2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
37 #include "extent_map.h"
39 #include "transaction.h"
40 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
65 BTRFS_RBIO_READ_REBUILD
= 1,
66 BTRFS_RBIO_PARITY_SCRUB
= 2,
69 struct btrfs_raid_bio
{
70 struct btrfs_fs_info
*fs_info
;
71 struct btrfs_bio
*bbio
;
73 /* while we're doing rmw on a stripe
74 * we put it into a hash table so we can
75 * lock the stripe and merge more rbios
78 struct list_head hash_list
;
81 * LRU list for the stripe cache
83 struct list_head stripe_cache
;
86 * for scheduling work in the helper threads
88 struct btrfs_work work
;
91 * bio list and bio_list_lock are used
92 * to add more bios into the stripe
93 * in hopes of avoiding the full rmw
95 struct bio_list bio_list
;
96 spinlock_t bio_list_lock
;
98 /* also protected by the bio_list_lock, the
99 * plug list is used by the plugging code
100 * to collect partial bios while plugged. The
101 * stripe locking code also uses it to hand off
102 * the stripe lock to the next pending IO
104 struct list_head plug_list
;
107 * flags that tell us if it is safe to
108 * merge with this bio
112 /* size of each individual stripe on disk */
115 /* number of data stripes (no p/q) */
122 * set if we're doing a parity rebuild
123 * for a read from higher up, which is handled
124 * differently from a parity rebuild as part of
127 enum btrfs_rbio_ops operation
;
129 /* first bad stripe */
132 /* second bad stripe (for raid6 use) */
137 * number of pages needed to represent the full
143 * size of all the bios in the bio_list. This
144 * helps us decide if the rbio maps to a full
153 atomic_t stripes_pending
;
157 * these are two arrays of pointers. We allocate the
158 * rbio big enough to hold them both and setup their
159 * locations when the rbio is allocated
162 /* pointers to pages that we allocated for
163 * reading/writing stripes directly from the disk (including P/Q)
165 struct page
**stripe_pages
;
168 * pointers to the pages in the bio_list. Stored
169 * here for faster lookup
171 struct page
**bio_pages
;
174 * bitmap to record which horizontal stripe has data
176 unsigned long *dbitmap
;
179 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
);
180 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
);
181 static void rmw_work(struct btrfs_work
*work
);
182 static void read_rebuild_work(struct btrfs_work
*work
);
183 static void async_rmw_stripe(struct btrfs_raid_bio
*rbio
);
184 static void async_read_rebuild(struct btrfs_raid_bio
*rbio
);
185 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
, struct bio
*bio
);
186 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
);
187 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
);
188 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
);
189 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
);
191 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
193 static void async_scrub_parity(struct btrfs_raid_bio
*rbio
);
196 * the stripe hash table is used for locking, and to collect
197 * bios in hopes of making a full stripe
199 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info
*info
)
201 struct btrfs_stripe_hash_table
*table
;
202 struct btrfs_stripe_hash_table
*x
;
203 struct btrfs_stripe_hash
*cur
;
204 struct btrfs_stripe_hash
*h
;
205 int num_entries
= 1 << BTRFS_STRIPE_HASH_TABLE_BITS
;
209 if (info
->stripe_hash_table
)
213 * The table is large, starting with order 4 and can go as high as
214 * order 7 in case lock debugging is turned on.
216 * Try harder to allocate and fallback to vmalloc to lower the chance
217 * of a failing mount.
219 table_size
= sizeof(*table
) + sizeof(*h
) * num_entries
;
220 table
= kzalloc(table_size
, GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
222 table
= vzalloc(table_size
);
227 spin_lock_init(&table
->cache_lock
);
228 INIT_LIST_HEAD(&table
->stripe_cache
);
232 for (i
= 0; i
< num_entries
; i
++) {
234 INIT_LIST_HEAD(&cur
->hash_list
);
235 spin_lock_init(&cur
->lock
);
236 init_waitqueue_head(&cur
->wait
);
239 x
= cmpxchg(&info
->stripe_hash_table
, NULL
, table
);
246 * caching an rbio means to copy anything from the
247 * bio_pages array into the stripe_pages array. We
248 * use the page uptodate bit in the stripe cache array
249 * to indicate if it has valid data
251 * once the caching is done, we set the cache ready
254 static void cache_rbio_pages(struct btrfs_raid_bio
*rbio
)
261 ret
= alloc_rbio_pages(rbio
);
265 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
266 if (!rbio
->bio_pages
[i
])
269 s
= kmap(rbio
->bio_pages
[i
]);
270 d
= kmap(rbio
->stripe_pages
[i
]);
272 memcpy(d
, s
, PAGE_CACHE_SIZE
);
274 kunmap(rbio
->bio_pages
[i
]);
275 kunmap(rbio
->stripe_pages
[i
]);
276 SetPageUptodate(rbio
->stripe_pages
[i
]);
278 set_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
282 * we hash on the first logical address of the stripe
284 static int rbio_bucket(struct btrfs_raid_bio
*rbio
)
286 u64 num
= rbio
->bbio
->raid_map
[0];
289 * we shift down quite a bit. We're using byte
290 * addressing, and most of the lower bits are zeros.
291 * This tends to upset hash_64, and it consistently
292 * returns just one or two different values.
294 * shifting off the lower bits fixes things.
296 return hash_64(num
>> 16, BTRFS_STRIPE_HASH_TABLE_BITS
);
300 * stealing an rbio means taking all the uptodate pages from the stripe
301 * array in the source rbio and putting them into the destination rbio
303 static void steal_rbio(struct btrfs_raid_bio
*src
, struct btrfs_raid_bio
*dest
)
309 if (!test_bit(RBIO_CACHE_READY_BIT
, &src
->flags
))
312 for (i
= 0; i
< dest
->nr_pages
; i
++) {
313 s
= src
->stripe_pages
[i
];
314 if (!s
|| !PageUptodate(s
)) {
318 d
= dest
->stripe_pages
[i
];
322 dest
->stripe_pages
[i
] = s
;
323 src
->stripe_pages
[i
] = NULL
;
328 * merging means we take the bio_list from the victim and
329 * splice it into the destination. The victim should
330 * be discarded afterwards.
332 * must be called with dest->rbio_list_lock held
334 static void merge_rbio(struct btrfs_raid_bio
*dest
,
335 struct btrfs_raid_bio
*victim
)
337 bio_list_merge(&dest
->bio_list
, &victim
->bio_list
);
338 dest
->bio_list_bytes
+= victim
->bio_list_bytes
;
339 dest
->generic_bio_cnt
+= victim
->generic_bio_cnt
;
340 bio_list_init(&victim
->bio_list
);
344 * used to prune items that are in the cache. The caller
345 * must hold the hash table lock.
347 static void __remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
349 int bucket
= rbio_bucket(rbio
);
350 struct btrfs_stripe_hash_table
*table
;
351 struct btrfs_stripe_hash
*h
;
355 * check the bit again under the hash table lock.
357 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
360 table
= rbio
->fs_info
->stripe_hash_table
;
361 h
= table
->table
+ bucket
;
363 /* hold the lock for the bucket because we may be
364 * removing it from the hash table
369 * hold the lock for the bio list because we need
370 * to make sure the bio list is empty
372 spin_lock(&rbio
->bio_list_lock
);
374 if (test_and_clear_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
375 list_del_init(&rbio
->stripe_cache
);
376 table
->cache_size
-= 1;
379 /* if the bio list isn't empty, this rbio is
380 * still involved in an IO. We take it out
381 * of the cache list, and drop the ref that
382 * was held for the list.
384 * If the bio_list was empty, we also remove
385 * the rbio from the hash_table, and drop
386 * the corresponding ref
388 if (bio_list_empty(&rbio
->bio_list
)) {
389 if (!list_empty(&rbio
->hash_list
)) {
390 list_del_init(&rbio
->hash_list
);
391 atomic_dec(&rbio
->refs
);
392 BUG_ON(!list_empty(&rbio
->plug_list
));
397 spin_unlock(&rbio
->bio_list_lock
);
398 spin_unlock(&h
->lock
);
401 __free_raid_bio(rbio
);
405 * prune a given rbio from the cache
407 static void remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
409 struct btrfs_stripe_hash_table
*table
;
412 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
415 table
= rbio
->fs_info
->stripe_hash_table
;
417 spin_lock_irqsave(&table
->cache_lock
, flags
);
418 __remove_rbio_from_cache(rbio
);
419 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
423 * remove everything in the cache
425 static void btrfs_clear_rbio_cache(struct btrfs_fs_info
*info
)
427 struct btrfs_stripe_hash_table
*table
;
429 struct btrfs_raid_bio
*rbio
;
431 table
= info
->stripe_hash_table
;
433 spin_lock_irqsave(&table
->cache_lock
, flags
);
434 while (!list_empty(&table
->stripe_cache
)) {
435 rbio
= list_entry(table
->stripe_cache
.next
,
436 struct btrfs_raid_bio
,
438 __remove_rbio_from_cache(rbio
);
440 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
444 * remove all cached entries and free the hash table
447 void btrfs_free_stripe_hash_table(struct btrfs_fs_info
*info
)
449 if (!info
->stripe_hash_table
)
451 btrfs_clear_rbio_cache(info
);
452 kvfree(info
->stripe_hash_table
);
453 info
->stripe_hash_table
= NULL
;
457 * insert an rbio into the stripe cache. It
458 * must have already been prepared by calling
461 * If this rbio was already cached, it gets
462 * moved to the front of the lru.
464 * If the size of the rbio cache is too big, we
467 static void cache_rbio(struct btrfs_raid_bio
*rbio
)
469 struct btrfs_stripe_hash_table
*table
;
472 if (!test_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
))
475 table
= rbio
->fs_info
->stripe_hash_table
;
477 spin_lock_irqsave(&table
->cache_lock
, flags
);
478 spin_lock(&rbio
->bio_list_lock
);
480 /* bump our ref if we were not in the list before */
481 if (!test_and_set_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
482 atomic_inc(&rbio
->refs
);
484 if (!list_empty(&rbio
->stripe_cache
)){
485 list_move(&rbio
->stripe_cache
, &table
->stripe_cache
);
487 list_add(&rbio
->stripe_cache
, &table
->stripe_cache
);
488 table
->cache_size
+= 1;
491 spin_unlock(&rbio
->bio_list_lock
);
493 if (table
->cache_size
> RBIO_CACHE_SIZE
) {
494 struct btrfs_raid_bio
*found
;
496 found
= list_entry(table
->stripe_cache
.prev
,
497 struct btrfs_raid_bio
,
501 __remove_rbio_from_cache(found
);
504 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
513 static void run_xor(void **pages
, int src_cnt
, ssize_t len
)
517 void *dest
= pages
[src_cnt
];
520 xor_src_cnt
= min(src_cnt
, MAX_XOR_BLOCKS
);
521 xor_blocks(xor_src_cnt
, len
, dest
, pages
+ src_off
);
523 src_cnt
-= xor_src_cnt
;
524 src_off
+= xor_src_cnt
;
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
535 static int __rbio_is_full(struct btrfs_raid_bio
*rbio
)
537 unsigned long size
= rbio
->bio_list_bytes
;
540 if (size
!= rbio
->nr_data
* rbio
->stripe_len
)
543 BUG_ON(size
> rbio
->nr_data
* rbio
->stripe_len
);
547 static int rbio_is_full(struct btrfs_raid_bio
*rbio
)
552 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
553 ret
= __rbio_is_full(rbio
);
554 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
568 static int rbio_can_merge(struct btrfs_raid_bio
*last
,
569 struct btrfs_raid_bio
*cur
)
571 if (test_bit(RBIO_RMW_LOCKED_BIT
, &last
->flags
) ||
572 test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
))
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbio's though, other functions
582 if (test_bit(RBIO_CACHE_BIT
, &last
->flags
) ||
583 test_bit(RBIO_CACHE_BIT
, &cur
->flags
))
586 if (last
->bbio
->raid_map
[0] !=
587 cur
->bbio
->raid_map
[0])
590 /* we can't merge with different operations */
591 if (last
->operation
!= cur
->operation
)
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
601 if (last
->operation
== BTRFS_RBIO_PARITY_SCRUB
||
602 cur
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
609 * helper to index into the pstripe
611 static struct page
*rbio_pstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
613 index
+= (rbio
->nr_data
* rbio
->stripe_len
) >> PAGE_CACHE_SHIFT
;
614 return rbio
->stripe_pages
[index
];
618 * helper to index into the qstripe, returns null
619 * if there is no qstripe
621 static struct page
*rbio_qstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
623 if (rbio
->nr_data
+ 1 == rbio
->real_stripes
)
626 index
+= ((rbio
->nr_data
+ 1) * rbio
->stripe_len
) >>
628 return rbio
->stripe_pages
[index
];
632 * The first stripe in the table for a logical address
633 * has the lock. rbios are added in one of three ways:
635 * 1) Nobody has the stripe locked yet. The rbio is given
636 * the lock and 0 is returned. The caller must start the IO
639 * 2) Someone has the stripe locked, but we're able to merge
640 * with the lock owner. The rbio is freed and the IO will
641 * start automatically along with the existing rbio. 1 is returned.
643 * 3) Someone has the stripe locked, but we're not able to merge.
644 * The rbio is added to the lock owner's plug list, or merged into
645 * an rbio already on the plug list. When the lock owner unlocks,
646 * the next rbio on the list is run and the IO is started automatically.
649 * If we return 0, the caller still owns the rbio and must continue with
650 * IO submission. If we return 1, the caller must assume the rbio has
651 * already been freed.
653 static noinline
int lock_stripe_add(struct btrfs_raid_bio
*rbio
)
655 int bucket
= rbio_bucket(rbio
);
656 struct btrfs_stripe_hash
*h
= rbio
->fs_info
->stripe_hash_table
->table
+ bucket
;
657 struct btrfs_raid_bio
*cur
;
658 struct btrfs_raid_bio
*pending
;
661 struct btrfs_raid_bio
*freeit
= NULL
;
662 struct btrfs_raid_bio
*cache_drop
= NULL
;
666 spin_lock_irqsave(&h
->lock
, flags
);
667 list_for_each_entry(cur
, &h
->hash_list
, hash_list
) {
669 if (cur
->bbio
->raid_map
[0] == rbio
->bbio
->raid_map
[0]) {
670 spin_lock(&cur
->bio_list_lock
);
672 /* can we steal this cached rbio's pages? */
673 if (bio_list_empty(&cur
->bio_list
) &&
674 list_empty(&cur
->plug_list
) &&
675 test_bit(RBIO_CACHE_BIT
, &cur
->flags
) &&
676 !test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
)) {
677 list_del_init(&cur
->hash_list
);
678 atomic_dec(&cur
->refs
);
680 steal_rbio(cur
, rbio
);
682 spin_unlock(&cur
->bio_list_lock
);
687 /* can we merge into the lock owner? */
688 if (rbio_can_merge(cur
, rbio
)) {
689 merge_rbio(cur
, rbio
);
690 spin_unlock(&cur
->bio_list_lock
);
698 * we couldn't merge with the running
699 * rbio, see if we can merge with the
700 * pending ones. We don't have to
701 * check for rmw_locked because there
702 * is no way they are inside finish_rmw
705 list_for_each_entry(pending
, &cur
->plug_list
,
707 if (rbio_can_merge(pending
, rbio
)) {
708 merge_rbio(pending
, rbio
);
709 spin_unlock(&cur
->bio_list_lock
);
716 /* no merging, put us on the tail of the plug list,
717 * our rbio will be started with the currently
718 * running rbio unlocks
720 list_add_tail(&rbio
->plug_list
, &cur
->plug_list
);
721 spin_unlock(&cur
->bio_list_lock
);
727 atomic_inc(&rbio
->refs
);
728 list_add(&rbio
->hash_list
, &h
->hash_list
);
730 spin_unlock_irqrestore(&h
->lock
, flags
);
732 remove_rbio_from_cache(cache_drop
);
734 __free_raid_bio(freeit
);
739 * called as rmw or parity rebuild is completed. If the plug list has more
740 * rbios waiting for this stripe, the next one on the list will be started
742 static noinline
void unlock_stripe(struct btrfs_raid_bio
*rbio
)
745 struct btrfs_stripe_hash
*h
;
749 bucket
= rbio_bucket(rbio
);
750 h
= rbio
->fs_info
->stripe_hash_table
->table
+ bucket
;
752 if (list_empty(&rbio
->plug_list
))
755 spin_lock_irqsave(&h
->lock
, flags
);
756 spin_lock(&rbio
->bio_list_lock
);
758 if (!list_empty(&rbio
->hash_list
)) {
760 * if we're still cached and there is no other IO
761 * to perform, just leave this rbio here for others
762 * to steal from later
764 if (list_empty(&rbio
->plug_list
) &&
765 test_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
767 clear_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
768 BUG_ON(!bio_list_empty(&rbio
->bio_list
));
772 list_del_init(&rbio
->hash_list
);
773 atomic_dec(&rbio
->refs
);
776 * we use the plug list to hold all the rbios
777 * waiting for the chance to lock this stripe.
778 * hand the lock over to one of them.
780 if (!list_empty(&rbio
->plug_list
)) {
781 struct btrfs_raid_bio
*next
;
782 struct list_head
*head
= rbio
->plug_list
.next
;
784 next
= list_entry(head
, struct btrfs_raid_bio
,
787 list_del_init(&rbio
->plug_list
);
789 list_add(&next
->hash_list
, &h
->hash_list
);
790 atomic_inc(&next
->refs
);
791 spin_unlock(&rbio
->bio_list_lock
);
792 spin_unlock_irqrestore(&h
->lock
, flags
);
794 if (next
->operation
== BTRFS_RBIO_READ_REBUILD
)
795 async_read_rebuild(next
);
796 else if (next
->operation
== BTRFS_RBIO_WRITE
) {
797 steal_rbio(rbio
, next
);
798 async_rmw_stripe(next
);
799 } else if (next
->operation
== BTRFS_RBIO_PARITY_SCRUB
) {
800 steal_rbio(rbio
, next
);
801 async_scrub_parity(next
);
805 } else if (waitqueue_active(&h
->wait
)) {
806 spin_unlock(&rbio
->bio_list_lock
);
807 spin_unlock_irqrestore(&h
->lock
, flags
);
813 spin_unlock(&rbio
->bio_list_lock
);
814 spin_unlock_irqrestore(&h
->lock
, flags
);
818 remove_rbio_from_cache(rbio
);
821 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
)
825 WARN_ON(atomic_read(&rbio
->refs
) < 0);
826 if (!atomic_dec_and_test(&rbio
->refs
))
829 WARN_ON(!list_empty(&rbio
->stripe_cache
));
830 WARN_ON(!list_empty(&rbio
->hash_list
));
831 WARN_ON(!bio_list_empty(&rbio
->bio_list
));
833 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
834 if (rbio
->stripe_pages
[i
]) {
835 __free_page(rbio
->stripe_pages
[i
]);
836 rbio
->stripe_pages
[i
] = NULL
;
840 btrfs_put_bbio(rbio
->bbio
);
844 static void free_raid_bio(struct btrfs_raid_bio
*rbio
)
847 __free_raid_bio(rbio
);
851 * this frees the rbio and runs through all the bios in the
852 * bio_list and calls end_io on them
854 static void rbio_orig_end_io(struct btrfs_raid_bio
*rbio
, int err
, int uptodate
)
856 struct bio
*cur
= bio_list_get(&rbio
->bio_list
);
859 if (rbio
->generic_bio_cnt
)
860 btrfs_bio_counter_sub(rbio
->fs_info
, rbio
->generic_bio_cnt
);
868 set_bit(BIO_UPTODATE
, &cur
->bi_flags
);
875 * end io function used by finish_rmw. When we finally
876 * get here, we've written a full stripe
878 static void raid_write_end_io(struct bio
*bio
, int err
)
880 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
883 fail_bio_stripe(rbio
, bio
);
887 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
892 /* OK, we have read all the stripes we need to. */
893 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
896 rbio_orig_end_io(rbio
, err
, 0);
901 * the read/modify/write code wants to use the original bio for
902 * any pages it included, and then use the rbio for everything
903 * else. This function decides if a given index (stripe number)
904 * and page number in that stripe fall inside the original bio
907 * if you set bio_list_only, you'll get a NULL back for any ranges
908 * that are outside the bio_list
910 * This doesn't take any refs on anything, you get a bare page pointer
911 * and the caller must bump refs as required.
913 * You must call index_rbio_pages once before you can trust
914 * the answers from this function.
916 static struct page
*page_in_rbio(struct btrfs_raid_bio
*rbio
,
917 int index
, int pagenr
, int bio_list_only
)
920 struct page
*p
= NULL
;
922 chunk_page
= index
* (rbio
->stripe_len
>> PAGE_SHIFT
) + pagenr
;
924 spin_lock_irq(&rbio
->bio_list_lock
);
925 p
= rbio
->bio_pages
[chunk_page
];
926 spin_unlock_irq(&rbio
->bio_list_lock
);
928 if (p
|| bio_list_only
)
931 return rbio
->stripe_pages
[chunk_page
];
935 * number of pages we need for the entire stripe across all the
938 static unsigned long rbio_nr_pages(unsigned long stripe_len
, int nr_stripes
)
940 unsigned long nr
= stripe_len
* nr_stripes
;
941 return DIV_ROUND_UP(nr
, PAGE_CACHE_SIZE
);
945 * allocation and initial setup for the btrfs_raid_bio. Not
946 * this does not allocate any pages for rbio->pages.
948 static struct btrfs_raid_bio
*alloc_rbio(struct btrfs_root
*root
,
949 struct btrfs_bio
*bbio
, u64 stripe_len
)
951 struct btrfs_raid_bio
*rbio
;
953 int real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
954 int num_pages
= rbio_nr_pages(stripe_len
, real_stripes
);
955 int stripe_npages
= DIV_ROUND_UP(stripe_len
, PAGE_SIZE
);
958 rbio
= kzalloc(sizeof(*rbio
) + num_pages
* sizeof(struct page
*) * 2 +
959 DIV_ROUND_UP(stripe_npages
, BITS_PER_LONG
/ 8),
962 return ERR_PTR(-ENOMEM
);
964 bio_list_init(&rbio
->bio_list
);
965 INIT_LIST_HEAD(&rbio
->plug_list
);
966 spin_lock_init(&rbio
->bio_list_lock
);
967 INIT_LIST_HEAD(&rbio
->stripe_cache
);
968 INIT_LIST_HEAD(&rbio
->hash_list
);
970 rbio
->fs_info
= root
->fs_info
;
971 rbio
->stripe_len
= stripe_len
;
972 rbio
->nr_pages
= num_pages
;
973 rbio
->real_stripes
= real_stripes
;
974 rbio
->stripe_npages
= stripe_npages
;
977 atomic_set(&rbio
->refs
, 1);
978 atomic_set(&rbio
->error
, 0);
979 atomic_set(&rbio
->stripes_pending
, 0);
982 * the stripe_pages and bio_pages array point to the extra
983 * memory we allocated past the end of the rbio
986 rbio
->stripe_pages
= p
;
987 rbio
->bio_pages
= p
+ sizeof(struct page
*) * num_pages
;
988 rbio
->dbitmap
= p
+ sizeof(struct page
*) * num_pages
* 2;
990 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
991 nr_data
= real_stripes
- 1;
992 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
993 nr_data
= real_stripes
- 2;
997 rbio
->nr_data
= nr_data
;
1001 /* allocate pages for all the stripes in the bio, including parity */
1002 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
)
1007 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
1008 if (rbio
->stripe_pages
[i
])
1010 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1013 rbio
->stripe_pages
[i
] = page
;
1014 ClearPageUptodate(page
);
1019 /* allocate pages for just the p/q stripes */
1020 static int alloc_rbio_parity_pages(struct btrfs_raid_bio
*rbio
)
1025 i
= (rbio
->nr_data
* rbio
->stripe_len
) >> PAGE_CACHE_SHIFT
;
1027 for (; i
< rbio
->nr_pages
; i
++) {
1028 if (rbio
->stripe_pages
[i
])
1030 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1033 rbio
->stripe_pages
[i
] = page
;
1039 * add a single page from a specific stripe into our list of bios for IO
1040 * this will try to merge into existing bios if possible, and returns
1041 * zero if all went well.
1043 static int rbio_add_io_page(struct btrfs_raid_bio
*rbio
,
1044 struct bio_list
*bio_list
,
1047 unsigned long page_index
,
1048 unsigned long bio_max_len
)
1050 struct bio
*last
= bio_list
->tail
;
1054 struct btrfs_bio_stripe
*stripe
;
1057 stripe
= &rbio
->bbio
->stripes
[stripe_nr
];
1058 disk_start
= stripe
->physical
+ (page_index
<< PAGE_CACHE_SHIFT
);
1060 /* if the device is missing, just fail this stripe */
1061 if (!stripe
->dev
->bdev
)
1062 return fail_rbio_index(rbio
, stripe_nr
);
1064 /* see if we can add this page onto our existing bio */
1066 last_end
= (u64
)last
->bi_iter
.bi_sector
<< 9;
1067 last_end
+= last
->bi_iter
.bi_size
;
1070 * we can't merge these if they are from different
1071 * devices or if they are not contiguous
1073 if (last_end
== disk_start
&& stripe
->dev
->bdev
&&
1074 test_bit(BIO_UPTODATE
, &last
->bi_flags
) &&
1075 last
->bi_bdev
== stripe
->dev
->bdev
) {
1076 ret
= bio_add_page(last
, page
, PAGE_CACHE_SIZE
, 0);
1077 if (ret
== PAGE_CACHE_SIZE
)
1082 /* put a new bio on the list */
1083 bio
= btrfs_io_bio_alloc(GFP_NOFS
, bio_max_len
>> PAGE_SHIFT
?:1);
1087 bio
->bi_iter
.bi_size
= 0;
1088 bio
->bi_bdev
= stripe
->dev
->bdev
;
1089 bio
->bi_iter
.bi_sector
= disk_start
>> 9;
1090 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1092 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
1093 bio_list_add(bio_list
, bio
);
1098 * while we're doing the read/modify/write cycle, we could
1099 * have errors in reading pages off the disk. This checks
1100 * for errors and if we're not able to read the page it'll
1101 * trigger parity reconstruction. The rmw will be finished
1102 * after we've reconstructed the failed stripes
1104 static void validate_rbio_for_rmw(struct btrfs_raid_bio
*rbio
)
1106 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
1107 BUG_ON(rbio
->faila
== rbio
->real_stripes
- 1);
1108 __raid56_parity_recover(rbio
);
1115 * these are just the pages from the rbio array, not from anything
1116 * the FS sent down to us
1118 static struct page
*rbio_stripe_page(struct btrfs_raid_bio
*rbio
, int stripe
, int page
)
1121 index
= stripe
* (rbio
->stripe_len
>> PAGE_CACHE_SHIFT
);
1123 return rbio
->stripe_pages
[index
];
1127 * helper function to walk our bio list and populate the bio_pages array with
1128 * the result. This seems expensive, but it is faster than constantly
1129 * searching through the bio list as we setup the IO in finish_rmw or stripe
1132 * This must be called before you trust the answers from page_in_rbio
1134 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
)
1138 unsigned long stripe_offset
;
1139 unsigned long page_index
;
1143 spin_lock_irq(&rbio
->bio_list_lock
);
1144 bio_list_for_each(bio
, &rbio
->bio_list
) {
1145 start
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1146 stripe_offset
= start
- rbio
->bbio
->raid_map
[0];
1147 page_index
= stripe_offset
>> PAGE_CACHE_SHIFT
;
1149 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1150 p
= bio
->bi_io_vec
[i
].bv_page
;
1151 rbio
->bio_pages
[page_index
+ i
] = p
;
1154 spin_unlock_irq(&rbio
->bio_list_lock
);
1158 * this is called from one of two situations. We either
1159 * have a full stripe from the higher layers, or we've read all
1160 * the missing bits off disk.
1162 * This will calculate the parity and then send down any
1165 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
)
1167 struct btrfs_bio
*bbio
= rbio
->bbio
;
1168 void *pointers
[rbio
->real_stripes
];
1169 int stripe_len
= rbio
->stripe_len
;
1170 int nr_data
= rbio
->nr_data
;
1175 struct bio_list bio_list
;
1177 int pages_per_stripe
= stripe_len
>> PAGE_CACHE_SHIFT
;
1180 bio_list_init(&bio_list
);
1182 if (rbio
->real_stripes
- rbio
->nr_data
== 1) {
1183 p_stripe
= rbio
->real_stripes
- 1;
1184 } else if (rbio
->real_stripes
- rbio
->nr_data
== 2) {
1185 p_stripe
= rbio
->real_stripes
- 2;
1186 q_stripe
= rbio
->real_stripes
- 1;
1191 /* at this point we either have a full stripe,
1192 * or we've read the full stripe from the drive.
1193 * recalculate the parity and write the new results.
1195 * We're not allowed to add any new bios to the
1196 * bio list here, anyone else that wants to
1197 * change this stripe needs to do their own rmw.
1199 spin_lock_irq(&rbio
->bio_list_lock
);
1200 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1201 spin_unlock_irq(&rbio
->bio_list_lock
);
1203 atomic_set(&rbio
->error
, 0);
1206 * now that we've set rmw_locked, run through the
1207 * bio list one last time and map the page pointers
1209 * We don't cache full rbios because we're assuming
1210 * the higher layers are unlikely to use this area of
1211 * the disk again soon. If they do use it again,
1212 * hopefully they will send another full bio.
1214 index_rbio_pages(rbio
);
1215 if (!rbio_is_full(rbio
))
1216 cache_rbio_pages(rbio
);
1218 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1220 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1222 /* first collect one page from each data stripe */
1223 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
1224 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1225 pointers
[stripe
] = kmap(p
);
1228 /* then add the parity stripe */
1229 p
= rbio_pstripe_page(rbio
, pagenr
);
1231 pointers
[stripe
++] = kmap(p
);
1233 if (q_stripe
!= -1) {
1236 * raid6, add the qstripe and call the
1237 * library function to fill in our p/q
1239 p
= rbio_qstripe_page(rbio
, pagenr
);
1241 pointers
[stripe
++] = kmap(p
);
1243 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
1247 memcpy(pointers
[nr_data
], pointers
[0], PAGE_SIZE
);
1248 run_xor(pointers
+ 1, nr_data
- 1, PAGE_CACHE_SIZE
);
1252 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++)
1253 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
1257 * time to start writing. Make bios for everything from the
1258 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1261 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1262 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1264 if (stripe
< rbio
->nr_data
) {
1265 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1269 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1272 ret
= rbio_add_io_page(rbio
, &bio_list
,
1273 page
, stripe
, pagenr
, rbio
->stripe_len
);
1279 if (likely(!bbio
->num_tgtdevs
))
1282 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1283 if (!bbio
->tgtdev_map
[stripe
])
1286 for (pagenr
= 0; pagenr
< pages_per_stripe
; pagenr
++) {
1288 if (stripe
< rbio
->nr_data
) {
1289 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1293 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1296 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1297 rbio
->bbio
->tgtdev_map
[stripe
],
1298 pagenr
, rbio
->stripe_len
);
1305 atomic_set(&rbio
->stripes_pending
, bio_list_size(&bio_list
));
1306 BUG_ON(atomic_read(&rbio
->stripes_pending
) == 0);
1309 bio
= bio_list_pop(&bio_list
);
1313 bio
->bi_private
= rbio
;
1314 bio
->bi_end_io
= raid_write_end_io
;
1315 BUG_ON(!test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
1316 submit_bio(WRITE
, bio
);
1321 rbio_orig_end_io(rbio
, -EIO
, 0);
1325 * helper to find the stripe number for a given bio. Used to figure out which
1326 * stripe has failed. This expects the bio to correspond to a physical disk,
1327 * so it looks up based on physical sector numbers.
1329 static int find_bio_stripe(struct btrfs_raid_bio
*rbio
,
1332 u64 physical
= bio
->bi_iter
.bi_sector
;
1335 struct btrfs_bio_stripe
*stripe
;
1339 for (i
= 0; i
< rbio
->bbio
->num_stripes
; i
++) {
1340 stripe
= &rbio
->bbio
->stripes
[i
];
1341 stripe_start
= stripe
->physical
;
1342 if (physical
>= stripe_start
&&
1343 physical
< stripe_start
+ rbio
->stripe_len
&&
1344 bio
->bi_bdev
== stripe
->dev
->bdev
) {
1352 * helper to find the stripe number for a given
1353 * bio (before mapping). Used to figure out which stripe has
1354 * failed. This looks up based on logical block numbers.
1356 static int find_logical_bio_stripe(struct btrfs_raid_bio
*rbio
,
1359 u64 logical
= bio
->bi_iter
.bi_sector
;
1365 for (i
= 0; i
< rbio
->nr_data
; i
++) {
1366 stripe_start
= rbio
->bbio
->raid_map
[i
];
1367 if (logical
>= stripe_start
&&
1368 logical
< stripe_start
+ rbio
->stripe_len
) {
1376 * returns -EIO if we had too many failures
1378 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
)
1380 unsigned long flags
;
1383 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
1385 /* we already know this stripe is bad, move on */
1386 if (rbio
->faila
== failed
|| rbio
->failb
== failed
)
1389 if (rbio
->faila
== -1) {
1390 /* first failure on this rbio */
1391 rbio
->faila
= failed
;
1392 atomic_inc(&rbio
->error
);
1393 } else if (rbio
->failb
== -1) {
1394 /* second failure on this rbio */
1395 rbio
->failb
= failed
;
1396 atomic_inc(&rbio
->error
);
1401 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
1407 * helper to fail a stripe based on a physical disk
1410 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
,
1413 int failed
= find_bio_stripe(rbio
, bio
);
1418 return fail_rbio_index(rbio
, failed
);
1422 * this sets each page in the bio uptodate. It should only be used on private
1423 * rbio pages, nothing that comes in from the higher layers
1425 static void set_bio_pages_uptodate(struct bio
*bio
)
1430 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1431 p
= bio
->bi_io_vec
[i
].bv_page
;
1437 * end io for the read phase of the rmw cycle. All the bios here are physical
1438 * stripe bios we've read from the disk so we can recalculate the parity of the
1441 * This will usually kick off finish_rmw once all the bios are read in, but it
1442 * may trigger parity reconstruction if we had any errors along the way
1444 static void raid_rmw_end_io(struct bio
*bio
, int err
)
1446 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
1449 fail_bio_stripe(rbio
, bio
);
1451 set_bio_pages_uptodate(bio
);
1455 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
1459 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
1463 * this will normally call finish_rmw to start our write
1464 * but if there are any failed stripes we'll reconstruct
1467 validate_rbio_for_rmw(rbio
);
1472 rbio_orig_end_io(rbio
, -EIO
, 0);
1475 static void async_rmw_stripe(struct btrfs_raid_bio
*rbio
)
1477 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
1478 rmw_work
, NULL
, NULL
);
1480 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
1484 static void async_read_rebuild(struct btrfs_raid_bio
*rbio
)
1486 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
1487 read_rebuild_work
, NULL
, NULL
);
1489 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
1494 * the stripe must be locked by the caller. It will
1495 * unlock after all the writes are done
1497 static int raid56_rmw_stripe(struct btrfs_raid_bio
*rbio
)
1499 int bios_to_read
= 0;
1500 struct bio_list bio_list
;
1502 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
1507 bio_list_init(&bio_list
);
1509 ret
= alloc_rbio_pages(rbio
);
1513 index_rbio_pages(rbio
);
1515 atomic_set(&rbio
->error
, 0);
1517 * build a list of bios to read all the missing parts of this
1520 for (stripe
= 0; stripe
< rbio
->nr_data
; stripe
++) {
1521 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
1524 * we want to find all the pages missing from
1525 * the rbio and read them from the disk. If
1526 * page_in_rbio finds a page in the bio list
1527 * we don't need to read it off the stripe.
1529 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1533 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1535 * the bio cache may have handed us an uptodate
1536 * page. If so, be happy and use it
1538 if (PageUptodate(page
))
1541 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1542 stripe
, pagenr
, rbio
->stripe_len
);
1548 bios_to_read
= bio_list_size(&bio_list
);
1549 if (!bios_to_read
) {
1551 * this can happen if others have merged with
1552 * us, it means there is nothing left to read.
1553 * But if there are missing devices it may not be
1554 * safe to do the full stripe write yet.
1560 * the bbio may be freed once we submit the last bio. Make sure
1561 * not to touch it after that
1563 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
1565 bio
= bio_list_pop(&bio_list
);
1569 bio
->bi_private
= rbio
;
1570 bio
->bi_end_io
= raid_rmw_end_io
;
1572 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
1573 BTRFS_WQ_ENDIO_RAID56
);
1575 BUG_ON(!test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
1576 submit_bio(READ
, bio
);
1578 /* the actual write will happen once the reads are done */
1582 rbio_orig_end_io(rbio
, -EIO
, 0);
1586 validate_rbio_for_rmw(rbio
);
1591 * if the upper layers pass in a full stripe, we thank them by only allocating
1592 * enough pages to hold the parity, and sending it all down quickly.
1594 static int full_stripe_write(struct btrfs_raid_bio
*rbio
)
1598 ret
= alloc_rbio_parity_pages(rbio
);
1600 __free_raid_bio(rbio
);
1604 ret
= lock_stripe_add(rbio
);
1611 * partial stripe writes get handed over to async helpers.
1612 * We're really hoping to merge a few more writes into this
1613 * rbio before calculating new parity
1615 static int partial_stripe_write(struct btrfs_raid_bio
*rbio
)
1619 ret
= lock_stripe_add(rbio
);
1621 async_rmw_stripe(rbio
);
1626 * sometimes while we were reading from the drive to
1627 * recalculate parity, enough new bios come into create
1628 * a full stripe. So we do a check here to see if we can
1629 * go directly to finish_rmw
1631 static int __raid56_parity_write(struct btrfs_raid_bio
*rbio
)
1633 /* head off into rmw land if we don't have a full stripe */
1634 if (!rbio_is_full(rbio
))
1635 return partial_stripe_write(rbio
);
1636 return full_stripe_write(rbio
);
1640 * We use plugging call backs to collect full stripes.
1641 * Any time we get a partial stripe write while plugged
1642 * we collect it into a list. When the unplug comes down,
1643 * we sort the list by logical block number and merge
1644 * everything we can into the same rbios
1646 struct btrfs_plug_cb
{
1647 struct blk_plug_cb cb
;
1648 struct btrfs_fs_info
*info
;
1649 struct list_head rbio_list
;
1650 struct btrfs_work work
;
1654 * rbios on the plug list are sorted for easier merging.
1656 static int plug_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1658 struct btrfs_raid_bio
*ra
= container_of(a
, struct btrfs_raid_bio
,
1660 struct btrfs_raid_bio
*rb
= container_of(b
, struct btrfs_raid_bio
,
1662 u64 a_sector
= ra
->bio_list
.head
->bi_iter
.bi_sector
;
1663 u64 b_sector
= rb
->bio_list
.head
->bi_iter
.bi_sector
;
1665 if (a_sector
< b_sector
)
1667 if (a_sector
> b_sector
)
1672 static void run_plug(struct btrfs_plug_cb
*plug
)
1674 struct btrfs_raid_bio
*cur
;
1675 struct btrfs_raid_bio
*last
= NULL
;
1678 * sort our plug list then try to merge
1679 * everything we can in hopes of creating full
1682 list_sort(NULL
, &plug
->rbio_list
, plug_cmp
);
1683 while (!list_empty(&plug
->rbio_list
)) {
1684 cur
= list_entry(plug
->rbio_list
.next
,
1685 struct btrfs_raid_bio
, plug_list
);
1686 list_del_init(&cur
->plug_list
);
1688 if (rbio_is_full(cur
)) {
1689 /* we have a full stripe, send it down */
1690 full_stripe_write(cur
);
1694 if (rbio_can_merge(last
, cur
)) {
1695 merge_rbio(last
, cur
);
1696 __free_raid_bio(cur
);
1700 __raid56_parity_write(last
);
1705 __raid56_parity_write(last
);
1711 * if the unplug comes from schedule, we have to push the
1712 * work off to a helper thread
1714 static void unplug_work(struct btrfs_work
*work
)
1716 struct btrfs_plug_cb
*plug
;
1717 plug
= container_of(work
, struct btrfs_plug_cb
, work
);
1721 static void btrfs_raid_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1723 struct btrfs_plug_cb
*plug
;
1724 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1726 if (from_schedule
) {
1727 btrfs_init_work(&plug
->work
, btrfs_rmw_helper
,
1728 unplug_work
, NULL
, NULL
);
1729 btrfs_queue_work(plug
->info
->rmw_workers
,
1737 * our main entry point for writes from the rest of the FS.
1739 int raid56_parity_write(struct btrfs_root
*root
, struct bio
*bio
,
1740 struct btrfs_bio
*bbio
, u64 stripe_len
)
1742 struct btrfs_raid_bio
*rbio
;
1743 struct btrfs_plug_cb
*plug
= NULL
;
1744 struct blk_plug_cb
*cb
;
1747 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
1749 btrfs_put_bbio(bbio
);
1750 return PTR_ERR(rbio
);
1752 bio_list_add(&rbio
->bio_list
, bio
);
1753 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
1754 rbio
->operation
= BTRFS_RBIO_WRITE
;
1756 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
1757 rbio
->generic_bio_cnt
= 1;
1760 * don't plug on full rbios, just get them out the door
1761 * as quickly as we can
1763 if (rbio_is_full(rbio
)) {
1764 ret
= full_stripe_write(rbio
);
1766 btrfs_bio_counter_dec(root
->fs_info
);
1770 cb
= blk_check_plugged(btrfs_raid_unplug
, root
->fs_info
,
1773 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1775 plug
->info
= root
->fs_info
;
1776 INIT_LIST_HEAD(&plug
->rbio_list
);
1778 list_add_tail(&rbio
->plug_list
, &plug
->rbio_list
);
1781 ret
= __raid56_parity_write(rbio
);
1783 btrfs_bio_counter_dec(root
->fs_info
);
1789 * all parity reconstruction happens here. We've read in everything
1790 * we can find from the drives and this does the heavy lifting of
1791 * sorting the good from the bad.
1793 static void __raid_recover_end_io(struct btrfs_raid_bio
*rbio
)
1797 int faila
= -1, failb
= -1;
1798 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
1803 pointers
= kcalloc(rbio
->real_stripes
, sizeof(void *), GFP_NOFS
);
1809 faila
= rbio
->faila
;
1810 failb
= rbio
->failb
;
1812 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
) {
1813 spin_lock_irq(&rbio
->bio_list_lock
);
1814 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1815 spin_unlock_irq(&rbio
->bio_list_lock
);
1818 index_rbio_pages(rbio
);
1820 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
1822 * Now we just use bitmap to mark the horizontal stripes in
1823 * which we have data when doing parity scrub.
1825 if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
&&
1826 !test_bit(pagenr
, rbio
->dbitmap
))
1829 /* setup our array of pointers with pages
1832 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1834 * if we're rebuilding a read, we have to use
1835 * pages from the bio list
1837 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
&&
1838 (stripe
== faila
|| stripe
== failb
)) {
1839 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1841 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1843 pointers
[stripe
] = kmap(page
);
1846 /* all raid6 handling here */
1847 if (rbio
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
) {
1849 * single failure, rebuild from parity raid5
1853 if (faila
== rbio
->nr_data
) {
1855 * Just the P stripe has failed, without
1856 * a bad data or Q stripe.
1857 * TODO, we should redo the xor here.
1863 * a single failure in raid6 is rebuilt
1864 * in the pstripe code below
1869 /* make sure our ps and qs are in order */
1870 if (faila
> failb
) {
1876 /* if the q stripe is failed, do a pstripe reconstruction
1878 * If both the q stripe and the P stripe are failed, we're
1879 * here due to a crc mismatch and we can't give them the
1882 if (rbio
->bbio
->raid_map
[failb
] == RAID6_Q_STRIPE
) {
1883 if (rbio
->bbio
->raid_map
[faila
] ==
1889 * otherwise we have one bad data stripe and
1890 * a good P stripe. raid5!
1895 if (rbio
->bbio
->raid_map
[failb
] == RAID5_P_STRIPE
) {
1896 raid6_datap_recov(rbio
->real_stripes
,
1897 PAGE_SIZE
, faila
, pointers
);
1899 raid6_2data_recov(rbio
->real_stripes
,
1900 PAGE_SIZE
, faila
, failb
,
1906 /* rebuild from P stripe here (raid5 or raid6) */
1907 BUG_ON(failb
!= -1);
1909 /* Copy parity block into failed block to start with */
1910 memcpy(pointers
[faila
],
1911 pointers
[rbio
->nr_data
],
1914 /* rearrange the pointer array */
1915 p
= pointers
[faila
];
1916 for (stripe
= faila
; stripe
< rbio
->nr_data
- 1; stripe
++)
1917 pointers
[stripe
] = pointers
[stripe
+ 1];
1918 pointers
[rbio
->nr_data
- 1] = p
;
1920 /* xor in the rest */
1921 run_xor(pointers
, rbio
->nr_data
- 1, PAGE_CACHE_SIZE
);
1923 /* if we're doing this rebuild as part of an rmw, go through
1924 * and set all of our private rbio pages in the
1925 * failed stripes as uptodate. This way finish_rmw will
1926 * know they can be trusted. If this was a read reconstruction,
1927 * other endio functions will fiddle the uptodate bits
1929 if (rbio
->operation
== BTRFS_RBIO_WRITE
) {
1930 for (i
= 0; i
< nr_pages
; i
++) {
1932 page
= rbio_stripe_page(rbio
, faila
, i
);
1933 SetPageUptodate(page
);
1936 page
= rbio_stripe_page(rbio
, failb
, i
);
1937 SetPageUptodate(page
);
1941 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1943 * if we're rebuilding a read, we have to use
1944 * pages from the bio list
1946 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
&&
1947 (stripe
== faila
|| stripe
== failb
)) {
1948 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1950 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1961 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
) {
1963 cache_rbio_pages(rbio
);
1965 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1967 rbio_orig_end_io(rbio
, err
, err
== 0);
1968 } else if (err
== 0) {
1972 if (rbio
->operation
== BTRFS_RBIO_WRITE
)
1974 else if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
1975 finish_parity_scrub(rbio
, 0);
1979 rbio_orig_end_io(rbio
, err
, 0);
1984 * This is called only for stripes we've read from disk to
1985 * reconstruct the parity.
1987 static void raid_recover_end_io(struct bio
*bio
, int err
)
1989 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
1992 * we only read stripe pages off the disk, set them
1993 * up to date if there were no errors
1996 fail_bio_stripe(rbio
, bio
);
1998 set_bio_pages_uptodate(bio
);
2001 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2004 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2005 rbio_orig_end_io(rbio
, -EIO
, 0);
2007 __raid_recover_end_io(rbio
);
2011 * reads everything we need off the disk to reconstruct
2012 * the parity. endio handlers trigger final reconstruction
2013 * when the IO is done.
2015 * This is used both for reads from the higher layers and for
2016 * parity construction required to finish a rmw cycle.
2018 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
)
2020 int bios_to_read
= 0;
2021 struct bio_list bio_list
;
2023 int nr_pages
= DIV_ROUND_UP(rbio
->stripe_len
, PAGE_CACHE_SIZE
);
2028 bio_list_init(&bio_list
);
2030 ret
= alloc_rbio_pages(rbio
);
2034 atomic_set(&rbio
->error
, 0);
2037 * read everything that hasn't failed. Thanks to the
2038 * stripe cache, it is possible that some or all of these
2039 * pages are going to be uptodate.
2041 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2042 if (rbio
->faila
== stripe
|| rbio
->failb
== stripe
) {
2043 atomic_inc(&rbio
->error
);
2047 for (pagenr
= 0; pagenr
< nr_pages
; pagenr
++) {
2051 * the rmw code may have already read this
2054 p
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2055 if (PageUptodate(p
))
2058 ret
= rbio_add_io_page(rbio
, &bio_list
,
2059 rbio_stripe_page(rbio
, stripe
, pagenr
),
2060 stripe
, pagenr
, rbio
->stripe_len
);
2066 bios_to_read
= bio_list_size(&bio_list
);
2067 if (!bios_to_read
) {
2069 * we might have no bios to read just because the pages
2070 * were up to date, or we might have no bios to read because
2071 * the devices were gone.
2073 if (atomic_read(&rbio
->error
) <= rbio
->bbio
->max_errors
) {
2074 __raid_recover_end_io(rbio
);
2082 * the bbio may be freed once we submit the last bio. Make sure
2083 * not to touch it after that
2085 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2087 bio
= bio_list_pop(&bio_list
);
2091 bio
->bi_private
= rbio
;
2092 bio
->bi_end_io
= raid_recover_end_io
;
2094 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
2095 BTRFS_WQ_ENDIO_RAID56
);
2097 BUG_ON(!test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2098 submit_bio(READ
, bio
);
2104 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
)
2105 rbio_orig_end_io(rbio
, -EIO
, 0);
2110 * the main entry point for reads from the higher layers. This
2111 * is really only called when the normal read path had a failure,
2112 * so we assume the bio they send down corresponds to a failed part
2115 int raid56_parity_recover(struct btrfs_root
*root
, struct bio
*bio
,
2116 struct btrfs_bio
*bbio
, u64 stripe_len
,
2117 int mirror_num
, int generic_io
)
2119 struct btrfs_raid_bio
*rbio
;
2122 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
2125 btrfs_put_bbio(bbio
);
2126 return PTR_ERR(rbio
);
2129 rbio
->operation
= BTRFS_RBIO_READ_REBUILD
;
2130 bio_list_add(&rbio
->bio_list
, bio
);
2131 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
2133 rbio
->faila
= find_logical_bio_stripe(rbio
, bio
);
2134 if (rbio
->faila
== -1) {
2137 btrfs_put_bbio(bbio
);
2143 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
2144 rbio
->generic_bio_cnt
= 1;
2146 btrfs_get_bbio(bbio
);
2150 * reconstruct from the q stripe if they are
2151 * asking for mirror 3
2153 if (mirror_num
== 3)
2154 rbio
->failb
= rbio
->real_stripes
- 2;
2156 ret
= lock_stripe_add(rbio
);
2159 * __raid56_parity_recover will end the bio with
2160 * any errors it hits. We don't want to return
2161 * its error value up the stack because our caller
2162 * will end up calling bio_endio with any nonzero
2166 __raid56_parity_recover(rbio
);
2168 * our rbio has been added to the list of
2169 * rbios that will be handled after the
2170 * currently lock owner is done
2176 static void rmw_work(struct btrfs_work
*work
)
2178 struct btrfs_raid_bio
*rbio
;
2180 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2181 raid56_rmw_stripe(rbio
);
2184 static void read_rebuild_work(struct btrfs_work
*work
)
2186 struct btrfs_raid_bio
*rbio
;
2188 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2189 __raid56_parity_recover(rbio
);
2193 * The following code is used to scrub/replace the parity stripe
2195 * Note: We need make sure all the pages that add into the scrub/replace
2196 * raid bio are correct and not be changed during the scrub/replace. That
2197 * is those pages just hold metadata or file data with checksum.
2200 struct btrfs_raid_bio
*
2201 raid56_parity_alloc_scrub_rbio(struct btrfs_root
*root
, struct bio
*bio
,
2202 struct btrfs_bio
*bbio
, u64 stripe_len
,
2203 struct btrfs_device
*scrub_dev
,
2204 unsigned long *dbitmap
, int stripe_nsectors
)
2206 struct btrfs_raid_bio
*rbio
;
2209 rbio
= alloc_rbio(root
, bbio
, stripe_len
);
2212 bio_list_add(&rbio
->bio_list
, bio
);
2214 * This is a special bio which is used to hold the completion handler
2215 * and make the scrub rbio is similar to the other types
2217 ASSERT(!bio
->bi_iter
.bi_size
);
2218 rbio
->operation
= BTRFS_RBIO_PARITY_SCRUB
;
2220 for (i
= 0; i
< rbio
->real_stripes
; i
++) {
2221 if (bbio
->stripes
[i
].dev
== scrub_dev
) {
2227 /* Now we just support the sectorsize equals to page size */
2228 ASSERT(root
->sectorsize
== PAGE_SIZE
);
2229 ASSERT(rbio
->stripe_npages
== stripe_nsectors
);
2230 bitmap_copy(rbio
->dbitmap
, dbitmap
, stripe_nsectors
);
2235 void raid56_parity_add_scrub_pages(struct btrfs_raid_bio
*rbio
,
2236 struct page
*page
, u64 logical
)
2241 ASSERT(logical
>= rbio
->bbio
->raid_map
[0]);
2242 ASSERT(logical
+ PAGE_SIZE
<= rbio
->bbio
->raid_map
[0] +
2243 rbio
->stripe_len
* rbio
->nr_data
);
2244 stripe_offset
= (int)(logical
- rbio
->bbio
->raid_map
[0]);
2245 index
= stripe_offset
>> PAGE_CACHE_SHIFT
;
2246 rbio
->bio_pages
[index
] = page
;
2250 * We just scrub the parity that we have correct data on the same horizontal,
2251 * so we needn't allocate all pages for all the stripes.
2253 static int alloc_rbio_essential_pages(struct btrfs_raid_bio
*rbio
)
2260 for_each_set_bit(bit
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2261 for (i
= 0; i
< rbio
->real_stripes
; i
++) {
2262 index
= i
* rbio
->stripe_npages
+ bit
;
2263 if (rbio
->stripe_pages
[index
])
2266 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2269 rbio
->stripe_pages
[index
] = page
;
2270 ClearPageUptodate(page
);
2277 * end io function used by finish_rmw. When we finally
2278 * get here, we've written a full stripe
2280 static void raid_write_parity_end_io(struct bio
*bio
, int err
)
2282 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2285 fail_bio_stripe(rbio
, bio
);
2289 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2294 if (atomic_read(&rbio
->error
))
2297 rbio_orig_end_io(rbio
, err
, 0);
2300 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
2303 struct btrfs_bio
*bbio
= rbio
->bbio
;
2304 void *pointers
[rbio
->real_stripes
];
2305 DECLARE_BITMAP(pbitmap
, rbio
->stripe_npages
);
2306 int nr_data
= rbio
->nr_data
;
2311 struct page
*p_page
= NULL
;
2312 struct page
*q_page
= NULL
;
2313 struct bio_list bio_list
;
2318 bio_list_init(&bio_list
);
2320 if (rbio
->real_stripes
- rbio
->nr_data
== 1) {
2321 p_stripe
= rbio
->real_stripes
- 1;
2322 } else if (rbio
->real_stripes
- rbio
->nr_data
== 2) {
2323 p_stripe
= rbio
->real_stripes
- 2;
2324 q_stripe
= rbio
->real_stripes
- 1;
2329 if (bbio
->num_tgtdevs
&& bbio
->tgtdev_map
[rbio
->scrubp
]) {
2331 bitmap_copy(pbitmap
, rbio
->dbitmap
, rbio
->stripe_npages
);
2335 * Because the higher layers(scrubber) are unlikely to
2336 * use this area of the disk again soon, so don't cache
2339 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
2344 p_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2347 SetPageUptodate(p_page
);
2349 if (q_stripe
!= -1) {
2350 q_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2352 __free_page(p_page
);
2355 SetPageUptodate(q_page
);
2358 atomic_set(&rbio
->error
, 0);
2360 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2363 /* first collect one page from each data stripe */
2364 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
2365 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
2366 pointers
[stripe
] = kmap(p
);
2369 /* then add the parity stripe */
2370 pointers
[stripe
++] = kmap(p_page
);
2372 if (q_stripe
!= -1) {
2375 * raid6, add the qstripe and call the
2376 * library function to fill in our p/q
2378 pointers
[stripe
++] = kmap(q_page
);
2380 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
2384 memcpy(pointers
[nr_data
], pointers
[0], PAGE_SIZE
);
2385 run_xor(pointers
+ 1, nr_data
- 1, PAGE_CACHE_SIZE
);
2388 /* Check scrubbing pairty and repair it */
2389 p
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2391 if (memcmp(parity
, pointers
[rbio
->scrubp
], PAGE_CACHE_SIZE
))
2392 memcpy(parity
, pointers
[rbio
->scrubp
], PAGE_CACHE_SIZE
);
2394 /* Parity is right, needn't writeback */
2395 bitmap_clear(rbio
->dbitmap
, pagenr
, 1);
2398 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++)
2399 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
2402 __free_page(p_page
);
2404 __free_page(q_page
);
2408 * time to start writing. Make bios for everything from the
2409 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2412 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2415 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2416 ret
= rbio_add_io_page(rbio
, &bio_list
,
2417 page
, rbio
->scrubp
, pagenr
, rbio
->stripe_len
);
2425 for_each_set_bit(pagenr
, pbitmap
, rbio
->stripe_npages
) {
2428 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2429 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2430 bbio
->tgtdev_map
[rbio
->scrubp
],
2431 pagenr
, rbio
->stripe_len
);
2437 nr_data
= bio_list_size(&bio_list
);
2439 /* Every parity is right */
2440 rbio_orig_end_io(rbio
, 0, 0);
2444 atomic_set(&rbio
->stripes_pending
, nr_data
);
2447 bio
= bio_list_pop(&bio_list
);
2451 bio
->bi_private
= rbio
;
2452 bio
->bi_end_io
= raid_write_parity_end_io
;
2453 BUG_ON(!test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2454 submit_bio(WRITE
, bio
);
2459 rbio_orig_end_io(rbio
, -EIO
, 0);
2462 static inline int is_data_stripe(struct btrfs_raid_bio
*rbio
, int stripe
)
2464 if (stripe
>= 0 && stripe
< rbio
->nr_data
)
2470 * While we're doing the parity check and repair, we could have errors
2471 * in reading pages off the disk. This checks for errors and if we're
2472 * not able to read the page it'll trigger parity reconstruction. The
2473 * parity scrub will be finished after we've reconstructed the failed
2476 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio
*rbio
)
2478 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2481 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
2482 int dfail
= 0, failp
= -1;
2484 if (is_data_stripe(rbio
, rbio
->faila
))
2486 else if (is_parity_stripe(rbio
->faila
))
2487 failp
= rbio
->faila
;
2489 if (is_data_stripe(rbio
, rbio
->failb
))
2491 else if (is_parity_stripe(rbio
->failb
))
2492 failp
= rbio
->failb
;
2495 * Because we can not use a scrubbing parity to repair
2496 * the data, so the capability of the repair is declined.
2497 * (In the case of RAID5, we can not repair anything)
2499 if (dfail
> rbio
->bbio
->max_errors
- 1)
2503 * If all data is good, only parity is correctly, just
2504 * repair the parity.
2507 finish_parity_scrub(rbio
, 0);
2512 * Here means we got one corrupted data stripe and one
2513 * corrupted parity on RAID6, if the corrupted parity
2514 * is scrubbing parity, luckly, use the other one to repair
2515 * the data, or we can not repair the data stripe.
2517 if (failp
!= rbio
->scrubp
)
2520 __raid_recover_end_io(rbio
);
2522 finish_parity_scrub(rbio
, 1);
2527 rbio_orig_end_io(rbio
, -EIO
, 0);
2531 * end io for the read phase of the rmw cycle. All the bios here are physical
2532 * stripe bios we've read from the disk so we can recalculate the parity of the
2535 * This will usually kick off finish_rmw once all the bios are read in, but it
2536 * may trigger parity reconstruction if we had any errors along the way
2538 static void raid56_parity_scrub_end_io(struct bio
*bio
, int err
)
2540 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2543 fail_bio_stripe(rbio
, bio
);
2545 set_bio_pages_uptodate(bio
);
2549 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2553 * this will normally call finish_rmw to start our write
2554 * but if there are any failed stripes we'll reconstruct
2557 validate_rbio_for_parity_scrub(rbio
);
2560 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio
*rbio
)
2562 int bios_to_read
= 0;
2563 struct bio_list bio_list
;
2569 ret
= alloc_rbio_essential_pages(rbio
);
2573 bio_list_init(&bio_list
);
2575 atomic_set(&rbio
->error
, 0);
2577 * build a list of bios to read all the missing parts of this
2580 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2581 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2584 * we want to find all the pages missing from
2585 * the rbio and read them from the disk. If
2586 * page_in_rbio finds a page in the bio list
2587 * we don't need to read it off the stripe.
2589 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
2593 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2595 * the bio cache may have handed us an uptodate
2596 * page. If so, be happy and use it
2598 if (PageUptodate(page
))
2601 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2602 stripe
, pagenr
, rbio
->stripe_len
);
2608 bios_to_read
= bio_list_size(&bio_list
);
2609 if (!bios_to_read
) {
2611 * this can happen if others have merged with
2612 * us, it means there is nothing left to read.
2613 * But if there are missing devices it may not be
2614 * safe to do the full stripe write yet.
2620 * the bbio may be freed once we submit the last bio. Make sure
2621 * not to touch it after that
2623 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2625 bio
= bio_list_pop(&bio_list
);
2629 bio
->bi_private
= rbio
;
2630 bio
->bi_end_io
= raid56_parity_scrub_end_io
;
2632 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
,
2633 BTRFS_WQ_ENDIO_RAID56
);
2635 BUG_ON(!test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2636 submit_bio(READ
, bio
);
2638 /* the actual write will happen once the reads are done */
2642 rbio_orig_end_io(rbio
, -EIO
, 0);
2646 validate_rbio_for_parity_scrub(rbio
);
2649 static void scrub_parity_work(struct btrfs_work
*work
)
2651 struct btrfs_raid_bio
*rbio
;
2653 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2654 raid56_parity_scrub_stripe(rbio
);
2657 static void async_scrub_parity(struct btrfs_raid_bio
*rbio
)
2659 btrfs_init_work(&rbio
->work
, btrfs_rmw_helper
,
2660 scrub_parity_work
, NULL
, NULL
);
2662 btrfs_queue_work(rbio
->fs_info
->rmw_workers
,
2666 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio
*rbio
)
2668 if (!lock_stripe_add(rbio
))
2669 async_scrub_parity(rbio
);