->bytes_readonly
);
7159 spin_unlock(&info
->lock
);
7161 if (!dump_block_groups
)
7164 down_read(&info
->groups_sem
);
7166 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7167 spin_lock(&cache
->lock
);
7168 printk(KERN_INFO
"BTRFS: "
7169 "block group %llu has %llu bytes, "
7170 "%llu used %llu pinned %llu reserved %s\n",
7171 cache
->key
.objectid
, cache
->key
.offset
,
7172 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7173 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7174 btrfs_dump_free_space(cache
, bytes
);
7175 spin_unlock(&cache
->lock
);
7177 if (++index
< BTRFS_NR_RAID_TYPES
)
7179 up_read(&info
->groups_sem
);
7182 int btrfs_reserve_extent(struct btrfs_root
*root
,
7183 u64 num_bytes
, u64 min_alloc_size
,
7184 u64 empty_size
, u64 hint_byte
,
7185 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7187 bool final_tried
= false;
7191 flags
= btrfs_get_alloc_profile(root
, is_data
);
7193 WARN_ON(num_bytes
< root
->sectorsize
);
7194 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
7197 if (ret
== -ENOSPC
) {
7198 if (!final_tried
&& ins
->offset
) {
7199 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7200 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7201 num_bytes
= max(num_bytes
, min_alloc_size
);
7202 if (num_bytes
== min_alloc_size
)
7205 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7206 struct btrfs_space_info
*sinfo
;
7208 sinfo
= __find_space_info(root
->fs_info
, flags
);
7209 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7212 dump_space_info(sinfo
, num_bytes
, 1);
7219 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7221 int pin
, int delalloc
)
7223 struct btrfs_block_group_cache
*cache
;
7226 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7228 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
7234 pin_down_extent(root
, cache
, start
, len
, 1);
7236 if (btrfs_test_opt(root
, DISCARD
))
7237 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
7238 btrfs_add_free_space(cache
, start
, len
);
7239 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
7242 btrfs_put_block_group(cache
);
7244 trace_btrfs_reserved_extent_free(root
, start
, len
);
7249 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
7250 u64 start
, u64 len
, int delalloc
)
7252 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
7255 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
7258 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
7261 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7262 struct btrfs_root
*root
,
7263 u64 parent
, u64 root_objectid
,
7264 u64 flags
, u64 owner
, u64 offset
,
7265 struct btrfs_key
*ins
, int ref_mod
)
7268 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7269 struct btrfs_extent_item
*extent_item
;
7270 struct btrfs_extent_inline_ref
*iref
;
7271 struct btrfs_path
*path
;
7272 struct extent_buffer
*leaf
;
7277 type
= BTRFS_SHARED_DATA_REF_KEY
;
7279 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7281 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7283 path
= btrfs_alloc_path();
7287 path
->leave_spinning
= 1;
7288 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7291 btrfs_free_path(path
);
7295 leaf
= path
->nodes
[0];
7296 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7297 struct btrfs_extent_item
);
7298 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7299 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7300 btrfs_set_extent_flags(leaf
, extent_item
,
7301 flags
| BTRFS_EXTENT_FLAG_DATA
);
7303 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7304 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7306 struct btrfs_shared_data_ref
*ref
;
7307 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7308 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7309 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7311 struct btrfs_extent_data_ref
*ref
;
7312 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7313 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7314 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7315 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7316 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7319 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7320 btrfs_free_path(path
);
7322 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
7323 if (ret
) { /* -ENOENT, logic error */
7324 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7325 ins
->objectid
, ins
->offset
);
7328 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7332 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7333 struct btrfs_root
*root
,
7334 u64 parent
, u64 root_objectid
,
7335 u64 flags
, struct btrfs_disk_key
*key
,
7336 int level
, struct btrfs_key
*ins
,
7340 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7341 struct btrfs_extent_item
*extent_item
;
7342 struct btrfs_tree_block_info
*block_info
;
7343 struct btrfs_extent_inline_ref
*iref
;
7344 struct btrfs_path
*path
;
7345 struct extent_buffer
*leaf
;
7346 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7347 u64 num_bytes
= ins
->offset
;
7348 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7351 if (!skinny_metadata
)
7352 size
+= sizeof(*block_info
);
7354 path
= btrfs_alloc_path();
7356 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7361 path
->leave_spinning
= 1;
7362 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7365 btrfs_free_path(path
);
7366 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7371 leaf
= path
->nodes
[0];
7372 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7373 struct btrfs_extent_item
);
7374 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7375 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7376 btrfs_set_extent_flags(leaf
, extent_item
,
7377 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7379 if (skinny_metadata
) {
7380 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7381 num_bytes
= root
->nodesize
;
7383 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7384 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7385 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7386 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7390 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7391 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7392 BTRFS_SHARED_BLOCK_REF_KEY
);
7393 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7395 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7396 BTRFS_TREE_BLOCK_REF_KEY
);
7397 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7400 btrfs_mark_buffer_dirty(leaf
);
7401 btrfs_free_path(path
);
7403 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
7405 if (ret
) { /* -ENOENT, logic error */
7406 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7407 ins
->objectid
, ins
->offset
);
7411 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7415 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7416 struct btrfs_root
*root
,
7417 u64 root_objectid
, u64 owner
,
7418 u64 offset
, struct btrfs_key
*ins
)
7422 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7424 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7426 root_objectid
, owner
, offset
,
7427 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
7432 * this is used by the tree logging recovery code. It records that
7433 * an extent has been allocated and makes sure to clear the free
7434 * space cache bits as well
7436 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7437 struct btrfs_root
*root
,
7438 u64 root_objectid
, u64 owner
, u64 offset
,
7439 struct btrfs_key
*ins
)
7442 struct btrfs_block_group_cache
*block_group
;
7445 * Mixed block groups will exclude before processing the log so we only
7446 * need to do the exlude dance if this fs isn't mixed.
7448 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7449 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7454 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7458 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7459 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7460 BUG_ON(ret
); /* logic error */
7461 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7462 0, owner
, offset
, ins
, 1);
7463 btrfs_put_block_group(block_group
);
7467 static struct extent_buffer
*
7468 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7469 u64 bytenr
, int level
)
7471 struct extent_buffer
*buf
;
7473 buf
= btrfs_find_create_tree_block(root
, bytenr
);
7475 return ERR_PTR(-ENOMEM
);
7476 btrfs_set_header_generation(buf
, trans
->transid
);
7477 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7478 btrfs_tree_lock(buf
);
7479 clean_tree_block(trans
, root
->fs_info
, buf
);
7480 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7482 btrfs_set_lock_blocking(buf
);
7483 btrfs_set_buffer_uptodate(buf
);
7485 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7486 buf
->log_index
= root
->log_transid
% 2;
7488 * we allow two log transactions at a time, use different
7489 * EXENT bit to differentiate dirty pages.
7491 if (buf
->log_index
== 0)
7492 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7493 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7495 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7496 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7498 buf
->log_index
= -1;
7499 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7500 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7502 trans
->blocks_used
++;
7503 /* this returns a buffer locked for blocking */
7507 static struct btrfs_block_rsv
*
7508 use_block_rsv(struct btrfs_trans_handle
*trans
,
7509 struct btrfs_root
*root
, u32 blocksize
)
7511 struct btrfs_block_rsv
*block_rsv
;
7512 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7514 bool global_updated
= false;
7516 block_rsv
= get_block_rsv(trans
, root
);
7518 if (unlikely(block_rsv
->size
== 0))
7521 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7525 if (block_rsv
->failfast
)
7526 return ERR_PTR(ret
);
7528 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7529 global_updated
= true;
7530 update_global_block_rsv(root
->fs_info
);
7534 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7535 static DEFINE_RATELIMIT_STATE(_rs
,
7536 DEFAULT_RATELIMIT_INTERVAL
* 10,
7537 /*DEFAULT_RATELIMIT_BURST*/ 1);
7538 if (__ratelimit(&_rs
))
7540 "BTRFS: block rsv returned %d\n", ret
);
7543 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7544 BTRFS_RESERVE_NO_FLUSH
);
7548 * If we couldn't reserve metadata bytes try and use some from
7549 * the global reserve if its space type is the same as the global
7552 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7553 block_rsv
->space_info
== global_rsv
->space_info
) {
7554 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7558 return ERR_PTR(ret
);
7561 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7562 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7564 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7565 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7569 * finds a free extent and does all the dirty work required for allocation
7570 * returns the key for the extent through ins, and a tree buffer for
7571 * the first block of the extent through buf.
7573 * returns the tree buffer or an ERR_PTR on error.
7575 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
7576 struct btrfs_root
*root
,
7577 u64 parent
, u64 root_objectid
,
7578 struct btrfs_disk_key
*key
, int level
,
7579 u64 hint
, u64 empty_size
)
7581 struct btrfs_key ins
;
7582 struct btrfs_block_rsv
*block_rsv
;
7583 struct extent_buffer
*buf
;
7584 struct btrfs_delayed_extent_op
*extent_op
;
7587 u32 blocksize
= root
->nodesize
;
7588 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7591 if (btrfs_test_is_dummy_root(root
)) {
7592 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7595 root
->alloc_bytenr
+= blocksize
;
7599 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7600 if (IS_ERR(block_rsv
))
7601 return ERR_CAST(block_rsv
);
7603 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7604 empty_size
, hint
, &ins
, 0, 0);
7608 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
7611 goto out_free_reserved
;
7614 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
7616 parent
= ins
.objectid
;
7617 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7621 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7622 extent_op
= btrfs_alloc_delayed_extent_op();
7628 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
7630 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
7631 extent_op
->flags_to_set
= flags
;
7632 if (skinny_metadata
)
7633 extent_op
->update_key
= 0;
7635 extent_op
->update_key
= 1;
7636 extent_op
->update_flags
= 1;
7637 extent_op
->is_data
= 0;
7638 extent_op
->level
= level
;
7640 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7641 ins
.objectid
, ins
.offset
,
7642 parent
, root_objectid
, level
,
7643 BTRFS_ADD_DELAYED_EXTENT
,
7646 goto out_free_delayed
;
7651 btrfs_free_delayed_extent_op(extent_op
);
7653 free_extent_buffer(buf
);
7655 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
7657 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
7658 return ERR_PTR(ret
);
7661 struct walk_control
{
7662 u64 refs
[BTRFS_MAX_LEVEL
];
7663 u64 flags
[BTRFS_MAX_LEVEL
];
7664 struct btrfs_key update_progress
;
7675 #define DROP_REFERENCE 1
7676 #define UPDATE_BACKREF 2
7678 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7679 struct btrfs_root
*root
,
7680 struct walk_control
*wc
,
7681 struct btrfs_path
*path
)
7689 struct btrfs_key key
;
7690 struct extent_buffer
*eb
;
7695 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7696 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7697 wc
->reada_count
= max(wc
->reada_count
, 2);
7699 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7700 wc
->reada_count
= min_t(int, wc
->reada_count
,
7701 BTRFS_NODEPTRS_PER_BLOCK(root
));
7704 eb
= path
->nodes
[wc
->level
];
7705 nritems
= btrfs_header_nritems(eb
);
7706 blocksize
= root
->nodesize
;
7708 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7709 if (nread
>= wc
->reada_count
)
7713 bytenr
= btrfs_node_blockptr(eb
, slot
);
7714 generation
= btrfs_node_ptr_generation(eb
, slot
);
7716 if (slot
== path
->slots
[wc
->level
])
7719 if (wc
->stage
== UPDATE_BACKREF
&&
7720 generation
<= root
->root_key
.offset
)
7723 /* We don't lock the tree block, it's OK to be racy here */
7724 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7725 wc
->level
- 1, 1, &refs
,
7727 /* We don't care about errors in readahead. */
7732 if (wc
->stage
== DROP_REFERENCE
) {
7736 if (wc
->level
== 1 &&
7737 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7739 if (!wc
->update_ref
||
7740 generation
<= root
->root_key
.offset
)
7742 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7743 ret
= btrfs_comp_cpu_keys(&key
,
7744 &wc
->update_progress
);
7748 if (wc
->level
== 1 &&
7749 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7753 readahead_tree_block(root
, bytenr
);
7756 wc
->reada_slot
= slot
;
7760 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7761 * for later qgroup accounting.
7763 * Current, this function does nothing.
7765 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
7766 struct btrfs_root
*root
,
7767 struct extent_buffer
*eb
)
7769 int nr
= btrfs_header_nritems(eb
);
7771 struct btrfs_key key
;
7772 struct btrfs_file_extent_item
*fi
;
7773 u64 bytenr
, num_bytes
;
7775 for (i
= 0; i
< nr
; i
++) {
7776 btrfs_item_key_to_cpu(eb
, &key
, i
);
7778 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7781 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
7782 /* filter out non qgroup-accountable extents */
7783 extent_type
= btrfs_file_extent_type(eb
, fi
);
7785 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
7788 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
7792 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
7798 * Walk up the tree from the bottom, freeing leaves and any interior
7799 * nodes which have had all slots visited. If a node (leaf or
7800 * interior) is freed, the node above it will have it's slot
7801 * incremented. The root node will never be freed.
7803 * At the end of this function, we should have a path which has all
7804 * slots incremented to the next position for a search. If we need to
7805 * read a new node it will be NULL and the node above it will have the
7806 * correct slot selected for a later read.
7808 * If we increment the root nodes slot counter past the number of
7809 * elements, 1 is returned to signal completion of the search.
7811 static int adjust_slots_upwards(struct btrfs_root
*root
,
7812 struct btrfs_path
*path
, int root_level
)
7816 struct extent_buffer
*eb
;
7818 if (root_level
== 0)
7821 while (level
<= root_level
) {
7822 eb
= path
->nodes
[level
];
7823 nr
= btrfs_header_nritems(eb
);
7824 path
->slots
[level
]++;
7825 slot
= path
->slots
[level
];
7826 if (slot
>= nr
|| level
== 0) {
7828 * Don't free the root - we will detect this
7829 * condition after our loop and return a
7830 * positive value for caller to stop walking the tree.
7832 if (level
!= root_level
) {
7833 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7834 path
->locks
[level
] = 0;
7836 free_extent_buffer(eb
);
7837 path
->nodes
[level
] = NULL
;
7838 path
->slots
[level
] = 0;
7842 * We have a valid slot to walk back down
7843 * from. Stop here so caller can process these
7852 eb
= path
->nodes
[root_level
];
7853 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
7860 * root_eb is the subtree root and is locked before this function is called.
7861 * TODO: Modify this function to mark all (including complete shared node)
7862 * to dirty_extent_root to allow it get accounted in qgroup.
7864 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
7865 struct btrfs_root
*root
,
7866 struct extent_buffer
*root_eb
,
7872 struct extent_buffer
*eb
= root_eb
;
7873 struct btrfs_path
*path
= NULL
;
7875 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
7876 BUG_ON(root_eb
== NULL
);
7878 if (!root
->fs_info
->quota_enabled
)
7881 if (!extent_buffer_uptodate(root_eb
)) {
7882 ret
= btrfs_read_buffer(root_eb
, root_gen
);
7887 if (root_level
== 0) {
7888 ret
= account_leaf_items(trans
, root
, root_eb
);
7892 path
= btrfs_alloc_path();
7897 * Walk down the tree. Missing extent blocks are filled in as
7898 * we go. Metadata is accounted every time we read a new
7901 * When we reach a leaf, we account for file extent items in it,
7902 * walk back up the tree (adjusting slot pointers as we go)
7903 * and restart the search process.
7905 extent_buffer_get(root_eb
); /* For path */
7906 path
->nodes
[root_level
] = root_eb
;
7907 path
->slots
[root_level
] = 0;
7908 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
7911 while (level
>= 0) {
7912 if (path
->nodes
[level
] == NULL
) {
7917 /* We need to get child blockptr/gen from
7918 * parent before we can read it. */
7919 eb
= path
->nodes
[level
+ 1];
7920 parent_slot
= path
->slots
[level
+ 1];
7921 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
7922 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
7924 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
7928 } else if (!extent_buffer_uptodate(eb
)) {
7929 free_extent_buffer(eb
);
7934 path
->nodes
[level
] = eb
;
7935 path
->slots
[level
] = 0;
7937 btrfs_tree_read_lock(eb
);
7938 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
7939 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
7943 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
7947 /* Nonzero return here means we completed our search */
7948 ret
= adjust_slots_upwards(root
, path
, root_level
);
7952 /* Restart search with new slots */
7961 btrfs_free_path(path
);
7967 * helper to process tree block while walking down the tree.
7969 * when wc->stage == UPDATE_BACKREF, this function updates
7970 * back refs for pointers in the block.
7972 * NOTE: return value 1 means we should stop walking down.
7974 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7975 struct btrfs_root
*root
,
7976 struct btrfs_path
*path
,
7977 struct walk_control
*wc
, int lookup_info
)
7979 int level
= wc
->level
;
7980 struct extent_buffer
*eb
= path
->nodes
[level
];
7981 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7984 if (wc
->stage
== UPDATE_BACKREF
&&
7985 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7989 * when reference count of tree block is 1, it won't increase
7990 * again. once full backref flag is set, we never clear it.
7993 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
7994 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
7995 BUG_ON(!path
->locks
[level
]);
7996 ret
= btrfs_lookup_extent_info(trans
, root
,
7997 eb
->start
, level
, 1,
8000 BUG_ON(ret
== -ENOMEM
);
8003 BUG_ON(wc
->refs
[level
] == 0);
8006 if (wc
->stage
== DROP_REFERENCE
) {
8007 if (wc
->refs
[level
] > 1)
8010 if (path
->locks
[level
] && !wc
->keep_locks
) {
8011 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8012 path
->locks
[level
] = 0;
8017 /* wc->stage == UPDATE_BACKREF */
8018 if (!(wc
->flags
[level
] & flag
)) {
8019 BUG_ON(!path
->locks
[level
]);
8020 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8021 BUG_ON(ret
); /* -ENOMEM */
8022 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8023 BUG_ON(ret
); /* -ENOMEM */
8024 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8026 btrfs_header_level(eb
), 0);
8027 BUG_ON(ret
); /* -ENOMEM */
8028 wc
->flags
[level
] |= flag
;
8032 * the block is shared by multiple trees, so it's not good to
8033 * keep the tree lock
8035 if (path
->locks
[level
] && level
> 0) {
8036 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8037 path
->locks
[level
] = 0;
8043 * helper to process tree block pointer.
8045 * when wc->stage == DROP_REFERENCE, this function checks
8046 * reference count of the block pointed to. if the block
8047 * is shared and we need update back refs for the subtree
8048 * rooted at the block, this function changes wc->stage to
8049 * UPDATE_BACKREF. if the block is shared and there is no
8050 * need to update back, this function drops the reference
8053 * NOTE: return value 1 means we should stop walking down.
8055 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8056 struct btrfs_root
*root
,
8057 struct btrfs_path
*path
,
8058 struct walk_control
*wc
, int *lookup_info
)
8064 struct btrfs_key key
;
8065 struct extent_buffer
*next
;
8066 int level
= wc
->level
;
8069 bool need_account
= false;
8071 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8072 path
->slots
[level
]);
8074 * if the lower level block was created before the snapshot
8075 * was created, we know there is no need to update back refs
8078 if (wc
->stage
== UPDATE_BACKREF
&&
8079 generation
<= root
->root_key
.offset
) {
8084 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8085 blocksize
= root
->nodesize
;
8087 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8089 next
= btrfs_find_create_tree_block(root
, bytenr
);
8092 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8096 btrfs_tree_lock(next
);
8097 btrfs_set_lock_blocking(next
);
8099 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8100 &wc
->refs
[level
- 1],
8101 &wc
->flags
[level
- 1]);
8103 btrfs_tree_unlock(next
);
8107 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8108 btrfs_err(root
->fs_info
, "Missing references.");
8113 if (wc
->stage
== DROP_REFERENCE
) {
8114 if (wc
->refs
[level
- 1] > 1) {
8115 need_account
= true;
8117 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8120 if (!wc
->update_ref
||
8121 generation
<= root
->root_key
.offset
)
8124 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8125 path
->slots
[level
]);
8126 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8130 wc
->stage
= UPDATE_BACKREF
;
8131 wc
->shared_level
= level
- 1;
8135 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8139 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8140 btrfs_tree_unlock(next
);
8141 free_extent_buffer(next
);
8147 if (reada
&& level
== 1)
8148 reada_walk_down(trans
, root
, wc
, path
);
8149 next
= read_tree_block(root
, bytenr
, generation
);
8151 return PTR_ERR(next
);
8152 } else if (!extent_buffer_uptodate(next
)) {
8153 free_extent_buffer(next
);
8156 btrfs_tree_lock(next
);
8157 btrfs_set_lock_blocking(next
);
8161 BUG_ON(level
!= btrfs_header_level(next
));
8162 path
->nodes
[level
] = next
;
8163 path
->slots
[level
] = 0;
8164 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8170 wc
->refs
[level
- 1] = 0;
8171 wc
->flags
[level
- 1] = 0;
8172 if (wc
->stage
== DROP_REFERENCE
) {
8173 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8174 parent
= path
->nodes
[level
]->start
;
8176 BUG_ON(root
->root_key
.objectid
!=
8177 btrfs_header_owner(path
->nodes
[level
]));
8182 ret
= account_shared_subtree(trans
, root
, next
,
8183 generation
, level
- 1);
8185 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
8186 "%d accounting shared subtree. Quota "
8187 "is out of sync, rescan required.\n",
8188 root
->fs_info
->sb
->s_id
, ret
);
8191 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8192 root
->root_key
.objectid
, level
- 1, 0, 0);
8193 BUG_ON(ret
); /* -ENOMEM */
8195 btrfs_tree_unlock(next
);
8196 free_extent_buffer(next
);
8202 * helper to process tree block while walking up the tree.
8204 * when wc->stage == DROP_REFERENCE, this function drops
8205 * reference count on the block.
8207 * when wc->stage == UPDATE_BACKREF, this function changes
8208 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8209 * to UPDATE_BACKREF previously while processing the block.
8211 * NOTE: return value 1 means we should stop walking up.
8213 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8214 struct btrfs_root
*root
,
8215 struct btrfs_path
*path
,
8216 struct walk_control
*wc
)
8219 int level
= wc
->level
;
8220 struct extent_buffer
*eb
= path
->nodes
[level
];
8223 if (wc
->stage
== UPDATE_BACKREF
) {
8224 BUG_ON(wc
->shared_level
< level
);
8225 if (level
< wc
->shared_level
)
8228 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8232 wc
->stage
= DROP_REFERENCE
;
8233 wc
->shared_level
= -1;
8234 path
->slots
[level
] = 0;
8237 * check reference count again if the block isn't locked.
8238 * we should start walking down the tree again if reference
8241 if (!path
->locks
[level
]) {
8243 btrfs_tree_lock(eb
);
8244 btrfs_set_lock_blocking(eb
);
8245 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8247 ret
= btrfs_lookup_extent_info(trans
, root
,
8248 eb
->start
, level
, 1,
8252 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8253 path
->locks
[level
] = 0;
8256 BUG_ON(wc
->refs
[level
] == 0);
8257 if (wc
->refs
[level
] == 1) {
8258 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8259 path
->locks
[level
] = 0;
8265 /* wc->stage == DROP_REFERENCE */
8266 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8268 if (wc
->refs
[level
] == 1) {
8270 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8271 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8273 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8274 BUG_ON(ret
); /* -ENOMEM */
8275 ret
= account_leaf_items(trans
, root
, eb
);
8277 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
8278 "%d accounting leaf items. Quota "
8279 "is out of sync, rescan required.\n",
8280 root
->fs_info
->sb
->s_id
, ret
);
8283 /* make block locked assertion in clean_tree_block happy */
8284 if (!path
->locks
[level
] &&
8285 btrfs_header_generation(eb
) == trans
->transid
) {
8286 btrfs_tree_lock(eb
);
8287 btrfs_set_lock_blocking(eb
);
8288 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8290 clean_tree_block(trans
, root
->fs_info
, eb
);
8293 if (eb
== root
->node
) {
8294 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8297 BUG_ON(root
->root_key
.objectid
!=
8298 btrfs_header_owner(eb
));
8300 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8301 parent
= path
->nodes
[level
+ 1]->start
;
8303 BUG_ON(root
->root_key
.objectid
!=
8304 btrfs_header_owner(path
->nodes
[level
+ 1]));
8307 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8309 wc
->refs
[level
] = 0;
8310 wc
->flags
[level
] = 0;
8314 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8315 struct btrfs_root
*root
,
8316 struct btrfs_path
*path
,
8317 struct walk_control
*wc
)
8319 int level
= wc
->level
;
8320 int lookup_info
= 1;
8323 while (level
>= 0) {
8324 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8331 if (path
->slots
[level
] >=
8332 btrfs_header_nritems(path
->nodes
[level
]))
8335 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8337 path
->slots
[level
]++;
8346 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8347 struct btrfs_root
*root
,
8348 struct btrfs_path
*path
,
8349 struct walk_control
*wc
, int max_level
)
8351 int level
= wc
->level
;
8354 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8355 while (level
< max_level
&& path
->nodes
[level
]) {
8357 if (path
->slots
[level
] + 1 <
8358 btrfs_header_nritems(path
->nodes
[level
])) {
8359 path
->slots
[level
]++;
8362 ret
= walk_up_proc(trans
, root
, path
, wc
);
8366 if (path
->locks
[level
]) {
8367 btrfs_tree_unlock_rw(path
->nodes
[level
],
8368 path
->locks
[level
]);
8369 path
->locks
[level
] = 0;
8371 free_extent_buffer(path
->nodes
[level
]);
8372 path
->nodes
[level
] = NULL
;
8380 * drop a subvolume tree.
8382 * this function traverses the tree freeing any blocks that only
8383 * referenced by the tree.
8385 * when a shared tree block is found. this function decreases its
8386 * reference count by one. if update_ref is true, this function
8387 * also make sure backrefs for the shared block and all lower level
8388 * blocks are properly updated.
8390 * If called with for_reloc == 0, may exit early with -EAGAIN
8392 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8393 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8396 struct btrfs_path
*path
;
8397 struct btrfs_trans_handle
*trans
;
8398 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8399 struct btrfs_root_item
*root_item
= &root
->root_item
;
8400 struct walk_control
*wc
;
8401 struct btrfs_key key
;
8405 bool root_dropped
= false;
8407 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8409 path
= btrfs_alloc_path();
8415 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8417 btrfs_free_path(path
);
8422 trans
= btrfs_start_transaction(tree_root
, 0);
8423 if (IS_ERR(trans
)) {
8424 err
= PTR_ERR(trans
);
8429 trans
->block_rsv
= block_rsv
;
8431 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
8432 level
= btrfs_header_level(root
->node
);
8433 path
->nodes
[level
] = btrfs_lock_root_node(root
);
8434 btrfs_set_lock_blocking(path
->nodes
[level
]);
8435 path
->slots
[level
] = 0;
8436 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8437 memset(&wc
->update_progress
, 0,
8438 sizeof(wc
->update_progress
));
8440 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
8441 memcpy(&wc
->update_progress
, &key
,
8442 sizeof(wc
->update_progress
));
8444 level
= root_item
->drop_level
;
8446 path
->lowest_level
= level
;
8447 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
8448 path
->lowest_level
= 0;
8456 * unlock our path, this is safe because only this
8457 * function is allowed to delete this snapshot
8459 btrfs_unlock_up_safe(path
, 0);
8461 level
= btrfs_header_level(root
->node
);
8463 btrfs_tree_lock(path
->nodes
[level
]);
8464 btrfs_set_lock_blocking(path
->nodes
[level
]);
8465 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8467 ret
= btrfs_lookup_extent_info(trans
, root
,
8468 path
->nodes
[level
]->start
,
8469 level
, 1, &wc
->refs
[level
],
8475 BUG_ON(wc
->refs
[level
] == 0);
8477 if (level
== root_item
->drop_level
)
8480 btrfs_tree_unlock(path
->nodes
[level
]);
8481 path
->locks
[level
] = 0;
8482 WARN_ON(wc
->refs
[level
] != 1);
8488 wc
->shared_level
= -1;
8489 wc
->stage
= DROP_REFERENCE
;
8490 wc
->update_ref
= update_ref
;
8492 wc
->for_reloc
= for_reloc
;
8493 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8497 ret
= walk_down_tree(trans
, root
, path
, wc
);
8503 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8510 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8514 if (wc
->stage
== DROP_REFERENCE
) {
8516 btrfs_node_key(path
->nodes
[level
],
8517 &root_item
->drop_progress
,
8518 path
->slots
[level
]);
8519 root_item
->drop_level
= level
;
8522 BUG_ON(wc
->level
== 0);
8523 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8524 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8525 ret
= btrfs_update_root(trans
, tree_root
,
8529 btrfs_abort_transaction(trans
, tree_root
, ret
);
8534 btrfs_end_transaction_throttle(trans
, tree_root
);
8535 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8536 pr_debug("BTRFS: drop snapshot early exit\n");
8541 trans
= btrfs_start_transaction(tree_root
, 0);
8542 if (IS_ERR(trans
)) {
8543 err
= PTR_ERR(trans
);
8547 trans
->block_rsv
= block_rsv
;
8550 btrfs_release_path(path
);
8554 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
8556 btrfs_abort_transaction(trans
, tree_root
, ret
);
8560 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
8561 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
8564 btrfs_abort_transaction(trans
, tree_root
, ret
);
8567 } else if (ret
> 0) {
8568 /* if we fail to delete the orphan item this time
8569 * around, it'll get picked up the next time.
8571 * The most common failure here is just -ENOENT.
8573 btrfs_del_orphan_item(trans
, tree_root
,
8574 root
->root_key
.objectid
);
8578 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
8579 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
8581 free_extent_buffer(root
->node
);
8582 free_extent_buffer(root
->commit_root
);
8583 btrfs_put_fs_root(root
);
8585 root_dropped
= true;
8587 btrfs_end_transaction_throttle(trans
, tree_root
);
8590 btrfs_free_path(path
);
8593 * So if we need to stop dropping the snapshot for whatever reason we
8594 * need to make sure to add it back to the dead root list so that we
8595 * keep trying to do the work later. This also cleans up roots if we
8596 * don't have it in the radix (like when we recover after a power fail
8597 * or unmount) so we don't leak memory.
8599 if (!for_reloc
&& root_dropped
== false)
8600 btrfs_add_dead_root(root
);
8601 if (err
&& err
!= -EAGAIN
)
8602 btrfs_std_error(root
->fs_info
, err
);
8607 * drop subtree rooted at tree block 'node'.
8609 * NOTE: this function will unlock and release tree block 'node'
8610 * only used by relocation code
8612 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
8613 struct btrfs_root
*root
,
8614 struct extent_buffer
*node
,
8615 struct extent_buffer
*parent
)
8617 struct btrfs_path
*path
;
8618 struct walk_control
*wc
;
8624 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
8626 path
= btrfs_alloc_path();
8630 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8632 btrfs_free_path(path
);
8636 btrfs_assert_tree_locked(parent
);
8637 parent_level
= btrfs_header_level(parent
);
8638 extent_buffer_get(parent
);
8639 path
->nodes
[parent_level
] = parent
;
8640 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
8642 btrfs_assert_tree_locked(node
);
8643 level
= btrfs_header_level(node
);
8644 path
->nodes
[level
] = node
;
8645 path
->slots
[level
] = 0;
8646 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8648 wc
->refs
[parent_level
] = 1;
8649 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8651 wc
->shared_level
= -1;
8652 wc
->stage
= DROP_REFERENCE
;
8656 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8659 wret
= walk_down_tree(trans
, root
, path
, wc
);
8665 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
8673 btrfs_free_path(path
);
8677 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8683 * if restripe for this chunk_type is on pick target profile and
8684 * return, otherwise do the usual balance
8686 stripped
= get_restripe_target(root
->fs_info
, flags
);
8688 return extended_to_chunk(stripped
);
8690 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
8692 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8693 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
8694 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8696 if (num_devices
== 1) {
8697 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8698 stripped
= flags
& ~stripped
;
8700 /* turn raid0 into single device chunks */
8701 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8704 /* turn mirroring into duplication */
8705 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8706 BTRFS_BLOCK_GROUP_RAID10
))
8707 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8709 /* they already had raid on here, just return */
8710 if (flags
& stripped
)
8713 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8714 stripped
= flags
& ~stripped
;
8716 /* switch duplicated blocks with raid1 */
8717 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8718 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8720 /* this is drive concat, leave it alone */
8726 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
8728 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8730 u64 min_allocable_bytes
;
8735 * We need some metadata space and system metadata space for
8736 * allocating chunks in some corner cases until we force to set
8737 * it to be readonly.
8740 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
8742 min_allocable_bytes
= 1 * 1024 * 1024;
8744 min_allocable_bytes
= 0;
8746 spin_lock(&sinfo
->lock
);
8747 spin_lock(&cache
->lock
);
8754 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8755 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8757 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8758 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
8759 min_allocable_bytes
<= sinfo
->total_bytes
) {
8760 sinfo
->bytes_readonly
+= num_bytes
;
8762 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
8766 spin_unlock(&cache
->lock
);
8767 spin_unlock(&sinfo
->lock
);
8771 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8772 struct btrfs_block_group_cache
*cache
)
8775 struct btrfs_trans_handle
*trans
;
8782 trans
= btrfs_join_transaction(root
);
8784 return PTR_ERR(trans
);
8787 * we're not allowed to set block groups readonly after the dirty
8788 * block groups cache has started writing. If it already started,
8789 * back off and let this transaction commit
8791 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
8792 if (trans
->transaction
->dirty_bg_run
) {
8793 u64 transid
= trans
->transid
;
8795 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
8796 btrfs_end_transaction(trans
, root
);
8798 ret
= btrfs_wait_for_commit(root
, transid
);
8805 * if we are changing raid levels, try to allocate a corresponding
8806 * block group with the new raid level.
8808 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8809 if (alloc_flags
!= cache
->flags
) {
8810 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8813 * ENOSPC is allowed here, we may have enough space
8814 * already allocated at the new raid level to
8823 ret
= set_block_group_ro(cache
, 0);
8826 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8827 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8831 ret
= set_block_group_ro(cache
, 0);
8833 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
8834 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8835 lock_chunks(root
->fs_info
->chunk_root
);
8836 check_system_chunk(trans
, root
, alloc_flags
);
8837 unlock_chunks(root
->fs_info
->chunk_root
);
8839 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
8841 btrfs_end_transaction(trans
, root
);
8845 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8846 struct btrfs_root
*root
, u64 type
)
8848 u64 alloc_flags
= get_alloc_profile(root
, type
);
8849 return do_chunk_alloc(trans
, root
, alloc_flags
,
8854 * helper to account the unused space of all the readonly block group in the
8855 * space_info. takes mirrors into account.
8857 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8859 struct btrfs_block_group_cache
*block_group
;
8863 /* It's df, we don't care if it's racey */
8864 if (list_empty(&sinfo
->ro_bgs
))
8867 spin_lock(&sinfo
->lock
);
8868 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
8869 spin_lock(&block_group
->lock
);
8871 if (!block_group
->ro
) {
8872 spin_unlock(&block_group
->lock
);
8876 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8877 BTRFS_BLOCK_GROUP_RAID10
|
8878 BTRFS_BLOCK_GROUP_DUP
))
8883 free_bytes
+= (block_group
->key
.offset
-
8884 btrfs_block_group_used(&block_group
->item
)) *
8887 spin_unlock(&block_group
->lock
);
8889 spin_unlock(&sinfo
->lock
);
8894 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
8895 struct btrfs_block_group_cache
*cache
)
8897 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8902 spin_lock(&sinfo
->lock
);
8903 spin_lock(&cache
->lock
);
8904 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8905 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8906 sinfo
->bytes_readonly
-= num_bytes
;
8908 list_del_init(&cache
->ro_list
);
8909 spin_unlock(&cache
->lock
);
8910 spin_unlock(&sinfo
->lock
);
8914 * checks to see if its even possible to relocate this block group.
8916 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8917 * ok to go ahead and try.
8919 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8921 struct btrfs_block_group_cache
*block_group
;
8922 struct btrfs_space_info
*space_info
;
8923 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8924 struct btrfs_device
*device
;
8925 struct btrfs_trans_handle
*trans
;
8934 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8936 /* odd, couldn't find the block group, leave it alone */
8940 min_free
= btrfs_block_group_used(&block_group
->item
);
8942 /* no bytes used, we're good */
8946 space_info
= block_group
->space_info
;
8947 spin_lock(&space_info
->lock
);
8949 full
= space_info
->full
;
8952 * if this is the last block group we have in this space, we can't
8953 * relocate it unless we're able to allocate a new chunk below.
8955 * Otherwise, we need to make sure we have room in the space to handle
8956 * all of the extents from this block group. If we can, we're good
8958 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8959 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8960 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8961 min_free
< space_info
->total_bytes
)) {
8962 spin_unlock(&space_info
->lock
);
8965 spin_unlock(&space_info
->lock
);
8968 * ok we don't have enough space, but maybe we have free space on our
8969 * devices to allocate new chunks for relocation, so loop through our
8970 * alloc devices and guess if we have enough space. if this block
8971 * group is going to be restriped, run checks against the target
8972 * profile instead of the current one.
8984 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
8986 index
= __get_raid_index(extended_to_chunk(target
));
8989 * this is just a balance, so if we were marked as full
8990 * we know there is no space for a new chunk
8995 index
= get_block_group_index(block_group
);
8998 if (index
== BTRFS_RAID_RAID10
) {
9002 } else if (index
== BTRFS_RAID_RAID1
) {
9004 } else if (index
== BTRFS_RAID_DUP
) {
9007 } else if (index
== BTRFS_RAID_RAID0
) {
9008 dev_min
= fs_devices
->rw_devices
;
9009 min_free
= div64_u64(min_free
, dev_min
);
9012 /* We need to do this so that we can look at pending chunks */
9013 trans
= btrfs_join_transaction(root
);
9014 if (IS_ERR(trans
)) {
9015 ret
= PTR_ERR(trans
);
9019 mutex_lock(&root
->fs_info
->chunk_mutex
);
9020 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9024 * check to make sure we can actually find a chunk with enough
9025 * space to fit our block group in.
9027 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9028 !device
->is_tgtdev_for_dev_replace
) {
9029 ret
= find_free_dev_extent(trans
, device
, min_free
,
9034 if (dev_nr
>= dev_min
)
9040 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9041 btrfs_end_transaction(trans
, root
);
9043 btrfs_put_block_group(block_group
);
9047 static int find_first_block_group(struct btrfs_root
*root
,
9048 struct btrfs_path
*path
, struct btrfs_key
*key
)
9051 struct btrfs_key found_key
;
9052 struct extent_buffer
*leaf
;
9055 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9060 slot
= path
->slots
[0];
9061 leaf
= path
->nodes
[0];
9062 if (slot
>= btrfs_header_nritems(leaf
)) {
9063 ret
= btrfs_next_leaf(root
, path
);
9070 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9072 if (found_key
.objectid
>= key
->objectid
&&
9073 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9083 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9085 struct btrfs_block_group_cache
*block_group
;
9089 struct inode
*inode
;
9091 block_group
= btrfs_lookup_first_block_group(info
, last
);
9092 while (block_group
) {
9093 spin_lock(&block_group
->lock
);
9094 if (block_group
->iref
)
9096 spin_unlock(&block_group
->lock
);
9097 block_group
= next_block_group(info
->tree_root
,
9107 inode
= block_group
->inode
;
9108 block_group
->iref
= 0;
9109 block_group
->inode
= NULL
;
9110 spin_unlock(&block_group
->lock
);
9112 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9113 btrfs_put_block_group(block_group
);
9117 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9119 struct btrfs_block_group_cache
*block_group
;
9120 struct btrfs_space_info
*space_info
;
9121 struct btrfs_caching_control
*caching_ctl
;
9124 down_write(&info
->commit_root_sem
);
9125 while (!list_empty(&info
->caching_block_groups
)) {
9126 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9127 struct btrfs_caching_control
, list
);
9128 list_del(&caching_ctl
->list
);
9129 put_caching_control(caching_ctl
);
9131 up_write(&info
->commit_root_sem
);
9133 spin_lock(&info
->unused_bgs_lock
);
9134 while (!list_empty(&info
->unused_bgs
)) {
9135 block_group
= list_first_entry(&info
->unused_bgs
,
9136 struct btrfs_block_group_cache
,
9138 list_del_init(&block_group
->bg_list
);
9139 btrfs_put_block_group(block_group
);
9141 spin_unlock(&info
->unused_bgs_lock
);
9143 spin_lock(&info
->block_group_cache_lock
);
9144 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9145 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9147 rb_erase(&block_group
->cache_node
,
9148 &info
->block_group_cache_tree
);
9149 RB_CLEAR_NODE(&block_group
->cache_node
);
9150 spin_unlock(&info
->block_group_cache_lock
);
9152 down_write(&block_group
->space_info
->groups_sem
);
9153 list_del(&block_group
->list
);
9154 up_write(&block_group
->space_info
->groups_sem
);
9156 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9157 wait_block_group_cache_done(block_group
);
9160 * We haven't cached this block group, which means we could
9161 * possibly have excluded extents on this block group.
9163 if (block_group
->cached
== BTRFS_CACHE_NO
||
9164 block_group
->cached
== BTRFS_CACHE_ERROR
)
9165 free_excluded_extents(info
->extent_root
, block_group
);
9167 btrfs_remove_free_space_cache(block_group
);
9168 btrfs_put_block_group(block_group
);
9170 spin_lock(&info
->block_group_cache_lock
);
9172 spin_unlock(&info
->block_group_cache_lock
);
9174 /* now that all the block groups are freed, go through and
9175 * free all the space_info structs. This is only called during
9176 * the final stages of unmount, and so we know nobody is
9177 * using them. We call synchronize_rcu() once before we start,
9178 * just to be on the safe side.
9182 release_global_block_rsv(info
);
9184 while (!list_empty(&info
->space_info
)) {
9187 space_info
= list_entry(info
->space_info
.next
,
9188 struct btrfs_space_info
,
9190 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
9191 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9192 space_info
->bytes_reserved
> 0 ||
9193 space_info
->bytes_may_use
> 0)) {
9194 dump_space_info(space_info
, 0, 0);
9197 list_del(&space_info
->list
);
9198 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9199 struct kobject
*kobj
;
9200 kobj
= space_info
->block_group_kobjs
[i
];
9201 space_info
->block_group_kobjs
[i
] = NULL
;
9207 kobject_del(&space_info
->kobj
);
9208 kobject_put(&space_info
->kobj
);
9213 static void __link_block_group(struct btrfs_space_info
*space_info
,
9214 struct btrfs_block_group_cache
*cache
)
9216 int index
= get_block_group_index(cache
);
9219 down_write(&space_info
->groups_sem
);
9220 if (list_empty(&space_info
->block_groups
[index
]))
9222 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9223 up_write(&space_info
->groups_sem
);
9226 struct raid_kobject
*rkobj
;
9229 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9232 rkobj
->raid_type
= index
;
9233 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9234 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9235 "%s", get_raid_name(index
));
9237 kobject_put(&rkobj
->kobj
);
9240 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9245 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9248 static struct btrfs_block_group_cache
*
9249 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
9251 struct btrfs_block_group_cache
*cache
;
9253 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9257 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9259 if (!cache
->free_space_ctl
) {
9264 cache
->key
.objectid
= start
;
9265 cache
->key
.offset
= size
;
9266 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9268 cache
->sectorsize
= root
->sectorsize
;
9269 cache
->fs_info
= root
->fs_info
;
9270 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
9271 &root
->fs_info
->mapping_tree
,
9273 atomic_set(&cache
->count
, 1);
9274 spin_lock_init(&cache
->lock
);
9275 init_rwsem(&cache
->data_rwsem
);
9276 INIT_LIST_HEAD(&cache
->list
);
9277 INIT_LIST_HEAD(&cache
->cluster_list
);
9278 INIT_LIST_HEAD(&cache
->bg_list
);
9279 INIT_LIST_HEAD(&cache
->ro_list
);
9280 INIT_LIST_HEAD(&cache
->dirty_list
);
9281 INIT_LIST_HEAD(&cache
->io_list
);
9282 btrfs_init_free_space_ctl(cache
);
9283 atomic_set(&cache
->trimming
, 0);
9288 int btrfs_read_block_groups(struct btrfs_root
*root
)
9290 struct btrfs_path
*path
;
9292 struct btrfs_block_group_cache
*cache
;
9293 struct btrfs_fs_info
*info
= root
->fs_info
;
9294 struct btrfs_space_info
*space_info
;
9295 struct btrfs_key key
;
9296 struct btrfs_key found_key
;
9297 struct extent_buffer
*leaf
;
9301 root
= info
->extent_root
;
9304 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9305 path
= btrfs_alloc_path();
9310 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
9311 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
9312 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
9314 if (btrfs_test_opt(root
, CLEAR_CACHE
))
9318 ret
= find_first_block_group(root
, path
, &key
);
9324 leaf
= path
->nodes
[0];
9325 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9327 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
9336 * When we mount with old space cache, we need to
9337 * set BTRFS_DC_CLEAR and set dirty flag.
9339 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9340 * truncate the old free space cache inode and
9342 * b) Setting 'dirty flag' makes sure that we flush
9343 * the new space cache info onto disk.
9345 if (btrfs_test_opt(root
, SPACE_CACHE
))
9346 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9349 read_extent_buffer(leaf
, &cache
->item
,
9350 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9351 sizeof(cache
->item
));
9352 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9354 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9355 btrfs_release_path(path
);
9358 * We need to exclude the super stripes now so that the space
9359 * info has super bytes accounted for, otherwise we'll think
9360 * we have more space than we actually do.
9362 ret
= exclude_super_stripes(root
, cache
);
9365 * We may have excluded something, so call this just in
9368 free_excluded_extents(root
, cache
);
9369 btrfs_put_block_group(cache
);
9374 * check for two cases, either we are full, and therefore
9375 * don't need to bother with the caching work since we won't
9376 * find any space, or we are empty, and we can just add all
9377 * the space in and be done with it. This saves us _alot_ of
9378 * time, particularly in the full case.
9380 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9381 cache
->last_byte_to_unpin
= (u64
)-1;
9382 cache
->cached
= BTRFS_CACHE_FINISHED
;
9383 free_excluded_extents(root
, cache
);
9384 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9385 cache
->last_byte_to_unpin
= (u64
)-1;
9386 cache
->cached
= BTRFS_CACHE_FINISHED
;
9387 add_new_free_space(cache
, root
->fs_info
,
9389 found_key
.objectid
+
9391 free_excluded_extents(root
, cache
);
9394 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9396 btrfs_remove_free_space_cache(cache
);
9397 btrfs_put_block_group(cache
);
9401 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9402 btrfs_block_group_used(&cache
->item
),
9405 btrfs_remove_free_space_cache(cache
);
9406 spin_lock(&info
->block_group_cache_lock
);
9407 rb_erase(&cache
->cache_node
,
9408 &info
->block_group_cache_tree
);
9409 RB_CLEAR_NODE(&cache
->cache_node
);
9410 spin_unlock(&info
->block_group_cache_lock
);
9411 btrfs_put_block_group(cache
);
9415 cache
->space_info
= space_info
;
9416 spin_lock(&cache
->space_info
->lock
);
9417 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9418 spin_unlock(&cache
->space_info
->lock
);
9420 __link_block_group(space_info
, cache
);
9422 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
9423 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
9424 set_block_group_ro(cache
, 1);
9425 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9426 spin_lock(&info
->unused_bgs_lock
);
9427 /* Should always be true but just in case. */
9428 if (list_empty(&cache
->bg_list
)) {
9429 btrfs_get_block_group(cache
);
9430 list_add_tail(&cache
->bg_list
,
9433 spin_unlock(&info
->unused_bgs_lock
);
9437 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
9438 if (!(get_alloc_profile(root
, space_info
->flags
) &
9439 (BTRFS_BLOCK_GROUP_RAID10
|
9440 BTRFS_BLOCK_GROUP_RAID1
|
9441 BTRFS_BLOCK_GROUP_RAID5
|
9442 BTRFS_BLOCK_GROUP_RAID6
|
9443 BTRFS_BLOCK_GROUP_DUP
)))
9446 * avoid allocating from un-mirrored block group if there are
9447 * mirrored block groups.
9449 list_for_each_entry(cache
,
9450 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
9452 set_block_group_ro(cache
, 1);
9453 list_for_each_entry(cache
,
9454 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
9456 set_block_group_ro(cache
, 1);
9459 init_global_block_rsv(info
);
9462 btrfs_free_path(path
);
9466 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
9467 struct btrfs_root
*root
)
9469 struct btrfs_block_group_cache
*block_group
, *tmp
;
9470 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
9471 struct btrfs_block_group_item item
;
9472 struct btrfs_key key
;
9475 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
9479 spin_lock(&block_group
->lock
);
9480 memcpy(&item
, &block_group
->item
, sizeof(item
));
9481 memcpy(&key
, &block_group
->key
, sizeof(key
));
9482 spin_unlock(&block_group
->lock
);
9484 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
9487 btrfs_abort_transaction(trans
, extent_root
, ret
);
9488 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
9489 key
.objectid
, key
.offset
);
9491 btrfs_abort_transaction(trans
, extent_root
, ret
);
9493 list_del_init(&block_group
->bg_list
);
9497 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
9498 struct btrfs_root
*root
, u64 bytes_used
,
9499 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
9503 struct btrfs_root
*extent_root
;
9504 struct btrfs_block_group_cache
*cache
;
9506 extent_root
= root
->fs_info
->extent_root
;
9508 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9510 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
9514 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
9515 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
9516 btrfs_set_block_group_flags(&cache
->item
, type
);
9518 cache
->flags
= type
;
9519 cache
->last_byte_to_unpin
= (u64
)-1;
9520 cache
->cached
= BTRFS_CACHE_FINISHED
;
9521 ret
= exclude_super_stripes(root
, cache
);
9524 * We may have excluded something, so call this just in
9527 free_excluded_extents(root
, cache
);
9528 btrfs_put_block_group(cache
);
9532 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
9533 chunk_offset
+ size
);
9535 free_excluded_extents(root
, cache
);
9538 * Call to ensure the corresponding space_info object is created and
9539 * assigned to our block group, but don't update its counters just yet.
9540 * We want our bg to be added to the rbtree with its ->space_info set.
9542 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0,
9543 &cache
->space_info
);
9545 btrfs_remove_free_space_cache(cache
);
9546 btrfs_put_block_group(cache
);
9550 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9552 btrfs_remove_free_space_cache(cache
);
9553 btrfs_put_block_group(cache
);
9558 * Now that our block group has its ->space_info set and is inserted in
9559 * the rbtree, update the space info's counters.
9561 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
9562 &cache
->space_info
);
9564 btrfs_remove_free_space_cache(cache
);
9565 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9566 rb_erase(&cache
->cache_node
,
9567 &root
->fs_info
->block_group_cache_tree
);
9568 RB_CLEAR_NODE(&cache
->cache_node
);
9569 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9570 btrfs_put_block_group(cache
);
9573 update_global_block_rsv(root
->fs_info
);
9575 spin_lock(&cache
->space_info
->lock
);
9576 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9577 spin_unlock(&cache
->space_info
->lock
);
9579 __link_block_group(cache
->space_info
, cache
);
9581 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
9583 set_avail_alloc_bits(extent_root
->fs_info
, type
);
9588 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
9590 u64 extra_flags
= chunk_to_extended(flags
) &
9591 BTRFS_EXTENDED_PROFILE_MASK
;
9593 write_seqlock(&fs_info
->profiles_lock
);
9594 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
9595 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
9596 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
9597 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
9598 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
9599 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
9600 write_sequnlock(&fs_info
->profiles_lock
);
9603 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
9604 struct btrfs_root
*root
, u64 group_start
,
9605 struct extent_map
*em
)
9607 struct btrfs_path
*path
;
9608 struct btrfs_block_group_cache
*block_group
;
9609 struct btrfs_free_cluster
*cluster
;
9610 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9611 struct btrfs_key key
;
9612 struct inode
*inode
;
9613 struct kobject
*kobj
= NULL
;
9617 struct btrfs_caching_control
*caching_ctl
= NULL
;
9620 root
= root
->fs_info
->extent_root
;
9622 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
9623 BUG_ON(!block_group
);
9624 BUG_ON(!block_group
->ro
);
9627 * Free the reserved super bytes from this block group before
9630 free_excluded_extents(root
, block_group
);
9632 memcpy(&key
, &block_group
->key
, sizeof(key
));
9633 index
= get_block_group_index(block_group
);
9634 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
9635 BTRFS_BLOCK_GROUP_RAID1
|
9636 BTRFS_BLOCK_GROUP_RAID10
))
9641 /* make sure this block group isn't part of an allocation cluster */
9642 cluster
= &root
->fs_info
->data_alloc_cluster
;
9643 spin_lock(&cluster
->refill_lock
);
9644 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9645 spin_unlock(&cluster
->refill_lock
);
9648 * make sure this block group isn't part of a metadata
9649 * allocation cluster
9651 cluster
= &root
->fs_info
->meta_alloc_cluster
;
9652 spin_lock(&cluster
->refill_lock
);
9653 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9654 spin_unlock(&cluster
->refill_lock
);
9656 path
= btrfs_alloc_path();
9663 * get the inode first so any iput calls done for the io_list
9664 * aren't the final iput (no unlinks allowed now)
9666 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
9668 mutex_lock(&trans
->transaction
->cache_write_mutex
);
9670 * make sure our free spache cache IO is done before remove the
9673 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9674 if (!list_empty(&block_group
->io_list
)) {
9675 list_del_init(&block_group
->io_list
);
9677 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
9679 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9680 btrfs_wait_cache_io(root
, trans
, block_group
,
9681 &block_group
->io_ctl
, path
,
9682 block_group
->key
.objectid
);
9683 btrfs_put_block_group(block_group
);
9684 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9687 if (!list_empty(&block_group
->dirty_list
)) {
9688 list_del_init(&block_group
->dirty_list
);
9689 btrfs_put_block_group(block_group
);
9691 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9692 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
9694 if (!IS_ERR(inode
)) {
9695 ret
= btrfs_orphan_add(trans
, inode
);
9697 btrfs_add_delayed_iput(inode
);
9701 /* One for the block groups ref */
9702 spin_lock(&block_group
->lock
);
9703 if (block_group
->iref
) {
9704 block_group
->iref
= 0;
9705 block_group
->inode
= NULL
;
9706 spin_unlock(&block_group
->lock
);
9709 spin_unlock(&block_group
->lock
);
9711 /* One for our lookup ref */
9712 btrfs_add_delayed_iput(inode
);
9715 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
9716 key
.offset
= block_group
->key
.objectid
;
9719 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
9723 btrfs_release_path(path
);
9725 ret
= btrfs_del_item(trans
, tree_root
, path
);
9728 btrfs_release_path(path
);
9731 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9732 rb_erase(&block_group
->cache_node
,
9733 &root
->fs_info
->block_group_cache_tree
);
9734 RB_CLEAR_NODE(&block_group
->cache_node
);
9736 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
9737 root
->fs_info
->first_logical_byte
= (u64
)-1;
9738 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9740 down_write(&block_group
->space_info
->groups_sem
);
9742 * we must use list_del_init so people can check to see if they
9743 * are still on the list after taking the semaphore
9745 list_del_init(&block_group
->list
);
9746 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
9747 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
9748 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
9749 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
9751 up_write(&block_group
->space_info
->groups_sem
);
9757 if (block_group
->has_caching_ctl
)
9758 caching_ctl
= get_caching_control(block_group
);
9759 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9760 wait_block_group_cache_done(block_group
);
9761 if (block_group
->has_caching_ctl
) {
9762 down_write(&root
->fs_info
->commit_root_sem
);
9764 struct btrfs_caching_control
*ctl
;
9766 list_for_each_entry(ctl
,
9767 &root
->fs_info
->caching_block_groups
, list
)
9768 if (ctl
->block_group
== block_group
) {
9770 atomic_inc(&caching_ctl
->count
);
9775 list_del_init(&caching_ctl
->list
);
9776 up_write(&root
->fs_info
->commit_root_sem
);
9778 /* Once for the caching bgs list and once for us. */
9779 put_caching_control(caching_ctl
);
9780 put_caching_control(caching_ctl
);
9784 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
9785 if (!list_empty(&block_group
->dirty_list
)) {
9788 if (!list_empty(&block_group
->io_list
)) {
9791 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
9792 btrfs_remove_free_space_cache(block_group
);
9794 spin_lock(&block_group
->space_info
->lock
);
9795 list_del_init(&block_group
->ro_list
);
9797 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
9798 WARN_ON(block_group
->space_info
->total_bytes
9799 < block_group
->key
.offset
);
9800 WARN_ON(block_group
->space_info
->bytes_readonly
9801 < block_group
->key
.offset
);
9802 WARN_ON(block_group
->space_info
->disk_total
9803 < block_group
->key
.offset
* factor
);
9805 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
9806 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
9807 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
9809 spin_unlock(&block_group
->space_info
->lock
);
9811 memcpy(&key
, &block_group
->key
, sizeof(key
));
9814 if (!list_empty(&em
->list
)) {
9815 /* We're in the transaction->pending_chunks list. */
9816 free_extent_map(em
);
9818 spin_lock(&block_group
->lock
);
9819 block_group
->removed
= 1;
9821 * At this point trimming can't start on this block group, because we
9822 * removed the block group from the tree fs_info->block_group_cache_tree
9823 * so no one can't find it anymore and even if someone already got this
9824 * block group before we removed it from the rbtree, they have already
9825 * incremented block_group->trimming - if they didn't, they won't find
9826 * any free space entries because we already removed them all when we
9827 * called btrfs_remove_free_space_cache().
9829 * And we must not remove the extent map from the fs_info->mapping_tree
9830 * to prevent the same logical address range and physical device space
9831 * ranges from being reused for a new block group. This is because our
9832 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9833 * completely transactionless, so while it is trimming a range the
9834 * currently running transaction might finish and a new one start,
9835 * allowing for new block groups to be created that can reuse the same
9836 * physical device locations unless we take this special care.
9838 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
9840 * Make sure a trimmer task always sees the em in the pinned_chunks list
9841 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9842 * before checking block_group->removed).
9846 * Our em might be in trans->transaction->pending_chunks which
9847 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9848 * and so is the fs_info->pinned_chunks list.
9850 * So at this point we must be holding the chunk_mutex to avoid
9851 * any races with chunk allocation (more specifically at
9852 * volumes.c:contains_pending_extent()), to ensure it always
9853 * sees the em, either in the pending_chunks list or in the
9854 * pinned_chunks list.
9856 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
9858 spin_unlock(&block_group
->lock
);
9861 struct extent_map_tree
*em_tree
;
9863 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9864 write_lock(&em_tree
->lock
);
9866 * The em might be in the pending_chunks list, so make sure the
9867 * chunk mutex is locked, since remove_extent_mapping() will
9868 * delete us from that list.
9870 remove_extent_mapping(em_tree
, em
);
9871 write_unlock(&em_tree
->lock
);
9872 /* once for the tree */
9873 free_extent_map(em
);
9876 unlock_chunks(root
);
9878 btrfs_put_block_group(block_group
);
9879 btrfs_put_block_group(block_group
);
9881 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
9887 ret
= btrfs_del_item(trans
, root
, path
);
9889 btrfs_free_path(path
);
9894 * Process the unused_bgs list and remove any that don't have any allocated
9895 * space inside of them.
9897 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
9899 struct btrfs_block_group_cache
*block_group
;
9900 struct btrfs_space_info
*space_info
;
9901 struct btrfs_root
*root
= fs_info
->extent_root
;
9902 struct btrfs_trans_handle
*trans
;
9908 spin_lock(&fs_info
->unused_bgs_lock
);
9909 while (!list_empty(&fs_info
->unused_bgs
)) {
9912 block_group
= list_first_entry(&fs_info
->unused_bgs
,
9913 struct btrfs_block_group_cache
,
9915 space_info
= block_group
->space_info
;
9916 list_del_init(&block_group
->bg_list
);
9917 if (ret
|| btrfs_mixed_space_info(space_info
)) {
9918 btrfs_put_block_group(block_group
);
9921 spin_unlock(&fs_info
->unused_bgs_lock
);
9923 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
9925 /* Don't want to race with allocators so take the groups_sem */
9926 down_write(&space_info
->groups_sem
);
9927 spin_lock(&block_group
->lock
);
9928 if (block_group
->reserved
||
9929 btrfs_block_group_used(&block_group
->item
) ||
9932 * We want to bail if we made new allocations or have
9933 * outstanding allocations in this block group. We do
9934 * the ro check in case balance is currently acting on
9937 spin_unlock(&block_group
->lock
);
9938 up_write(&space_info
->groups_sem
);
9941 spin_unlock(&block_group
->lock
);
9943 /* We don't want to force the issue, only flip if it's ok. */
9944 ret
= set_block_group_ro(block_group
, 0);
9945 up_write(&space_info
->groups_sem
);
9952 * Want to do this before we do anything else so we can recover
9953 * properly if we fail to join the transaction.
9955 /* 1 for btrfs_orphan_reserve_metadata() */
9956 trans
= btrfs_start_transaction(root
, 1);
9957 if (IS_ERR(trans
)) {
9958 btrfs_set_block_group_rw(root
, block_group
);
9959 ret
= PTR_ERR(trans
);
9964 * We could have pending pinned extents for this block group,
9965 * just delete them, we don't care about them anymore.
9967 start
= block_group
->key
.objectid
;
9968 end
= start
+ block_group
->key
.offset
- 1;
9970 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9971 * btrfs_finish_extent_commit(). If we are at transaction N,
9972 * another task might be running finish_extent_commit() for the
9973 * previous transaction N - 1, and have seen a range belonging
9974 * to the block group in freed_extents[] before we were able to
9975 * clear the whole block group range from freed_extents[]. This
9976 * means that task can lookup for the block group after we
9977 * unpinned it from freed_extents[] and removed it, leading to
9978 * a BUG_ON() at btrfs_unpin_extent_range().
9980 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
9981 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
9982 EXTENT_DIRTY
, GFP_NOFS
);
9984 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9985 btrfs_set_block_group_rw(root
, block_group
);
9988 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
9989 EXTENT_DIRTY
, GFP_NOFS
);
9991 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9992 btrfs_set_block_group_rw(root
, block_group
);
9995 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
9997 /* Reset pinned so btrfs_put_block_group doesn't complain */
9998 spin_lock(&space_info
->lock
);
9999 spin_lock(&block_group
->lock
);
10001 space_info
->bytes_pinned
-= block_group
->pinned
;
10002 space_info
->bytes_readonly
+= block_group
->pinned
;
10003 percpu_counter_add(&space_info
->total_bytes_pinned
,
10004 -block_group
->pinned
);
10005 block_group
->pinned
= 0;
10007 spin_unlock(&block_group
->lock
);
10008 spin_unlock(&space_info
->lock
);
10011 * Btrfs_remove_chunk will abort the transaction if things go
10014 ret
= btrfs_remove_chunk(trans
, root
,
10015 block_group
->key
.objectid
);
10017 btrfs_end_transaction(trans
, root
);
10019 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
10020 btrfs_put_block_group(block_group
);
10021 spin_lock(&fs_info
->unused_bgs_lock
);
10023 spin_unlock(&fs_info
->unused_bgs_lock
);
10026 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10028 struct btrfs_space_info
*space_info
;
10029 struct btrfs_super_block
*disk_super
;
10035 disk_super
= fs_info
->super_copy
;
10036 if (!btrfs_super_root(disk_super
))
10039 features
= btrfs_super_incompat_flags(disk_super
);
10040 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10043 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10044 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10049 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10050 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10052 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10053 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10057 flags
= BTRFS_BLOCK_GROUP_DATA
;
10058 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10064 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10066 return unpin_extent_range(root
, start
, end
, false);
10069 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
10071 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10072 struct btrfs_block_group_cache
*cache
= NULL
;
10077 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10081 * try to trim all FS space, our block group may start from non-zero.
10083 if (range
->len
== total_bytes
)
10084 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10086 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10089 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10090 btrfs_put_block_group(cache
);
10094 start
= max(range
->start
, cache
->key
.objectid
);
10095 end
= min(range
->start
+ range
->len
,
10096 cache
->key
.objectid
+ cache
->key
.offset
);
10098 if (end
- start
>= range
->minlen
) {
10099 if (!block_group_cache_done(cache
)) {
10100 ret
= cache_block_group(cache
, 0);
10102 btrfs_put_block_group(cache
);
10105 ret
= wait_block_group_cache_done(cache
);
10107 btrfs_put_block_group(cache
);
10111 ret
= btrfs_trim_block_group(cache
,
10117 trimmed
+= group_trimmed
;
10119 btrfs_put_block_group(cache
);
10124 cache
= next_block_group(fs_info
->tree_root
, cache
);
10127 range
->len
= trimmed
;
10132 * btrfs_{start,end}_write_no_snapshoting() are similar to
10133 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10134 * data into the page cache through nocow before the subvolume is snapshoted,
10135 * but flush the data into disk after the snapshot creation, or to prevent
10136 * operations while snapshoting is ongoing and that cause the snapshot to be
10137 * inconsistent (writes followed by expanding truncates for example).
10139 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
10141 percpu_counter_dec(&root
->subv_writers
->counter
);
10143 * Make sure counter is updated before we wake up
10147 if (waitqueue_active(&root
->subv_writers
->wait
))
10148 wake_up(&root
->subv_writers
->wait
);
10151 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
10153 if (atomic_read(&root
->will_be_snapshoted
))
10156 percpu_counter_inc(&root
->subv_writers
->counter
);
10158 * Make sure counter is updated before we check for snapshot creation.
10161 if (atomic_read(&root
->will_be_snapshoted
)) {
10162 btrfs_end_write_no_snapshoting(root
);