Linux 4.2.1
[linux/fpc-iii.git] / fs / btrfs / send.c
blobaa72bfd28f7dcbd88c73452aafd2a3d9e7f42e00
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose = 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
55 char *buf;
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
58 char inline_buf[];
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
65 char pad[256];
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 /* reused for each extent */
73 struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
78 u64 found_refs;
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84 struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
115 u64 cur_inode_rdev;
116 u64 cur_inode_last_extent;
118 u64 send_progress;
120 struct list_head new_refs;
121 struct list_head deleted_refs;
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
127 struct file_ra_state ra;
129 char *read_buf;
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
142 * Tree state when the first send was performed:
145 * |-- a (ino 257)
146 * |-- b (ino 258)
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
152 * |-- c2 (ino 261)
154 * Tree state when the second (incremental) send is performed:
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
163 * The sequence of steps that lead to the second state was:
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
183 struct rb_root waiting_dir_moves;
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
191 * Parent snapshot:
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
199 * |-- y/ (ino 261)
201 * Send snapshot:
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
222 * Indexed by the inode number of the directory to be deleted.
224 struct rb_root orphan_dirs;
227 struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
233 bool is_orphan;
234 struct list_head update_refs;
237 struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 u64 rmdir_ino;
246 bool orphanized;
249 struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
255 struct name_cache_entry {
256 struct list_head list;
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
265 struct list_head radix_list;
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
283 static int need_send_hole(struct send_ctx *sctx)
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
290 static void fs_path_reset(struct fs_path *p)
292 if (p->reversed) {
293 p->start = p->buf + p->buf_len - 1;
294 p->end = p->start;
295 *p->start = 0;
296 } else {
297 p->start = p->buf;
298 p->end = p->start;
299 *p->start = 0;
303 static struct fs_path *fs_path_alloc(void)
305 struct fs_path *p;
307 p = kmalloc(sizeof(*p), GFP_NOFS);
308 if (!p)
309 return NULL;
310 p->reversed = 0;
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
313 fs_path_reset(p);
314 return p;
317 static struct fs_path *fs_path_alloc_reversed(void)
319 struct fs_path *p;
321 p = fs_path_alloc();
322 if (!p)
323 return NULL;
324 p->reversed = 1;
325 fs_path_reset(p);
326 return p;
329 static void fs_path_free(struct fs_path *p)
331 if (!p)
332 return;
333 if (p->buf != p->inline_buf)
334 kfree(p->buf);
335 kfree(p);
338 static int fs_path_len(struct fs_path *p)
340 return p->end - p->start;
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
345 char *tmp_buf;
346 int path_len;
347 int old_buf_len;
349 len++;
351 if (p->buf_len >= len)
352 return 0;
354 if (len > PATH_MAX) {
355 WARN_ON(1);
356 return -ENOMEM;
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
363 * First time the inline_buf does not suffice
365 if (p->buf == p->inline_buf) {
366 tmp_buf = kmalloc(len, GFP_NOFS);
367 if (tmp_buf)
368 memcpy(tmp_buf, p->buf, old_buf_len);
369 } else {
370 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
372 if (!tmp_buf)
373 return -ENOMEM;
374 p->buf = tmp_buf;
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
379 p->buf_len = ksize(p->buf);
381 if (p->reversed) {
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
386 } else {
387 p->start = p->buf;
388 p->end = p->start + path_len;
390 return 0;
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 char **prepared)
396 int ret;
397 int new_len;
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
401 new_len++;
402 ret = fs_path_ensure_buf(p, new_len);
403 if (ret < 0)
404 goto out;
406 if (p->reversed) {
407 if (p->start != p->end)
408 *--p->start = '/';
409 p->start -= name_len;
410 *prepared = p->start;
411 } else {
412 if (p->start != p->end)
413 *p->end++ = '/';
414 *prepared = p->end;
415 p->end += name_len;
416 *p->end = 0;
419 out:
420 return ret;
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
425 int ret;
426 char *prepared;
428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 if (ret < 0)
430 goto out;
431 memcpy(prepared, name, name_len);
433 out:
434 return ret;
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
439 int ret;
440 char *prepared;
442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 if (ret < 0)
444 goto out;
445 memcpy(prepared, p2->start, p2->end - p2->start);
447 out:
448 return ret;
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
455 int ret;
456 char *prepared;
458 ret = fs_path_prepare_for_add(p, len, &prepared);
459 if (ret < 0)
460 goto out;
462 read_extent_buffer(eb, prepared, off, len);
464 out:
465 return ret;
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
470 int ret;
472 p->reversed = from->reversed;
473 fs_path_reset(p);
475 ret = fs_path_add_path(p, from);
477 return ret;
481 static void fs_path_unreverse(struct fs_path *p)
483 char *tmp;
484 int len;
486 if (!p->reversed)
487 return;
489 tmp = p->start;
490 len = p->end - p->start;
491 p->start = p->buf;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
494 p->reversed = 0;
497 static struct btrfs_path *alloc_path_for_send(void)
499 struct btrfs_path *path;
501 path = btrfs_alloc_path();
502 if (!path)
503 return NULL;
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
506 path->need_commit_sem = 1;
507 return path;
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
512 int ret;
513 mm_segment_t old_fs;
514 u32 pos = 0;
516 old_fs = get_fs();
517 set_fs(KERNEL_DS);
519 while (pos < len) {
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 len - pos, off);
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
524 continue;
526 if (ret < 0)
527 goto out;
528 if (ret == 0) {
529 ret = -EIO;
530 goto out;
532 pos += ret;
535 ret = 0;
537 out:
538 set_fs(old_fs);
539 return ret;
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
548 if (unlikely(left < total_len))
549 return -EOVERFLOW;
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
557 return 0;
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
568 TLV_PUT_DEFINE_INT(64)
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
573 if (len == -1)
574 len = strlen(str);
575 return tlv_put(sctx, attr, str, len);
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 const u8 *uuid)
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 do { \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
597 if (ret < 0) \
598 goto tlv_put_failure; \
599 } while (0)
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 do { \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
604 if (ret < 0) \
605 goto tlv_put_failure; \
606 } while (0)
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 do { \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 do { \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 do { \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 if (ret < 0) \
629 goto tlv_put_failure; \
630 } while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 do { \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
638 static int send_header(struct send_ctx *sctx)
640 struct btrfs_stream_header hdr;
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 &sctx->send_off);
650 * For each command/item we want to send to userspace, we call this function.
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
654 struct btrfs_cmd_header *hdr;
656 if (WARN_ON(!sctx->send_buf))
657 return -EINVAL;
659 BUG_ON(sctx->send_size);
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
665 return 0;
668 static int send_cmd(struct send_ctx *sctx)
670 int ret;
671 struct btrfs_cmd_header *hdr;
672 u32 crc;
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 hdr->crc = 0;
678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 hdr->crc = cpu_to_le32(crc);
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 &sctx->send_off);
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 sctx->send_size = 0;
688 return ret;
692 * Sends a move instruction to user space
694 static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
697 int ret;
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 if (ret < 0)
703 goto out;
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
708 ret = send_cmd(sctx);
710 tlv_put_failure:
711 out:
712 return ret;
716 * Sends a link instruction to user space
718 static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
721 int ret;
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 if (ret < 0)
727 goto out;
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
732 ret = send_cmd(sctx);
734 tlv_put_failure:
735 out:
736 return ret;
740 * Sends an unlink instruction to user space
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
744 int ret;
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 if (ret < 0)
750 goto out;
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 ret = send_cmd(sctx);
756 tlv_put_failure:
757 out:
758 return ret;
762 * Sends a rmdir instruction to user space
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
766 int ret;
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 if (ret < 0)
772 goto out;
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 ret = send_cmd(sctx);
778 tlv_put_failure:
779 out:
780 return ret;
784 * Helper function to retrieve some fields from an inode item.
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 u64 *gid, u64 *rdev)
790 int ret;
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
794 key.objectid = ino;
795 key.type = BTRFS_INODE_ITEM_KEY;
796 key.offset = 0;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 if (ret) {
799 if (ret > 0)
800 ret = -ENOENT;
801 return ret;
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
806 if (size)
807 *size = btrfs_inode_size(path->nodes[0], ii);
808 if (gen)
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
810 if (mode)
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
812 if (uid)
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
814 if (gid)
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
816 if (rdev)
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
819 return ret;
822 static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
825 u64 *rdev)
827 struct btrfs_path *path;
828 int ret;
830 path = alloc_path_for_send();
831 if (!path)
832 return -ENOMEM;
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 rdev);
835 btrfs_free_path(path);
836 return ret;
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 struct fs_path *p,
841 void *ctx);
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
849 * path must point to the INODE_REF or INODE_EXTREF when called.
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
855 struct extent_buffer *eb = path->nodes[0];
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
858 struct btrfs_inode_extref *extref;
859 struct btrfs_path *tmp_path;
860 struct fs_path *p;
861 u32 cur = 0;
862 u32 total;
863 int slot = path->slots[0];
864 u32 name_len;
865 char *start;
866 int ret = 0;
867 int num = 0;
868 int index;
869 u64 dir;
870 unsigned long name_off;
871 unsigned long elem_size;
872 unsigned long ptr;
874 p = fs_path_alloc_reversed();
875 if (!p)
876 return -ENOMEM;
878 tmp_path = alloc_path_for_send();
879 if (!tmp_path) {
880 fs_path_free(p);
881 return -ENOMEM;
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
888 item = btrfs_item_nr(slot);
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
891 } else {
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
897 while (cur < total) {
898 fs_path_reset(p);
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
906 } else {
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
914 if (resolve) {
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
916 name_off, eb, dir,
917 p->buf, p->buf_len);
918 if (IS_ERR(start)) {
919 ret = PTR_ERR(start);
920 goto out;
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
926 if (ret < 0)
927 goto out;
928 start = btrfs_ref_to_path(root, tmp_path,
929 name_len, name_off,
930 eb, dir,
931 p->buf, p->buf_len);
932 if (IS_ERR(start)) {
933 ret = PTR_ERR(start);
934 goto out;
936 BUG_ON(start < p->buf);
938 p->start = start;
939 } else {
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 name_len);
942 if (ret < 0)
943 goto out;
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
948 if (ret)
949 goto out;
950 num++;
953 out:
954 btrfs_free_path(tmp_path);
955 fs_path_free(p);
956 return ret;
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
962 u8 type, void *ctx);
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
969 * path must point to the dir item when called.
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
975 int ret = 0;
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
979 struct btrfs_key di_key;
980 char *buf = NULL;
981 int buf_len;
982 u32 name_len;
983 u32 data_len;
984 u32 cur;
985 u32 len;
986 u32 total;
987 int slot;
988 int num;
989 u8 type;
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
995 * values are small.
997 buf_len = PATH_MAX;
998 buf = kmalloc(buf_len, GFP_NOFS);
999 if (!buf) {
1000 ret = -ENOMEM;
1001 goto out;
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
1006 item = btrfs_item_nr(slot);
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 cur = 0;
1009 len = 0;
1010 total = btrfs_item_size(eb, item);
1012 num = 0;
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1022 goto out;
1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 ret = -E2BIG;
1026 goto out;
1028 } else {
1030 * Path too long
1032 if (name_len + data_len > PATH_MAX) {
1033 ret = -ENAMETOOLONG;
1034 goto out;
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1041 vfree(buf);
1042 buf = NULL;
1043 } else {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_NOFS | __GFP_NOWARN);
1047 if (!tmp)
1048 kfree(buf);
1049 buf = tmp;
1051 if (!buf) {
1052 buf = vmalloc(buf_len);
1053 if (!buf) {
1054 ret = -ENOMEM;
1055 goto out;
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1065 cur += len;
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1069 if (ret < 0)
1070 goto out;
1071 if (ret) {
1072 ret = 0;
1073 goto out;
1076 num++;
1079 out:
1080 kvfree(buf);
1081 return ret;
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1087 int ret;
1088 struct fs_path *pt = ctx;
1090 ret = fs_path_copy(pt, p);
1091 if (ret < 0)
1092 return ret;
1094 /* we want the first only */
1095 return 1;
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1102 static int get_inode_path(struct btrfs_root *root,
1103 u64 ino, struct fs_path *path)
1105 int ret;
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1109 p = alloc_path_for_send();
1110 if (!p)
1111 return -ENOMEM;
1113 fs_path_reset(path);
1115 key.objectid = ino;
1116 key.type = BTRFS_INODE_REF_KEY;
1117 key.offset = 0;
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 if (ret < 0)
1121 goto out;
1122 if (ret) {
1123 ret = 1;
1124 goto out;
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 ret = -ENOENT;
1131 goto out;
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
1136 if (ret < 0)
1137 goto out;
1138 ret = 0;
1140 out:
1141 btrfs_free_path(p);
1142 return ret;
1145 struct backref_ctx {
1146 struct send_ctx *sctx;
1148 struct btrfs_path *path;
1149 /* number of total found references */
1150 u64 found;
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1156 u64 cur_objectid;
1157 u64 cur_offset;
1159 /* may be truncated in case it's the last extent in a file */
1160 u64 extent_len;
1162 /* data offset in the file extent item */
1163 u64 data_offset;
1165 /* Just to check for bugs in backref resolving */
1166 int found_itself;
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171 u64 root = (u64)(uintptr_t)key;
1172 struct clone_root *cr = (struct clone_root *)elt;
1174 if (root < cr->root->objectid)
1175 return -1;
1176 if (root > cr->root->objectid)
1177 return 1;
1178 return 0;
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1186 if (cr1->root->objectid < cr2->root->objectid)
1187 return -1;
1188 if (cr1->root->objectid > cr2->root->objectid)
1189 return 1;
1190 return 0;
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1201 int ret;
1202 u64 i_size;
1204 /* First check if the root is in the list of accepted clone sources */
1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1209 if (!found)
1210 return 0;
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
1215 bctx->found_itself = 1;
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 NULL, NULL, NULL);
1224 btrfs_release_path(bctx->path);
1225 if (ret < 0)
1226 return ret;
1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 return 0;
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1235 if (found->root == bctx->sctx->send_root) {
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 * file.
1242 if (ino >= bctx->cur_objectid)
1243 return 0;
1244 #if 0
1245 if (ino > bctx->cur_objectid)
1246 return 0;
1247 if (offset + bctx->extent_len > bctx->cur_offset)
1248 return 0;
1249 #endif
1252 bctx->found++;
1253 found->found_refs++;
1254 if (ino < found->ino) {
1255 found->ino = ino;
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1259 * same extent found more then once in the same file.
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1265 return 0;
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1275 * path must point to the extent item when called.
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1280 u64 ino_size,
1281 struct clone_root **found)
1283 int ret;
1284 int extent_type;
1285 u64 logical;
1286 u64 disk_byte;
1287 u64 num_bytes;
1288 u64 extent_item_pos;
1289 u64 flags = 0;
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
1292 struct backref_ctx *backref_ctx = NULL;
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
1296 int compressed;
1297 u32 i;
1299 tmp_path = alloc_path_for_send();
1300 if (!tmp_path)
1301 return -ENOMEM;
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 if (!backref_ctx) {
1308 ret = -ENOMEM;
1309 goto out;
1312 backref_ctx->path = tmp_path;
1314 if (data_offset >= ino_size) {
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1320 ret = 0;
1321 goto out;
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 ret = -ENOENT;
1329 goto out;
1331 compressed = btrfs_file_extent_compression(eb, fi);
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
1336 ret = -ENOENT;
1337 goto out;
1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 btrfs_release_path(tmp_path);
1347 if (ret < 0)
1348 goto out;
1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 ret = -EIO;
1351 goto out;
1355 * Setup the clone roots.
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1377 * receiving end.
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1381 else
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1389 if (data_offset + num_bytes >= ino_size)
1390 backref_ctx->extent_len = ino_size - data_offset;
1393 * Now collect all backrefs.
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1397 else
1398 extent_item_pos = 0;
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
1401 __iterate_backrefs, backref_ctx);
1403 if (ret < 0)
1404 goto out;
1406 if (!backref_ctx->found_itself) {
1407 /* found a bug in backref code? */
1408 ret = -EIO;
1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino, data_offset, disk_byte, found_key.objectid);
1413 goto out;
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 "ino=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1421 if (!backref_ctx->found)
1422 verbose_printk("btrfs: no clones found\n");
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
1436 if (cur_clone_root) {
1437 if (compressed != BTRFS_COMPRESS_NONE) {
1439 * Offsets given by iterate_extent_inodes() are relative
1440 * to the start of the extent, we need to add logical
1441 * offset from the file extent item.
1442 * (See why at backref.c:check_extent_in_eb())
1444 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1445 fi);
1447 *found = cur_clone_root;
1448 ret = 0;
1449 } else {
1450 ret = -ENOENT;
1453 out:
1454 btrfs_free_path(tmp_path);
1455 kfree(backref_ctx);
1456 return ret;
1459 static int read_symlink(struct btrfs_root *root,
1460 u64 ino,
1461 struct fs_path *dest)
1463 int ret;
1464 struct btrfs_path *path;
1465 struct btrfs_key key;
1466 struct btrfs_file_extent_item *ei;
1467 u8 type;
1468 u8 compression;
1469 unsigned long off;
1470 int len;
1472 path = alloc_path_for_send();
1473 if (!path)
1474 return -ENOMEM;
1476 key.objectid = ino;
1477 key.type = BTRFS_EXTENT_DATA_KEY;
1478 key.offset = 0;
1479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1480 if (ret < 0)
1481 goto out;
1482 BUG_ON(ret);
1484 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1485 struct btrfs_file_extent_item);
1486 type = btrfs_file_extent_type(path->nodes[0], ei);
1487 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1488 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1489 BUG_ON(compression);
1491 off = btrfs_file_extent_inline_start(ei);
1492 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1494 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1496 out:
1497 btrfs_free_path(path);
1498 return ret;
1502 * Helper function to generate a file name that is unique in the root of
1503 * send_root and parent_root. This is used to generate names for orphan inodes.
1505 static int gen_unique_name(struct send_ctx *sctx,
1506 u64 ino, u64 gen,
1507 struct fs_path *dest)
1509 int ret = 0;
1510 struct btrfs_path *path;
1511 struct btrfs_dir_item *di;
1512 char tmp[64];
1513 int len;
1514 u64 idx = 0;
1516 path = alloc_path_for_send();
1517 if (!path)
1518 return -ENOMEM;
1520 while (1) {
1521 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1522 ino, gen, idx);
1523 ASSERT(len < sizeof(tmp));
1525 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1526 path, BTRFS_FIRST_FREE_OBJECTID,
1527 tmp, strlen(tmp), 0);
1528 btrfs_release_path(path);
1529 if (IS_ERR(di)) {
1530 ret = PTR_ERR(di);
1531 goto out;
1533 if (di) {
1534 /* not unique, try again */
1535 idx++;
1536 continue;
1539 if (!sctx->parent_root) {
1540 /* unique */
1541 ret = 0;
1542 break;
1545 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1546 path, BTRFS_FIRST_FREE_OBJECTID,
1547 tmp, strlen(tmp), 0);
1548 btrfs_release_path(path);
1549 if (IS_ERR(di)) {
1550 ret = PTR_ERR(di);
1551 goto out;
1553 if (di) {
1554 /* not unique, try again */
1555 idx++;
1556 continue;
1558 /* unique */
1559 break;
1562 ret = fs_path_add(dest, tmp, strlen(tmp));
1564 out:
1565 btrfs_free_path(path);
1566 return ret;
1569 enum inode_state {
1570 inode_state_no_change,
1571 inode_state_will_create,
1572 inode_state_did_create,
1573 inode_state_will_delete,
1574 inode_state_did_delete,
1577 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1579 int ret;
1580 int left_ret;
1581 int right_ret;
1582 u64 left_gen;
1583 u64 right_gen;
1585 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1586 NULL, NULL);
1587 if (ret < 0 && ret != -ENOENT)
1588 goto out;
1589 left_ret = ret;
1591 if (!sctx->parent_root) {
1592 right_ret = -ENOENT;
1593 } else {
1594 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1595 NULL, NULL, NULL, NULL);
1596 if (ret < 0 && ret != -ENOENT)
1597 goto out;
1598 right_ret = ret;
1601 if (!left_ret && !right_ret) {
1602 if (left_gen == gen && right_gen == gen) {
1603 ret = inode_state_no_change;
1604 } else if (left_gen == gen) {
1605 if (ino < sctx->send_progress)
1606 ret = inode_state_did_create;
1607 else
1608 ret = inode_state_will_create;
1609 } else if (right_gen == gen) {
1610 if (ino < sctx->send_progress)
1611 ret = inode_state_did_delete;
1612 else
1613 ret = inode_state_will_delete;
1614 } else {
1615 ret = -ENOENT;
1617 } else if (!left_ret) {
1618 if (left_gen == gen) {
1619 if (ino < sctx->send_progress)
1620 ret = inode_state_did_create;
1621 else
1622 ret = inode_state_will_create;
1623 } else {
1624 ret = -ENOENT;
1626 } else if (!right_ret) {
1627 if (right_gen == gen) {
1628 if (ino < sctx->send_progress)
1629 ret = inode_state_did_delete;
1630 else
1631 ret = inode_state_will_delete;
1632 } else {
1633 ret = -ENOENT;
1635 } else {
1636 ret = -ENOENT;
1639 out:
1640 return ret;
1643 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1645 int ret;
1647 ret = get_cur_inode_state(sctx, ino, gen);
1648 if (ret < 0)
1649 goto out;
1651 if (ret == inode_state_no_change ||
1652 ret == inode_state_did_create ||
1653 ret == inode_state_will_delete)
1654 ret = 1;
1655 else
1656 ret = 0;
1658 out:
1659 return ret;
1663 * Helper function to lookup a dir item in a dir.
1665 static int lookup_dir_item_inode(struct btrfs_root *root,
1666 u64 dir, const char *name, int name_len,
1667 u64 *found_inode,
1668 u8 *found_type)
1670 int ret = 0;
1671 struct btrfs_dir_item *di;
1672 struct btrfs_key key;
1673 struct btrfs_path *path;
1675 path = alloc_path_for_send();
1676 if (!path)
1677 return -ENOMEM;
1679 di = btrfs_lookup_dir_item(NULL, root, path,
1680 dir, name, name_len, 0);
1681 if (!di) {
1682 ret = -ENOENT;
1683 goto out;
1685 if (IS_ERR(di)) {
1686 ret = PTR_ERR(di);
1687 goto out;
1689 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1690 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1691 ret = -ENOENT;
1692 goto out;
1694 *found_inode = key.objectid;
1695 *found_type = btrfs_dir_type(path->nodes[0], di);
1697 out:
1698 btrfs_free_path(path);
1699 return ret;
1703 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1704 * generation of the parent dir and the name of the dir entry.
1706 static int get_first_ref(struct btrfs_root *root, u64 ino,
1707 u64 *dir, u64 *dir_gen, struct fs_path *name)
1709 int ret;
1710 struct btrfs_key key;
1711 struct btrfs_key found_key;
1712 struct btrfs_path *path;
1713 int len;
1714 u64 parent_dir;
1716 path = alloc_path_for_send();
1717 if (!path)
1718 return -ENOMEM;
1720 key.objectid = ino;
1721 key.type = BTRFS_INODE_REF_KEY;
1722 key.offset = 0;
1724 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1725 if (ret < 0)
1726 goto out;
1727 if (!ret)
1728 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1729 path->slots[0]);
1730 if (ret || found_key.objectid != ino ||
1731 (found_key.type != BTRFS_INODE_REF_KEY &&
1732 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1733 ret = -ENOENT;
1734 goto out;
1737 if (found_key.type == BTRFS_INODE_REF_KEY) {
1738 struct btrfs_inode_ref *iref;
1739 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1740 struct btrfs_inode_ref);
1741 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1742 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1743 (unsigned long)(iref + 1),
1744 len);
1745 parent_dir = found_key.offset;
1746 } else {
1747 struct btrfs_inode_extref *extref;
1748 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1749 struct btrfs_inode_extref);
1750 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1751 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1752 (unsigned long)&extref->name, len);
1753 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1755 if (ret < 0)
1756 goto out;
1757 btrfs_release_path(path);
1759 if (dir_gen) {
1760 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1761 NULL, NULL, NULL);
1762 if (ret < 0)
1763 goto out;
1766 *dir = parent_dir;
1768 out:
1769 btrfs_free_path(path);
1770 return ret;
1773 static int is_first_ref(struct btrfs_root *root,
1774 u64 ino, u64 dir,
1775 const char *name, int name_len)
1777 int ret;
1778 struct fs_path *tmp_name;
1779 u64 tmp_dir;
1781 tmp_name = fs_path_alloc();
1782 if (!tmp_name)
1783 return -ENOMEM;
1785 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1786 if (ret < 0)
1787 goto out;
1789 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1790 ret = 0;
1791 goto out;
1794 ret = !memcmp(tmp_name->start, name, name_len);
1796 out:
1797 fs_path_free(tmp_name);
1798 return ret;
1802 * Used by process_recorded_refs to determine if a new ref would overwrite an
1803 * already existing ref. In case it detects an overwrite, it returns the
1804 * inode/gen in who_ino/who_gen.
1805 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1806 * to make sure later references to the overwritten inode are possible.
1807 * Orphanizing is however only required for the first ref of an inode.
1808 * process_recorded_refs does an additional is_first_ref check to see if
1809 * orphanizing is really required.
1811 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1812 const char *name, int name_len,
1813 u64 *who_ino, u64 *who_gen)
1815 int ret = 0;
1816 u64 gen;
1817 u64 other_inode = 0;
1818 u8 other_type = 0;
1820 if (!sctx->parent_root)
1821 goto out;
1823 ret = is_inode_existent(sctx, dir, dir_gen);
1824 if (ret <= 0)
1825 goto out;
1828 * If we have a parent root we need to verify that the parent dir was
1829 * not delted and then re-created, if it was then we have no overwrite
1830 * and we can just unlink this entry.
1832 if (sctx->parent_root) {
1833 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1834 NULL, NULL, NULL);
1835 if (ret < 0 && ret != -ENOENT)
1836 goto out;
1837 if (ret) {
1838 ret = 0;
1839 goto out;
1841 if (gen != dir_gen)
1842 goto out;
1845 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1846 &other_inode, &other_type);
1847 if (ret < 0 && ret != -ENOENT)
1848 goto out;
1849 if (ret) {
1850 ret = 0;
1851 goto out;
1855 * Check if the overwritten ref was already processed. If yes, the ref
1856 * was already unlinked/moved, so we can safely assume that we will not
1857 * overwrite anything at this point in time.
1859 if (other_inode > sctx->send_progress) {
1860 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1861 who_gen, NULL, NULL, NULL, NULL);
1862 if (ret < 0)
1863 goto out;
1865 ret = 1;
1866 *who_ino = other_inode;
1867 } else {
1868 ret = 0;
1871 out:
1872 return ret;
1876 * Checks if the ref was overwritten by an already processed inode. This is
1877 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1878 * thus the orphan name needs be used.
1879 * process_recorded_refs also uses it to avoid unlinking of refs that were
1880 * overwritten.
1882 static int did_overwrite_ref(struct send_ctx *sctx,
1883 u64 dir, u64 dir_gen,
1884 u64 ino, u64 ino_gen,
1885 const char *name, int name_len)
1887 int ret = 0;
1888 u64 gen;
1889 u64 ow_inode;
1890 u8 other_type;
1892 if (!sctx->parent_root)
1893 goto out;
1895 ret = is_inode_existent(sctx, dir, dir_gen);
1896 if (ret <= 0)
1897 goto out;
1899 /* check if the ref was overwritten by another ref */
1900 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1901 &ow_inode, &other_type);
1902 if (ret < 0 && ret != -ENOENT)
1903 goto out;
1904 if (ret) {
1905 /* was never and will never be overwritten */
1906 ret = 0;
1907 goto out;
1910 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1911 NULL, NULL);
1912 if (ret < 0)
1913 goto out;
1915 if (ow_inode == ino && gen == ino_gen) {
1916 ret = 0;
1917 goto out;
1921 * We know that it is or will be overwritten. Check this now.
1922 * The current inode being processed might have been the one that caused
1923 * inode 'ino' to be orphanized, therefore ow_inode can actually be the
1924 * same as sctx->send_progress.
1926 if (ow_inode <= sctx->send_progress)
1927 ret = 1;
1928 else
1929 ret = 0;
1931 out:
1932 return ret;
1936 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1937 * that got overwritten. This is used by process_recorded_refs to determine
1938 * if it has to use the path as returned by get_cur_path or the orphan name.
1940 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1942 int ret = 0;
1943 struct fs_path *name = NULL;
1944 u64 dir;
1945 u64 dir_gen;
1947 if (!sctx->parent_root)
1948 goto out;
1950 name = fs_path_alloc();
1951 if (!name)
1952 return -ENOMEM;
1954 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1955 if (ret < 0)
1956 goto out;
1958 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1959 name->start, fs_path_len(name));
1961 out:
1962 fs_path_free(name);
1963 return ret;
1967 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1968 * so we need to do some special handling in case we have clashes. This function
1969 * takes care of this with the help of name_cache_entry::radix_list.
1970 * In case of error, nce is kfreed.
1972 static int name_cache_insert(struct send_ctx *sctx,
1973 struct name_cache_entry *nce)
1975 int ret = 0;
1976 struct list_head *nce_head;
1978 nce_head = radix_tree_lookup(&sctx->name_cache,
1979 (unsigned long)nce->ino);
1980 if (!nce_head) {
1981 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1982 if (!nce_head) {
1983 kfree(nce);
1984 return -ENOMEM;
1986 INIT_LIST_HEAD(nce_head);
1988 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1989 if (ret < 0) {
1990 kfree(nce_head);
1991 kfree(nce);
1992 return ret;
1995 list_add_tail(&nce->radix_list, nce_head);
1996 list_add_tail(&nce->list, &sctx->name_cache_list);
1997 sctx->name_cache_size++;
1999 return ret;
2002 static void name_cache_delete(struct send_ctx *sctx,
2003 struct name_cache_entry *nce)
2005 struct list_head *nce_head;
2007 nce_head = radix_tree_lookup(&sctx->name_cache,
2008 (unsigned long)nce->ino);
2009 if (!nce_head) {
2010 btrfs_err(sctx->send_root->fs_info,
2011 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2012 nce->ino, sctx->name_cache_size);
2015 list_del(&nce->radix_list);
2016 list_del(&nce->list);
2017 sctx->name_cache_size--;
2020 * We may not get to the final release of nce_head if the lookup fails
2022 if (nce_head && list_empty(nce_head)) {
2023 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2024 kfree(nce_head);
2028 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2029 u64 ino, u64 gen)
2031 struct list_head *nce_head;
2032 struct name_cache_entry *cur;
2034 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2035 if (!nce_head)
2036 return NULL;
2038 list_for_each_entry(cur, nce_head, radix_list) {
2039 if (cur->ino == ino && cur->gen == gen)
2040 return cur;
2042 return NULL;
2046 * Removes the entry from the list and adds it back to the end. This marks the
2047 * entry as recently used so that name_cache_clean_unused does not remove it.
2049 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2051 list_del(&nce->list);
2052 list_add_tail(&nce->list, &sctx->name_cache_list);
2056 * Remove some entries from the beginning of name_cache_list.
2058 static void name_cache_clean_unused(struct send_ctx *sctx)
2060 struct name_cache_entry *nce;
2062 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2063 return;
2065 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2066 nce = list_entry(sctx->name_cache_list.next,
2067 struct name_cache_entry, list);
2068 name_cache_delete(sctx, nce);
2069 kfree(nce);
2073 static void name_cache_free(struct send_ctx *sctx)
2075 struct name_cache_entry *nce;
2077 while (!list_empty(&sctx->name_cache_list)) {
2078 nce = list_entry(sctx->name_cache_list.next,
2079 struct name_cache_entry, list);
2080 name_cache_delete(sctx, nce);
2081 kfree(nce);
2086 * Used by get_cur_path for each ref up to the root.
2087 * Returns 0 if it succeeded.
2088 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2089 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2090 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2091 * Returns <0 in case of error.
2093 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2094 u64 ino, u64 gen,
2095 u64 *parent_ino,
2096 u64 *parent_gen,
2097 struct fs_path *dest)
2099 int ret;
2100 int nce_ret;
2101 struct name_cache_entry *nce = NULL;
2104 * First check if we already did a call to this function with the same
2105 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2106 * return the cached result.
2108 nce = name_cache_search(sctx, ino, gen);
2109 if (nce) {
2110 if (ino < sctx->send_progress && nce->need_later_update) {
2111 name_cache_delete(sctx, nce);
2112 kfree(nce);
2113 nce = NULL;
2114 } else {
2115 name_cache_used(sctx, nce);
2116 *parent_ino = nce->parent_ino;
2117 *parent_gen = nce->parent_gen;
2118 ret = fs_path_add(dest, nce->name, nce->name_len);
2119 if (ret < 0)
2120 goto out;
2121 ret = nce->ret;
2122 goto out;
2127 * If the inode is not existent yet, add the orphan name and return 1.
2128 * This should only happen for the parent dir that we determine in
2129 * __record_new_ref
2131 ret = is_inode_existent(sctx, ino, gen);
2132 if (ret < 0)
2133 goto out;
2135 if (!ret) {
2136 ret = gen_unique_name(sctx, ino, gen, dest);
2137 if (ret < 0)
2138 goto out;
2139 ret = 1;
2140 goto out_cache;
2144 * Depending on whether the inode was already processed or not, use
2145 * send_root or parent_root for ref lookup.
2147 if (ino < sctx->send_progress)
2148 ret = get_first_ref(sctx->send_root, ino,
2149 parent_ino, parent_gen, dest);
2150 else
2151 ret = get_first_ref(sctx->parent_root, ino,
2152 parent_ino, parent_gen, dest);
2153 if (ret < 0)
2154 goto out;
2157 * Check if the ref was overwritten by an inode's ref that was processed
2158 * earlier. If yes, treat as orphan and return 1.
2160 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2161 dest->start, dest->end - dest->start);
2162 if (ret < 0)
2163 goto out;
2164 if (ret) {
2165 fs_path_reset(dest);
2166 ret = gen_unique_name(sctx, ino, gen, dest);
2167 if (ret < 0)
2168 goto out;
2169 ret = 1;
2172 out_cache:
2174 * Store the result of the lookup in the name cache.
2176 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2177 if (!nce) {
2178 ret = -ENOMEM;
2179 goto out;
2182 nce->ino = ino;
2183 nce->gen = gen;
2184 nce->parent_ino = *parent_ino;
2185 nce->parent_gen = *parent_gen;
2186 nce->name_len = fs_path_len(dest);
2187 nce->ret = ret;
2188 strcpy(nce->name, dest->start);
2190 if (ino < sctx->send_progress)
2191 nce->need_later_update = 0;
2192 else
2193 nce->need_later_update = 1;
2195 nce_ret = name_cache_insert(sctx, nce);
2196 if (nce_ret < 0)
2197 ret = nce_ret;
2198 name_cache_clean_unused(sctx);
2200 out:
2201 return ret;
2205 * Magic happens here. This function returns the first ref to an inode as it
2206 * would look like while receiving the stream at this point in time.
2207 * We walk the path up to the root. For every inode in between, we check if it
2208 * was already processed/sent. If yes, we continue with the parent as found
2209 * in send_root. If not, we continue with the parent as found in parent_root.
2210 * If we encounter an inode that was deleted at this point in time, we use the
2211 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2212 * that were not created yet and overwritten inodes/refs.
2214 * When do we have have orphan inodes:
2215 * 1. When an inode is freshly created and thus no valid refs are available yet
2216 * 2. When a directory lost all it's refs (deleted) but still has dir items
2217 * inside which were not processed yet (pending for move/delete). If anyone
2218 * tried to get the path to the dir items, it would get a path inside that
2219 * orphan directory.
2220 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2221 * of an unprocessed inode. If in that case the first ref would be
2222 * overwritten, the overwritten inode gets "orphanized". Later when we
2223 * process this overwritten inode, it is restored at a new place by moving
2224 * the orphan inode.
2226 * sctx->send_progress tells this function at which point in time receiving
2227 * would be.
2229 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2230 struct fs_path *dest)
2232 int ret = 0;
2233 struct fs_path *name = NULL;
2234 u64 parent_inode = 0;
2235 u64 parent_gen = 0;
2236 int stop = 0;
2238 name = fs_path_alloc();
2239 if (!name) {
2240 ret = -ENOMEM;
2241 goto out;
2244 dest->reversed = 1;
2245 fs_path_reset(dest);
2247 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2248 struct waiting_dir_move *wdm;
2250 fs_path_reset(name);
2252 if (is_waiting_for_rm(sctx, ino)) {
2253 ret = gen_unique_name(sctx, ino, gen, name);
2254 if (ret < 0)
2255 goto out;
2256 ret = fs_path_add_path(dest, name);
2257 break;
2260 wdm = get_waiting_dir_move(sctx, ino);
2261 if (wdm && wdm->orphanized) {
2262 ret = gen_unique_name(sctx, ino, gen, name);
2263 stop = 1;
2264 } else if (wdm) {
2265 ret = get_first_ref(sctx->parent_root, ino,
2266 &parent_inode, &parent_gen, name);
2267 } else {
2268 ret = __get_cur_name_and_parent(sctx, ino, gen,
2269 &parent_inode,
2270 &parent_gen, name);
2271 if (ret)
2272 stop = 1;
2275 if (ret < 0)
2276 goto out;
2278 ret = fs_path_add_path(dest, name);
2279 if (ret < 0)
2280 goto out;
2282 ino = parent_inode;
2283 gen = parent_gen;
2286 out:
2287 fs_path_free(name);
2288 if (!ret)
2289 fs_path_unreverse(dest);
2290 return ret;
2294 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2296 static int send_subvol_begin(struct send_ctx *sctx)
2298 int ret;
2299 struct btrfs_root *send_root = sctx->send_root;
2300 struct btrfs_root *parent_root = sctx->parent_root;
2301 struct btrfs_path *path;
2302 struct btrfs_key key;
2303 struct btrfs_root_ref *ref;
2304 struct extent_buffer *leaf;
2305 char *name = NULL;
2306 int namelen;
2308 path = btrfs_alloc_path();
2309 if (!path)
2310 return -ENOMEM;
2312 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2313 if (!name) {
2314 btrfs_free_path(path);
2315 return -ENOMEM;
2318 key.objectid = send_root->objectid;
2319 key.type = BTRFS_ROOT_BACKREF_KEY;
2320 key.offset = 0;
2322 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2323 &key, path, 1, 0);
2324 if (ret < 0)
2325 goto out;
2326 if (ret) {
2327 ret = -ENOENT;
2328 goto out;
2331 leaf = path->nodes[0];
2332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2334 key.objectid != send_root->objectid) {
2335 ret = -ENOENT;
2336 goto out;
2338 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2339 namelen = btrfs_root_ref_name_len(leaf, ref);
2340 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2341 btrfs_release_path(path);
2343 if (parent_root) {
2344 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2345 if (ret < 0)
2346 goto out;
2347 } else {
2348 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2349 if (ret < 0)
2350 goto out;
2353 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2354 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2355 sctx->send_root->root_item.uuid);
2356 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2357 le64_to_cpu(sctx->send_root->root_item.ctransid));
2358 if (parent_root) {
2359 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2360 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2361 parent_root->root_item.received_uuid);
2362 else
2363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2364 parent_root->root_item.uuid);
2365 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2366 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2369 ret = send_cmd(sctx);
2371 tlv_put_failure:
2372 out:
2373 btrfs_free_path(path);
2374 kfree(name);
2375 return ret;
2378 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2380 int ret = 0;
2381 struct fs_path *p;
2383 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2385 p = fs_path_alloc();
2386 if (!p)
2387 return -ENOMEM;
2389 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2390 if (ret < 0)
2391 goto out;
2393 ret = get_cur_path(sctx, ino, gen, p);
2394 if (ret < 0)
2395 goto out;
2396 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2397 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2399 ret = send_cmd(sctx);
2401 tlv_put_failure:
2402 out:
2403 fs_path_free(p);
2404 return ret;
2407 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2409 int ret = 0;
2410 struct fs_path *p;
2412 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2414 p = fs_path_alloc();
2415 if (!p)
2416 return -ENOMEM;
2418 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2419 if (ret < 0)
2420 goto out;
2422 ret = get_cur_path(sctx, ino, gen, p);
2423 if (ret < 0)
2424 goto out;
2425 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2426 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2428 ret = send_cmd(sctx);
2430 tlv_put_failure:
2431 out:
2432 fs_path_free(p);
2433 return ret;
2436 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2438 int ret = 0;
2439 struct fs_path *p;
2441 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2443 p = fs_path_alloc();
2444 if (!p)
2445 return -ENOMEM;
2447 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2448 if (ret < 0)
2449 goto out;
2451 ret = get_cur_path(sctx, ino, gen, p);
2452 if (ret < 0)
2453 goto out;
2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2456 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2458 ret = send_cmd(sctx);
2460 tlv_put_failure:
2461 out:
2462 fs_path_free(p);
2463 return ret;
2466 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2468 int ret = 0;
2469 struct fs_path *p = NULL;
2470 struct btrfs_inode_item *ii;
2471 struct btrfs_path *path = NULL;
2472 struct extent_buffer *eb;
2473 struct btrfs_key key;
2474 int slot;
2476 verbose_printk("btrfs: send_utimes %llu\n", ino);
2478 p = fs_path_alloc();
2479 if (!p)
2480 return -ENOMEM;
2482 path = alloc_path_for_send();
2483 if (!path) {
2484 ret = -ENOMEM;
2485 goto out;
2488 key.objectid = ino;
2489 key.type = BTRFS_INODE_ITEM_KEY;
2490 key.offset = 0;
2491 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2492 if (ret < 0)
2493 goto out;
2495 eb = path->nodes[0];
2496 slot = path->slots[0];
2497 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2499 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2500 if (ret < 0)
2501 goto out;
2503 ret = get_cur_path(sctx, ino, gen, p);
2504 if (ret < 0)
2505 goto out;
2506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2507 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2508 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2509 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2510 /* TODO Add otime support when the otime patches get into upstream */
2512 ret = send_cmd(sctx);
2514 tlv_put_failure:
2515 out:
2516 fs_path_free(p);
2517 btrfs_free_path(path);
2518 return ret;
2522 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2523 * a valid path yet because we did not process the refs yet. So, the inode
2524 * is created as orphan.
2526 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2528 int ret = 0;
2529 struct fs_path *p;
2530 int cmd;
2531 u64 gen;
2532 u64 mode;
2533 u64 rdev;
2535 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2537 p = fs_path_alloc();
2538 if (!p)
2539 return -ENOMEM;
2541 if (ino != sctx->cur_ino) {
2542 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2543 NULL, NULL, &rdev);
2544 if (ret < 0)
2545 goto out;
2546 } else {
2547 gen = sctx->cur_inode_gen;
2548 mode = sctx->cur_inode_mode;
2549 rdev = sctx->cur_inode_rdev;
2552 if (S_ISREG(mode)) {
2553 cmd = BTRFS_SEND_C_MKFILE;
2554 } else if (S_ISDIR(mode)) {
2555 cmd = BTRFS_SEND_C_MKDIR;
2556 } else if (S_ISLNK(mode)) {
2557 cmd = BTRFS_SEND_C_SYMLINK;
2558 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2559 cmd = BTRFS_SEND_C_MKNOD;
2560 } else if (S_ISFIFO(mode)) {
2561 cmd = BTRFS_SEND_C_MKFIFO;
2562 } else if (S_ISSOCK(mode)) {
2563 cmd = BTRFS_SEND_C_MKSOCK;
2564 } else {
2565 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2566 (int)(mode & S_IFMT));
2567 ret = -ENOTSUPP;
2568 goto out;
2571 ret = begin_cmd(sctx, cmd);
2572 if (ret < 0)
2573 goto out;
2575 ret = gen_unique_name(sctx, ino, gen, p);
2576 if (ret < 0)
2577 goto out;
2579 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2580 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2582 if (S_ISLNK(mode)) {
2583 fs_path_reset(p);
2584 ret = read_symlink(sctx->send_root, ino, p);
2585 if (ret < 0)
2586 goto out;
2587 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2588 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2589 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2590 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2591 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2594 ret = send_cmd(sctx);
2595 if (ret < 0)
2596 goto out;
2599 tlv_put_failure:
2600 out:
2601 fs_path_free(p);
2602 return ret;
2606 * We need some special handling for inodes that get processed before the parent
2607 * directory got created. See process_recorded_refs for details.
2608 * This function does the check if we already created the dir out of order.
2610 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2612 int ret = 0;
2613 struct btrfs_path *path = NULL;
2614 struct btrfs_key key;
2615 struct btrfs_key found_key;
2616 struct btrfs_key di_key;
2617 struct extent_buffer *eb;
2618 struct btrfs_dir_item *di;
2619 int slot;
2621 path = alloc_path_for_send();
2622 if (!path) {
2623 ret = -ENOMEM;
2624 goto out;
2627 key.objectid = dir;
2628 key.type = BTRFS_DIR_INDEX_KEY;
2629 key.offset = 0;
2630 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2631 if (ret < 0)
2632 goto out;
2634 while (1) {
2635 eb = path->nodes[0];
2636 slot = path->slots[0];
2637 if (slot >= btrfs_header_nritems(eb)) {
2638 ret = btrfs_next_leaf(sctx->send_root, path);
2639 if (ret < 0) {
2640 goto out;
2641 } else if (ret > 0) {
2642 ret = 0;
2643 break;
2645 continue;
2648 btrfs_item_key_to_cpu(eb, &found_key, slot);
2649 if (found_key.objectid != key.objectid ||
2650 found_key.type != key.type) {
2651 ret = 0;
2652 goto out;
2655 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2656 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2658 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2659 di_key.objectid < sctx->send_progress) {
2660 ret = 1;
2661 goto out;
2664 path->slots[0]++;
2667 out:
2668 btrfs_free_path(path);
2669 return ret;
2673 * Only creates the inode if it is:
2674 * 1. Not a directory
2675 * 2. Or a directory which was not created already due to out of order
2676 * directories. See did_create_dir and process_recorded_refs for details.
2678 static int send_create_inode_if_needed(struct send_ctx *sctx)
2680 int ret;
2682 if (S_ISDIR(sctx->cur_inode_mode)) {
2683 ret = did_create_dir(sctx, sctx->cur_ino);
2684 if (ret < 0)
2685 goto out;
2686 if (ret) {
2687 ret = 0;
2688 goto out;
2692 ret = send_create_inode(sctx, sctx->cur_ino);
2693 if (ret < 0)
2694 goto out;
2696 out:
2697 return ret;
2700 struct recorded_ref {
2701 struct list_head list;
2702 char *dir_path;
2703 char *name;
2704 struct fs_path *full_path;
2705 u64 dir;
2706 u64 dir_gen;
2707 int dir_path_len;
2708 int name_len;
2712 * We need to process new refs before deleted refs, but compare_tree gives us
2713 * everything mixed. So we first record all refs and later process them.
2714 * This function is a helper to record one ref.
2716 static int __record_ref(struct list_head *head, u64 dir,
2717 u64 dir_gen, struct fs_path *path)
2719 struct recorded_ref *ref;
2721 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2722 if (!ref)
2723 return -ENOMEM;
2725 ref->dir = dir;
2726 ref->dir_gen = dir_gen;
2727 ref->full_path = path;
2729 ref->name = (char *)kbasename(ref->full_path->start);
2730 ref->name_len = ref->full_path->end - ref->name;
2731 ref->dir_path = ref->full_path->start;
2732 if (ref->name == ref->full_path->start)
2733 ref->dir_path_len = 0;
2734 else
2735 ref->dir_path_len = ref->full_path->end -
2736 ref->full_path->start - 1 - ref->name_len;
2738 list_add_tail(&ref->list, head);
2739 return 0;
2742 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2744 struct recorded_ref *new;
2746 new = kmalloc(sizeof(*ref), GFP_NOFS);
2747 if (!new)
2748 return -ENOMEM;
2750 new->dir = ref->dir;
2751 new->dir_gen = ref->dir_gen;
2752 new->full_path = NULL;
2753 INIT_LIST_HEAD(&new->list);
2754 list_add_tail(&new->list, list);
2755 return 0;
2758 static void __free_recorded_refs(struct list_head *head)
2760 struct recorded_ref *cur;
2762 while (!list_empty(head)) {
2763 cur = list_entry(head->next, struct recorded_ref, list);
2764 fs_path_free(cur->full_path);
2765 list_del(&cur->list);
2766 kfree(cur);
2770 static void free_recorded_refs(struct send_ctx *sctx)
2772 __free_recorded_refs(&sctx->new_refs);
2773 __free_recorded_refs(&sctx->deleted_refs);
2777 * Renames/moves a file/dir to its orphan name. Used when the first
2778 * ref of an unprocessed inode gets overwritten and for all non empty
2779 * directories.
2781 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2782 struct fs_path *path)
2784 int ret;
2785 struct fs_path *orphan;
2787 orphan = fs_path_alloc();
2788 if (!orphan)
2789 return -ENOMEM;
2791 ret = gen_unique_name(sctx, ino, gen, orphan);
2792 if (ret < 0)
2793 goto out;
2795 ret = send_rename(sctx, path, orphan);
2797 out:
2798 fs_path_free(orphan);
2799 return ret;
2802 static struct orphan_dir_info *
2803 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2805 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2806 struct rb_node *parent = NULL;
2807 struct orphan_dir_info *entry, *odi;
2809 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2810 if (!odi)
2811 return ERR_PTR(-ENOMEM);
2812 odi->ino = dir_ino;
2813 odi->gen = 0;
2815 while (*p) {
2816 parent = *p;
2817 entry = rb_entry(parent, struct orphan_dir_info, node);
2818 if (dir_ino < entry->ino) {
2819 p = &(*p)->rb_left;
2820 } else if (dir_ino > entry->ino) {
2821 p = &(*p)->rb_right;
2822 } else {
2823 kfree(odi);
2824 return entry;
2828 rb_link_node(&odi->node, parent, p);
2829 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2830 return odi;
2833 static struct orphan_dir_info *
2834 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2836 struct rb_node *n = sctx->orphan_dirs.rb_node;
2837 struct orphan_dir_info *entry;
2839 while (n) {
2840 entry = rb_entry(n, struct orphan_dir_info, node);
2841 if (dir_ino < entry->ino)
2842 n = n->rb_left;
2843 else if (dir_ino > entry->ino)
2844 n = n->rb_right;
2845 else
2846 return entry;
2848 return NULL;
2851 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2853 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2855 return odi != NULL;
2858 static void free_orphan_dir_info(struct send_ctx *sctx,
2859 struct orphan_dir_info *odi)
2861 if (!odi)
2862 return;
2863 rb_erase(&odi->node, &sctx->orphan_dirs);
2864 kfree(odi);
2868 * Returns 1 if a directory can be removed at this point in time.
2869 * We check this by iterating all dir items and checking if the inode behind
2870 * the dir item was already processed.
2872 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2873 u64 send_progress)
2875 int ret = 0;
2876 struct btrfs_root *root = sctx->parent_root;
2877 struct btrfs_path *path;
2878 struct btrfs_key key;
2879 struct btrfs_key found_key;
2880 struct btrfs_key loc;
2881 struct btrfs_dir_item *di;
2884 * Don't try to rmdir the top/root subvolume dir.
2886 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2887 return 0;
2889 path = alloc_path_for_send();
2890 if (!path)
2891 return -ENOMEM;
2893 key.objectid = dir;
2894 key.type = BTRFS_DIR_INDEX_KEY;
2895 key.offset = 0;
2896 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 if (ret < 0)
2898 goto out;
2900 while (1) {
2901 struct waiting_dir_move *dm;
2903 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2904 ret = btrfs_next_leaf(root, path);
2905 if (ret < 0)
2906 goto out;
2907 else if (ret > 0)
2908 break;
2909 continue;
2911 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2912 path->slots[0]);
2913 if (found_key.objectid != key.objectid ||
2914 found_key.type != key.type)
2915 break;
2917 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2918 struct btrfs_dir_item);
2919 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2921 dm = get_waiting_dir_move(sctx, loc.objectid);
2922 if (dm) {
2923 struct orphan_dir_info *odi;
2925 odi = add_orphan_dir_info(sctx, dir);
2926 if (IS_ERR(odi)) {
2927 ret = PTR_ERR(odi);
2928 goto out;
2930 odi->gen = dir_gen;
2931 dm->rmdir_ino = dir;
2932 ret = 0;
2933 goto out;
2936 if (loc.objectid > send_progress) {
2937 ret = 0;
2938 goto out;
2941 path->slots[0]++;
2944 ret = 1;
2946 out:
2947 btrfs_free_path(path);
2948 return ret;
2951 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2953 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2955 return entry != NULL;
2958 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2960 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2961 struct rb_node *parent = NULL;
2962 struct waiting_dir_move *entry, *dm;
2964 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2965 if (!dm)
2966 return -ENOMEM;
2967 dm->ino = ino;
2968 dm->rmdir_ino = 0;
2969 dm->orphanized = orphanized;
2971 while (*p) {
2972 parent = *p;
2973 entry = rb_entry(parent, struct waiting_dir_move, node);
2974 if (ino < entry->ino) {
2975 p = &(*p)->rb_left;
2976 } else if (ino > entry->ino) {
2977 p = &(*p)->rb_right;
2978 } else {
2979 kfree(dm);
2980 return -EEXIST;
2984 rb_link_node(&dm->node, parent, p);
2985 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2986 return 0;
2989 static struct waiting_dir_move *
2990 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2992 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2993 struct waiting_dir_move *entry;
2995 while (n) {
2996 entry = rb_entry(n, struct waiting_dir_move, node);
2997 if (ino < entry->ino)
2998 n = n->rb_left;
2999 else if (ino > entry->ino)
3000 n = n->rb_right;
3001 else
3002 return entry;
3004 return NULL;
3007 static void free_waiting_dir_move(struct send_ctx *sctx,
3008 struct waiting_dir_move *dm)
3010 if (!dm)
3011 return;
3012 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3013 kfree(dm);
3016 static int add_pending_dir_move(struct send_ctx *sctx,
3017 u64 ino,
3018 u64 ino_gen,
3019 u64 parent_ino,
3020 struct list_head *new_refs,
3021 struct list_head *deleted_refs,
3022 const bool is_orphan)
3024 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3025 struct rb_node *parent = NULL;
3026 struct pending_dir_move *entry = NULL, *pm;
3027 struct recorded_ref *cur;
3028 int exists = 0;
3029 int ret;
3031 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3032 if (!pm)
3033 return -ENOMEM;
3034 pm->parent_ino = parent_ino;
3035 pm->ino = ino;
3036 pm->gen = ino_gen;
3037 pm->is_orphan = is_orphan;
3038 INIT_LIST_HEAD(&pm->list);
3039 INIT_LIST_HEAD(&pm->update_refs);
3040 RB_CLEAR_NODE(&pm->node);
3042 while (*p) {
3043 parent = *p;
3044 entry = rb_entry(parent, struct pending_dir_move, node);
3045 if (parent_ino < entry->parent_ino) {
3046 p = &(*p)->rb_left;
3047 } else if (parent_ino > entry->parent_ino) {
3048 p = &(*p)->rb_right;
3049 } else {
3050 exists = 1;
3051 break;
3055 list_for_each_entry(cur, deleted_refs, list) {
3056 ret = dup_ref(cur, &pm->update_refs);
3057 if (ret < 0)
3058 goto out;
3060 list_for_each_entry(cur, new_refs, list) {
3061 ret = dup_ref(cur, &pm->update_refs);
3062 if (ret < 0)
3063 goto out;
3066 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3067 if (ret)
3068 goto out;
3070 if (exists) {
3071 list_add_tail(&pm->list, &entry->list);
3072 } else {
3073 rb_link_node(&pm->node, parent, p);
3074 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3076 ret = 0;
3077 out:
3078 if (ret) {
3079 __free_recorded_refs(&pm->update_refs);
3080 kfree(pm);
3082 return ret;
3085 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3086 u64 parent_ino)
3088 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3089 struct pending_dir_move *entry;
3091 while (n) {
3092 entry = rb_entry(n, struct pending_dir_move, node);
3093 if (parent_ino < entry->parent_ino)
3094 n = n->rb_left;
3095 else if (parent_ino > entry->parent_ino)
3096 n = n->rb_right;
3097 else
3098 return entry;
3100 return NULL;
3103 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3105 struct fs_path *from_path = NULL;
3106 struct fs_path *to_path = NULL;
3107 struct fs_path *name = NULL;
3108 u64 orig_progress = sctx->send_progress;
3109 struct recorded_ref *cur;
3110 u64 parent_ino, parent_gen;
3111 struct waiting_dir_move *dm = NULL;
3112 u64 rmdir_ino = 0;
3113 int ret;
3115 name = fs_path_alloc();
3116 from_path = fs_path_alloc();
3117 if (!name || !from_path) {
3118 ret = -ENOMEM;
3119 goto out;
3122 dm = get_waiting_dir_move(sctx, pm->ino);
3123 ASSERT(dm);
3124 rmdir_ino = dm->rmdir_ino;
3125 free_waiting_dir_move(sctx, dm);
3127 if (pm->is_orphan) {
3128 ret = gen_unique_name(sctx, pm->ino,
3129 pm->gen, from_path);
3130 } else {
3131 ret = get_first_ref(sctx->parent_root, pm->ino,
3132 &parent_ino, &parent_gen, name);
3133 if (ret < 0)
3134 goto out;
3135 ret = get_cur_path(sctx, parent_ino, parent_gen,
3136 from_path);
3137 if (ret < 0)
3138 goto out;
3139 ret = fs_path_add_path(from_path, name);
3141 if (ret < 0)
3142 goto out;
3144 sctx->send_progress = sctx->cur_ino + 1;
3145 fs_path_reset(name);
3146 to_path = name;
3147 name = NULL;
3148 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3149 if (ret < 0)
3150 goto out;
3152 ret = send_rename(sctx, from_path, to_path);
3153 if (ret < 0)
3154 goto out;
3156 if (rmdir_ino) {
3157 struct orphan_dir_info *odi;
3159 odi = get_orphan_dir_info(sctx, rmdir_ino);
3160 if (!odi) {
3161 /* already deleted */
3162 goto finish;
3164 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3165 if (ret < 0)
3166 goto out;
3167 if (!ret)
3168 goto finish;
3170 name = fs_path_alloc();
3171 if (!name) {
3172 ret = -ENOMEM;
3173 goto out;
3175 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3176 if (ret < 0)
3177 goto out;
3178 ret = send_rmdir(sctx, name);
3179 if (ret < 0)
3180 goto out;
3181 free_orphan_dir_info(sctx, odi);
3184 finish:
3185 ret = send_utimes(sctx, pm->ino, pm->gen);
3186 if (ret < 0)
3187 goto out;
3190 * After rename/move, need to update the utimes of both new parent(s)
3191 * and old parent(s).
3193 list_for_each_entry(cur, &pm->update_refs, list) {
3194 if (cur->dir == rmdir_ino)
3195 continue;
3196 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3197 if (ret < 0)
3198 goto out;
3201 out:
3202 fs_path_free(name);
3203 fs_path_free(from_path);
3204 fs_path_free(to_path);
3205 sctx->send_progress = orig_progress;
3207 return ret;
3210 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3212 if (!list_empty(&m->list))
3213 list_del(&m->list);
3214 if (!RB_EMPTY_NODE(&m->node))
3215 rb_erase(&m->node, &sctx->pending_dir_moves);
3216 __free_recorded_refs(&m->update_refs);
3217 kfree(m);
3220 static void tail_append_pending_moves(struct pending_dir_move *moves,
3221 struct list_head *stack)
3223 if (list_empty(&moves->list)) {
3224 list_add_tail(&moves->list, stack);
3225 } else {
3226 LIST_HEAD(list);
3227 list_splice_init(&moves->list, &list);
3228 list_add_tail(&moves->list, stack);
3229 list_splice_tail(&list, stack);
3233 static int apply_children_dir_moves(struct send_ctx *sctx)
3235 struct pending_dir_move *pm;
3236 struct list_head stack;
3237 u64 parent_ino = sctx->cur_ino;
3238 int ret = 0;
3240 pm = get_pending_dir_moves(sctx, parent_ino);
3241 if (!pm)
3242 return 0;
3244 INIT_LIST_HEAD(&stack);
3245 tail_append_pending_moves(pm, &stack);
3247 while (!list_empty(&stack)) {
3248 pm = list_first_entry(&stack, struct pending_dir_move, list);
3249 parent_ino = pm->ino;
3250 ret = apply_dir_move(sctx, pm);
3251 free_pending_move(sctx, pm);
3252 if (ret)
3253 goto out;
3254 pm = get_pending_dir_moves(sctx, parent_ino);
3255 if (pm)
3256 tail_append_pending_moves(pm, &stack);
3258 return 0;
3260 out:
3261 while (!list_empty(&stack)) {
3262 pm = list_first_entry(&stack, struct pending_dir_move, list);
3263 free_pending_move(sctx, pm);
3265 return ret;
3269 * We might need to delay a directory rename even when no ancestor directory
3270 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3271 * renamed. This happens when we rename a directory to the old name (the name
3272 * in the parent root) of some other unrelated directory that got its rename
3273 * delayed due to some ancestor with higher number that got renamed.
3275 * Example:
3277 * Parent snapshot:
3278 * . (ino 256)
3279 * |---- a/ (ino 257)
3280 * | |---- file (ino 260)
3282 * |---- b/ (ino 258)
3283 * |---- c/ (ino 259)
3285 * Send snapshot:
3286 * . (ino 256)
3287 * |---- a/ (ino 258)
3288 * |---- x/ (ino 259)
3289 * |---- y/ (ino 257)
3290 * |----- file (ino 260)
3292 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3293 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3294 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3295 * must issue is:
3297 * 1 - rename 259 from 'c' to 'x'
3298 * 2 - rename 257 from 'a' to 'x/y'
3299 * 3 - rename 258 from 'b' to 'a'
3301 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3302 * be done right away and < 0 on error.
3304 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3305 struct recorded_ref *parent_ref,
3306 const bool is_orphan)
3308 struct btrfs_path *path;
3309 struct btrfs_key key;
3310 struct btrfs_key di_key;
3311 struct btrfs_dir_item *di;
3312 u64 left_gen;
3313 u64 right_gen;
3314 int ret = 0;
3316 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3317 return 0;
3319 path = alloc_path_for_send();
3320 if (!path)
3321 return -ENOMEM;
3323 key.objectid = parent_ref->dir;
3324 key.type = BTRFS_DIR_ITEM_KEY;
3325 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3327 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3328 if (ret < 0) {
3329 goto out;
3330 } else if (ret > 0) {
3331 ret = 0;
3332 goto out;
3335 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3336 parent_ref->name, parent_ref->name_len);
3337 if (!di) {
3338 ret = 0;
3339 goto out;
3342 * di_key.objectid has the number of the inode that has a dentry in the
3343 * parent directory with the same name that sctx->cur_ino is being
3344 * renamed to. We need to check if that inode is in the send root as
3345 * well and if it is currently marked as an inode with a pending rename,
3346 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3347 * that it happens after that other inode is renamed.
3349 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3350 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3351 ret = 0;
3352 goto out;
3355 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3356 &left_gen, NULL, NULL, NULL, NULL);
3357 if (ret < 0)
3358 goto out;
3359 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3360 &right_gen, NULL, NULL, NULL, NULL);
3361 if (ret < 0) {
3362 if (ret == -ENOENT)
3363 ret = 0;
3364 goto out;
3367 /* Different inode, no need to delay the rename of sctx->cur_ino */
3368 if (right_gen != left_gen) {
3369 ret = 0;
3370 goto out;
3373 if (is_waiting_for_move(sctx, di_key.objectid)) {
3374 ret = add_pending_dir_move(sctx,
3375 sctx->cur_ino,
3376 sctx->cur_inode_gen,
3377 di_key.objectid,
3378 &sctx->new_refs,
3379 &sctx->deleted_refs,
3380 is_orphan);
3381 if (!ret)
3382 ret = 1;
3384 out:
3385 btrfs_free_path(path);
3386 return ret;
3390 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3391 * Return 1 if true, 0 if false and < 0 on error.
3393 static int is_ancestor(struct btrfs_root *root,
3394 const u64 ino1,
3395 const u64 ino1_gen,
3396 const u64 ino2,
3397 struct fs_path *fs_path)
3399 u64 ino = ino2;
3401 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3402 int ret;
3403 u64 parent;
3404 u64 parent_gen;
3406 fs_path_reset(fs_path);
3407 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3408 if (ret < 0) {
3409 if (ret == -ENOENT && ino == ino2)
3410 ret = 0;
3411 return ret;
3413 if (parent == ino1)
3414 return parent_gen == ino1_gen ? 1 : 0;
3415 ino = parent;
3417 return 0;
3420 static int wait_for_parent_move(struct send_ctx *sctx,
3421 struct recorded_ref *parent_ref,
3422 const bool is_orphan)
3424 int ret = 0;
3425 u64 ino = parent_ref->dir;
3426 u64 parent_ino_before, parent_ino_after;
3427 struct fs_path *path_before = NULL;
3428 struct fs_path *path_after = NULL;
3429 int len1, len2;
3431 path_after = fs_path_alloc();
3432 path_before = fs_path_alloc();
3433 if (!path_after || !path_before) {
3434 ret = -ENOMEM;
3435 goto out;
3439 * Our current directory inode may not yet be renamed/moved because some
3440 * ancestor (immediate or not) has to be renamed/moved first. So find if
3441 * such ancestor exists and make sure our own rename/move happens after
3442 * that ancestor is processed to avoid path build infinite loops (done
3443 * at get_cur_path()).
3445 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3446 if (is_waiting_for_move(sctx, ino)) {
3448 * If the current inode is an ancestor of ino in the
3449 * parent root, we need to delay the rename of the
3450 * current inode, otherwise don't delayed the rename
3451 * because we can end up with a circular dependency
3452 * of renames, resulting in some directories never
3453 * getting the respective rename operations issued in
3454 * the send stream or getting into infinite path build
3455 * loops.
3457 ret = is_ancestor(sctx->parent_root,
3458 sctx->cur_ino, sctx->cur_inode_gen,
3459 ino, path_before);
3460 break;
3463 fs_path_reset(path_before);
3464 fs_path_reset(path_after);
3466 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3467 NULL, path_after);
3468 if (ret < 0)
3469 goto out;
3470 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3471 NULL, path_before);
3472 if (ret < 0 && ret != -ENOENT) {
3473 goto out;
3474 } else if (ret == -ENOENT) {
3475 ret = 0;
3476 break;
3479 len1 = fs_path_len(path_before);
3480 len2 = fs_path_len(path_after);
3481 if (ino > sctx->cur_ino &&
3482 (parent_ino_before != parent_ino_after || len1 != len2 ||
3483 memcmp(path_before->start, path_after->start, len1))) {
3484 ret = 1;
3485 break;
3487 ino = parent_ino_after;
3490 out:
3491 fs_path_free(path_before);
3492 fs_path_free(path_after);
3494 if (ret == 1) {
3495 ret = add_pending_dir_move(sctx,
3496 sctx->cur_ino,
3497 sctx->cur_inode_gen,
3498 ino,
3499 &sctx->new_refs,
3500 &sctx->deleted_refs,
3501 is_orphan);
3502 if (!ret)
3503 ret = 1;
3506 return ret;
3510 * This does all the move/link/unlink/rmdir magic.
3512 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3514 int ret = 0;
3515 struct recorded_ref *cur;
3516 struct recorded_ref *cur2;
3517 struct list_head check_dirs;
3518 struct fs_path *valid_path = NULL;
3519 u64 ow_inode = 0;
3520 u64 ow_gen;
3521 int did_overwrite = 0;
3522 int is_orphan = 0;
3523 u64 last_dir_ino_rm = 0;
3524 bool can_rename = true;
3526 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3529 * This should never happen as the root dir always has the same ref
3530 * which is always '..'
3532 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3533 INIT_LIST_HEAD(&check_dirs);
3535 valid_path = fs_path_alloc();
3536 if (!valid_path) {
3537 ret = -ENOMEM;
3538 goto out;
3542 * First, check if the first ref of the current inode was overwritten
3543 * before. If yes, we know that the current inode was already orphanized
3544 * and thus use the orphan name. If not, we can use get_cur_path to
3545 * get the path of the first ref as it would like while receiving at
3546 * this point in time.
3547 * New inodes are always orphan at the beginning, so force to use the
3548 * orphan name in this case.
3549 * The first ref is stored in valid_path and will be updated if it
3550 * gets moved around.
3552 if (!sctx->cur_inode_new) {
3553 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3554 sctx->cur_inode_gen);
3555 if (ret < 0)
3556 goto out;
3557 if (ret)
3558 did_overwrite = 1;
3560 if (sctx->cur_inode_new || did_overwrite) {
3561 ret = gen_unique_name(sctx, sctx->cur_ino,
3562 sctx->cur_inode_gen, valid_path);
3563 if (ret < 0)
3564 goto out;
3565 is_orphan = 1;
3566 } else {
3567 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3568 valid_path);
3569 if (ret < 0)
3570 goto out;
3573 list_for_each_entry(cur, &sctx->new_refs, list) {
3575 * We may have refs where the parent directory does not exist
3576 * yet. This happens if the parent directories inum is higher
3577 * the the current inum. To handle this case, we create the
3578 * parent directory out of order. But we need to check if this
3579 * did already happen before due to other refs in the same dir.
3581 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3582 if (ret < 0)
3583 goto out;
3584 if (ret == inode_state_will_create) {
3585 ret = 0;
3587 * First check if any of the current inodes refs did
3588 * already create the dir.
3590 list_for_each_entry(cur2, &sctx->new_refs, list) {
3591 if (cur == cur2)
3592 break;
3593 if (cur2->dir == cur->dir) {
3594 ret = 1;
3595 break;
3600 * If that did not happen, check if a previous inode
3601 * did already create the dir.
3603 if (!ret)
3604 ret = did_create_dir(sctx, cur->dir);
3605 if (ret < 0)
3606 goto out;
3607 if (!ret) {
3608 ret = send_create_inode(sctx, cur->dir);
3609 if (ret < 0)
3610 goto out;
3615 * Check if this new ref would overwrite the first ref of
3616 * another unprocessed inode. If yes, orphanize the
3617 * overwritten inode. If we find an overwritten ref that is
3618 * not the first ref, simply unlink it.
3620 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3621 cur->name, cur->name_len,
3622 &ow_inode, &ow_gen);
3623 if (ret < 0)
3624 goto out;
3625 if (ret) {
3626 ret = is_first_ref(sctx->parent_root,
3627 ow_inode, cur->dir, cur->name,
3628 cur->name_len);
3629 if (ret < 0)
3630 goto out;
3631 if (ret) {
3632 struct name_cache_entry *nce;
3634 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3635 cur->full_path);
3636 if (ret < 0)
3637 goto out;
3639 * Make sure we clear our orphanized inode's
3640 * name from the name cache. This is because the
3641 * inode ow_inode might be an ancestor of some
3642 * other inode that will be orphanized as well
3643 * later and has an inode number greater than
3644 * sctx->send_progress. We need to prevent
3645 * future name lookups from using the old name
3646 * and get instead the orphan name.
3648 nce = name_cache_search(sctx, ow_inode, ow_gen);
3649 if (nce) {
3650 name_cache_delete(sctx, nce);
3651 kfree(nce);
3653 } else {
3654 ret = send_unlink(sctx, cur->full_path);
3655 if (ret < 0)
3656 goto out;
3660 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3661 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3662 if (ret < 0)
3663 goto out;
3664 if (ret == 1) {
3665 can_rename = false;
3666 *pending_move = 1;
3670 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3671 can_rename) {
3672 ret = wait_for_parent_move(sctx, cur, is_orphan);
3673 if (ret < 0)
3674 goto out;
3675 if (ret == 1) {
3676 can_rename = false;
3677 *pending_move = 1;
3682 * link/move the ref to the new place. If we have an orphan
3683 * inode, move it and update valid_path. If not, link or move
3684 * it depending on the inode mode.
3686 if (is_orphan && can_rename) {
3687 ret = send_rename(sctx, valid_path, cur->full_path);
3688 if (ret < 0)
3689 goto out;
3690 is_orphan = 0;
3691 ret = fs_path_copy(valid_path, cur->full_path);
3692 if (ret < 0)
3693 goto out;
3694 } else if (can_rename) {
3695 if (S_ISDIR(sctx->cur_inode_mode)) {
3697 * Dirs can't be linked, so move it. For moved
3698 * dirs, we always have one new and one deleted
3699 * ref. The deleted ref is ignored later.
3701 ret = send_rename(sctx, valid_path,
3702 cur->full_path);
3703 if (!ret)
3704 ret = fs_path_copy(valid_path,
3705 cur->full_path);
3706 if (ret < 0)
3707 goto out;
3708 } else {
3709 ret = send_link(sctx, cur->full_path,
3710 valid_path);
3711 if (ret < 0)
3712 goto out;
3715 ret = dup_ref(cur, &check_dirs);
3716 if (ret < 0)
3717 goto out;
3720 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3722 * Check if we can already rmdir the directory. If not,
3723 * orphanize it. For every dir item inside that gets deleted
3724 * later, we do this check again and rmdir it then if possible.
3725 * See the use of check_dirs for more details.
3727 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3728 sctx->cur_ino);
3729 if (ret < 0)
3730 goto out;
3731 if (ret) {
3732 ret = send_rmdir(sctx, valid_path);
3733 if (ret < 0)
3734 goto out;
3735 } else if (!is_orphan) {
3736 ret = orphanize_inode(sctx, sctx->cur_ino,
3737 sctx->cur_inode_gen, valid_path);
3738 if (ret < 0)
3739 goto out;
3740 is_orphan = 1;
3743 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3744 ret = dup_ref(cur, &check_dirs);
3745 if (ret < 0)
3746 goto out;
3748 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3749 !list_empty(&sctx->deleted_refs)) {
3751 * We have a moved dir. Add the old parent to check_dirs
3753 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3754 list);
3755 ret = dup_ref(cur, &check_dirs);
3756 if (ret < 0)
3757 goto out;
3758 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3760 * We have a non dir inode. Go through all deleted refs and
3761 * unlink them if they were not already overwritten by other
3762 * inodes.
3764 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3765 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3766 sctx->cur_ino, sctx->cur_inode_gen,
3767 cur->name, cur->name_len);
3768 if (ret < 0)
3769 goto out;
3770 if (!ret) {
3771 ret = send_unlink(sctx, cur->full_path);
3772 if (ret < 0)
3773 goto out;
3775 ret = dup_ref(cur, &check_dirs);
3776 if (ret < 0)
3777 goto out;
3780 * If the inode is still orphan, unlink the orphan. This may
3781 * happen when a previous inode did overwrite the first ref
3782 * of this inode and no new refs were added for the current
3783 * inode. Unlinking does not mean that the inode is deleted in
3784 * all cases. There may still be links to this inode in other
3785 * places.
3787 if (is_orphan) {
3788 ret = send_unlink(sctx, valid_path);
3789 if (ret < 0)
3790 goto out;
3795 * We did collect all parent dirs where cur_inode was once located. We
3796 * now go through all these dirs and check if they are pending for
3797 * deletion and if it's finally possible to perform the rmdir now.
3798 * We also update the inode stats of the parent dirs here.
3800 list_for_each_entry(cur, &check_dirs, list) {
3802 * In case we had refs into dirs that were not processed yet,
3803 * we don't need to do the utime and rmdir logic for these dirs.
3804 * The dir will be processed later.
3806 if (cur->dir > sctx->cur_ino)
3807 continue;
3809 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3810 if (ret < 0)
3811 goto out;
3813 if (ret == inode_state_did_create ||
3814 ret == inode_state_no_change) {
3815 /* TODO delayed utimes */
3816 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3817 if (ret < 0)
3818 goto out;
3819 } else if (ret == inode_state_did_delete &&
3820 cur->dir != last_dir_ino_rm) {
3821 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3822 sctx->cur_ino);
3823 if (ret < 0)
3824 goto out;
3825 if (ret) {
3826 ret = get_cur_path(sctx, cur->dir,
3827 cur->dir_gen, valid_path);
3828 if (ret < 0)
3829 goto out;
3830 ret = send_rmdir(sctx, valid_path);
3831 if (ret < 0)
3832 goto out;
3833 last_dir_ino_rm = cur->dir;
3838 ret = 0;
3840 out:
3841 __free_recorded_refs(&check_dirs);
3842 free_recorded_refs(sctx);
3843 fs_path_free(valid_path);
3844 return ret;
3847 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3848 struct fs_path *name, void *ctx, struct list_head *refs)
3850 int ret = 0;
3851 struct send_ctx *sctx = ctx;
3852 struct fs_path *p;
3853 u64 gen;
3855 p = fs_path_alloc();
3856 if (!p)
3857 return -ENOMEM;
3859 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3860 NULL, NULL);
3861 if (ret < 0)
3862 goto out;
3864 ret = get_cur_path(sctx, dir, gen, p);
3865 if (ret < 0)
3866 goto out;
3867 ret = fs_path_add_path(p, name);
3868 if (ret < 0)
3869 goto out;
3871 ret = __record_ref(refs, dir, gen, p);
3873 out:
3874 if (ret)
3875 fs_path_free(p);
3876 return ret;
3879 static int __record_new_ref(int num, u64 dir, int index,
3880 struct fs_path *name,
3881 void *ctx)
3883 struct send_ctx *sctx = ctx;
3884 return record_ref(sctx->send_root, num, dir, index, name,
3885 ctx, &sctx->new_refs);
3889 static int __record_deleted_ref(int num, u64 dir, int index,
3890 struct fs_path *name,
3891 void *ctx)
3893 struct send_ctx *sctx = ctx;
3894 return record_ref(sctx->parent_root, num, dir, index, name,
3895 ctx, &sctx->deleted_refs);
3898 static int record_new_ref(struct send_ctx *sctx)
3900 int ret;
3902 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3903 sctx->cmp_key, 0, __record_new_ref, sctx);
3904 if (ret < 0)
3905 goto out;
3906 ret = 0;
3908 out:
3909 return ret;
3912 static int record_deleted_ref(struct send_ctx *sctx)
3914 int ret;
3916 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3917 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3918 if (ret < 0)
3919 goto out;
3920 ret = 0;
3922 out:
3923 return ret;
3926 struct find_ref_ctx {
3927 u64 dir;
3928 u64 dir_gen;
3929 struct btrfs_root *root;
3930 struct fs_path *name;
3931 int found_idx;
3934 static int __find_iref(int num, u64 dir, int index,
3935 struct fs_path *name,
3936 void *ctx_)
3938 struct find_ref_ctx *ctx = ctx_;
3939 u64 dir_gen;
3940 int ret;
3942 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3943 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3945 * To avoid doing extra lookups we'll only do this if everything
3946 * else matches.
3948 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3949 NULL, NULL, NULL);
3950 if (ret)
3951 return ret;
3952 if (dir_gen != ctx->dir_gen)
3953 return 0;
3954 ctx->found_idx = num;
3955 return 1;
3957 return 0;
3960 static int find_iref(struct btrfs_root *root,
3961 struct btrfs_path *path,
3962 struct btrfs_key *key,
3963 u64 dir, u64 dir_gen, struct fs_path *name)
3965 int ret;
3966 struct find_ref_ctx ctx;
3968 ctx.dir = dir;
3969 ctx.name = name;
3970 ctx.dir_gen = dir_gen;
3971 ctx.found_idx = -1;
3972 ctx.root = root;
3974 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3975 if (ret < 0)
3976 return ret;
3978 if (ctx.found_idx == -1)
3979 return -ENOENT;
3981 return ctx.found_idx;
3984 static int __record_changed_new_ref(int num, u64 dir, int index,
3985 struct fs_path *name,
3986 void *ctx)
3988 u64 dir_gen;
3989 int ret;
3990 struct send_ctx *sctx = ctx;
3992 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3993 NULL, NULL, NULL);
3994 if (ret)
3995 return ret;
3997 ret = find_iref(sctx->parent_root, sctx->right_path,
3998 sctx->cmp_key, dir, dir_gen, name);
3999 if (ret == -ENOENT)
4000 ret = __record_new_ref(num, dir, index, name, sctx);
4001 else if (ret > 0)
4002 ret = 0;
4004 return ret;
4007 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4008 struct fs_path *name,
4009 void *ctx)
4011 u64 dir_gen;
4012 int ret;
4013 struct send_ctx *sctx = ctx;
4015 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4016 NULL, NULL, NULL);
4017 if (ret)
4018 return ret;
4020 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4021 dir, dir_gen, name);
4022 if (ret == -ENOENT)
4023 ret = __record_deleted_ref(num, dir, index, name, sctx);
4024 else if (ret > 0)
4025 ret = 0;
4027 return ret;
4030 static int record_changed_ref(struct send_ctx *sctx)
4032 int ret = 0;
4034 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4035 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4036 if (ret < 0)
4037 goto out;
4038 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4039 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4040 if (ret < 0)
4041 goto out;
4042 ret = 0;
4044 out:
4045 return ret;
4049 * Record and process all refs at once. Needed when an inode changes the
4050 * generation number, which means that it was deleted and recreated.
4052 static int process_all_refs(struct send_ctx *sctx,
4053 enum btrfs_compare_tree_result cmd)
4055 int ret;
4056 struct btrfs_root *root;
4057 struct btrfs_path *path;
4058 struct btrfs_key key;
4059 struct btrfs_key found_key;
4060 struct extent_buffer *eb;
4061 int slot;
4062 iterate_inode_ref_t cb;
4063 int pending_move = 0;
4065 path = alloc_path_for_send();
4066 if (!path)
4067 return -ENOMEM;
4069 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4070 root = sctx->send_root;
4071 cb = __record_new_ref;
4072 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4073 root = sctx->parent_root;
4074 cb = __record_deleted_ref;
4075 } else {
4076 btrfs_err(sctx->send_root->fs_info,
4077 "Wrong command %d in process_all_refs", cmd);
4078 ret = -EINVAL;
4079 goto out;
4082 key.objectid = sctx->cmp_key->objectid;
4083 key.type = BTRFS_INODE_REF_KEY;
4084 key.offset = 0;
4085 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4086 if (ret < 0)
4087 goto out;
4089 while (1) {
4090 eb = path->nodes[0];
4091 slot = path->slots[0];
4092 if (slot >= btrfs_header_nritems(eb)) {
4093 ret = btrfs_next_leaf(root, path);
4094 if (ret < 0)
4095 goto out;
4096 else if (ret > 0)
4097 break;
4098 continue;
4101 btrfs_item_key_to_cpu(eb, &found_key, slot);
4103 if (found_key.objectid != key.objectid ||
4104 (found_key.type != BTRFS_INODE_REF_KEY &&
4105 found_key.type != BTRFS_INODE_EXTREF_KEY))
4106 break;
4108 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4109 if (ret < 0)
4110 goto out;
4112 path->slots[0]++;
4114 btrfs_release_path(path);
4116 ret = process_recorded_refs(sctx, &pending_move);
4117 /* Only applicable to an incremental send. */
4118 ASSERT(pending_move == 0);
4120 out:
4121 btrfs_free_path(path);
4122 return ret;
4125 static int send_set_xattr(struct send_ctx *sctx,
4126 struct fs_path *path,
4127 const char *name, int name_len,
4128 const char *data, int data_len)
4130 int ret = 0;
4132 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4133 if (ret < 0)
4134 goto out;
4136 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4137 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4138 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4140 ret = send_cmd(sctx);
4142 tlv_put_failure:
4143 out:
4144 return ret;
4147 static int send_remove_xattr(struct send_ctx *sctx,
4148 struct fs_path *path,
4149 const char *name, int name_len)
4151 int ret = 0;
4153 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4154 if (ret < 0)
4155 goto out;
4157 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4158 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4160 ret = send_cmd(sctx);
4162 tlv_put_failure:
4163 out:
4164 return ret;
4167 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4168 const char *name, int name_len,
4169 const char *data, int data_len,
4170 u8 type, void *ctx)
4172 int ret;
4173 struct send_ctx *sctx = ctx;
4174 struct fs_path *p;
4175 posix_acl_xattr_header dummy_acl;
4177 p = fs_path_alloc();
4178 if (!p)
4179 return -ENOMEM;
4182 * This hack is needed because empty acl's are stored as zero byte
4183 * data in xattrs. Problem with that is, that receiving these zero byte
4184 * acl's will fail later. To fix this, we send a dummy acl list that
4185 * only contains the version number and no entries.
4187 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4188 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4189 if (data_len == 0) {
4190 dummy_acl.a_version =
4191 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4192 data = (char *)&dummy_acl;
4193 data_len = sizeof(dummy_acl);
4197 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4198 if (ret < 0)
4199 goto out;
4201 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4203 out:
4204 fs_path_free(p);
4205 return ret;
4208 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4209 const char *name, int name_len,
4210 const char *data, int data_len,
4211 u8 type, void *ctx)
4213 int ret;
4214 struct send_ctx *sctx = ctx;
4215 struct fs_path *p;
4217 p = fs_path_alloc();
4218 if (!p)
4219 return -ENOMEM;
4221 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4222 if (ret < 0)
4223 goto out;
4225 ret = send_remove_xattr(sctx, p, name, name_len);
4227 out:
4228 fs_path_free(p);
4229 return ret;
4232 static int process_new_xattr(struct send_ctx *sctx)
4234 int ret = 0;
4236 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4237 sctx->cmp_key, __process_new_xattr, sctx);
4239 return ret;
4242 static int process_deleted_xattr(struct send_ctx *sctx)
4244 int ret;
4246 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4247 sctx->cmp_key, __process_deleted_xattr, sctx);
4249 return ret;
4252 struct find_xattr_ctx {
4253 const char *name;
4254 int name_len;
4255 int found_idx;
4256 char *found_data;
4257 int found_data_len;
4260 static int __find_xattr(int num, struct btrfs_key *di_key,
4261 const char *name, int name_len,
4262 const char *data, int data_len,
4263 u8 type, void *vctx)
4265 struct find_xattr_ctx *ctx = vctx;
4267 if (name_len == ctx->name_len &&
4268 strncmp(name, ctx->name, name_len) == 0) {
4269 ctx->found_idx = num;
4270 ctx->found_data_len = data_len;
4271 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4272 if (!ctx->found_data)
4273 return -ENOMEM;
4274 return 1;
4276 return 0;
4279 static int find_xattr(struct btrfs_root *root,
4280 struct btrfs_path *path,
4281 struct btrfs_key *key,
4282 const char *name, int name_len,
4283 char **data, int *data_len)
4285 int ret;
4286 struct find_xattr_ctx ctx;
4288 ctx.name = name;
4289 ctx.name_len = name_len;
4290 ctx.found_idx = -1;
4291 ctx.found_data = NULL;
4292 ctx.found_data_len = 0;
4294 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4295 if (ret < 0)
4296 return ret;
4298 if (ctx.found_idx == -1)
4299 return -ENOENT;
4300 if (data) {
4301 *data = ctx.found_data;
4302 *data_len = ctx.found_data_len;
4303 } else {
4304 kfree(ctx.found_data);
4306 return ctx.found_idx;
4310 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4311 const char *name, int name_len,
4312 const char *data, int data_len,
4313 u8 type, void *ctx)
4315 int ret;
4316 struct send_ctx *sctx = ctx;
4317 char *found_data = NULL;
4318 int found_data_len = 0;
4320 ret = find_xattr(sctx->parent_root, sctx->right_path,
4321 sctx->cmp_key, name, name_len, &found_data,
4322 &found_data_len);
4323 if (ret == -ENOENT) {
4324 ret = __process_new_xattr(num, di_key, name, name_len, data,
4325 data_len, type, ctx);
4326 } else if (ret >= 0) {
4327 if (data_len != found_data_len ||
4328 memcmp(data, found_data, data_len)) {
4329 ret = __process_new_xattr(num, di_key, name, name_len,
4330 data, data_len, type, ctx);
4331 } else {
4332 ret = 0;
4336 kfree(found_data);
4337 return ret;
4340 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4341 const char *name, int name_len,
4342 const char *data, int data_len,
4343 u8 type, void *ctx)
4345 int ret;
4346 struct send_ctx *sctx = ctx;
4348 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4349 name, name_len, NULL, NULL);
4350 if (ret == -ENOENT)
4351 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4352 data_len, type, ctx);
4353 else if (ret >= 0)
4354 ret = 0;
4356 return ret;
4359 static int process_changed_xattr(struct send_ctx *sctx)
4361 int ret = 0;
4363 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4364 sctx->cmp_key, __process_changed_new_xattr, sctx);
4365 if (ret < 0)
4366 goto out;
4367 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4368 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4370 out:
4371 return ret;
4374 static int process_all_new_xattrs(struct send_ctx *sctx)
4376 int ret;
4377 struct btrfs_root *root;
4378 struct btrfs_path *path;
4379 struct btrfs_key key;
4380 struct btrfs_key found_key;
4381 struct extent_buffer *eb;
4382 int slot;
4384 path = alloc_path_for_send();
4385 if (!path)
4386 return -ENOMEM;
4388 root = sctx->send_root;
4390 key.objectid = sctx->cmp_key->objectid;
4391 key.type = BTRFS_XATTR_ITEM_KEY;
4392 key.offset = 0;
4393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 if (ret < 0)
4395 goto out;
4397 while (1) {
4398 eb = path->nodes[0];
4399 slot = path->slots[0];
4400 if (slot >= btrfs_header_nritems(eb)) {
4401 ret = btrfs_next_leaf(root, path);
4402 if (ret < 0) {
4403 goto out;
4404 } else if (ret > 0) {
4405 ret = 0;
4406 break;
4408 continue;
4411 btrfs_item_key_to_cpu(eb, &found_key, slot);
4412 if (found_key.objectid != key.objectid ||
4413 found_key.type != key.type) {
4414 ret = 0;
4415 goto out;
4418 ret = iterate_dir_item(root, path, &found_key,
4419 __process_new_xattr, sctx);
4420 if (ret < 0)
4421 goto out;
4423 path->slots[0]++;
4426 out:
4427 btrfs_free_path(path);
4428 return ret;
4431 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4433 struct btrfs_root *root = sctx->send_root;
4434 struct btrfs_fs_info *fs_info = root->fs_info;
4435 struct inode *inode;
4436 struct page *page;
4437 char *addr;
4438 struct btrfs_key key;
4439 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4440 pgoff_t last_index;
4441 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4442 ssize_t ret = 0;
4444 key.objectid = sctx->cur_ino;
4445 key.type = BTRFS_INODE_ITEM_KEY;
4446 key.offset = 0;
4448 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4449 if (IS_ERR(inode))
4450 return PTR_ERR(inode);
4452 if (offset + len > i_size_read(inode)) {
4453 if (offset > i_size_read(inode))
4454 len = 0;
4455 else
4456 len = offset - i_size_read(inode);
4458 if (len == 0)
4459 goto out;
4461 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4463 /* initial readahead */
4464 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4465 file_ra_state_init(&sctx->ra, inode->i_mapping);
4466 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4467 last_index - index + 1);
4469 while (index <= last_index) {
4470 unsigned cur_len = min_t(unsigned, len,
4471 PAGE_CACHE_SIZE - pg_offset);
4472 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4473 if (!page) {
4474 ret = -ENOMEM;
4475 break;
4478 if (!PageUptodate(page)) {
4479 btrfs_readpage(NULL, page);
4480 lock_page(page);
4481 if (!PageUptodate(page)) {
4482 unlock_page(page);
4483 page_cache_release(page);
4484 ret = -EIO;
4485 break;
4489 addr = kmap(page);
4490 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4491 kunmap(page);
4492 unlock_page(page);
4493 page_cache_release(page);
4494 index++;
4495 pg_offset = 0;
4496 len -= cur_len;
4497 ret += cur_len;
4499 out:
4500 iput(inode);
4501 return ret;
4505 * Read some bytes from the current inode/file and send a write command to
4506 * user space.
4508 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4510 int ret = 0;
4511 struct fs_path *p;
4512 ssize_t num_read = 0;
4514 p = fs_path_alloc();
4515 if (!p)
4516 return -ENOMEM;
4518 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4520 num_read = fill_read_buf(sctx, offset, len);
4521 if (num_read <= 0) {
4522 if (num_read < 0)
4523 ret = num_read;
4524 goto out;
4527 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4528 if (ret < 0)
4529 goto out;
4531 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4532 if (ret < 0)
4533 goto out;
4535 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4536 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4537 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4539 ret = send_cmd(sctx);
4541 tlv_put_failure:
4542 out:
4543 fs_path_free(p);
4544 if (ret < 0)
4545 return ret;
4546 return num_read;
4550 * Send a clone command to user space.
4552 static int send_clone(struct send_ctx *sctx,
4553 u64 offset, u32 len,
4554 struct clone_root *clone_root)
4556 int ret = 0;
4557 struct fs_path *p;
4558 u64 gen;
4560 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4561 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4562 clone_root->root->objectid, clone_root->ino,
4563 clone_root->offset);
4565 p = fs_path_alloc();
4566 if (!p)
4567 return -ENOMEM;
4569 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4570 if (ret < 0)
4571 goto out;
4573 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4574 if (ret < 0)
4575 goto out;
4577 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4578 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4579 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4581 if (clone_root->root == sctx->send_root) {
4582 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4583 &gen, NULL, NULL, NULL, NULL);
4584 if (ret < 0)
4585 goto out;
4586 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4587 } else {
4588 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4590 if (ret < 0)
4591 goto out;
4594 * If the parent we're using has a received_uuid set then use that as
4595 * our clone source as that is what we will look for when doing a
4596 * receive.
4598 * This covers the case that we create a snapshot off of a received
4599 * subvolume and then use that as the parent and try to receive on a
4600 * different host.
4602 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4603 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4604 clone_root->root->root_item.received_uuid);
4605 else
4606 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4607 clone_root->root->root_item.uuid);
4608 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4609 le64_to_cpu(clone_root->root->root_item.ctransid));
4610 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4611 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4612 clone_root->offset);
4614 ret = send_cmd(sctx);
4616 tlv_put_failure:
4617 out:
4618 fs_path_free(p);
4619 return ret;
4623 * Send an update extent command to user space.
4625 static int send_update_extent(struct send_ctx *sctx,
4626 u64 offset, u32 len)
4628 int ret = 0;
4629 struct fs_path *p;
4631 p = fs_path_alloc();
4632 if (!p)
4633 return -ENOMEM;
4635 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4636 if (ret < 0)
4637 goto out;
4639 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4640 if (ret < 0)
4641 goto out;
4643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4644 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4645 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4647 ret = send_cmd(sctx);
4649 tlv_put_failure:
4650 out:
4651 fs_path_free(p);
4652 return ret;
4655 static int send_hole(struct send_ctx *sctx, u64 end)
4657 struct fs_path *p = NULL;
4658 u64 offset = sctx->cur_inode_last_extent;
4659 u64 len;
4660 int ret = 0;
4662 p = fs_path_alloc();
4663 if (!p)
4664 return -ENOMEM;
4665 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4666 if (ret < 0)
4667 goto tlv_put_failure;
4668 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4669 while (offset < end) {
4670 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4672 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4673 if (ret < 0)
4674 break;
4675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4676 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4677 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4678 ret = send_cmd(sctx);
4679 if (ret < 0)
4680 break;
4681 offset += len;
4683 tlv_put_failure:
4684 fs_path_free(p);
4685 return ret;
4688 static int send_write_or_clone(struct send_ctx *sctx,
4689 struct btrfs_path *path,
4690 struct btrfs_key *key,
4691 struct clone_root *clone_root)
4693 int ret = 0;
4694 struct btrfs_file_extent_item *ei;
4695 u64 offset = key->offset;
4696 u64 pos = 0;
4697 u64 len;
4698 u32 l;
4699 u8 type;
4700 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4702 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4703 struct btrfs_file_extent_item);
4704 type = btrfs_file_extent_type(path->nodes[0], ei);
4705 if (type == BTRFS_FILE_EXTENT_INLINE) {
4706 len = btrfs_file_extent_inline_len(path->nodes[0],
4707 path->slots[0], ei);
4709 * it is possible the inline item won't cover the whole page,
4710 * but there may be items after this page. Make
4711 * sure to send the whole thing
4713 len = PAGE_CACHE_ALIGN(len);
4714 } else {
4715 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4718 if (offset + len > sctx->cur_inode_size)
4719 len = sctx->cur_inode_size - offset;
4720 if (len == 0) {
4721 ret = 0;
4722 goto out;
4725 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4726 ret = send_clone(sctx, offset, len, clone_root);
4727 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4728 ret = send_update_extent(sctx, offset, len);
4729 } else {
4730 while (pos < len) {
4731 l = len - pos;
4732 if (l > BTRFS_SEND_READ_SIZE)
4733 l = BTRFS_SEND_READ_SIZE;
4734 ret = send_write(sctx, pos + offset, l);
4735 if (ret < 0)
4736 goto out;
4737 if (!ret)
4738 break;
4739 pos += ret;
4741 ret = 0;
4743 out:
4744 return ret;
4747 static int is_extent_unchanged(struct send_ctx *sctx,
4748 struct btrfs_path *left_path,
4749 struct btrfs_key *ekey)
4751 int ret = 0;
4752 struct btrfs_key key;
4753 struct btrfs_path *path = NULL;
4754 struct extent_buffer *eb;
4755 int slot;
4756 struct btrfs_key found_key;
4757 struct btrfs_file_extent_item *ei;
4758 u64 left_disknr;
4759 u64 right_disknr;
4760 u64 left_offset;
4761 u64 right_offset;
4762 u64 left_offset_fixed;
4763 u64 left_len;
4764 u64 right_len;
4765 u64 left_gen;
4766 u64 right_gen;
4767 u8 left_type;
4768 u8 right_type;
4770 path = alloc_path_for_send();
4771 if (!path)
4772 return -ENOMEM;
4774 eb = left_path->nodes[0];
4775 slot = left_path->slots[0];
4776 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4777 left_type = btrfs_file_extent_type(eb, ei);
4779 if (left_type != BTRFS_FILE_EXTENT_REG) {
4780 ret = 0;
4781 goto out;
4783 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4784 left_len = btrfs_file_extent_num_bytes(eb, ei);
4785 left_offset = btrfs_file_extent_offset(eb, ei);
4786 left_gen = btrfs_file_extent_generation(eb, ei);
4789 * Following comments will refer to these graphics. L is the left
4790 * extents which we are checking at the moment. 1-8 are the right
4791 * extents that we iterate.
4793 * |-----L-----|
4794 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4796 * |-----L-----|
4797 * |--1--|-2b-|...(same as above)
4799 * Alternative situation. Happens on files where extents got split.
4800 * |-----L-----|
4801 * |-----------7-----------|-6-|
4803 * Alternative situation. Happens on files which got larger.
4804 * |-----L-----|
4805 * |-8-|
4806 * Nothing follows after 8.
4809 key.objectid = ekey->objectid;
4810 key.type = BTRFS_EXTENT_DATA_KEY;
4811 key.offset = ekey->offset;
4812 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4813 if (ret < 0)
4814 goto out;
4815 if (ret) {
4816 ret = 0;
4817 goto out;
4821 * Handle special case where the right side has no extents at all.
4823 eb = path->nodes[0];
4824 slot = path->slots[0];
4825 btrfs_item_key_to_cpu(eb, &found_key, slot);
4826 if (found_key.objectid != key.objectid ||
4827 found_key.type != key.type) {
4828 /* If we're a hole then just pretend nothing changed */
4829 ret = (left_disknr) ? 0 : 1;
4830 goto out;
4834 * We're now on 2a, 2b or 7.
4836 key = found_key;
4837 while (key.offset < ekey->offset + left_len) {
4838 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4839 right_type = btrfs_file_extent_type(eb, ei);
4840 if (right_type != BTRFS_FILE_EXTENT_REG) {
4841 ret = 0;
4842 goto out;
4845 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4846 right_len = btrfs_file_extent_num_bytes(eb, ei);
4847 right_offset = btrfs_file_extent_offset(eb, ei);
4848 right_gen = btrfs_file_extent_generation(eb, ei);
4851 * Are we at extent 8? If yes, we know the extent is changed.
4852 * This may only happen on the first iteration.
4854 if (found_key.offset + right_len <= ekey->offset) {
4855 /* If we're a hole just pretend nothing changed */
4856 ret = (left_disknr) ? 0 : 1;
4857 goto out;
4860 left_offset_fixed = left_offset;
4861 if (key.offset < ekey->offset) {
4862 /* Fix the right offset for 2a and 7. */
4863 right_offset += ekey->offset - key.offset;
4864 } else {
4865 /* Fix the left offset for all behind 2a and 2b */
4866 left_offset_fixed += key.offset - ekey->offset;
4870 * Check if we have the same extent.
4872 if (left_disknr != right_disknr ||
4873 left_offset_fixed != right_offset ||
4874 left_gen != right_gen) {
4875 ret = 0;
4876 goto out;
4880 * Go to the next extent.
4882 ret = btrfs_next_item(sctx->parent_root, path);
4883 if (ret < 0)
4884 goto out;
4885 if (!ret) {
4886 eb = path->nodes[0];
4887 slot = path->slots[0];
4888 btrfs_item_key_to_cpu(eb, &found_key, slot);
4890 if (ret || found_key.objectid != key.objectid ||
4891 found_key.type != key.type) {
4892 key.offset += right_len;
4893 break;
4895 if (found_key.offset != key.offset + right_len) {
4896 ret = 0;
4897 goto out;
4899 key = found_key;
4903 * We're now behind the left extent (treat as unchanged) or at the end
4904 * of the right side (treat as changed).
4906 if (key.offset >= ekey->offset + left_len)
4907 ret = 1;
4908 else
4909 ret = 0;
4912 out:
4913 btrfs_free_path(path);
4914 return ret;
4917 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4919 struct btrfs_path *path;
4920 struct btrfs_root *root = sctx->send_root;
4921 struct btrfs_file_extent_item *fi;
4922 struct btrfs_key key;
4923 u64 extent_end;
4924 u8 type;
4925 int ret;
4927 path = alloc_path_for_send();
4928 if (!path)
4929 return -ENOMEM;
4931 sctx->cur_inode_last_extent = 0;
4933 key.objectid = sctx->cur_ino;
4934 key.type = BTRFS_EXTENT_DATA_KEY;
4935 key.offset = offset;
4936 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4937 if (ret < 0)
4938 goto out;
4939 ret = 0;
4940 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4941 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4942 goto out;
4944 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4945 struct btrfs_file_extent_item);
4946 type = btrfs_file_extent_type(path->nodes[0], fi);
4947 if (type == BTRFS_FILE_EXTENT_INLINE) {
4948 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4949 path->slots[0], fi);
4950 extent_end = ALIGN(key.offset + size,
4951 sctx->send_root->sectorsize);
4952 } else {
4953 extent_end = key.offset +
4954 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4956 sctx->cur_inode_last_extent = extent_end;
4957 out:
4958 btrfs_free_path(path);
4959 return ret;
4962 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4963 struct btrfs_key *key)
4965 struct btrfs_file_extent_item *fi;
4966 u64 extent_end;
4967 u8 type;
4968 int ret = 0;
4970 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4971 return 0;
4973 if (sctx->cur_inode_last_extent == (u64)-1) {
4974 ret = get_last_extent(sctx, key->offset - 1);
4975 if (ret)
4976 return ret;
4979 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4980 struct btrfs_file_extent_item);
4981 type = btrfs_file_extent_type(path->nodes[0], fi);
4982 if (type == BTRFS_FILE_EXTENT_INLINE) {
4983 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4984 path->slots[0], fi);
4985 extent_end = ALIGN(key->offset + size,
4986 sctx->send_root->sectorsize);
4987 } else {
4988 extent_end = key->offset +
4989 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4992 if (path->slots[0] == 0 &&
4993 sctx->cur_inode_last_extent < key->offset) {
4995 * We might have skipped entire leafs that contained only
4996 * file extent items for our current inode. These leafs have
4997 * a generation number smaller (older) than the one in the
4998 * current leaf and the leaf our last extent came from, and
4999 * are located between these 2 leafs.
5001 ret = get_last_extent(sctx, key->offset - 1);
5002 if (ret)
5003 return ret;
5006 if (sctx->cur_inode_last_extent < key->offset)
5007 ret = send_hole(sctx, key->offset);
5008 sctx->cur_inode_last_extent = extent_end;
5009 return ret;
5012 static int process_extent(struct send_ctx *sctx,
5013 struct btrfs_path *path,
5014 struct btrfs_key *key)
5016 struct clone_root *found_clone = NULL;
5017 int ret = 0;
5019 if (S_ISLNK(sctx->cur_inode_mode))
5020 return 0;
5022 if (sctx->parent_root && !sctx->cur_inode_new) {
5023 ret = is_extent_unchanged(sctx, path, key);
5024 if (ret < 0)
5025 goto out;
5026 if (ret) {
5027 ret = 0;
5028 goto out_hole;
5030 } else {
5031 struct btrfs_file_extent_item *ei;
5032 u8 type;
5034 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5035 struct btrfs_file_extent_item);
5036 type = btrfs_file_extent_type(path->nodes[0], ei);
5037 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5038 type == BTRFS_FILE_EXTENT_REG) {
5040 * The send spec does not have a prealloc command yet,
5041 * so just leave a hole for prealloc'ed extents until
5042 * we have enough commands queued up to justify rev'ing
5043 * the send spec.
5045 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5046 ret = 0;
5047 goto out;
5050 /* Have a hole, just skip it. */
5051 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5052 ret = 0;
5053 goto out;
5058 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5059 sctx->cur_inode_size, &found_clone);
5060 if (ret != -ENOENT && ret < 0)
5061 goto out;
5063 ret = send_write_or_clone(sctx, path, key, found_clone);
5064 if (ret)
5065 goto out;
5066 out_hole:
5067 ret = maybe_send_hole(sctx, path, key);
5068 out:
5069 return ret;
5072 static int process_all_extents(struct send_ctx *sctx)
5074 int ret;
5075 struct btrfs_root *root;
5076 struct btrfs_path *path;
5077 struct btrfs_key key;
5078 struct btrfs_key found_key;
5079 struct extent_buffer *eb;
5080 int slot;
5082 root = sctx->send_root;
5083 path = alloc_path_for_send();
5084 if (!path)
5085 return -ENOMEM;
5087 key.objectid = sctx->cmp_key->objectid;
5088 key.type = BTRFS_EXTENT_DATA_KEY;
5089 key.offset = 0;
5090 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5091 if (ret < 0)
5092 goto out;
5094 while (1) {
5095 eb = path->nodes[0];
5096 slot = path->slots[0];
5098 if (slot >= btrfs_header_nritems(eb)) {
5099 ret = btrfs_next_leaf(root, path);
5100 if (ret < 0) {
5101 goto out;
5102 } else if (ret > 0) {
5103 ret = 0;
5104 break;
5106 continue;
5109 btrfs_item_key_to_cpu(eb, &found_key, slot);
5111 if (found_key.objectid != key.objectid ||
5112 found_key.type != key.type) {
5113 ret = 0;
5114 goto out;
5117 ret = process_extent(sctx, path, &found_key);
5118 if (ret < 0)
5119 goto out;
5121 path->slots[0]++;
5124 out:
5125 btrfs_free_path(path);
5126 return ret;
5129 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5130 int *pending_move,
5131 int *refs_processed)
5133 int ret = 0;
5135 if (sctx->cur_ino == 0)
5136 goto out;
5137 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5138 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5139 goto out;
5140 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5141 goto out;
5143 ret = process_recorded_refs(sctx, pending_move);
5144 if (ret < 0)
5145 goto out;
5147 *refs_processed = 1;
5148 out:
5149 return ret;
5152 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5154 int ret = 0;
5155 u64 left_mode;
5156 u64 left_uid;
5157 u64 left_gid;
5158 u64 right_mode;
5159 u64 right_uid;
5160 u64 right_gid;
5161 int need_chmod = 0;
5162 int need_chown = 0;
5163 int pending_move = 0;
5164 int refs_processed = 0;
5166 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5167 &refs_processed);
5168 if (ret < 0)
5169 goto out;
5172 * We have processed the refs and thus need to advance send_progress.
5173 * Now, calls to get_cur_xxx will take the updated refs of the current
5174 * inode into account.
5176 * On the other hand, if our current inode is a directory and couldn't
5177 * be moved/renamed because its parent was renamed/moved too and it has
5178 * a higher inode number, we can only move/rename our current inode
5179 * after we moved/renamed its parent. Therefore in this case operate on
5180 * the old path (pre move/rename) of our current inode, and the
5181 * move/rename will be performed later.
5183 if (refs_processed && !pending_move)
5184 sctx->send_progress = sctx->cur_ino + 1;
5186 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5187 goto out;
5188 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5189 goto out;
5191 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5192 &left_mode, &left_uid, &left_gid, NULL);
5193 if (ret < 0)
5194 goto out;
5196 if (!sctx->parent_root || sctx->cur_inode_new) {
5197 need_chown = 1;
5198 if (!S_ISLNK(sctx->cur_inode_mode))
5199 need_chmod = 1;
5200 } else {
5201 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5202 NULL, NULL, &right_mode, &right_uid,
5203 &right_gid, NULL);
5204 if (ret < 0)
5205 goto out;
5207 if (left_uid != right_uid || left_gid != right_gid)
5208 need_chown = 1;
5209 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5210 need_chmod = 1;
5213 if (S_ISREG(sctx->cur_inode_mode)) {
5214 if (need_send_hole(sctx)) {
5215 if (sctx->cur_inode_last_extent == (u64)-1 ||
5216 sctx->cur_inode_last_extent <
5217 sctx->cur_inode_size) {
5218 ret = get_last_extent(sctx, (u64)-1);
5219 if (ret)
5220 goto out;
5222 if (sctx->cur_inode_last_extent <
5223 sctx->cur_inode_size) {
5224 ret = send_hole(sctx, sctx->cur_inode_size);
5225 if (ret)
5226 goto out;
5229 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5230 sctx->cur_inode_size);
5231 if (ret < 0)
5232 goto out;
5235 if (need_chown) {
5236 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5237 left_uid, left_gid);
5238 if (ret < 0)
5239 goto out;
5241 if (need_chmod) {
5242 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5243 left_mode);
5244 if (ret < 0)
5245 goto out;
5249 * If other directory inodes depended on our current directory
5250 * inode's move/rename, now do their move/rename operations.
5252 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5253 ret = apply_children_dir_moves(sctx);
5254 if (ret)
5255 goto out;
5257 * Need to send that every time, no matter if it actually
5258 * changed between the two trees as we have done changes to
5259 * the inode before. If our inode is a directory and it's
5260 * waiting to be moved/renamed, we will send its utimes when
5261 * it's moved/renamed, therefore we don't need to do it here.
5263 sctx->send_progress = sctx->cur_ino + 1;
5264 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5265 if (ret < 0)
5266 goto out;
5269 out:
5270 return ret;
5273 static int changed_inode(struct send_ctx *sctx,
5274 enum btrfs_compare_tree_result result)
5276 int ret = 0;
5277 struct btrfs_key *key = sctx->cmp_key;
5278 struct btrfs_inode_item *left_ii = NULL;
5279 struct btrfs_inode_item *right_ii = NULL;
5280 u64 left_gen = 0;
5281 u64 right_gen = 0;
5283 sctx->cur_ino = key->objectid;
5284 sctx->cur_inode_new_gen = 0;
5285 sctx->cur_inode_last_extent = (u64)-1;
5288 * Set send_progress to current inode. This will tell all get_cur_xxx
5289 * functions that the current inode's refs are not updated yet. Later,
5290 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5292 sctx->send_progress = sctx->cur_ino;
5294 if (result == BTRFS_COMPARE_TREE_NEW ||
5295 result == BTRFS_COMPARE_TREE_CHANGED) {
5296 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5297 sctx->left_path->slots[0],
5298 struct btrfs_inode_item);
5299 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5300 left_ii);
5301 } else {
5302 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5303 sctx->right_path->slots[0],
5304 struct btrfs_inode_item);
5305 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5306 right_ii);
5308 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5309 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5310 sctx->right_path->slots[0],
5311 struct btrfs_inode_item);
5313 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5314 right_ii);
5317 * The cur_ino = root dir case is special here. We can't treat
5318 * the inode as deleted+reused because it would generate a
5319 * stream that tries to delete/mkdir the root dir.
5321 if (left_gen != right_gen &&
5322 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5323 sctx->cur_inode_new_gen = 1;
5326 if (result == BTRFS_COMPARE_TREE_NEW) {
5327 sctx->cur_inode_gen = left_gen;
5328 sctx->cur_inode_new = 1;
5329 sctx->cur_inode_deleted = 0;
5330 sctx->cur_inode_size = btrfs_inode_size(
5331 sctx->left_path->nodes[0], left_ii);
5332 sctx->cur_inode_mode = btrfs_inode_mode(
5333 sctx->left_path->nodes[0], left_ii);
5334 sctx->cur_inode_rdev = btrfs_inode_rdev(
5335 sctx->left_path->nodes[0], left_ii);
5336 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5337 ret = send_create_inode_if_needed(sctx);
5338 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5339 sctx->cur_inode_gen = right_gen;
5340 sctx->cur_inode_new = 0;
5341 sctx->cur_inode_deleted = 1;
5342 sctx->cur_inode_size = btrfs_inode_size(
5343 sctx->right_path->nodes[0], right_ii);
5344 sctx->cur_inode_mode = btrfs_inode_mode(
5345 sctx->right_path->nodes[0], right_ii);
5346 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5348 * We need to do some special handling in case the inode was
5349 * reported as changed with a changed generation number. This
5350 * means that the original inode was deleted and new inode
5351 * reused the same inum. So we have to treat the old inode as
5352 * deleted and the new one as new.
5354 if (sctx->cur_inode_new_gen) {
5356 * First, process the inode as if it was deleted.
5358 sctx->cur_inode_gen = right_gen;
5359 sctx->cur_inode_new = 0;
5360 sctx->cur_inode_deleted = 1;
5361 sctx->cur_inode_size = btrfs_inode_size(
5362 sctx->right_path->nodes[0], right_ii);
5363 sctx->cur_inode_mode = btrfs_inode_mode(
5364 sctx->right_path->nodes[0], right_ii);
5365 ret = process_all_refs(sctx,
5366 BTRFS_COMPARE_TREE_DELETED);
5367 if (ret < 0)
5368 goto out;
5371 * Now process the inode as if it was new.
5373 sctx->cur_inode_gen = left_gen;
5374 sctx->cur_inode_new = 1;
5375 sctx->cur_inode_deleted = 0;
5376 sctx->cur_inode_size = btrfs_inode_size(
5377 sctx->left_path->nodes[0], left_ii);
5378 sctx->cur_inode_mode = btrfs_inode_mode(
5379 sctx->left_path->nodes[0], left_ii);
5380 sctx->cur_inode_rdev = btrfs_inode_rdev(
5381 sctx->left_path->nodes[0], left_ii);
5382 ret = send_create_inode_if_needed(sctx);
5383 if (ret < 0)
5384 goto out;
5386 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5387 if (ret < 0)
5388 goto out;
5390 * Advance send_progress now as we did not get into
5391 * process_recorded_refs_if_needed in the new_gen case.
5393 sctx->send_progress = sctx->cur_ino + 1;
5396 * Now process all extents and xattrs of the inode as if
5397 * they were all new.
5399 ret = process_all_extents(sctx);
5400 if (ret < 0)
5401 goto out;
5402 ret = process_all_new_xattrs(sctx);
5403 if (ret < 0)
5404 goto out;
5405 } else {
5406 sctx->cur_inode_gen = left_gen;
5407 sctx->cur_inode_new = 0;
5408 sctx->cur_inode_new_gen = 0;
5409 sctx->cur_inode_deleted = 0;
5410 sctx->cur_inode_size = btrfs_inode_size(
5411 sctx->left_path->nodes[0], left_ii);
5412 sctx->cur_inode_mode = btrfs_inode_mode(
5413 sctx->left_path->nodes[0], left_ii);
5417 out:
5418 return ret;
5422 * We have to process new refs before deleted refs, but compare_trees gives us
5423 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5424 * first and later process them in process_recorded_refs.
5425 * For the cur_inode_new_gen case, we skip recording completely because
5426 * changed_inode did already initiate processing of refs. The reason for this is
5427 * that in this case, compare_tree actually compares the refs of 2 different
5428 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5429 * refs of the right tree as deleted and all refs of the left tree as new.
5431 static int changed_ref(struct send_ctx *sctx,
5432 enum btrfs_compare_tree_result result)
5434 int ret = 0;
5436 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5438 if (!sctx->cur_inode_new_gen &&
5439 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5440 if (result == BTRFS_COMPARE_TREE_NEW)
5441 ret = record_new_ref(sctx);
5442 else if (result == BTRFS_COMPARE_TREE_DELETED)
5443 ret = record_deleted_ref(sctx);
5444 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5445 ret = record_changed_ref(sctx);
5448 return ret;
5452 * Process new/deleted/changed xattrs. We skip processing in the
5453 * cur_inode_new_gen case because changed_inode did already initiate processing
5454 * of xattrs. The reason is the same as in changed_ref
5456 static int changed_xattr(struct send_ctx *sctx,
5457 enum btrfs_compare_tree_result result)
5459 int ret = 0;
5461 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5463 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5464 if (result == BTRFS_COMPARE_TREE_NEW)
5465 ret = process_new_xattr(sctx);
5466 else if (result == BTRFS_COMPARE_TREE_DELETED)
5467 ret = process_deleted_xattr(sctx);
5468 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5469 ret = process_changed_xattr(sctx);
5472 return ret;
5476 * Process new/deleted/changed extents. We skip processing in the
5477 * cur_inode_new_gen case because changed_inode did already initiate processing
5478 * of extents. The reason is the same as in changed_ref
5480 static int changed_extent(struct send_ctx *sctx,
5481 enum btrfs_compare_tree_result result)
5483 int ret = 0;
5485 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5487 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5488 if (result != BTRFS_COMPARE_TREE_DELETED)
5489 ret = process_extent(sctx, sctx->left_path,
5490 sctx->cmp_key);
5493 return ret;
5496 static int dir_changed(struct send_ctx *sctx, u64 dir)
5498 u64 orig_gen, new_gen;
5499 int ret;
5501 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5502 NULL, NULL);
5503 if (ret)
5504 return ret;
5506 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5507 NULL, NULL, NULL);
5508 if (ret)
5509 return ret;
5511 return (orig_gen != new_gen) ? 1 : 0;
5514 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5515 struct btrfs_key *key)
5517 struct btrfs_inode_extref *extref;
5518 struct extent_buffer *leaf;
5519 u64 dirid = 0, last_dirid = 0;
5520 unsigned long ptr;
5521 u32 item_size;
5522 u32 cur_offset = 0;
5523 int ref_name_len;
5524 int ret = 0;
5526 /* Easy case, just check this one dirid */
5527 if (key->type == BTRFS_INODE_REF_KEY) {
5528 dirid = key->offset;
5530 ret = dir_changed(sctx, dirid);
5531 goto out;
5534 leaf = path->nodes[0];
5535 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5536 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5537 while (cur_offset < item_size) {
5538 extref = (struct btrfs_inode_extref *)(ptr +
5539 cur_offset);
5540 dirid = btrfs_inode_extref_parent(leaf, extref);
5541 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5542 cur_offset += ref_name_len + sizeof(*extref);
5543 if (dirid == last_dirid)
5544 continue;
5545 ret = dir_changed(sctx, dirid);
5546 if (ret)
5547 break;
5548 last_dirid = dirid;
5550 out:
5551 return ret;
5555 * Updates compare related fields in sctx and simply forwards to the actual
5556 * changed_xxx functions.
5558 static int changed_cb(struct btrfs_root *left_root,
5559 struct btrfs_root *right_root,
5560 struct btrfs_path *left_path,
5561 struct btrfs_path *right_path,
5562 struct btrfs_key *key,
5563 enum btrfs_compare_tree_result result,
5564 void *ctx)
5566 int ret = 0;
5567 struct send_ctx *sctx = ctx;
5569 if (result == BTRFS_COMPARE_TREE_SAME) {
5570 if (key->type == BTRFS_INODE_REF_KEY ||
5571 key->type == BTRFS_INODE_EXTREF_KEY) {
5572 ret = compare_refs(sctx, left_path, key);
5573 if (!ret)
5574 return 0;
5575 if (ret < 0)
5576 return ret;
5577 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5578 return maybe_send_hole(sctx, left_path, key);
5579 } else {
5580 return 0;
5582 result = BTRFS_COMPARE_TREE_CHANGED;
5583 ret = 0;
5586 sctx->left_path = left_path;
5587 sctx->right_path = right_path;
5588 sctx->cmp_key = key;
5590 ret = finish_inode_if_needed(sctx, 0);
5591 if (ret < 0)
5592 goto out;
5594 /* Ignore non-FS objects */
5595 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5596 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5597 goto out;
5599 if (key->type == BTRFS_INODE_ITEM_KEY)
5600 ret = changed_inode(sctx, result);
5601 else if (key->type == BTRFS_INODE_REF_KEY ||
5602 key->type == BTRFS_INODE_EXTREF_KEY)
5603 ret = changed_ref(sctx, result);
5604 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5605 ret = changed_xattr(sctx, result);
5606 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5607 ret = changed_extent(sctx, result);
5609 out:
5610 return ret;
5613 static int full_send_tree(struct send_ctx *sctx)
5615 int ret;
5616 struct btrfs_root *send_root = sctx->send_root;
5617 struct btrfs_key key;
5618 struct btrfs_key found_key;
5619 struct btrfs_path *path;
5620 struct extent_buffer *eb;
5621 int slot;
5623 path = alloc_path_for_send();
5624 if (!path)
5625 return -ENOMEM;
5627 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5628 key.type = BTRFS_INODE_ITEM_KEY;
5629 key.offset = 0;
5631 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5632 if (ret < 0)
5633 goto out;
5634 if (ret)
5635 goto out_finish;
5637 while (1) {
5638 eb = path->nodes[0];
5639 slot = path->slots[0];
5640 btrfs_item_key_to_cpu(eb, &found_key, slot);
5642 ret = changed_cb(send_root, NULL, path, NULL,
5643 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5644 if (ret < 0)
5645 goto out;
5647 key.objectid = found_key.objectid;
5648 key.type = found_key.type;
5649 key.offset = found_key.offset + 1;
5651 ret = btrfs_next_item(send_root, path);
5652 if (ret < 0)
5653 goto out;
5654 if (ret) {
5655 ret = 0;
5656 break;
5660 out_finish:
5661 ret = finish_inode_if_needed(sctx, 1);
5663 out:
5664 btrfs_free_path(path);
5665 return ret;
5668 static int send_subvol(struct send_ctx *sctx)
5670 int ret;
5672 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5673 ret = send_header(sctx);
5674 if (ret < 0)
5675 goto out;
5678 ret = send_subvol_begin(sctx);
5679 if (ret < 0)
5680 goto out;
5682 if (sctx->parent_root) {
5683 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5684 changed_cb, sctx);
5685 if (ret < 0)
5686 goto out;
5687 ret = finish_inode_if_needed(sctx, 1);
5688 if (ret < 0)
5689 goto out;
5690 } else {
5691 ret = full_send_tree(sctx);
5692 if (ret < 0)
5693 goto out;
5696 out:
5697 free_recorded_refs(sctx);
5698 return ret;
5702 * If orphan cleanup did remove any orphans from a root, it means the tree
5703 * was modified and therefore the commit root is not the same as the current
5704 * root anymore. This is a problem, because send uses the commit root and
5705 * therefore can see inode items that don't exist in the current root anymore,
5706 * and for example make calls to btrfs_iget, which will do tree lookups based
5707 * on the current root and not on the commit root. Those lookups will fail,
5708 * returning a -ESTALE error, and making send fail with that error. So make
5709 * sure a send does not see any orphans we have just removed, and that it will
5710 * see the same inodes regardless of whether a transaction commit happened
5711 * before it started (meaning that the commit root will be the same as the
5712 * current root) or not.
5714 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5716 int i;
5717 struct btrfs_trans_handle *trans = NULL;
5719 again:
5720 if (sctx->parent_root &&
5721 sctx->parent_root->node != sctx->parent_root->commit_root)
5722 goto commit_trans;
5724 for (i = 0; i < sctx->clone_roots_cnt; i++)
5725 if (sctx->clone_roots[i].root->node !=
5726 sctx->clone_roots[i].root->commit_root)
5727 goto commit_trans;
5729 if (trans)
5730 return btrfs_end_transaction(trans, sctx->send_root);
5732 return 0;
5734 commit_trans:
5735 /* Use any root, all fs roots will get their commit roots updated. */
5736 if (!trans) {
5737 trans = btrfs_join_transaction(sctx->send_root);
5738 if (IS_ERR(trans))
5739 return PTR_ERR(trans);
5740 goto again;
5743 return btrfs_commit_transaction(trans, sctx->send_root);
5746 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5748 spin_lock(&root->root_item_lock);
5749 root->send_in_progress--;
5751 * Not much left to do, we don't know why it's unbalanced and
5752 * can't blindly reset it to 0.
5754 if (root->send_in_progress < 0)
5755 btrfs_err(root->fs_info,
5756 "send_in_progres unbalanced %d root %llu",
5757 root->send_in_progress, root->root_key.objectid);
5758 spin_unlock(&root->root_item_lock);
5761 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5763 int ret = 0;
5764 struct btrfs_root *send_root;
5765 struct btrfs_root *clone_root;
5766 struct btrfs_fs_info *fs_info;
5767 struct btrfs_ioctl_send_args *arg = NULL;
5768 struct btrfs_key key;
5769 struct send_ctx *sctx = NULL;
5770 u32 i;
5771 u64 *clone_sources_tmp = NULL;
5772 int clone_sources_to_rollback = 0;
5773 int sort_clone_roots = 0;
5774 int index;
5776 if (!capable(CAP_SYS_ADMIN))
5777 return -EPERM;
5779 send_root = BTRFS_I(file_inode(mnt_file))->root;
5780 fs_info = send_root->fs_info;
5783 * The subvolume must remain read-only during send, protect against
5784 * making it RW. This also protects against deletion.
5786 spin_lock(&send_root->root_item_lock);
5787 send_root->send_in_progress++;
5788 spin_unlock(&send_root->root_item_lock);
5791 * This is done when we lookup the root, it should already be complete
5792 * by the time we get here.
5794 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5797 * Userspace tools do the checks and warn the user if it's
5798 * not RO.
5800 if (!btrfs_root_readonly(send_root)) {
5801 ret = -EPERM;
5802 goto out;
5805 arg = memdup_user(arg_, sizeof(*arg));
5806 if (IS_ERR(arg)) {
5807 ret = PTR_ERR(arg);
5808 arg = NULL;
5809 goto out;
5812 if (!access_ok(VERIFY_READ, arg->clone_sources,
5813 sizeof(*arg->clone_sources) *
5814 arg->clone_sources_count)) {
5815 ret = -EFAULT;
5816 goto out;
5819 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5820 ret = -EINVAL;
5821 goto out;
5824 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5825 if (!sctx) {
5826 ret = -ENOMEM;
5827 goto out;
5830 INIT_LIST_HEAD(&sctx->new_refs);
5831 INIT_LIST_HEAD(&sctx->deleted_refs);
5832 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5833 INIT_LIST_HEAD(&sctx->name_cache_list);
5835 sctx->flags = arg->flags;
5837 sctx->send_filp = fget(arg->send_fd);
5838 if (!sctx->send_filp) {
5839 ret = -EBADF;
5840 goto out;
5843 sctx->send_root = send_root;
5845 * Unlikely but possible, if the subvolume is marked for deletion but
5846 * is slow to remove the directory entry, send can still be started
5848 if (btrfs_root_dead(sctx->send_root)) {
5849 ret = -EPERM;
5850 goto out;
5853 sctx->clone_roots_cnt = arg->clone_sources_count;
5855 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5856 sctx->send_buf = vmalloc(sctx->send_max_size);
5857 if (!sctx->send_buf) {
5858 ret = -ENOMEM;
5859 goto out;
5862 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5863 if (!sctx->read_buf) {
5864 ret = -ENOMEM;
5865 goto out;
5868 sctx->pending_dir_moves = RB_ROOT;
5869 sctx->waiting_dir_moves = RB_ROOT;
5870 sctx->orphan_dirs = RB_ROOT;
5872 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5873 (arg->clone_sources_count + 1));
5874 if (!sctx->clone_roots) {
5875 ret = -ENOMEM;
5876 goto out;
5879 if (arg->clone_sources_count) {
5880 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5881 sizeof(*arg->clone_sources));
5882 if (!clone_sources_tmp) {
5883 ret = -ENOMEM;
5884 goto out;
5887 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5888 arg->clone_sources_count *
5889 sizeof(*arg->clone_sources));
5890 if (ret) {
5891 ret = -EFAULT;
5892 goto out;
5895 for (i = 0; i < arg->clone_sources_count; i++) {
5896 key.objectid = clone_sources_tmp[i];
5897 key.type = BTRFS_ROOT_ITEM_KEY;
5898 key.offset = (u64)-1;
5900 index = srcu_read_lock(&fs_info->subvol_srcu);
5902 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5903 if (IS_ERR(clone_root)) {
5904 srcu_read_unlock(&fs_info->subvol_srcu, index);
5905 ret = PTR_ERR(clone_root);
5906 goto out;
5908 spin_lock(&clone_root->root_item_lock);
5909 if (!btrfs_root_readonly(clone_root) ||
5910 btrfs_root_dead(clone_root)) {
5911 spin_unlock(&clone_root->root_item_lock);
5912 srcu_read_unlock(&fs_info->subvol_srcu, index);
5913 ret = -EPERM;
5914 goto out;
5916 clone_root->send_in_progress++;
5917 spin_unlock(&clone_root->root_item_lock);
5918 srcu_read_unlock(&fs_info->subvol_srcu, index);
5920 sctx->clone_roots[i].root = clone_root;
5921 clone_sources_to_rollback = i + 1;
5923 vfree(clone_sources_tmp);
5924 clone_sources_tmp = NULL;
5927 if (arg->parent_root) {
5928 key.objectid = arg->parent_root;
5929 key.type = BTRFS_ROOT_ITEM_KEY;
5930 key.offset = (u64)-1;
5932 index = srcu_read_lock(&fs_info->subvol_srcu);
5934 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5935 if (IS_ERR(sctx->parent_root)) {
5936 srcu_read_unlock(&fs_info->subvol_srcu, index);
5937 ret = PTR_ERR(sctx->parent_root);
5938 goto out;
5941 spin_lock(&sctx->parent_root->root_item_lock);
5942 sctx->parent_root->send_in_progress++;
5943 if (!btrfs_root_readonly(sctx->parent_root) ||
5944 btrfs_root_dead(sctx->parent_root)) {
5945 spin_unlock(&sctx->parent_root->root_item_lock);
5946 srcu_read_unlock(&fs_info->subvol_srcu, index);
5947 ret = -EPERM;
5948 goto out;
5950 spin_unlock(&sctx->parent_root->root_item_lock);
5952 srcu_read_unlock(&fs_info->subvol_srcu, index);
5956 * Clones from send_root are allowed, but only if the clone source
5957 * is behind the current send position. This is checked while searching
5958 * for possible clone sources.
5960 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5962 /* We do a bsearch later */
5963 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5964 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5965 NULL);
5966 sort_clone_roots = 1;
5968 ret = ensure_commit_roots_uptodate(sctx);
5969 if (ret)
5970 goto out;
5972 current->journal_info = BTRFS_SEND_TRANS_STUB;
5973 ret = send_subvol(sctx);
5974 current->journal_info = NULL;
5975 if (ret < 0)
5976 goto out;
5978 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5979 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5980 if (ret < 0)
5981 goto out;
5982 ret = send_cmd(sctx);
5983 if (ret < 0)
5984 goto out;
5987 out:
5988 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5989 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5990 struct rb_node *n;
5991 struct pending_dir_move *pm;
5993 n = rb_first(&sctx->pending_dir_moves);
5994 pm = rb_entry(n, struct pending_dir_move, node);
5995 while (!list_empty(&pm->list)) {
5996 struct pending_dir_move *pm2;
5998 pm2 = list_first_entry(&pm->list,
5999 struct pending_dir_move, list);
6000 free_pending_move(sctx, pm2);
6002 free_pending_move(sctx, pm);
6005 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6006 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6007 struct rb_node *n;
6008 struct waiting_dir_move *dm;
6010 n = rb_first(&sctx->waiting_dir_moves);
6011 dm = rb_entry(n, struct waiting_dir_move, node);
6012 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6013 kfree(dm);
6016 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6017 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6018 struct rb_node *n;
6019 struct orphan_dir_info *odi;
6021 n = rb_first(&sctx->orphan_dirs);
6022 odi = rb_entry(n, struct orphan_dir_info, node);
6023 free_orphan_dir_info(sctx, odi);
6026 if (sort_clone_roots) {
6027 for (i = 0; i < sctx->clone_roots_cnt; i++)
6028 btrfs_root_dec_send_in_progress(
6029 sctx->clone_roots[i].root);
6030 } else {
6031 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6032 btrfs_root_dec_send_in_progress(
6033 sctx->clone_roots[i].root);
6035 btrfs_root_dec_send_in_progress(send_root);
6037 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6038 btrfs_root_dec_send_in_progress(sctx->parent_root);
6040 kfree(arg);
6041 vfree(clone_sources_tmp);
6043 if (sctx) {
6044 if (sctx->send_filp)
6045 fput(sctx->send_filp);
6047 vfree(sctx->clone_roots);
6048 vfree(sctx->send_buf);
6049 vfree(sctx->read_buf);
6051 name_cache_free(sctx);
6053 kfree(sctx);
6056 return ret;