2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
55 struct list_head
*btrfs_get_fs_uuids(void)
60 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
62 struct btrfs_fs_devices
*fs_devs
;
64 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
66 return ERR_PTR(-ENOMEM
);
68 mutex_init(&fs_devs
->device_list_mutex
);
70 INIT_LIST_HEAD(&fs_devs
->devices
);
71 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
72 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
73 INIT_LIST_HEAD(&fs_devs
->list
);
79 * alloc_fs_devices - allocate struct btrfs_fs_devices
80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
83 * Return: a pointer to a new &struct btrfs_fs_devices on success;
84 * ERR_PTR() on error. Returned struct is not linked onto any lists and
85 * can be destroyed with kfree() right away.
87 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
89 struct btrfs_fs_devices
*fs_devs
;
91 fs_devs
= __alloc_fs_devices();
96 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
98 generate_random_uuid(fs_devs
->fsid
);
103 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
105 struct btrfs_device
*device
;
106 WARN_ON(fs_devices
->opened
);
107 while (!list_empty(&fs_devices
->devices
)) {
108 device
= list_entry(fs_devices
->devices
.next
,
109 struct btrfs_device
, dev_list
);
110 list_del(&device
->dev_list
);
111 rcu_string_free(device
->name
);
117 static void btrfs_kobject_uevent(struct block_device
*bdev
,
118 enum kobject_action action
)
122 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
126 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
127 &disk_to_dev(bdev
->bd_disk
)->kobj
);
130 void btrfs_cleanup_fs_uuids(void)
132 struct btrfs_fs_devices
*fs_devices
;
134 while (!list_empty(&fs_uuids
)) {
135 fs_devices
= list_entry(fs_uuids
.next
,
136 struct btrfs_fs_devices
, list
);
137 list_del(&fs_devices
->list
);
138 free_fs_devices(fs_devices
);
142 static struct btrfs_device
*__alloc_device(void)
144 struct btrfs_device
*dev
;
146 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
148 return ERR_PTR(-ENOMEM
);
150 INIT_LIST_HEAD(&dev
->dev_list
);
151 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
152 INIT_LIST_HEAD(&dev
->resized_list
);
154 spin_lock_init(&dev
->io_lock
);
156 spin_lock_init(&dev
->reada_lock
);
157 atomic_set(&dev
->reada_in_flight
, 0);
158 atomic_set(&dev
->dev_stats_ccnt
, 0);
159 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
160 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
165 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
168 struct btrfs_device
*dev
;
170 list_for_each_entry(dev
, head
, dev_list
) {
171 if (dev
->devid
== devid
&&
172 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
179 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
181 struct btrfs_fs_devices
*fs_devices
;
183 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
184 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
191 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
192 int flush
, struct block_device
**bdev
,
193 struct buffer_head
**bh
)
197 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
200 ret
= PTR_ERR(*bdev
);
201 printk(KERN_INFO
"BTRFS: open %s failed\n", device_path
);
206 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
207 ret
= set_blocksize(*bdev
, 4096);
209 blkdev_put(*bdev
, flags
);
212 invalidate_bdev(*bdev
);
213 *bh
= btrfs_read_dev_super(*bdev
);
216 blkdev_put(*bdev
, flags
);
228 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
229 struct bio
*head
, struct bio
*tail
)
232 struct bio
*old_head
;
234 old_head
= pending_bios
->head
;
235 pending_bios
->head
= head
;
236 if (pending_bios
->tail
)
237 tail
->bi_next
= old_head
;
239 pending_bios
->tail
= tail
;
243 * we try to collect pending bios for a device so we don't get a large
244 * number of procs sending bios down to the same device. This greatly
245 * improves the schedulers ability to collect and merge the bios.
247 * But, it also turns into a long list of bios to process and that is sure
248 * to eventually make the worker thread block. The solution here is to
249 * make some progress and then put this work struct back at the end of
250 * the list if the block device is congested. This way, multiple devices
251 * can make progress from a single worker thread.
253 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
256 struct backing_dev_info
*bdi
;
257 struct btrfs_fs_info
*fs_info
;
258 struct btrfs_pending_bios
*pending_bios
;
262 unsigned long num_run
;
263 unsigned long batch_run
= 0;
265 unsigned long last_waited
= 0;
267 int sync_pending
= 0;
268 struct blk_plug plug
;
271 * this function runs all the bios we've collected for
272 * a particular device. We don't want to wander off to
273 * another device without first sending all of these down.
274 * So, setup a plug here and finish it off before we return
276 blk_start_plug(&plug
);
278 bdi
= blk_get_backing_dev_info(device
->bdev
);
279 fs_info
= device
->dev_root
->fs_info
;
280 limit
= btrfs_async_submit_limit(fs_info
);
281 limit
= limit
* 2 / 3;
284 spin_lock(&device
->io_lock
);
289 /* take all the bios off the list at once and process them
290 * later on (without the lock held). But, remember the
291 * tail and other pointers so the bios can be properly reinserted
292 * into the list if we hit congestion
294 if (!force_reg
&& device
->pending_sync_bios
.head
) {
295 pending_bios
= &device
->pending_sync_bios
;
298 pending_bios
= &device
->pending_bios
;
302 pending
= pending_bios
->head
;
303 tail
= pending_bios
->tail
;
304 WARN_ON(pending
&& !tail
);
307 * if pending was null this time around, no bios need processing
308 * at all and we can stop. Otherwise it'll loop back up again
309 * and do an additional check so no bios are missed.
311 * device->running_pending is used to synchronize with the
314 if (device
->pending_sync_bios
.head
== NULL
&&
315 device
->pending_bios
.head
== NULL
) {
317 device
->running_pending
= 0;
320 device
->running_pending
= 1;
323 pending_bios
->head
= NULL
;
324 pending_bios
->tail
= NULL
;
326 spin_unlock(&device
->io_lock
);
331 /* we want to work on both lists, but do more bios on the
332 * sync list than the regular list
335 pending_bios
!= &device
->pending_sync_bios
&&
336 device
->pending_sync_bios
.head
) ||
337 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
338 device
->pending_bios
.head
)) {
339 spin_lock(&device
->io_lock
);
340 requeue_list(pending_bios
, pending
, tail
);
345 pending
= pending
->bi_next
;
348 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
349 waitqueue_active(&fs_info
->async_submit_wait
))
350 wake_up(&fs_info
->async_submit_wait
);
352 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
355 * if we're doing the sync list, record that our
356 * plug has some sync requests on it
358 * If we're doing the regular list and there are
359 * sync requests sitting around, unplug before
362 if (pending_bios
== &device
->pending_sync_bios
) {
364 } else if (sync_pending
) {
365 blk_finish_plug(&plug
);
366 blk_start_plug(&plug
);
370 btrfsic_submit_bio(cur
->bi_rw
, cur
);
377 * we made progress, there is more work to do and the bdi
378 * is now congested. Back off and let other work structs
381 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
382 fs_info
->fs_devices
->open_devices
> 1) {
383 struct io_context
*ioc
;
385 ioc
= current
->io_context
;
388 * the main goal here is that we don't want to
389 * block if we're going to be able to submit
390 * more requests without blocking.
392 * This code does two great things, it pokes into
393 * the elevator code from a filesystem _and_
394 * it makes assumptions about how batching works.
396 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
397 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
399 ioc
->last_waited
== last_waited
)) {
401 * we want to go through our batch of
402 * requests and stop. So, we copy out
403 * the ioc->last_waited time and test
404 * against it before looping
406 last_waited
= ioc
->last_waited
;
410 spin_lock(&device
->io_lock
);
411 requeue_list(pending_bios
, pending
, tail
);
412 device
->running_pending
= 1;
414 spin_unlock(&device
->io_lock
);
415 btrfs_queue_work(fs_info
->submit_workers
,
419 /* unplug every 64 requests just for good measure */
420 if (batch_run
% 64 == 0) {
421 blk_finish_plug(&plug
);
422 blk_start_plug(&plug
);
431 spin_lock(&device
->io_lock
);
432 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
434 spin_unlock(&device
->io_lock
);
437 blk_finish_plug(&plug
);
440 static void pending_bios_fn(struct btrfs_work
*work
)
442 struct btrfs_device
*device
;
444 device
= container_of(work
, struct btrfs_device
, work
);
445 run_scheduled_bios(device
);
449 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
451 struct btrfs_fs_devices
*fs_devs
;
452 struct btrfs_device
*dev
;
457 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
462 if (fs_devs
->seeding
)
465 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
473 * Todo: This won't be enough. What if the same device
474 * comes back (with new uuid and) with its mapper path?
475 * But for now, this does help as mostly an admin will
476 * either use mapper or non mapper path throughout.
479 del
= strcmp(rcu_str_deref(dev
->name
),
480 rcu_str_deref(cur_dev
->name
));
487 /* delete the stale device */
488 if (fs_devs
->num_devices
== 1) {
489 btrfs_sysfs_remove_fsid(fs_devs
);
490 list_del(&fs_devs
->list
);
491 free_fs_devices(fs_devs
);
493 fs_devs
->num_devices
--;
494 list_del(&dev
->dev_list
);
495 rcu_string_free(dev
->name
);
504 * Add new device to list of registered devices
507 * 1 - first time device is seen
508 * 0 - device already known
511 static noinline
int device_list_add(const char *path
,
512 struct btrfs_super_block
*disk_super
,
513 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
515 struct btrfs_device
*device
;
516 struct btrfs_fs_devices
*fs_devices
;
517 struct rcu_string
*name
;
519 u64 found_transid
= btrfs_super_generation(disk_super
);
521 fs_devices
= find_fsid(disk_super
->fsid
);
523 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
524 if (IS_ERR(fs_devices
))
525 return PTR_ERR(fs_devices
);
527 list_add(&fs_devices
->list
, &fs_uuids
);
531 device
= __find_device(&fs_devices
->devices
, devid
,
532 disk_super
->dev_item
.uuid
);
536 if (fs_devices
->opened
)
539 device
= btrfs_alloc_device(NULL
, &devid
,
540 disk_super
->dev_item
.uuid
);
541 if (IS_ERR(device
)) {
542 /* we can safely leave the fs_devices entry around */
543 return PTR_ERR(device
);
546 name
= rcu_string_strdup(path
, GFP_NOFS
);
551 rcu_assign_pointer(device
->name
, name
);
553 mutex_lock(&fs_devices
->device_list_mutex
);
554 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
555 fs_devices
->num_devices
++;
556 mutex_unlock(&fs_devices
->device_list_mutex
);
559 device
->fs_devices
= fs_devices
;
560 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
562 * When FS is already mounted.
563 * 1. If you are here and if the device->name is NULL that
564 * means this device was missing at time of FS mount.
565 * 2. If you are here and if the device->name is different
566 * from 'path' that means either
567 * a. The same device disappeared and reappeared with
569 * b. The missing-disk-which-was-replaced, has
572 * We must allow 1 and 2a above. But 2b would be a spurious
575 * Further in case of 1 and 2a above, the disk at 'path'
576 * would have missed some transaction when it was away and
577 * in case of 2a the stale bdev has to be updated as well.
578 * 2b must not be allowed at all time.
582 * For now, we do allow update to btrfs_fs_device through the
583 * btrfs dev scan cli after FS has been mounted. We're still
584 * tracking a problem where systems fail mount by subvolume id
585 * when we reject replacement on a mounted FS.
587 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
589 * That is if the FS is _not_ mounted and if you
590 * are here, that means there is more than one
591 * disk with same uuid and devid.We keep the one
592 * with larger generation number or the last-in if
593 * generation are equal.
598 name
= rcu_string_strdup(path
, GFP_NOFS
);
601 rcu_string_free(device
->name
);
602 rcu_assign_pointer(device
->name
, name
);
603 if (device
->missing
) {
604 fs_devices
->missing_devices
--;
610 * Unmount does not free the btrfs_device struct but would zero
611 * generation along with most of the other members. So just update
612 * it back. We need it to pick the disk with largest generation
615 if (!fs_devices
->opened
)
616 device
->generation
= found_transid
;
619 * if there is new btrfs on an already registered device,
620 * then remove the stale device entry.
622 btrfs_free_stale_device(device
);
624 *fs_devices_ret
= fs_devices
;
629 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
631 struct btrfs_fs_devices
*fs_devices
;
632 struct btrfs_device
*device
;
633 struct btrfs_device
*orig_dev
;
635 fs_devices
= alloc_fs_devices(orig
->fsid
);
636 if (IS_ERR(fs_devices
))
639 mutex_lock(&orig
->device_list_mutex
);
640 fs_devices
->total_devices
= orig
->total_devices
;
642 /* We have held the volume lock, it is safe to get the devices. */
643 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
644 struct rcu_string
*name
;
646 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
652 * This is ok to do without rcu read locked because we hold the
653 * uuid mutex so nothing we touch in here is going to disappear.
655 if (orig_dev
->name
) {
656 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
661 rcu_assign_pointer(device
->name
, name
);
664 list_add(&device
->dev_list
, &fs_devices
->devices
);
665 device
->fs_devices
= fs_devices
;
666 fs_devices
->num_devices
++;
668 mutex_unlock(&orig
->device_list_mutex
);
671 mutex_unlock(&orig
->device_list_mutex
);
672 free_fs_devices(fs_devices
);
673 return ERR_PTR(-ENOMEM
);
676 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
678 struct btrfs_device
*device
, *next
;
679 struct btrfs_device
*latest_dev
= NULL
;
681 mutex_lock(&uuid_mutex
);
683 /* This is the initialized path, it is safe to release the devices. */
684 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
685 if (device
->in_fs_metadata
) {
686 if (!device
->is_tgtdev_for_dev_replace
&&
688 device
->generation
> latest_dev
->generation
)) {
694 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
696 * In the first step, keep the device which has
697 * the correct fsid and the devid that is used
698 * for the dev_replace procedure.
699 * In the second step, the dev_replace state is
700 * read from the device tree and it is known
701 * whether the procedure is really active or
702 * not, which means whether this device is
703 * used or whether it should be removed.
705 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
710 blkdev_put(device
->bdev
, device
->mode
);
712 fs_devices
->open_devices
--;
714 if (device
->writeable
) {
715 list_del_init(&device
->dev_alloc_list
);
716 device
->writeable
= 0;
717 if (!device
->is_tgtdev_for_dev_replace
)
718 fs_devices
->rw_devices
--;
720 list_del_init(&device
->dev_list
);
721 fs_devices
->num_devices
--;
722 rcu_string_free(device
->name
);
726 if (fs_devices
->seed
) {
727 fs_devices
= fs_devices
->seed
;
731 fs_devices
->latest_bdev
= latest_dev
->bdev
;
733 mutex_unlock(&uuid_mutex
);
736 static void __free_device(struct work_struct
*work
)
738 struct btrfs_device
*device
;
740 device
= container_of(work
, struct btrfs_device
, rcu_work
);
743 blkdev_put(device
->bdev
, device
->mode
);
745 rcu_string_free(device
->name
);
749 static void free_device(struct rcu_head
*head
)
751 struct btrfs_device
*device
;
753 device
= container_of(head
, struct btrfs_device
, rcu
);
755 INIT_WORK(&device
->rcu_work
, __free_device
);
756 schedule_work(&device
->rcu_work
);
759 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
761 struct btrfs_device
*device
, *tmp
;
763 if (--fs_devices
->opened
> 0)
766 mutex_lock(&fs_devices
->device_list_mutex
);
767 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
768 struct btrfs_device
*new_device
;
769 struct rcu_string
*name
;
772 fs_devices
->open_devices
--;
774 if (device
->writeable
&&
775 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
776 list_del_init(&device
->dev_alloc_list
);
777 fs_devices
->rw_devices
--;
781 fs_devices
->missing_devices
--;
783 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
785 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
787 /* Safe because we are under uuid_mutex */
789 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
790 BUG_ON(!name
); /* -ENOMEM */
791 rcu_assign_pointer(new_device
->name
, name
);
794 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
795 new_device
->fs_devices
= device
->fs_devices
;
797 call_rcu(&device
->rcu
, free_device
);
799 mutex_unlock(&fs_devices
->device_list_mutex
);
801 WARN_ON(fs_devices
->open_devices
);
802 WARN_ON(fs_devices
->rw_devices
);
803 fs_devices
->opened
= 0;
804 fs_devices
->seeding
= 0;
809 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
811 struct btrfs_fs_devices
*seed_devices
= NULL
;
814 mutex_lock(&uuid_mutex
);
815 ret
= __btrfs_close_devices(fs_devices
);
816 if (!fs_devices
->opened
) {
817 seed_devices
= fs_devices
->seed
;
818 fs_devices
->seed
= NULL
;
820 mutex_unlock(&uuid_mutex
);
822 while (seed_devices
) {
823 fs_devices
= seed_devices
;
824 seed_devices
= fs_devices
->seed
;
825 __btrfs_close_devices(fs_devices
);
826 free_fs_devices(fs_devices
);
829 * Wait for rcu kworkers under __btrfs_close_devices
830 * to finish all blkdev_puts so device is really
831 * free when umount is done.
837 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
838 fmode_t flags
, void *holder
)
840 struct request_queue
*q
;
841 struct block_device
*bdev
;
842 struct list_head
*head
= &fs_devices
->devices
;
843 struct btrfs_device
*device
;
844 struct btrfs_device
*latest_dev
= NULL
;
845 struct buffer_head
*bh
;
846 struct btrfs_super_block
*disk_super
;
853 list_for_each_entry(device
, head
, dev_list
) {
859 /* Just open everything we can; ignore failures here */
860 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
864 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
865 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
866 if (devid
!= device
->devid
)
869 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
873 device
->generation
= btrfs_super_generation(disk_super
);
875 device
->generation
> latest_dev
->generation
)
878 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
879 device
->writeable
= 0;
881 device
->writeable
= !bdev_read_only(bdev
);
885 q
= bdev_get_queue(bdev
);
886 if (blk_queue_discard(q
))
887 device
->can_discard
= 1;
890 device
->in_fs_metadata
= 0;
891 device
->mode
= flags
;
893 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
894 fs_devices
->rotating
= 1;
896 fs_devices
->open_devices
++;
897 if (device
->writeable
&&
898 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
899 fs_devices
->rw_devices
++;
900 list_add(&device
->dev_alloc_list
,
901 &fs_devices
->alloc_list
);
908 blkdev_put(bdev
, flags
);
911 if (fs_devices
->open_devices
== 0) {
915 fs_devices
->seeding
= seeding
;
916 fs_devices
->opened
= 1;
917 fs_devices
->latest_bdev
= latest_dev
->bdev
;
918 fs_devices
->total_rw_bytes
= 0;
923 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
924 fmode_t flags
, void *holder
)
928 mutex_lock(&uuid_mutex
);
929 if (fs_devices
->opened
) {
930 fs_devices
->opened
++;
933 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
935 mutex_unlock(&uuid_mutex
);
940 * Look for a btrfs signature on a device. This may be called out of the mount path
941 * and we are not allowed to call set_blocksize during the scan. The superblock
942 * is read via pagecache
944 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
945 struct btrfs_fs_devices
**fs_devices_ret
)
947 struct btrfs_super_block
*disk_super
;
948 struct block_device
*bdev
;
959 * we would like to check all the supers, but that would make
960 * a btrfs mount succeed after a mkfs from a different FS.
961 * So, we need to add a special mount option to scan for
962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
964 bytenr
= btrfs_sb_offset(0);
966 mutex_lock(&uuid_mutex
);
968 bdev
= blkdev_get_by_path(path
, flags
, holder
);
975 /* make sure our super fits in the device */
976 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
979 /* make sure our super fits in the page */
980 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
983 /* make sure our super doesn't straddle pages on disk */
984 index
= bytenr
>> PAGE_CACHE_SHIFT
;
985 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
988 /* pull in the page with our super */
989 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
992 if (IS_ERR_OR_NULL(page
))
997 /* align our pointer to the offset of the super block */
998 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
1000 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1001 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
1004 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1005 transid
= btrfs_super_generation(disk_super
);
1006 total_devices
= btrfs_super_num_devices(disk_super
);
1008 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1010 if (disk_super
->label
[0]) {
1011 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
1012 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1013 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
1015 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
1018 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
1021 if (!ret
&& fs_devices_ret
)
1022 (*fs_devices_ret
)->total_devices
= total_devices
;
1026 page_cache_release(page
);
1029 blkdev_put(bdev
, flags
);
1031 mutex_unlock(&uuid_mutex
);
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1037 u64 end
, u64
*length
)
1039 struct btrfs_key key
;
1040 struct btrfs_root
*root
= device
->dev_root
;
1041 struct btrfs_dev_extent
*dev_extent
;
1042 struct btrfs_path
*path
;
1046 struct extent_buffer
*l
;
1050 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1053 path
= btrfs_alloc_path();
1058 key
.objectid
= device
->devid
;
1060 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1062 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1066 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1073 slot
= path
->slots
[0];
1074 if (slot
>= btrfs_header_nritems(l
)) {
1075 ret
= btrfs_next_leaf(root
, path
);
1083 btrfs_item_key_to_cpu(l
, &key
, slot
);
1085 if (key
.objectid
< device
->devid
)
1088 if (key
.objectid
> device
->devid
)
1091 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1094 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1095 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1097 if (key
.offset
<= start
&& extent_end
> end
) {
1098 *length
= end
- start
+ 1;
1100 } else if (key
.offset
<= start
&& extent_end
> start
)
1101 *length
+= extent_end
- start
;
1102 else if (key
.offset
> start
&& extent_end
<= end
)
1103 *length
+= extent_end
- key
.offset
;
1104 else if (key
.offset
> start
&& key
.offset
<= end
) {
1105 *length
+= end
- key
.offset
+ 1;
1107 } else if (key
.offset
> end
)
1115 btrfs_free_path(path
);
1119 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1120 struct btrfs_device
*device
,
1121 u64
*start
, u64 len
)
1123 struct extent_map
*em
;
1124 struct list_head
*search_list
= &trans
->transaction
->pending_chunks
;
1126 u64 physical_start
= *start
;
1129 list_for_each_entry(em
, search_list
, list
) {
1130 struct map_lookup
*map
;
1133 map
= (struct map_lookup
*)em
->bdev
;
1134 for (i
= 0; i
< map
->num_stripes
; i
++) {
1137 if (map
->stripes
[i
].dev
!= device
)
1139 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1140 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1144 * Make sure that while processing the pinned list we do
1145 * not override our *start with a lower value, because
1146 * we can have pinned chunks that fall within this
1147 * device hole and that have lower physical addresses
1148 * than the pending chunks we processed before. If we
1149 * do not take this special care we can end up getting
1150 * 2 pending chunks that start at the same physical
1151 * device offsets because the end offset of a pinned
1152 * chunk can be equal to the start offset of some
1155 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1162 if (search_list
== &trans
->transaction
->pending_chunks
) {
1163 search_list
= &trans
->root
->fs_info
->pinned_chunks
;
1172 * find_free_dev_extent - find free space in the specified device
1173 * @device: the device which we search the free space in
1174 * @num_bytes: the size of the free space that we need
1175 * @start: store the start of the free space.
1176 * @len: the size of the free space. that we find, or the size of the max
1177 * free space if we don't find suitable free space
1179 * this uses a pretty simple search, the expectation is that it is
1180 * called very infrequently and that a given device has a small number
1183 * @start is used to store the start of the free space if we find. But if we
1184 * don't find suitable free space, it will be used to store the start position
1185 * of the max free space.
1187 * @len is used to store the size of the free space that we find.
1188 * But if we don't find suitable free space, it is used to store the size of
1189 * the max free space.
1191 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1192 struct btrfs_device
*device
, u64 num_bytes
,
1193 u64
*start
, u64
*len
)
1195 struct btrfs_key key
;
1196 struct btrfs_root
*root
= device
->dev_root
;
1197 struct btrfs_dev_extent
*dev_extent
;
1198 struct btrfs_path
*path
;
1204 u64 search_end
= device
->total_bytes
;
1207 struct extent_buffer
*l
;
1209 /* FIXME use last free of some kind */
1211 /* we don't want to overwrite the superblock on the drive,
1212 * so we make sure to start at an offset of at least 1MB
1214 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1216 path
= btrfs_alloc_path();
1220 max_hole_start
= search_start
;
1224 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1230 path
->search_commit_root
= 1;
1231 path
->skip_locking
= 1;
1233 key
.objectid
= device
->devid
;
1234 key
.offset
= search_start
;
1235 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1237 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1241 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1248 slot
= path
->slots
[0];
1249 if (slot
>= btrfs_header_nritems(l
)) {
1250 ret
= btrfs_next_leaf(root
, path
);
1258 btrfs_item_key_to_cpu(l
, &key
, slot
);
1260 if (key
.objectid
< device
->devid
)
1263 if (key
.objectid
> device
->devid
)
1266 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1269 if (key
.offset
> search_start
) {
1270 hole_size
= key
.offset
- search_start
;
1273 * Have to check before we set max_hole_start, otherwise
1274 * we could end up sending back this offset anyway.
1276 if (contains_pending_extent(trans
, device
,
1279 if (key
.offset
>= search_start
) {
1280 hole_size
= key
.offset
- search_start
;
1287 if (hole_size
> max_hole_size
) {
1288 max_hole_start
= search_start
;
1289 max_hole_size
= hole_size
;
1293 * If this free space is greater than which we need,
1294 * it must be the max free space that we have found
1295 * until now, so max_hole_start must point to the start
1296 * of this free space and the length of this free space
1297 * is stored in max_hole_size. Thus, we return
1298 * max_hole_start and max_hole_size and go back to the
1301 if (hole_size
>= num_bytes
) {
1307 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1308 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1310 if (extent_end
> search_start
)
1311 search_start
= extent_end
;
1318 * At this point, search_start should be the end of
1319 * allocated dev extents, and when shrinking the device,
1320 * search_end may be smaller than search_start.
1322 if (search_end
> search_start
) {
1323 hole_size
= search_end
- search_start
;
1325 if (contains_pending_extent(trans
, device
, &search_start
,
1327 btrfs_release_path(path
);
1331 if (hole_size
> max_hole_size
) {
1332 max_hole_start
= search_start
;
1333 max_hole_size
= hole_size
;
1338 if (max_hole_size
< num_bytes
)
1344 btrfs_free_path(path
);
1345 *start
= max_hole_start
;
1347 *len
= max_hole_size
;
1351 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1352 struct btrfs_device
*device
,
1353 u64 start
, u64
*dev_extent_len
)
1356 struct btrfs_path
*path
;
1357 struct btrfs_root
*root
= device
->dev_root
;
1358 struct btrfs_key key
;
1359 struct btrfs_key found_key
;
1360 struct extent_buffer
*leaf
= NULL
;
1361 struct btrfs_dev_extent
*extent
= NULL
;
1363 path
= btrfs_alloc_path();
1367 key
.objectid
= device
->devid
;
1369 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1371 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1373 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1374 BTRFS_DEV_EXTENT_KEY
);
1377 leaf
= path
->nodes
[0];
1378 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1379 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1380 struct btrfs_dev_extent
);
1381 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1382 btrfs_dev_extent_length(leaf
, extent
) < start
);
1384 btrfs_release_path(path
);
1386 } else if (ret
== 0) {
1387 leaf
= path
->nodes
[0];
1388 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1389 struct btrfs_dev_extent
);
1391 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1395 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1397 ret
= btrfs_del_item(trans
, root
, path
);
1399 btrfs_error(root
->fs_info
, ret
,
1400 "Failed to remove dev extent item");
1402 trans
->transaction
->have_free_bgs
= 1;
1405 btrfs_free_path(path
);
1409 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1410 struct btrfs_device
*device
,
1411 u64 chunk_tree
, u64 chunk_objectid
,
1412 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1415 struct btrfs_path
*path
;
1416 struct btrfs_root
*root
= device
->dev_root
;
1417 struct btrfs_dev_extent
*extent
;
1418 struct extent_buffer
*leaf
;
1419 struct btrfs_key key
;
1421 WARN_ON(!device
->in_fs_metadata
);
1422 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1423 path
= btrfs_alloc_path();
1427 key
.objectid
= device
->devid
;
1429 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1430 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1435 leaf
= path
->nodes
[0];
1436 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1437 struct btrfs_dev_extent
);
1438 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1439 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1440 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1442 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1443 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1445 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1446 btrfs_mark_buffer_dirty(leaf
);
1448 btrfs_free_path(path
);
1452 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1454 struct extent_map_tree
*em_tree
;
1455 struct extent_map
*em
;
1459 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1460 read_lock(&em_tree
->lock
);
1461 n
= rb_last(&em_tree
->map
);
1463 em
= rb_entry(n
, struct extent_map
, rb_node
);
1464 ret
= em
->start
+ em
->len
;
1466 read_unlock(&em_tree
->lock
);
1471 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1475 struct btrfs_key key
;
1476 struct btrfs_key found_key
;
1477 struct btrfs_path
*path
;
1479 path
= btrfs_alloc_path();
1483 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1484 key
.type
= BTRFS_DEV_ITEM_KEY
;
1485 key
.offset
= (u64
)-1;
1487 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1491 BUG_ON(ret
== 0); /* Corruption */
1493 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1494 BTRFS_DEV_ITEMS_OBJECTID
,
1495 BTRFS_DEV_ITEM_KEY
);
1499 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1501 *devid_ret
= found_key
.offset
+ 1;
1505 btrfs_free_path(path
);
1510 * the device information is stored in the chunk root
1511 * the btrfs_device struct should be fully filled in
1513 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1514 struct btrfs_root
*root
,
1515 struct btrfs_device
*device
)
1518 struct btrfs_path
*path
;
1519 struct btrfs_dev_item
*dev_item
;
1520 struct extent_buffer
*leaf
;
1521 struct btrfs_key key
;
1524 root
= root
->fs_info
->chunk_root
;
1526 path
= btrfs_alloc_path();
1530 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1531 key
.type
= BTRFS_DEV_ITEM_KEY
;
1532 key
.offset
= device
->devid
;
1534 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1539 leaf
= path
->nodes
[0];
1540 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1542 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1543 btrfs_set_device_generation(leaf
, dev_item
, 0);
1544 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1545 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1546 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1547 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1548 btrfs_set_device_total_bytes(leaf
, dev_item
,
1549 btrfs_device_get_disk_total_bytes(device
));
1550 btrfs_set_device_bytes_used(leaf
, dev_item
,
1551 btrfs_device_get_bytes_used(device
));
1552 btrfs_set_device_group(leaf
, dev_item
, 0);
1553 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1554 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1555 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1557 ptr
= btrfs_device_uuid(dev_item
);
1558 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1559 ptr
= btrfs_device_fsid(dev_item
);
1560 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1561 btrfs_mark_buffer_dirty(leaf
);
1565 btrfs_free_path(path
);
1570 * Function to update ctime/mtime for a given device path.
1571 * Mainly used for ctime/mtime based probe like libblkid.
1573 static void update_dev_time(char *path_name
)
1577 filp
= filp_open(path_name
, O_RDWR
, 0);
1580 file_update_time(filp
);
1581 filp_close(filp
, NULL
);
1585 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1586 struct btrfs_device
*device
)
1589 struct btrfs_path
*path
;
1590 struct btrfs_key key
;
1591 struct btrfs_trans_handle
*trans
;
1593 root
= root
->fs_info
->chunk_root
;
1595 path
= btrfs_alloc_path();
1599 trans
= btrfs_start_transaction(root
, 0);
1600 if (IS_ERR(trans
)) {
1601 btrfs_free_path(path
);
1602 return PTR_ERR(trans
);
1604 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1605 key
.type
= BTRFS_DEV_ITEM_KEY
;
1606 key
.offset
= device
->devid
;
1608 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1617 ret
= btrfs_del_item(trans
, root
, path
);
1621 btrfs_free_path(path
);
1622 btrfs_commit_transaction(trans
, root
);
1626 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1628 struct btrfs_device
*device
;
1629 struct btrfs_device
*next_device
;
1630 struct block_device
*bdev
;
1631 struct buffer_head
*bh
= NULL
;
1632 struct btrfs_super_block
*disk_super
;
1633 struct btrfs_fs_devices
*cur_devices
;
1640 bool clear_super
= false;
1642 mutex_lock(&uuid_mutex
);
1645 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1647 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1648 root
->fs_info
->avail_system_alloc_bits
|
1649 root
->fs_info
->avail_metadata_alloc_bits
;
1650 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1652 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1653 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1654 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1655 WARN_ON(num_devices
< 1);
1658 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1660 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1661 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1665 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1666 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1670 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1671 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1672 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1675 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1676 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1677 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1681 if (strcmp(device_path
, "missing") == 0) {
1682 struct list_head
*devices
;
1683 struct btrfs_device
*tmp
;
1686 devices
= &root
->fs_info
->fs_devices
->devices
;
1688 * It is safe to read the devices since the volume_mutex
1691 list_for_each_entry(tmp
, devices
, dev_list
) {
1692 if (tmp
->in_fs_metadata
&&
1693 !tmp
->is_tgtdev_for_dev_replace
&&
1703 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1707 ret
= btrfs_get_bdev_and_sb(device_path
,
1708 FMODE_WRITE
| FMODE_EXCL
,
1709 root
->fs_info
->bdev_holder
, 0,
1713 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1714 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1715 dev_uuid
= disk_super
->dev_item
.uuid
;
1716 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1724 if (device
->is_tgtdev_for_dev_replace
) {
1725 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1729 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1730 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1734 if (device
->writeable
) {
1736 list_del_init(&device
->dev_alloc_list
);
1737 device
->fs_devices
->rw_devices
--;
1738 unlock_chunks(root
);
1742 mutex_unlock(&uuid_mutex
);
1743 ret
= btrfs_shrink_device(device
, 0);
1744 mutex_lock(&uuid_mutex
);
1749 * TODO: the superblock still includes this device in its num_devices
1750 * counter although write_all_supers() is not locked out. This
1751 * could give a filesystem state which requires a degraded mount.
1753 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1757 device
->in_fs_metadata
= 0;
1758 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1761 * the device list mutex makes sure that we don't change
1762 * the device list while someone else is writing out all
1763 * the device supers. Whoever is writing all supers, should
1764 * lock the device list mutex before getting the number of
1765 * devices in the super block (super_copy). Conversely,
1766 * whoever updates the number of devices in the super block
1767 * (super_copy) should hold the device list mutex.
1770 cur_devices
= device
->fs_devices
;
1771 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1772 list_del_rcu(&device
->dev_list
);
1774 device
->fs_devices
->num_devices
--;
1775 device
->fs_devices
->total_devices
--;
1777 if (device
->missing
)
1778 device
->fs_devices
->missing_devices
--;
1780 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1781 struct btrfs_device
, dev_list
);
1782 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1783 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1784 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1785 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1788 device
->fs_devices
->open_devices
--;
1789 /* remove sysfs entry */
1790 btrfs_kobj_rm_device(root
->fs_info
->fs_devices
, device
);
1793 call_rcu(&device
->rcu
, free_device
);
1795 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1796 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1797 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1799 if (cur_devices
->open_devices
== 0) {
1800 struct btrfs_fs_devices
*fs_devices
;
1801 fs_devices
= root
->fs_info
->fs_devices
;
1802 while (fs_devices
) {
1803 if (fs_devices
->seed
== cur_devices
) {
1804 fs_devices
->seed
= cur_devices
->seed
;
1807 fs_devices
= fs_devices
->seed
;
1809 cur_devices
->seed
= NULL
;
1810 __btrfs_close_devices(cur_devices
);
1811 free_fs_devices(cur_devices
);
1814 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1815 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1818 * at this point, the device is zero sized. We want to
1819 * remove it from the devices list and zero out the old super
1821 if (clear_super
&& disk_super
) {
1825 /* make sure this device isn't detected as part of
1828 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1829 set_buffer_dirty(bh
);
1830 sync_dirty_buffer(bh
);
1832 /* clear the mirror copies of super block on the disk
1833 * being removed, 0th copy is been taken care above and
1834 * the below would take of the rest
1836 for (i
= 1; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1837 bytenr
= btrfs_sb_offset(i
);
1838 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1839 i_size_read(bdev
->bd_inode
))
1843 bh
= __bread(bdev
, bytenr
/ 4096,
1844 BTRFS_SUPER_INFO_SIZE
);
1848 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1850 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1851 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1854 memset(&disk_super
->magic
, 0,
1855 sizeof(disk_super
->magic
));
1856 set_buffer_dirty(bh
);
1857 sync_dirty_buffer(bh
);
1864 /* Notify udev that device has changed */
1865 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1867 /* Update ctime/mtime for device path for libblkid */
1868 update_dev_time(device_path
);
1874 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1876 mutex_unlock(&uuid_mutex
);
1879 if (device
->writeable
) {
1881 list_add(&device
->dev_alloc_list
,
1882 &root
->fs_info
->fs_devices
->alloc_list
);
1883 device
->fs_devices
->rw_devices
++;
1884 unlock_chunks(root
);
1889 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1890 struct btrfs_device
*srcdev
)
1892 struct btrfs_fs_devices
*fs_devices
;
1894 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1897 * in case of fs with no seed, srcdev->fs_devices will point
1898 * to fs_devices of fs_info. However when the dev being replaced is
1899 * a seed dev it will point to the seed's local fs_devices. In short
1900 * srcdev will have its correct fs_devices in both the cases.
1902 fs_devices
= srcdev
->fs_devices
;
1904 list_del_rcu(&srcdev
->dev_list
);
1905 list_del_rcu(&srcdev
->dev_alloc_list
);
1906 fs_devices
->num_devices
--;
1907 if (srcdev
->missing
)
1908 fs_devices
->missing_devices
--;
1910 if (srcdev
->writeable
) {
1911 fs_devices
->rw_devices
--;
1912 /* zero out the old super if it is writable */
1913 btrfs_scratch_superblock(srcdev
);
1917 fs_devices
->open_devices
--;
1920 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1921 struct btrfs_device
*srcdev
)
1923 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1925 call_rcu(&srcdev
->rcu
, free_device
);
1928 * unless fs_devices is seed fs, num_devices shouldn't go
1931 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1933 /* if this is no devs we rather delete the fs_devices */
1934 if (!fs_devices
->num_devices
) {
1935 struct btrfs_fs_devices
*tmp_fs_devices
;
1937 tmp_fs_devices
= fs_info
->fs_devices
;
1938 while (tmp_fs_devices
) {
1939 if (tmp_fs_devices
->seed
== fs_devices
) {
1940 tmp_fs_devices
->seed
= fs_devices
->seed
;
1943 tmp_fs_devices
= tmp_fs_devices
->seed
;
1945 fs_devices
->seed
= NULL
;
1946 __btrfs_close_devices(fs_devices
);
1947 free_fs_devices(fs_devices
);
1951 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1952 struct btrfs_device
*tgtdev
)
1954 struct btrfs_device
*next_device
;
1956 mutex_lock(&uuid_mutex
);
1958 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1960 btrfs_kobj_rm_device(fs_info
->fs_devices
, tgtdev
);
1963 btrfs_scratch_superblock(tgtdev
);
1964 fs_info
->fs_devices
->open_devices
--;
1966 fs_info
->fs_devices
->num_devices
--;
1968 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1969 struct btrfs_device
, dev_list
);
1970 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1971 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1972 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1973 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1974 list_del_rcu(&tgtdev
->dev_list
);
1976 call_rcu(&tgtdev
->rcu
, free_device
);
1978 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1979 mutex_unlock(&uuid_mutex
);
1982 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1983 struct btrfs_device
**device
)
1986 struct btrfs_super_block
*disk_super
;
1989 struct block_device
*bdev
;
1990 struct buffer_head
*bh
;
1993 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1994 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1997 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1998 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1999 dev_uuid
= disk_super
->dev_item
.uuid
;
2000 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2005 blkdev_put(bdev
, FMODE_READ
);
2009 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2011 struct btrfs_device
**device
)
2014 if (strcmp(device_path
, "missing") == 0) {
2015 struct list_head
*devices
;
2016 struct btrfs_device
*tmp
;
2018 devices
= &root
->fs_info
->fs_devices
->devices
;
2020 * It is safe to read the devices since the volume_mutex
2021 * is held by the caller.
2023 list_for_each_entry(tmp
, devices
, dev_list
) {
2024 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2031 btrfs_err(root
->fs_info
, "no missing device found");
2037 return btrfs_find_device_by_path(root
, device_path
, device
);
2042 * does all the dirty work required for changing file system's UUID.
2044 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2046 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2047 struct btrfs_fs_devices
*old_devices
;
2048 struct btrfs_fs_devices
*seed_devices
;
2049 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2050 struct btrfs_device
*device
;
2053 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2054 if (!fs_devices
->seeding
)
2057 seed_devices
= __alloc_fs_devices();
2058 if (IS_ERR(seed_devices
))
2059 return PTR_ERR(seed_devices
);
2061 old_devices
= clone_fs_devices(fs_devices
);
2062 if (IS_ERR(old_devices
)) {
2063 kfree(seed_devices
);
2064 return PTR_ERR(old_devices
);
2067 list_add(&old_devices
->list
, &fs_uuids
);
2069 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2070 seed_devices
->opened
= 1;
2071 INIT_LIST_HEAD(&seed_devices
->devices
);
2072 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2073 mutex_init(&seed_devices
->device_list_mutex
);
2075 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2076 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2078 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2079 device
->fs_devices
= seed_devices
;
2082 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2083 unlock_chunks(root
);
2085 fs_devices
->seeding
= 0;
2086 fs_devices
->num_devices
= 0;
2087 fs_devices
->open_devices
= 0;
2088 fs_devices
->missing_devices
= 0;
2089 fs_devices
->rotating
= 0;
2090 fs_devices
->seed
= seed_devices
;
2092 generate_random_uuid(fs_devices
->fsid
);
2093 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2094 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2095 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2097 super_flags
= btrfs_super_flags(disk_super
) &
2098 ~BTRFS_SUPER_FLAG_SEEDING
;
2099 btrfs_set_super_flags(disk_super
, super_flags
);
2105 * strore the expected generation for seed devices in device items.
2107 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2108 struct btrfs_root
*root
)
2110 struct btrfs_path
*path
;
2111 struct extent_buffer
*leaf
;
2112 struct btrfs_dev_item
*dev_item
;
2113 struct btrfs_device
*device
;
2114 struct btrfs_key key
;
2115 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2116 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2120 path
= btrfs_alloc_path();
2124 root
= root
->fs_info
->chunk_root
;
2125 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2127 key
.type
= BTRFS_DEV_ITEM_KEY
;
2130 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2134 leaf
= path
->nodes
[0];
2136 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2137 ret
= btrfs_next_leaf(root
, path
);
2142 leaf
= path
->nodes
[0];
2143 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2144 btrfs_release_path(path
);
2148 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2149 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2150 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2153 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2154 struct btrfs_dev_item
);
2155 devid
= btrfs_device_id(leaf
, dev_item
);
2156 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2158 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2160 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2162 BUG_ON(!device
); /* Logic error */
2164 if (device
->fs_devices
->seeding
) {
2165 btrfs_set_device_generation(leaf
, dev_item
,
2166 device
->generation
);
2167 btrfs_mark_buffer_dirty(leaf
);
2175 btrfs_free_path(path
);
2179 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2181 struct request_queue
*q
;
2182 struct btrfs_trans_handle
*trans
;
2183 struct btrfs_device
*device
;
2184 struct block_device
*bdev
;
2185 struct list_head
*devices
;
2186 struct super_block
*sb
= root
->fs_info
->sb
;
2187 struct rcu_string
*name
;
2189 int seeding_dev
= 0;
2192 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2195 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2196 root
->fs_info
->bdev_holder
);
2198 return PTR_ERR(bdev
);
2200 if (root
->fs_info
->fs_devices
->seeding
) {
2202 down_write(&sb
->s_umount
);
2203 mutex_lock(&uuid_mutex
);
2206 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2208 devices
= &root
->fs_info
->fs_devices
->devices
;
2210 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2211 list_for_each_entry(device
, devices
, dev_list
) {
2212 if (device
->bdev
== bdev
) {
2215 &root
->fs_info
->fs_devices
->device_list_mutex
);
2219 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2221 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2222 if (IS_ERR(device
)) {
2223 /* we can safely leave the fs_devices entry around */
2224 ret
= PTR_ERR(device
);
2228 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2234 rcu_assign_pointer(device
->name
, name
);
2236 trans
= btrfs_start_transaction(root
, 0);
2237 if (IS_ERR(trans
)) {
2238 rcu_string_free(device
->name
);
2240 ret
= PTR_ERR(trans
);
2244 q
= bdev_get_queue(bdev
);
2245 if (blk_queue_discard(q
))
2246 device
->can_discard
= 1;
2247 device
->writeable
= 1;
2248 device
->generation
= trans
->transid
;
2249 device
->io_width
= root
->sectorsize
;
2250 device
->io_align
= root
->sectorsize
;
2251 device
->sector_size
= root
->sectorsize
;
2252 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2253 device
->disk_total_bytes
= device
->total_bytes
;
2254 device
->commit_total_bytes
= device
->total_bytes
;
2255 device
->dev_root
= root
->fs_info
->dev_root
;
2256 device
->bdev
= bdev
;
2257 device
->in_fs_metadata
= 1;
2258 device
->is_tgtdev_for_dev_replace
= 0;
2259 device
->mode
= FMODE_EXCL
;
2260 device
->dev_stats_valid
= 1;
2261 set_blocksize(device
->bdev
, 4096);
2264 sb
->s_flags
&= ~MS_RDONLY
;
2265 ret
= btrfs_prepare_sprout(root
);
2266 BUG_ON(ret
); /* -ENOMEM */
2269 device
->fs_devices
= root
->fs_info
->fs_devices
;
2271 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2273 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2274 list_add(&device
->dev_alloc_list
,
2275 &root
->fs_info
->fs_devices
->alloc_list
);
2276 root
->fs_info
->fs_devices
->num_devices
++;
2277 root
->fs_info
->fs_devices
->open_devices
++;
2278 root
->fs_info
->fs_devices
->rw_devices
++;
2279 root
->fs_info
->fs_devices
->total_devices
++;
2280 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2282 spin_lock(&root
->fs_info
->free_chunk_lock
);
2283 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2284 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2286 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2287 root
->fs_info
->fs_devices
->rotating
= 1;
2289 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2290 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2291 tmp
+ device
->total_bytes
);
2293 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2294 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2297 /* add sysfs device entry */
2298 btrfs_kobj_add_device(root
->fs_info
->fs_devices
, device
);
2301 * we've got more storage, clear any full flags on the space
2304 btrfs_clear_space_info_full(root
->fs_info
);
2306 unlock_chunks(root
);
2307 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2311 ret
= init_first_rw_device(trans
, root
, device
);
2312 unlock_chunks(root
);
2314 btrfs_abort_transaction(trans
, root
, ret
);
2319 ret
= btrfs_add_device(trans
, root
, device
);
2321 btrfs_abort_transaction(trans
, root
, ret
);
2326 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2328 ret
= btrfs_finish_sprout(trans
, root
);
2330 btrfs_abort_transaction(trans
, root
, ret
);
2334 /* Sprouting would change fsid of the mounted root,
2335 * so rename the fsid on the sysfs
2337 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2338 root
->fs_info
->fsid
);
2339 if (kobject_rename(&root
->fs_info
->fs_devices
->super_kobj
,
2341 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2344 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2345 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2346 ret
= btrfs_commit_transaction(trans
, root
);
2349 mutex_unlock(&uuid_mutex
);
2350 up_write(&sb
->s_umount
);
2352 if (ret
) /* transaction commit */
2355 ret
= btrfs_relocate_sys_chunks(root
);
2357 btrfs_error(root
->fs_info
, ret
,
2358 "Failed to relocate sys chunks after "
2359 "device initialization. This can be fixed "
2360 "using the \"btrfs balance\" command.");
2361 trans
= btrfs_attach_transaction(root
);
2362 if (IS_ERR(trans
)) {
2363 if (PTR_ERR(trans
) == -ENOENT
)
2365 return PTR_ERR(trans
);
2367 ret
= btrfs_commit_transaction(trans
, root
);
2370 /* Update ctime/mtime for libblkid */
2371 update_dev_time(device_path
);
2375 btrfs_end_transaction(trans
, root
);
2376 rcu_string_free(device
->name
);
2377 btrfs_kobj_rm_device(root
->fs_info
->fs_devices
, device
);
2380 blkdev_put(bdev
, FMODE_EXCL
);
2382 mutex_unlock(&uuid_mutex
);
2383 up_write(&sb
->s_umount
);
2388 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2389 struct btrfs_device
*srcdev
,
2390 struct btrfs_device
**device_out
)
2392 struct request_queue
*q
;
2393 struct btrfs_device
*device
;
2394 struct block_device
*bdev
;
2395 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2396 struct list_head
*devices
;
2397 struct rcu_string
*name
;
2398 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2402 if (fs_info
->fs_devices
->seeding
) {
2403 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2407 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2408 fs_info
->bdev_holder
);
2410 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2411 return PTR_ERR(bdev
);
2414 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2416 devices
= &fs_info
->fs_devices
->devices
;
2417 list_for_each_entry(device
, devices
, dev_list
) {
2418 if (device
->bdev
== bdev
) {
2419 btrfs_err(fs_info
, "target device is in the filesystem!");
2426 if (i_size_read(bdev
->bd_inode
) <
2427 btrfs_device_get_total_bytes(srcdev
)) {
2428 btrfs_err(fs_info
, "target device is smaller than source device!");
2434 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2435 if (IS_ERR(device
)) {
2436 ret
= PTR_ERR(device
);
2440 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2446 rcu_assign_pointer(device
->name
, name
);
2448 q
= bdev_get_queue(bdev
);
2449 if (blk_queue_discard(q
))
2450 device
->can_discard
= 1;
2451 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2452 device
->writeable
= 1;
2453 device
->generation
= 0;
2454 device
->io_width
= root
->sectorsize
;
2455 device
->io_align
= root
->sectorsize
;
2456 device
->sector_size
= root
->sectorsize
;
2457 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2458 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2459 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2460 ASSERT(list_empty(&srcdev
->resized_list
));
2461 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2462 device
->commit_bytes_used
= device
->bytes_used
;
2463 device
->dev_root
= fs_info
->dev_root
;
2464 device
->bdev
= bdev
;
2465 device
->in_fs_metadata
= 1;
2466 device
->is_tgtdev_for_dev_replace
= 1;
2467 device
->mode
= FMODE_EXCL
;
2468 device
->dev_stats_valid
= 1;
2469 set_blocksize(device
->bdev
, 4096);
2470 device
->fs_devices
= fs_info
->fs_devices
;
2471 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2472 fs_info
->fs_devices
->num_devices
++;
2473 fs_info
->fs_devices
->open_devices
++;
2474 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2476 *device_out
= device
;
2480 blkdev_put(bdev
, FMODE_EXCL
);
2484 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2485 struct btrfs_device
*tgtdev
)
2487 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2488 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2489 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2490 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2491 tgtdev
->dev_root
= fs_info
->dev_root
;
2492 tgtdev
->in_fs_metadata
= 1;
2495 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2496 struct btrfs_device
*device
)
2499 struct btrfs_path
*path
;
2500 struct btrfs_root
*root
;
2501 struct btrfs_dev_item
*dev_item
;
2502 struct extent_buffer
*leaf
;
2503 struct btrfs_key key
;
2505 root
= device
->dev_root
->fs_info
->chunk_root
;
2507 path
= btrfs_alloc_path();
2511 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2512 key
.type
= BTRFS_DEV_ITEM_KEY
;
2513 key
.offset
= device
->devid
;
2515 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2524 leaf
= path
->nodes
[0];
2525 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2527 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2528 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2529 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2530 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2531 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2532 btrfs_set_device_total_bytes(leaf
, dev_item
,
2533 btrfs_device_get_disk_total_bytes(device
));
2534 btrfs_set_device_bytes_used(leaf
, dev_item
,
2535 btrfs_device_get_bytes_used(device
));
2536 btrfs_mark_buffer_dirty(leaf
);
2539 btrfs_free_path(path
);
2543 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2544 struct btrfs_device
*device
, u64 new_size
)
2546 struct btrfs_super_block
*super_copy
=
2547 device
->dev_root
->fs_info
->super_copy
;
2548 struct btrfs_fs_devices
*fs_devices
;
2552 if (!device
->writeable
)
2555 lock_chunks(device
->dev_root
);
2556 old_total
= btrfs_super_total_bytes(super_copy
);
2557 diff
= new_size
- device
->total_bytes
;
2559 if (new_size
<= device
->total_bytes
||
2560 device
->is_tgtdev_for_dev_replace
) {
2561 unlock_chunks(device
->dev_root
);
2565 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2567 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2568 device
->fs_devices
->total_rw_bytes
+= diff
;
2570 btrfs_device_set_total_bytes(device
, new_size
);
2571 btrfs_device_set_disk_total_bytes(device
, new_size
);
2572 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2573 if (list_empty(&device
->resized_list
))
2574 list_add_tail(&device
->resized_list
,
2575 &fs_devices
->resized_devices
);
2576 unlock_chunks(device
->dev_root
);
2578 return btrfs_update_device(trans
, device
);
2581 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2582 struct btrfs_root
*root
, u64 chunk_objectid
,
2586 struct btrfs_path
*path
;
2587 struct btrfs_key key
;
2589 root
= root
->fs_info
->chunk_root
;
2590 path
= btrfs_alloc_path();
2594 key
.objectid
= chunk_objectid
;
2595 key
.offset
= chunk_offset
;
2596 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2598 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2601 else if (ret
> 0) { /* Logic error or corruption */
2602 btrfs_error(root
->fs_info
, -ENOENT
,
2603 "Failed lookup while freeing chunk.");
2608 ret
= btrfs_del_item(trans
, root
, path
);
2610 btrfs_error(root
->fs_info
, ret
,
2611 "Failed to delete chunk item.");
2613 btrfs_free_path(path
);
2617 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2620 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2621 struct btrfs_disk_key
*disk_key
;
2622 struct btrfs_chunk
*chunk
;
2629 struct btrfs_key key
;
2632 array_size
= btrfs_super_sys_array_size(super_copy
);
2634 ptr
= super_copy
->sys_chunk_array
;
2637 while (cur
< array_size
) {
2638 disk_key
= (struct btrfs_disk_key
*)ptr
;
2639 btrfs_disk_key_to_cpu(&key
, disk_key
);
2641 len
= sizeof(*disk_key
);
2643 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2644 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2645 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2646 len
+= btrfs_chunk_item_size(num_stripes
);
2651 if (key
.objectid
== chunk_objectid
&&
2652 key
.offset
== chunk_offset
) {
2653 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2655 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2661 unlock_chunks(root
);
2665 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2666 struct btrfs_root
*root
, u64 chunk_offset
)
2668 struct extent_map_tree
*em_tree
;
2669 struct extent_map
*em
;
2670 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2671 struct map_lookup
*map
;
2672 u64 dev_extent_len
= 0;
2673 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2677 root
= root
->fs_info
->chunk_root
;
2678 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2680 read_lock(&em_tree
->lock
);
2681 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2682 read_unlock(&em_tree
->lock
);
2684 if (!em
|| em
->start
> chunk_offset
||
2685 em
->start
+ em
->len
< chunk_offset
) {
2687 * This is a logic error, but we don't want to just rely on the
2688 * user having built with ASSERT enabled, so if ASSERT doens't
2689 * do anything we still error out.
2693 free_extent_map(em
);
2696 map
= (struct map_lookup
*)em
->bdev
;
2697 lock_chunks(root
->fs_info
->chunk_root
);
2698 check_system_chunk(trans
, extent_root
, map
->type
);
2699 unlock_chunks(root
->fs_info
->chunk_root
);
2701 for (i
= 0; i
< map
->num_stripes
; i
++) {
2702 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2703 ret
= btrfs_free_dev_extent(trans
, device
,
2704 map
->stripes
[i
].physical
,
2707 btrfs_abort_transaction(trans
, root
, ret
);
2711 if (device
->bytes_used
> 0) {
2713 btrfs_device_set_bytes_used(device
,
2714 device
->bytes_used
- dev_extent_len
);
2715 spin_lock(&root
->fs_info
->free_chunk_lock
);
2716 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2717 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2718 btrfs_clear_space_info_full(root
->fs_info
);
2719 unlock_chunks(root
);
2722 if (map
->stripes
[i
].dev
) {
2723 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2725 btrfs_abort_transaction(trans
, root
, ret
);
2730 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2732 btrfs_abort_transaction(trans
, root
, ret
);
2736 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2738 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2739 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2741 btrfs_abort_transaction(trans
, root
, ret
);
2746 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2748 btrfs_abort_transaction(trans
, extent_root
, ret
);
2754 free_extent_map(em
);
2758 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2762 struct btrfs_root
*extent_root
;
2763 struct btrfs_trans_handle
*trans
;
2766 root
= root
->fs_info
->chunk_root
;
2767 extent_root
= root
->fs_info
->extent_root
;
2770 * Prevent races with automatic removal of unused block groups.
2771 * After we relocate and before we remove the chunk with offset
2772 * chunk_offset, automatic removal of the block group can kick in,
2773 * resulting in a failure when calling btrfs_remove_chunk() below.
2775 * Make sure to acquire this mutex before doing a tree search (dev
2776 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2777 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2778 * we release the path used to search the chunk/dev tree and before
2779 * the current task acquires this mutex and calls us.
2781 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2783 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2787 /* step one, relocate all the extents inside this chunk */
2788 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2792 trans
= btrfs_start_transaction(root
, 0);
2793 if (IS_ERR(trans
)) {
2794 ret
= PTR_ERR(trans
);
2795 btrfs_std_error(root
->fs_info
, ret
);
2800 * step two, delete the device extents and the
2801 * chunk tree entries
2803 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2804 btrfs_end_transaction(trans
, root
);
2808 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2810 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2811 struct btrfs_path
*path
;
2812 struct extent_buffer
*leaf
;
2813 struct btrfs_chunk
*chunk
;
2814 struct btrfs_key key
;
2815 struct btrfs_key found_key
;
2817 bool retried
= false;
2821 path
= btrfs_alloc_path();
2826 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2827 key
.offset
= (u64
)-1;
2828 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2831 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2832 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2834 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2837 BUG_ON(ret
== 0); /* Corruption */
2839 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2842 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2848 leaf
= path
->nodes
[0];
2849 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2851 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2852 struct btrfs_chunk
);
2853 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2854 btrfs_release_path(path
);
2856 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2857 ret
= btrfs_relocate_chunk(chunk_root
,
2865 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2867 if (found_key
.offset
== 0)
2869 key
.offset
= found_key
.offset
- 1;
2872 if (failed
&& !retried
) {
2876 } else if (WARN_ON(failed
&& retried
)) {
2880 btrfs_free_path(path
);
2884 static int insert_balance_item(struct btrfs_root
*root
,
2885 struct btrfs_balance_control
*bctl
)
2887 struct btrfs_trans_handle
*trans
;
2888 struct btrfs_balance_item
*item
;
2889 struct btrfs_disk_balance_args disk_bargs
;
2890 struct btrfs_path
*path
;
2891 struct extent_buffer
*leaf
;
2892 struct btrfs_key key
;
2895 path
= btrfs_alloc_path();
2899 trans
= btrfs_start_transaction(root
, 0);
2900 if (IS_ERR(trans
)) {
2901 btrfs_free_path(path
);
2902 return PTR_ERR(trans
);
2905 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2906 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2909 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2914 leaf
= path
->nodes
[0];
2915 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2917 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2919 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2920 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2921 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2922 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2923 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2924 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2926 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2928 btrfs_mark_buffer_dirty(leaf
);
2930 btrfs_free_path(path
);
2931 err
= btrfs_commit_transaction(trans
, root
);
2937 static int del_balance_item(struct btrfs_root
*root
)
2939 struct btrfs_trans_handle
*trans
;
2940 struct btrfs_path
*path
;
2941 struct btrfs_key key
;
2944 path
= btrfs_alloc_path();
2948 trans
= btrfs_start_transaction(root
, 0);
2949 if (IS_ERR(trans
)) {
2950 btrfs_free_path(path
);
2951 return PTR_ERR(trans
);
2954 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2955 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2958 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2966 ret
= btrfs_del_item(trans
, root
, path
);
2968 btrfs_free_path(path
);
2969 err
= btrfs_commit_transaction(trans
, root
);
2976 * This is a heuristic used to reduce the number of chunks balanced on
2977 * resume after balance was interrupted.
2979 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2982 * Turn on soft mode for chunk types that were being converted.
2984 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2985 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2986 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2987 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2988 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2989 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2992 * Turn on usage filter if is not already used. The idea is
2993 * that chunks that we have already balanced should be
2994 * reasonably full. Don't do it for chunks that are being
2995 * converted - that will keep us from relocating unconverted
2996 * (albeit full) chunks.
2998 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2999 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3000 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3001 bctl
->data
.usage
= 90;
3003 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3004 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3005 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3006 bctl
->sys
.usage
= 90;
3008 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3009 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3010 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3011 bctl
->meta
.usage
= 90;
3016 * Should be called with both balance and volume mutexes held to
3017 * serialize other volume operations (add_dev/rm_dev/resize) with
3018 * restriper. Same goes for unset_balance_control.
3020 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3022 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3024 BUG_ON(fs_info
->balance_ctl
);
3026 spin_lock(&fs_info
->balance_lock
);
3027 fs_info
->balance_ctl
= bctl
;
3028 spin_unlock(&fs_info
->balance_lock
);
3031 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3033 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3035 BUG_ON(!fs_info
->balance_ctl
);
3037 spin_lock(&fs_info
->balance_lock
);
3038 fs_info
->balance_ctl
= NULL
;
3039 spin_unlock(&fs_info
->balance_lock
);
3045 * Balance filters. Return 1 if chunk should be filtered out
3046 * (should not be balanced).
3048 static int chunk_profiles_filter(u64 chunk_type
,
3049 struct btrfs_balance_args
*bargs
)
3051 chunk_type
= chunk_to_extended(chunk_type
) &
3052 BTRFS_EXTENDED_PROFILE_MASK
;
3054 if (bargs
->profiles
& chunk_type
)
3060 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3061 struct btrfs_balance_args
*bargs
)
3063 struct btrfs_block_group_cache
*cache
;
3064 u64 chunk_used
, user_thresh
;
3067 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3068 chunk_used
= btrfs_block_group_used(&cache
->item
);
3070 if (bargs
->usage
== 0)
3072 else if (bargs
->usage
> 100)
3073 user_thresh
= cache
->key
.offset
;
3075 user_thresh
= div_factor_fine(cache
->key
.offset
,
3078 if (chunk_used
< user_thresh
)
3081 btrfs_put_block_group(cache
);
3085 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3086 struct btrfs_chunk
*chunk
,
3087 struct btrfs_balance_args
*bargs
)
3089 struct btrfs_stripe
*stripe
;
3090 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3093 for (i
= 0; i
< num_stripes
; i
++) {
3094 stripe
= btrfs_stripe_nr(chunk
, i
);
3095 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3102 /* [pstart, pend) */
3103 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3104 struct btrfs_chunk
*chunk
,
3106 struct btrfs_balance_args
*bargs
)
3108 struct btrfs_stripe
*stripe
;
3109 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3115 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3118 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3119 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3120 factor
= num_stripes
/ 2;
3121 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3122 factor
= num_stripes
- 1;
3123 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3124 factor
= num_stripes
- 2;
3126 factor
= num_stripes
;
3129 for (i
= 0; i
< num_stripes
; i
++) {
3130 stripe
= btrfs_stripe_nr(chunk
, i
);
3131 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3134 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3135 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3136 stripe_length
= div_u64(stripe_length
, factor
);
3138 if (stripe_offset
< bargs
->pend
&&
3139 stripe_offset
+ stripe_length
> bargs
->pstart
)
3146 /* [vstart, vend) */
3147 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3148 struct btrfs_chunk
*chunk
,
3150 struct btrfs_balance_args
*bargs
)
3152 if (chunk_offset
< bargs
->vend
&&
3153 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3154 /* at least part of the chunk is inside this vrange */
3160 static int chunk_soft_convert_filter(u64 chunk_type
,
3161 struct btrfs_balance_args
*bargs
)
3163 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3166 chunk_type
= chunk_to_extended(chunk_type
) &
3167 BTRFS_EXTENDED_PROFILE_MASK
;
3169 if (bargs
->target
== chunk_type
)
3175 static int should_balance_chunk(struct btrfs_root
*root
,
3176 struct extent_buffer
*leaf
,
3177 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3179 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3180 struct btrfs_balance_args
*bargs
= NULL
;
3181 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3184 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3185 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3189 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3190 bargs
= &bctl
->data
;
3191 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3193 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3194 bargs
= &bctl
->meta
;
3196 /* profiles filter */
3197 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3198 chunk_profiles_filter(chunk_type
, bargs
)) {
3203 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3204 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3209 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3210 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3214 /* drange filter, makes sense only with devid filter */
3215 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3216 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3221 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3222 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3226 /* soft profile changing mode */
3227 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3228 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3233 * limited by count, must be the last filter
3235 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3236 if (bargs
->limit
== 0)
3245 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3247 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3248 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3249 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3250 struct list_head
*devices
;
3251 struct btrfs_device
*device
;
3254 struct btrfs_chunk
*chunk
;
3255 struct btrfs_path
*path
;
3256 struct btrfs_key key
;
3257 struct btrfs_key found_key
;
3258 struct btrfs_trans_handle
*trans
;
3259 struct extent_buffer
*leaf
;
3262 int enospc_errors
= 0;
3263 bool counting
= true;
3264 u64 limit_data
= bctl
->data
.limit
;
3265 u64 limit_meta
= bctl
->meta
.limit
;
3266 u64 limit_sys
= bctl
->sys
.limit
;
3268 /* step one make some room on all the devices */
3269 devices
= &fs_info
->fs_devices
->devices
;
3270 list_for_each_entry(device
, devices
, dev_list
) {
3271 old_size
= btrfs_device_get_total_bytes(device
);
3272 size_to_free
= div_factor(old_size
, 1);
3273 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
3274 if (!device
->writeable
||
3275 btrfs_device_get_total_bytes(device
) -
3276 btrfs_device_get_bytes_used(device
) > size_to_free
||
3277 device
->is_tgtdev_for_dev_replace
)
3280 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3285 trans
= btrfs_start_transaction(dev_root
, 0);
3286 BUG_ON(IS_ERR(trans
));
3288 ret
= btrfs_grow_device(trans
, device
, old_size
);
3291 btrfs_end_transaction(trans
, dev_root
);
3294 /* step two, relocate all the chunks */
3295 path
= btrfs_alloc_path();
3301 /* zero out stat counters */
3302 spin_lock(&fs_info
->balance_lock
);
3303 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3304 spin_unlock(&fs_info
->balance_lock
);
3307 bctl
->data
.limit
= limit_data
;
3308 bctl
->meta
.limit
= limit_meta
;
3309 bctl
->sys
.limit
= limit_sys
;
3311 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3312 key
.offset
= (u64
)-1;
3313 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3316 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3317 atomic_read(&fs_info
->balance_cancel_req
)) {
3322 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3323 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3325 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3330 * this shouldn't happen, it means the last relocate
3334 BUG(); /* FIXME break ? */
3336 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3337 BTRFS_CHUNK_ITEM_KEY
);
3339 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3344 leaf
= path
->nodes
[0];
3345 slot
= path
->slots
[0];
3346 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3348 if (found_key
.objectid
!= key
.objectid
) {
3349 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3353 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3356 spin_lock(&fs_info
->balance_lock
);
3357 bctl
->stat
.considered
++;
3358 spin_unlock(&fs_info
->balance_lock
);
3361 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3363 btrfs_release_path(path
);
3365 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3370 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3371 spin_lock(&fs_info
->balance_lock
);
3372 bctl
->stat
.expected
++;
3373 spin_unlock(&fs_info
->balance_lock
);
3377 ret
= btrfs_relocate_chunk(chunk_root
,
3380 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3381 if (ret
&& ret
!= -ENOSPC
)
3383 if (ret
== -ENOSPC
) {
3386 spin_lock(&fs_info
->balance_lock
);
3387 bctl
->stat
.completed
++;
3388 spin_unlock(&fs_info
->balance_lock
);
3391 if (found_key
.offset
== 0)
3393 key
.offset
= found_key
.offset
- 1;
3397 btrfs_release_path(path
);
3402 btrfs_free_path(path
);
3403 if (enospc_errors
) {
3404 btrfs_info(fs_info
, "%d enospc errors during balance",
3414 * alloc_profile_is_valid - see if a given profile is valid and reduced
3415 * @flags: profile to validate
3416 * @extended: if true @flags is treated as an extended profile
3418 static int alloc_profile_is_valid(u64 flags
, int extended
)
3420 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3421 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3423 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3425 /* 1) check that all other bits are zeroed */
3429 /* 2) see if profile is reduced */
3431 return !extended
; /* "0" is valid for usual profiles */
3433 /* true if exactly one bit set */
3434 return (flags
& (flags
- 1)) == 0;
3437 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3439 /* cancel requested || normal exit path */
3440 return atomic_read(&fs_info
->balance_cancel_req
) ||
3441 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3442 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3445 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3449 unset_balance_control(fs_info
);
3450 ret
= del_balance_item(fs_info
->tree_root
);
3452 btrfs_std_error(fs_info
, ret
);
3454 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3458 * Should be called with both balance and volume mutexes held
3460 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3461 struct btrfs_ioctl_balance_args
*bargs
)
3463 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3470 if (btrfs_fs_closing(fs_info
) ||
3471 atomic_read(&fs_info
->balance_pause_req
) ||
3472 atomic_read(&fs_info
->balance_cancel_req
)) {
3477 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3478 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3482 * In case of mixed groups both data and meta should be picked,
3483 * and identical options should be given for both of them.
3485 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3486 if (mixed
&& (bctl
->flags
& allowed
)) {
3487 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3488 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3489 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3490 btrfs_err(fs_info
, "with mixed groups data and "
3491 "metadata balance options must be the same");
3497 num_devices
= fs_info
->fs_devices
->num_devices
;
3498 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3499 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3500 BUG_ON(num_devices
< 1);
3503 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3504 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3505 if (num_devices
== 1)
3506 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3507 else if (num_devices
> 1)
3508 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3509 if (num_devices
> 2)
3510 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3511 if (num_devices
> 3)
3512 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3513 BTRFS_BLOCK_GROUP_RAID6
);
3514 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3515 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3516 (bctl
->data
.target
& ~allowed
))) {
3517 btrfs_err(fs_info
, "unable to start balance with target "
3518 "data profile %llu",
3523 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3524 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3525 (bctl
->meta
.target
& ~allowed
))) {
3527 "unable to start balance with target metadata profile %llu",
3532 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3533 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3534 (bctl
->sys
.target
& ~allowed
))) {
3536 "unable to start balance with target system profile %llu",
3542 /* allow dup'ed data chunks only in mixed mode */
3543 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3544 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3545 btrfs_err(fs_info
, "dup for data is not allowed");
3550 /* allow to reduce meta or sys integrity only if force set */
3551 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3552 BTRFS_BLOCK_GROUP_RAID10
|
3553 BTRFS_BLOCK_GROUP_RAID5
|
3554 BTRFS_BLOCK_GROUP_RAID6
;
3556 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3558 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3559 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3560 !(bctl
->sys
.target
& allowed
)) ||
3561 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3562 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3563 !(bctl
->meta
.target
& allowed
))) {
3564 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3565 btrfs_info(fs_info
, "force reducing metadata integrity");
3567 btrfs_err(fs_info
, "balance will reduce metadata "
3568 "integrity, use force if you want this");
3573 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3575 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3576 int num_tolerated_disk_barrier_failures
;
3577 u64 target
= bctl
->sys
.target
;
3579 num_tolerated_disk_barrier_failures
=
3580 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3581 if (num_tolerated_disk_barrier_failures
> 0 &&
3583 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3584 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3585 num_tolerated_disk_barrier_failures
= 0;
3586 else if (num_tolerated_disk_barrier_failures
> 1 &&
3588 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3589 num_tolerated_disk_barrier_failures
= 1;
3591 fs_info
->num_tolerated_disk_barrier_failures
=
3592 num_tolerated_disk_barrier_failures
;
3595 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3596 if (ret
&& ret
!= -EEXIST
)
3599 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3600 BUG_ON(ret
== -EEXIST
);
3601 set_balance_control(bctl
);
3603 BUG_ON(ret
!= -EEXIST
);
3604 spin_lock(&fs_info
->balance_lock
);
3605 update_balance_args(bctl
);
3606 spin_unlock(&fs_info
->balance_lock
);
3609 atomic_inc(&fs_info
->balance_running
);
3610 mutex_unlock(&fs_info
->balance_mutex
);
3612 ret
= __btrfs_balance(fs_info
);
3614 mutex_lock(&fs_info
->balance_mutex
);
3615 atomic_dec(&fs_info
->balance_running
);
3617 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3618 fs_info
->num_tolerated_disk_barrier_failures
=
3619 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3623 memset(bargs
, 0, sizeof(*bargs
));
3624 update_ioctl_balance_args(fs_info
, 0, bargs
);
3627 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3628 balance_need_close(fs_info
)) {
3629 __cancel_balance(fs_info
);
3632 wake_up(&fs_info
->balance_wait_q
);
3636 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3637 __cancel_balance(fs_info
);
3640 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3645 static int balance_kthread(void *data
)
3647 struct btrfs_fs_info
*fs_info
= data
;
3650 mutex_lock(&fs_info
->volume_mutex
);
3651 mutex_lock(&fs_info
->balance_mutex
);
3653 if (fs_info
->balance_ctl
) {
3654 btrfs_info(fs_info
, "continuing balance");
3655 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3658 mutex_unlock(&fs_info
->balance_mutex
);
3659 mutex_unlock(&fs_info
->volume_mutex
);
3664 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3666 struct task_struct
*tsk
;
3668 spin_lock(&fs_info
->balance_lock
);
3669 if (!fs_info
->balance_ctl
) {
3670 spin_unlock(&fs_info
->balance_lock
);
3673 spin_unlock(&fs_info
->balance_lock
);
3675 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3676 btrfs_info(fs_info
, "force skipping balance");
3680 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3681 return PTR_ERR_OR_ZERO(tsk
);
3684 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3686 struct btrfs_balance_control
*bctl
;
3687 struct btrfs_balance_item
*item
;
3688 struct btrfs_disk_balance_args disk_bargs
;
3689 struct btrfs_path
*path
;
3690 struct extent_buffer
*leaf
;
3691 struct btrfs_key key
;
3694 path
= btrfs_alloc_path();
3698 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3699 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3702 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3705 if (ret
> 0) { /* ret = -ENOENT; */
3710 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3716 leaf
= path
->nodes
[0];
3717 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3719 bctl
->fs_info
= fs_info
;
3720 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3721 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3723 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3724 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3725 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3726 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3727 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3728 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3730 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3732 mutex_lock(&fs_info
->volume_mutex
);
3733 mutex_lock(&fs_info
->balance_mutex
);
3735 set_balance_control(bctl
);
3737 mutex_unlock(&fs_info
->balance_mutex
);
3738 mutex_unlock(&fs_info
->volume_mutex
);
3740 btrfs_free_path(path
);
3744 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3748 mutex_lock(&fs_info
->balance_mutex
);
3749 if (!fs_info
->balance_ctl
) {
3750 mutex_unlock(&fs_info
->balance_mutex
);
3754 if (atomic_read(&fs_info
->balance_running
)) {
3755 atomic_inc(&fs_info
->balance_pause_req
);
3756 mutex_unlock(&fs_info
->balance_mutex
);
3758 wait_event(fs_info
->balance_wait_q
,
3759 atomic_read(&fs_info
->balance_running
) == 0);
3761 mutex_lock(&fs_info
->balance_mutex
);
3762 /* we are good with balance_ctl ripped off from under us */
3763 BUG_ON(atomic_read(&fs_info
->balance_running
));
3764 atomic_dec(&fs_info
->balance_pause_req
);
3769 mutex_unlock(&fs_info
->balance_mutex
);
3773 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3775 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3778 mutex_lock(&fs_info
->balance_mutex
);
3779 if (!fs_info
->balance_ctl
) {
3780 mutex_unlock(&fs_info
->balance_mutex
);
3784 atomic_inc(&fs_info
->balance_cancel_req
);
3786 * if we are running just wait and return, balance item is
3787 * deleted in btrfs_balance in this case
3789 if (atomic_read(&fs_info
->balance_running
)) {
3790 mutex_unlock(&fs_info
->balance_mutex
);
3791 wait_event(fs_info
->balance_wait_q
,
3792 atomic_read(&fs_info
->balance_running
) == 0);
3793 mutex_lock(&fs_info
->balance_mutex
);
3795 /* __cancel_balance needs volume_mutex */
3796 mutex_unlock(&fs_info
->balance_mutex
);
3797 mutex_lock(&fs_info
->volume_mutex
);
3798 mutex_lock(&fs_info
->balance_mutex
);
3800 if (fs_info
->balance_ctl
)
3801 __cancel_balance(fs_info
);
3803 mutex_unlock(&fs_info
->volume_mutex
);
3806 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3807 atomic_dec(&fs_info
->balance_cancel_req
);
3808 mutex_unlock(&fs_info
->balance_mutex
);
3812 static int btrfs_uuid_scan_kthread(void *data
)
3814 struct btrfs_fs_info
*fs_info
= data
;
3815 struct btrfs_root
*root
= fs_info
->tree_root
;
3816 struct btrfs_key key
;
3817 struct btrfs_key max_key
;
3818 struct btrfs_path
*path
= NULL
;
3820 struct extent_buffer
*eb
;
3822 struct btrfs_root_item root_item
;
3824 struct btrfs_trans_handle
*trans
= NULL
;
3826 path
= btrfs_alloc_path();
3833 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3836 max_key
.objectid
= (u64
)-1;
3837 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3838 max_key
.offset
= (u64
)-1;
3841 ret
= btrfs_search_forward(root
, &key
, path
, 0);
3848 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3849 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3850 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3851 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3854 eb
= path
->nodes
[0];
3855 slot
= path
->slots
[0];
3856 item_size
= btrfs_item_size_nr(eb
, slot
);
3857 if (item_size
< sizeof(root_item
))
3860 read_extent_buffer(eb
, &root_item
,
3861 btrfs_item_ptr_offset(eb
, slot
),
3862 (int)sizeof(root_item
));
3863 if (btrfs_root_refs(&root_item
) == 0)
3866 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3867 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3871 btrfs_release_path(path
);
3873 * 1 - subvol uuid item
3874 * 1 - received_subvol uuid item
3876 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3877 if (IS_ERR(trans
)) {
3878 ret
= PTR_ERR(trans
);
3886 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3887 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3889 BTRFS_UUID_KEY_SUBVOL
,
3892 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3898 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3899 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3900 root_item
.received_uuid
,
3901 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3904 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3912 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3918 btrfs_release_path(path
);
3919 if (key
.offset
< (u64
)-1) {
3921 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3923 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3924 } else if (key
.objectid
< (u64
)-1) {
3926 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3935 btrfs_free_path(path
);
3936 if (trans
&& !IS_ERR(trans
))
3937 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3939 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
3941 fs_info
->update_uuid_tree_gen
= 1;
3942 up(&fs_info
->uuid_tree_rescan_sem
);
3947 * Callback for btrfs_uuid_tree_iterate().
3949 * 0 check succeeded, the entry is not outdated.
3950 * < 0 if an error occured.
3951 * > 0 if the check failed, which means the caller shall remove the entry.
3953 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3954 u8
*uuid
, u8 type
, u64 subid
)
3956 struct btrfs_key key
;
3958 struct btrfs_root
*subvol_root
;
3960 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3961 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3964 key
.objectid
= subid
;
3965 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3966 key
.offset
= (u64
)-1;
3967 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3968 if (IS_ERR(subvol_root
)) {
3969 ret
= PTR_ERR(subvol_root
);
3976 case BTRFS_UUID_KEY_SUBVOL
:
3977 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3980 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3981 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3991 static int btrfs_uuid_rescan_kthread(void *data
)
3993 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3997 * 1st step is to iterate through the existing UUID tree and
3998 * to delete all entries that contain outdated data.
3999 * 2nd step is to add all missing entries to the UUID tree.
4001 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4003 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4004 up(&fs_info
->uuid_tree_rescan_sem
);
4007 return btrfs_uuid_scan_kthread(data
);
4010 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4012 struct btrfs_trans_handle
*trans
;
4013 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4014 struct btrfs_root
*uuid_root
;
4015 struct task_struct
*task
;
4022 trans
= btrfs_start_transaction(tree_root
, 2);
4024 return PTR_ERR(trans
);
4026 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4027 BTRFS_UUID_TREE_OBJECTID
);
4028 if (IS_ERR(uuid_root
)) {
4029 ret
= PTR_ERR(uuid_root
);
4030 btrfs_abort_transaction(trans
, tree_root
, ret
);
4034 fs_info
->uuid_root
= uuid_root
;
4036 ret
= btrfs_commit_transaction(trans
, tree_root
);
4040 down(&fs_info
->uuid_tree_rescan_sem
);
4041 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4043 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4044 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4045 up(&fs_info
->uuid_tree_rescan_sem
);
4046 return PTR_ERR(task
);
4052 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4054 struct task_struct
*task
;
4056 down(&fs_info
->uuid_tree_rescan_sem
);
4057 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4059 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4060 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4061 up(&fs_info
->uuid_tree_rescan_sem
);
4062 return PTR_ERR(task
);
4069 * shrinking a device means finding all of the device extents past
4070 * the new size, and then following the back refs to the chunks.
4071 * The chunk relocation code actually frees the device extent
4073 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4075 struct btrfs_trans_handle
*trans
;
4076 struct btrfs_root
*root
= device
->dev_root
;
4077 struct btrfs_dev_extent
*dev_extent
= NULL
;
4078 struct btrfs_path
*path
;
4085 bool retried
= false;
4086 bool checked_pending_chunks
= false;
4087 struct extent_buffer
*l
;
4088 struct btrfs_key key
;
4089 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4090 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4091 u64 old_size
= btrfs_device_get_total_bytes(device
);
4092 u64 diff
= old_size
- new_size
;
4094 if (device
->is_tgtdev_for_dev_replace
)
4097 path
= btrfs_alloc_path();
4105 btrfs_device_set_total_bytes(device
, new_size
);
4106 if (device
->writeable
) {
4107 device
->fs_devices
->total_rw_bytes
-= diff
;
4108 spin_lock(&root
->fs_info
->free_chunk_lock
);
4109 root
->fs_info
->free_chunk_space
-= diff
;
4110 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4112 unlock_chunks(root
);
4115 key
.objectid
= device
->devid
;
4116 key
.offset
= (u64
)-1;
4117 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4120 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4121 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4123 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4127 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4129 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4134 btrfs_release_path(path
);
4139 slot
= path
->slots
[0];
4140 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4142 if (key
.objectid
!= device
->devid
) {
4143 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4144 btrfs_release_path(path
);
4148 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4149 length
= btrfs_dev_extent_length(l
, dev_extent
);
4151 if (key
.offset
+ length
<= new_size
) {
4152 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4153 btrfs_release_path(path
);
4157 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
4158 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4159 btrfs_release_path(path
);
4161 ret
= btrfs_relocate_chunk(root
, chunk_objectid
, chunk_offset
);
4162 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4163 if (ret
&& ret
!= -ENOSPC
)
4167 } while (key
.offset
-- > 0);
4169 if (failed
&& !retried
) {
4173 } else if (failed
&& retried
) {
4178 /* Shrinking succeeded, else we would be at "done". */
4179 trans
= btrfs_start_transaction(root
, 0);
4180 if (IS_ERR(trans
)) {
4181 ret
= PTR_ERR(trans
);
4188 * We checked in the above loop all device extents that were already in
4189 * the device tree. However before we have updated the device's
4190 * total_bytes to the new size, we might have had chunk allocations that
4191 * have not complete yet (new block groups attached to transaction
4192 * handles), and therefore their device extents were not yet in the
4193 * device tree and we missed them in the loop above. So if we have any
4194 * pending chunk using a device extent that overlaps the device range
4195 * that we can not use anymore, commit the current transaction and
4196 * repeat the search on the device tree - this way we guarantee we will
4197 * not have chunks using device extents that end beyond 'new_size'.
4199 if (!checked_pending_chunks
) {
4200 u64 start
= new_size
;
4201 u64 len
= old_size
- new_size
;
4203 if (contains_pending_extent(trans
, device
, &start
, len
)) {
4204 unlock_chunks(root
);
4205 checked_pending_chunks
= true;
4208 ret
= btrfs_commit_transaction(trans
, root
);
4215 btrfs_device_set_disk_total_bytes(device
, new_size
);
4216 if (list_empty(&device
->resized_list
))
4217 list_add_tail(&device
->resized_list
,
4218 &root
->fs_info
->fs_devices
->resized_devices
);
4220 WARN_ON(diff
> old_total
);
4221 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4222 unlock_chunks(root
);
4224 /* Now btrfs_update_device() will change the on-disk size. */
4225 ret
= btrfs_update_device(trans
, device
);
4226 btrfs_end_transaction(trans
, root
);
4228 btrfs_free_path(path
);
4231 btrfs_device_set_total_bytes(device
, old_size
);
4232 if (device
->writeable
)
4233 device
->fs_devices
->total_rw_bytes
+= diff
;
4234 spin_lock(&root
->fs_info
->free_chunk_lock
);
4235 root
->fs_info
->free_chunk_space
+= diff
;
4236 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4237 unlock_chunks(root
);
4242 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4243 struct btrfs_key
*key
,
4244 struct btrfs_chunk
*chunk
, int item_size
)
4246 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4247 struct btrfs_disk_key disk_key
;
4252 array_size
= btrfs_super_sys_array_size(super_copy
);
4253 if (array_size
+ item_size
+ sizeof(disk_key
)
4254 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4255 unlock_chunks(root
);
4259 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4260 btrfs_cpu_key_to_disk(&disk_key
, key
);
4261 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4262 ptr
+= sizeof(disk_key
);
4263 memcpy(ptr
, chunk
, item_size
);
4264 item_size
+= sizeof(disk_key
);
4265 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4266 unlock_chunks(root
);
4272 * sort the devices in descending order by max_avail, total_avail
4274 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4276 const struct btrfs_device_info
*di_a
= a
;
4277 const struct btrfs_device_info
*di_b
= b
;
4279 if (di_a
->max_avail
> di_b
->max_avail
)
4281 if (di_a
->max_avail
< di_b
->max_avail
)
4283 if (di_a
->total_avail
> di_b
->total_avail
)
4285 if (di_a
->total_avail
< di_b
->total_avail
)
4290 static const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
4291 [BTRFS_RAID_RAID10
] = {
4294 .devs_max
= 0, /* 0 == as many as possible */
4296 .devs_increment
= 2,
4299 [BTRFS_RAID_RAID1
] = {
4304 .devs_increment
= 2,
4307 [BTRFS_RAID_DUP
] = {
4312 .devs_increment
= 1,
4315 [BTRFS_RAID_RAID0
] = {
4320 .devs_increment
= 1,
4323 [BTRFS_RAID_SINGLE
] = {
4328 .devs_increment
= 1,
4331 [BTRFS_RAID_RAID5
] = {
4336 .devs_increment
= 1,
4339 [BTRFS_RAID_RAID6
] = {
4344 .devs_increment
= 1,
4349 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4351 /* TODO allow them to set a preferred stripe size */
4355 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4357 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4360 btrfs_set_fs_incompat(info
, RAID56
);
4363 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4364 - sizeof(struct btrfs_item) \
4365 - sizeof(struct btrfs_chunk)) \
4366 / sizeof(struct btrfs_stripe) + 1)
4368 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4369 - 2 * sizeof(struct btrfs_disk_key) \
4370 - 2 * sizeof(struct btrfs_chunk)) \
4371 / sizeof(struct btrfs_stripe) + 1)
4373 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4374 struct btrfs_root
*extent_root
, u64 start
,
4377 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4378 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4379 struct list_head
*cur
;
4380 struct map_lookup
*map
= NULL
;
4381 struct extent_map_tree
*em_tree
;
4382 struct extent_map
*em
;
4383 struct btrfs_device_info
*devices_info
= NULL
;
4385 int num_stripes
; /* total number of stripes to allocate */
4386 int data_stripes
; /* number of stripes that count for
4388 int sub_stripes
; /* sub_stripes info for map */
4389 int dev_stripes
; /* stripes per dev */
4390 int devs_max
; /* max devs to use */
4391 int devs_min
; /* min devs needed */
4392 int devs_increment
; /* ndevs has to be a multiple of this */
4393 int ncopies
; /* how many copies to data has */
4395 u64 max_stripe_size
;
4399 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4405 BUG_ON(!alloc_profile_is_valid(type
, 0));
4407 if (list_empty(&fs_devices
->alloc_list
))
4410 index
= __get_raid_index(type
);
4412 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4413 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4414 devs_max
= btrfs_raid_array
[index
].devs_max
;
4415 devs_min
= btrfs_raid_array
[index
].devs_min
;
4416 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4417 ncopies
= btrfs_raid_array
[index
].ncopies
;
4419 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4420 max_stripe_size
= 1024 * 1024 * 1024;
4421 max_chunk_size
= 10 * max_stripe_size
;
4423 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4424 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4425 /* for larger filesystems, use larger metadata chunks */
4426 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4427 max_stripe_size
= 1024 * 1024 * 1024;
4429 max_stripe_size
= 256 * 1024 * 1024;
4430 max_chunk_size
= max_stripe_size
;
4432 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4433 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4434 max_stripe_size
= 32 * 1024 * 1024;
4435 max_chunk_size
= 2 * max_stripe_size
;
4437 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4439 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4444 /* we don't want a chunk larger than 10% of writeable space */
4445 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4448 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4453 cur
= fs_devices
->alloc_list
.next
;
4456 * in the first pass through the devices list, we gather information
4457 * about the available holes on each device.
4460 while (cur
!= &fs_devices
->alloc_list
) {
4461 struct btrfs_device
*device
;
4465 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4469 if (!device
->writeable
) {
4471 "BTRFS: read-only device in alloc_list\n");
4475 if (!device
->in_fs_metadata
||
4476 device
->is_tgtdev_for_dev_replace
)
4479 if (device
->total_bytes
> device
->bytes_used
)
4480 total_avail
= device
->total_bytes
- device
->bytes_used
;
4484 /* If there is no space on this device, skip it. */
4485 if (total_avail
== 0)
4488 ret
= find_free_dev_extent(trans
, device
,
4489 max_stripe_size
* dev_stripes
,
4490 &dev_offset
, &max_avail
);
4491 if (ret
&& ret
!= -ENOSPC
)
4495 max_avail
= max_stripe_size
* dev_stripes
;
4497 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4500 if (ndevs
== fs_devices
->rw_devices
) {
4501 WARN(1, "%s: found more than %llu devices\n",
4502 __func__
, fs_devices
->rw_devices
);
4505 devices_info
[ndevs
].dev_offset
= dev_offset
;
4506 devices_info
[ndevs
].max_avail
= max_avail
;
4507 devices_info
[ndevs
].total_avail
= total_avail
;
4508 devices_info
[ndevs
].dev
= device
;
4513 * now sort the devices by hole size / available space
4515 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4516 btrfs_cmp_device_info
, NULL
);
4518 /* round down to number of usable stripes */
4519 ndevs
-= ndevs
% devs_increment
;
4521 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4526 if (devs_max
&& ndevs
> devs_max
)
4529 * the primary goal is to maximize the number of stripes, so use as many
4530 * devices as possible, even if the stripes are not maximum sized.
4532 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4533 num_stripes
= ndevs
* dev_stripes
;
4536 * this will have to be fixed for RAID1 and RAID10 over
4539 data_stripes
= num_stripes
/ ncopies
;
4541 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4542 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4543 btrfs_super_stripesize(info
->super_copy
));
4544 data_stripes
= num_stripes
- 1;
4546 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4547 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4548 btrfs_super_stripesize(info
->super_copy
));
4549 data_stripes
= num_stripes
- 2;
4553 * Use the number of data stripes to figure out how big this chunk
4554 * is really going to be in terms of logical address space,
4555 * and compare that answer with the max chunk size
4557 if (stripe_size
* data_stripes
> max_chunk_size
) {
4558 u64 mask
= (1ULL << 24) - 1;
4560 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4562 /* bump the answer up to a 16MB boundary */
4563 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4565 /* but don't go higher than the limits we found
4566 * while searching for free extents
4568 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4569 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4572 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4574 /* align to BTRFS_STRIPE_LEN */
4575 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4576 stripe_size
*= raid_stripe_len
;
4578 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4583 map
->num_stripes
= num_stripes
;
4585 for (i
= 0; i
< ndevs
; ++i
) {
4586 for (j
= 0; j
< dev_stripes
; ++j
) {
4587 int s
= i
* dev_stripes
+ j
;
4588 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4589 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4593 map
->sector_size
= extent_root
->sectorsize
;
4594 map
->stripe_len
= raid_stripe_len
;
4595 map
->io_align
= raid_stripe_len
;
4596 map
->io_width
= raid_stripe_len
;
4598 map
->sub_stripes
= sub_stripes
;
4600 num_bytes
= stripe_size
* data_stripes
;
4602 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4604 em
= alloc_extent_map();
4610 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4611 em
->bdev
= (struct block_device
*)map
;
4613 em
->len
= num_bytes
;
4614 em
->block_start
= 0;
4615 em
->block_len
= em
->len
;
4616 em
->orig_block_len
= stripe_size
;
4618 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4619 write_lock(&em_tree
->lock
);
4620 ret
= add_extent_mapping(em_tree
, em
, 0);
4622 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4623 atomic_inc(&em
->refs
);
4625 write_unlock(&em_tree
->lock
);
4627 free_extent_map(em
);
4631 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4632 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4635 goto error_del_extent
;
4637 for (i
= 0; i
< map
->num_stripes
; i
++) {
4638 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4639 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4642 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4643 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4645 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4647 free_extent_map(em
);
4648 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4650 kfree(devices_info
);
4654 write_lock(&em_tree
->lock
);
4655 remove_extent_mapping(em_tree
, em
);
4656 write_unlock(&em_tree
->lock
);
4658 /* One for our allocation */
4659 free_extent_map(em
);
4660 /* One for the tree reference */
4661 free_extent_map(em
);
4662 /* One for the pending_chunks list reference */
4663 free_extent_map(em
);
4665 kfree(devices_info
);
4669 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4670 struct btrfs_root
*extent_root
,
4671 u64 chunk_offset
, u64 chunk_size
)
4673 struct btrfs_key key
;
4674 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4675 struct btrfs_device
*device
;
4676 struct btrfs_chunk
*chunk
;
4677 struct btrfs_stripe
*stripe
;
4678 struct extent_map_tree
*em_tree
;
4679 struct extent_map
*em
;
4680 struct map_lookup
*map
;
4687 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4688 read_lock(&em_tree
->lock
);
4689 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4690 read_unlock(&em_tree
->lock
);
4693 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4694 "%Lu len %Lu", chunk_offset
, chunk_size
);
4698 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4699 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4700 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4701 chunk_size
, em
->start
, em
->len
);
4702 free_extent_map(em
);
4706 map
= (struct map_lookup
*)em
->bdev
;
4707 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4708 stripe_size
= em
->orig_block_len
;
4710 chunk
= kzalloc(item_size
, GFP_NOFS
);
4716 for (i
= 0; i
< map
->num_stripes
; i
++) {
4717 device
= map
->stripes
[i
].dev
;
4718 dev_offset
= map
->stripes
[i
].physical
;
4720 ret
= btrfs_update_device(trans
, device
);
4723 ret
= btrfs_alloc_dev_extent(trans
, device
,
4724 chunk_root
->root_key
.objectid
,
4725 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4726 chunk_offset
, dev_offset
,
4732 stripe
= &chunk
->stripe
;
4733 for (i
= 0; i
< map
->num_stripes
; i
++) {
4734 device
= map
->stripes
[i
].dev
;
4735 dev_offset
= map
->stripes
[i
].physical
;
4737 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4738 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4739 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4743 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4744 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4745 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4746 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4747 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4748 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4749 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4750 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4751 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4753 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4754 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4755 key
.offset
= chunk_offset
;
4757 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4758 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4760 * TODO: Cleanup of inserted chunk root in case of
4763 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4769 free_extent_map(em
);
4774 * Chunk allocation falls into two parts. The first part does works
4775 * that make the new allocated chunk useable, but not do any operation
4776 * that modifies the chunk tree. The second part does the works that
4777 * require modifying the chunk tree. This division is important for the
4778 * bootstrap process of adding storage to a seed btrfs.
4780 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4781 struct btrfs_root
*extent_root
, u64 type
)
4785 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
4786 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4787 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4790 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4791 struct btrfs_root
*root
,
4792 struct btrfs_device
*device
)
4795 u64 sys_chunk_offset
;
4797 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4798 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4801 chunk_offset
= find_next_chunk(fs_info
);
4802 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4803 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4808 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4809 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4810 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4815 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4819 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4820 BTRFS_BLOCK_GROUP_RAID10
|
4821 BTRFS_BLOCK_GROUP_RAID5
|
4822 BTRFS_BLOCK_GROUP_DUP
)) {
4824 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
4833 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4835 struct extent_map
*em
;
4836 struct map_lookup
*map
;
4837 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4842 read_lock(&map_tree
->map_tree
.lock
);
4843 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4844 read_unlock(&map_tree
->map_tree
.lock
);
4848 map
= (struct map_lookup
*)em
->bdev
;
4849 for (i
= 0; i
< map
->num_stripes
; i
++) {
4850 if (map
->stripes
[i
].dev
->missing
) {
4855 if (!map
->stripes
[i
].dev
->writeable
) {
4862 * If the number of missing devices is larger than max errors,
4863 * we can not write the data into that chunk successfully, so
4866 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
4869 free_extent_map(em
);
4873 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4875 extent_map_tree_init(&tree
->map_tree
);
4878 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4880 struct extent_map
*em
;
4883 write_lock(&tree
->map_tree
.lock
);
4884 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4886 remove_extent_mapping(&tree
->map_tree
, em
);
4887 write_unlock(&tree
->map_tree
.lock
);
4891 free_extent_map(em
);
4892 /* once for the tree */
4893 free_extent_map(em
);
4897 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4899 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4900 struct extent_map
*em
;
4901 struct map_lookup
*map
;
4902 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4905 read_lock(&em_tree
->lock
);
4906 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4907 read_unlock(&em_tree
->lock
);
4910 * We could return errors for these cases, but that could get ugly and
4911 * we'd probably do the same thing which is just not do anything else
4912 * and exit, so return 1 so the callers don't try to use other copies.
4915 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
4920 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4921 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4922 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
4923 em
->start
+ em
->len
);
4924 free_extent_map(em
);
4928 map
= (struct map_lookup
*)em
->bdev
;
4929 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4930 ret
= map
->num_stripes
;
4931 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4932 ret
= map
->sub_stripes
;
4933 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4935 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4939 free_extent_map(em
);
4941 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4942 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4944 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4949 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4950 struct btrfs_mapping_tree
*map_tree
,
4953 struct extent_map
*em
;
4954 struct map_lookup
*map
;
4955 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4956 unsigned long len
= root
->sectorsize
;
4958 read_lock(&em_tree
->lock
);
4959 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4960 read_unlock(&em_tree
->lock
);
4963 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4964 map
= (struct map_lookup
*)em
->bdev
;
4965 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
4966 len
= map
->stripe_len
* nr_data_stripes(map
);
4967 free_extent_map(em
);
4971 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4972 u64 logical
, u64 len
, int mirror_num
)
4974 struct extent_map
*em
;
4975 struct map_lookup
*map
;
4976 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4979 read_lock(&em_tree
->lock
);
4980 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4981 read_unlock(&em_tree
->lock
);
4984 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4985 map
= (struct map_lookup
*)em
->bdev
;
4986 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
4988 free_extent_map(em
);
4992 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4993 struct map_lookup
*map
, int first
, int num
,
4994 int optimal
, int dev_replace_is_ongoing
)
4998 struct btrfs_device
*srcdev
;
5000 if (dev_replace_is_ongoing
&&
5001 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5002 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5003 srcdev
= fs_info
->dev_replace
.srcdev
;
5008 * try to avoid the drive that is the source drive for a
5009 * dev-replace procedure, only choose it if no other non-missing
5010 * mirror is available
5012 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5013 if (map
->stripes
[optimal
].dev
->bdev
&&
5014 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5016 for (i
= first
; i
< first
+ num
; i
++) {
5017 if (map
->stripes
[i
].dev
->bdev
&&
5018 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5023 /* we couldn't find one that doesn't fail. Just return something
5024 * and the io error handling code will clean up eventually
5029 static inline int parity_smaller(u64 a
, u64 b
)
5034 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5035 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5037 struct btrfs_bio_stripe s
;
5044 for (i
= 0; i
< num_stripes
- 1; i
++) {
5045 if (parity_smaller(bbio
->raid_map
[i
],
5046 bbio
->raid_map
[i
+1])) {
5047 s
= bbio
->stripes
[i
];
5048 l
= bbio
->raid_map
[i
];
5049 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5050 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5051 bbio
->stripes
[i
+1] = s
;
5052 bbio
->raid_map
[i
+1] = l
;
5060 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5062 struct btrfs_bio
*bbio
= kzalloc(
5063 /* the size of the btrfs_bio */
5064 sizeof(struct btrfs_bio
) +
5065 /* plus the variable array for the stripes */
5066 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5067 /* plus the variable array for the tgt dev */
5068 sizeof(int) * (real_stripes
) +
5070 * plus the raid_map, which includes both the tgt dev
5073 sizeof(u64
) * (total_stripes
),
5078 atomic_set(&bbio
->error
, 0);
5079 atomic_set(&bbio
->refs
, 1);
5084 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5086 WARN_ON(!atomic_read(&bbio
->refs
));
5087 atomic_inc(&bbio
->refs
);
5090 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5094 if (atomic_dec_and_test(&bbio
->refs
))
5098 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5099 u64 logical
, u64
*length
,
5100 struct btrfs_bio
**bbio_ret
,
5101 int mirror_num
, int need_raid_map
)
5103 struct extent_map
*em
;
5104 struct map_lookup
*map
;
5105 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5106 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5109 u64 stripe_end_offset
;
5119 int tgtdev_indexes
= 0;
5120 struct btrfs_bio
*bbio
= NULL
;
5121 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5122 int dev_replace_is_ongoing
= 0;
5123 int num_alloc_stripes
;
5124 int patch_the_first_stripe_for_dev_replace
= 0;
5125 u64 physical_to_patch_in_first_stripe
= 0;
5126 u64 raid56_full_stripe_start
= (u64
)-1;
5128 read_lock(&em_tree
->lock
);
5129 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5130 read_unlock(&em_tree
->lock
);
5133 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5138 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5139 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
5140 "found %Lu-%Lu", logical
, em
->start
,
5141 em
->start
+ em
->len
);
5142 free_extent_map(em
);
5146 map
= (struct map_lookup
*)em
->bdev
;
5147 offset
= logical
- em
->start
;
5149 stripe_len
= map
->stripe_len
;
5152 * stripe_nr counts the total number of stripes we have to stride
5153 * to get to this block
5155 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5157 stripe_offset
= stripe_nr
* stripe_len
;
5158 BUG_ON(offset
< stripe_offset
);
5160 /* stripe_offset is the offset of this block in its stripe*/
5161 stripe_offset
= offset
- stripe_offset
;
5163 /* if we're here for raid56, we need to know the stripe aligned start */
5164 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5165 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5166 raid56_full_stripe_start
= offset
;
5168 /* allow a write of a full stripe, but make sure we don't
5169 * allow straddling of stripes
5171 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5173 raid56_full_stripe_start
*= full_stripe_len
;
5176 if (rw
& REQ_DISCARD
) {
5177 /* we don't discard raid56 yet */
5178 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5182 *length
= min_t(u64
, em
->len
- offset
, *length
);
5183 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5185 /* For writes to RAID[56], allow a full stripeset across all disks.
5186 For other RAID types and for RAID[56] reads, just allow a single
5187 stripe (on a single disk). */
5188 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5190 max_len
= stripe_len
* nr_data_stripes(map
) -
5191 (offset
- raid56_full_stripe_start
);
5193 /* we limit the length of each bio to what fits in a stripe */
5194 max_len
= stripe_len
- stripe_offset
;
5196 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5198 *length
= em
->len
- offset
;
5201 /* This is for when we're called from btrfs_merge_bio_hook() and all
5202 it cares about is the length */
5206 btrfs_dev_replace_lock(dev_replace
);
5207 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5208 if (!dev_replace_is_ongoing
)
5209 btrfs_dev_replace_unlock(dev_replace
);
5211 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5212 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5213 dev_replace
->tgtdev
!= NULL
) {
5215 * in dev-replace case, for repair case (that's the only
5216 * case where the mirror is selected explicitly when
5217 * calling btrfs_map_block), blocks left of the left cursor
5218 * can also be read from the target drive.
5219 * For REQ_GET_READ_MIRRORS, the target drive is added as
5220 * the last one to the array of stripes. For READ, it also
5221 * needs to be supported using the same mirror number.
5222 * If the requested block is not left of the left cursor,
5223 * EIO is returned. This can happen because btrfs_num_copies()
5224 * returns one more in the dev-replace case.
5226 u64 tmp_length
= *length
;
5227 struct btrfs_bio
*tmp_bbio
= NULL
;
5228 int tmp_num_stripes
;
5229 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5230 int index_srcdev
= 0;
5232 u64 physical_of_found
= 0;
5234 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5235 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5237 WARN_ON(tmp_bbio
!= NULL
);
5241 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5242 if (mirror_num
> tmp_num_stripes
) {
5244 * REQ_GET_READ_MIRRORS does not contain this
5245 * mirror, that means that the requested area
5246 * is not left of the left cursor
5249 btrfs_put_bbio(tmp_bbio
);
5254 * process the rest of the function using the mirror_num
5255 * of the source drive. Therefore look it up first.
5256 * At the end, patch the device pointer to the one of the
5259 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5260 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5262 * In case of DUP, in order to keep it
5263 * simple, only add the mirror with the
5264 * lowest physical address
5267 physical_of_found
<=
5268 tmp_bbio
->stripes
[i
].physical
)
5273 tmp_bbio
->stripes
[i
].physical
;
5278 mirror_num
= index_srcdev
+ 1;
5279 patch_the_first_stripe_for_dev_replace
= 1;
5280 physical_to_patch_in_first_stripe
= physical_of_found
;
5284 btrfs_put_bbio(tmp_bbio
);
5288 btrfs_put_bbio(tmp_bbio
);
5289 } else if (mirror_num
> map
->num_stripes
) {
5295 stripe_nr_orig
= stripe_nr
;
5296 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5297 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5298 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5301 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5302 if (rw
& REQ_DISCARD
)
5303 num_stripes
= min_t(u64
, map
->num_stripes
,
5304 stripe_nr_end
- stripe_nr_orig
);
5305 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5307 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5309 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5310 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5311 num_stripes
= map
->num_stripes
;
5312 else if (mirror_num
)
5313 stripe_index
= mirror_num
- 1;
5315 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5317 current
->pid
% map
->num_stripes
,
5318 dev_replace_is_ongoing
);
5319 mirror_num
= stripe_index
+ 1;
5322 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5323 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5324 num_stripes
= map
->num_stripes
;
5325 } else if (mirror_num
) {
5326 stripe_index
= mirror_num
- 1;
5331 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5332 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5334 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5335 stripe_index
*= map
->sub_stripes
;
5337 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5338 num_stripes
= map
->sub_stripes
;
5339 else if (rw
& REQ_DISCARD
)
5340 num_stripes
= min_t(u64
, map
->sub_stripes
*
5341 (stripe_nr_end
- stripe_nr_orig
),
5343 else if (mirror_num
)
5344 stripe_index
+= mirror_num
- 1;
5346 int old_stripe_index
= stripe_index
;
5347 stripe_index
= find_live_mirror(fs_info
, map
,
5349 map
->sub_stripes
, stripe_index
+
5350 current
->pid
% map
->sub_stripes
,
5351 dev_replace_is_ongoing
);
5352 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5355 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5356 if (need_raid_map
&&
5357 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5359 /* push stripe_nr back to the start of the full stripe */
5360 stripe_nr
= div_u64(raid56_full_stripe_start
,
5361 stripe_len
* nr_data_stripes(map
));
5363 /* RAID[56] write or recovery. Return all stripes */
5364 num_stripes
= map
->num_stripes
;
5365 max_errors
= nr_parity_stripes(map
);
5367 *length
= map
->stripe_len
;
5372 * Mirror #0 or #1 means the original data block.
5373 * Mirror #2 is RAID5 parity block.
5374 * Mirror #3 is RAID6 Q block.
5376 stripe_nr
= div_u64_rem(stripe_nr
,
5377 nr_data_stripes(map
), &stripe_index
);
5379 stripe_index
= nr_data_stripes(map
) +
5382 /* We distribute the parity blocks across stripes */
5383 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5385 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5386 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5391 * after this, stripe_nr is the number of stripes on this
5392 * device we have to walk to find the data, and stripe_index is
5393 * the number of our device in the stripe array
5395 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5397 mirror_num
= stripe_index
+ 1;
5399 BUG_ON(stripe_index
>= map
->num_stripes
);
5401 num_alloc_stripes
= num_stripes
;
5402 if (dev_replace_is_ongoing
) {
5403 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5404 num_alloc_stripes
<<= 1;
5405 if (rw
& REQ_GET_READ_MIRRORS
)
5406 num_alloc_stripes
++;
5407 tgtdev_indexes
= num_stripes
;
5410 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5415 if (dev_replace_is_ongoing
)
5416 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5418 /* build raid_map */
5419 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5420 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5425 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5426 sizeof(struct btrfs_bio_stripe
) *
5428 sizeof(int) * tgtdev_indexes
);
5430 /* Work out the disk rotation on this stripe-set */
5431 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5433 /* Fill in the logical address of each stripe */
5434 tmp
= stripe_nr
* nr_data_stripes(map
);
5435 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5436 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5437 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5439 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5440 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5441 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5445 if (rw
& REQ_DISCARD
) {
5447 u32 sub_stripes
= 0;
5448 u64 stripes_per_dev
= 0;
5449 u32 remaining_stripes
= 0;
5450 u32 last_stripe
= 0;
5453 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5454 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5457 sub_stripes
= map
->sub_stripes
;
5459 factor
= map
->num_stripes
/ sub_stripes
;
5460 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5463 &remaining_stripes
);
5464 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5465 last_stripe
*= sub_stripes
;
5468 for (i
= 0; i
< num_stripes
; i
++) {
5469 bbio
->stripes
[i
].physical
=
5470 map
->stripes
[stripe_index
].physical
+
5471 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5472 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5474 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5475 BTRFS_BLOCK_GROUP_RAID10
)) {
5476 bbio
->stripes
[i
].length
= stripes_per_dev
*
5479 if (i
/ sub_stripes
< remaining_stripes
)
5480 bbio
->stripes
[i
].length
+=
5484 * Special for the first stripe and
5487 * |-------|...|-------|
5491 if (i
< sub_stripes
)
5492 bbio
->stripes
[i
].length
-=
5495 if (stripe_index
>= last_stripe
&&
5496 stripe_index
<= (last_stripe
+
5498 bbio
->stripes
[i
].length
-=
5501 if (i
== sub_stripes
- 1)
5504 bbio
->stripes
[i
].length
= *length
;
5507 if (stripe_index
== map
->num_stripes
) {
5508 /* This could only happen for RAID0/10 */
5514 for (i
= 0; i
< num_stripes
; i
++) {
5515 bbio
->stripes
[i
].physical
=
5516 map
->stripes
[stripe_index
].physical
+
5518 stripe_nr
* map
->stripe_len
;
5519 bbio
->stripes
[i
].dev
=
5520 map
->stripes
[stripe_index
].dev
;
5525 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5526 max_errors
= btrfs_chunk_max_errors(map
);
5529 sort_parity_stripes(bbio
, num_stripes
);
5532 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5533 dev_replace
->tgtdev
!= NULL
) {
5534 int index_where_to_add
;
5535 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5538 * duplicate the write operations while the dev replace
5539 * procedure is running. Since the copying of the old disk
5540 * to the new disk takes place at run time while the
5541 * filesystem is mounted writable, the regular write
5542 * operations to the old disk have to be duplicated to go
5543 * to the new disk as well.
5544 * Note that device->missing is handled by the caller, and
5545 * that the write to the old disk is already set up in the
5548 index_where_to_add
= num_stripes
;
5549 for (i
= 0; i
< num_stripes
; i
++) {
5550 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5551 /* write to new disk, too */
5552 struct btrfs_bio_stripe
*new =
5553 bbio
->stripes
+ index_where_to_add
;
5554 struct btrfs_bio_stripe
*old
=
5557 new->physical
= old
->physical
;
5558 new->length
= old
->length
;
5559 new->dev
= dev_replace
->tgtdev
;
5560 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5561 index_where_to_add
++;
5566 num_stripes
= index_where_to_add
;
5567 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5568 dev_replace
->tgtdev
!= NULL
) {
5569 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5570 int index_srcdev
= 0;
5572 u64 physical_of_found
= 0;
5575 * During the dev-replace procedure, the target drive can
5576 * also be used to read data in case it is needed to repair
5577 * a corrupt block elsewhere. This is possible if the
5578 * requested area is left of the left cursor. In this area,
5579 * the target drive is a full copy of the source drive.
5581 for (i
= 0; i
< num_stripes
; i
++) {
5582 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5584 * In case of DUP, in order to keep it
5585 * simple, only add the mirror with the
5586 * lowest physical address
5589 physical_of_found
<=
5590 bbio
->stripes
[i
].physical
)
5594 physical_of_found
= bbio
->stripes
[i
].physical
;
5598 if (physical_of_found
+ map
->stripe_len
<=
5599 dev_replace
->cursor_left
) {
5600 struct btrfs_bio_stripe
*tgtdev_stripe
=
5601 bbio
->stripes
+ num_stripes
;
5603 tgtdev_stripe
->physical
= physical_of_found
;
5604 tgtdev_stripe
->length
=
5605 bbio
->stripes
[index_srcdev
].length
;
5606 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5607 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5616 bbio
->map_type
= map
->type
;
5617 bbio
->num_stripes
= num_stripes
;
5618 bbio
->max_errors
= max_errors
;
5619 bbio
->mirror_num
= mirror_num
;
5620 bbio
->num_tgtdevs
= tgtdev_indexes
;
5623 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5624 * mirror_num == num_stripes + 1 && dev_replace target drive is
5625 * available as a mirror
5627 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5628 WARN_ON(num_stripes
> 1);
5629 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5630 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5631 bbio
->mirror_num
= map
->num_stripes
+ 1;
5634 if (dev_replace_is_ongoing
)
5635 btrfs_dev_replace_unlock(dev_replace
);
5636 free_extent_map(em
);
5640 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5641 u64 logical
, u64
*length
,
5642 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5644 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5648 /* For Scrub/replace */
5649 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5650 u64 logical
, u64
*length
,
5651 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5654 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5655 mirror_num
, need_raid_map
);
5658 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5659 u64 chunk_start
, u64 physical
, u64 devid
,
5660 u64
**logical
, int *naddrs
, int *stripe_len
)
5662 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5663 struct extent_map
*em
;
5664 struct map_lookup
*map
;
5672 read_lock(&em_tree
->lock
);
5673 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5674 read_unlock(&em_tree
->lock
);
5677 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5682 if (em
->start
!= chunk_start
) {
5683 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5684 em
->start
, chunk_start
);
5685 free_extent_map(em
);
5688 map
= (struct map_lookup
*)em
->bdev
;
5691 rmap_len
= map
->stripe_len
;
5693 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5694 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5695 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5696 length
= div_u64(length
, map
->num_stripes
);
5697 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5698 length
= div_u64(length
, nr_data_stripes(map
));
5699 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5702 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5703 BUG_ON(!buf
); /* -ENOMEM */
5705 for (i
= 0; i
< map
->num_stripes
; i
++) {
5706 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5708 if (map
->stripes
[i
].physical
> physical
||
5709 map
->stripes
[i
].physical
+ length
<= physical
)
5712 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5713 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5715 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5716 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5717 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5718 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5719 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5720 } /* else if RAID[56], multiply by nr_data_stripes().
5721 * Alternatively, just use rmap_len below instead of
5722 * map->stripe_len */
5724 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5725 WARN_ON(nr
>= map
->num_stripes
);
5726 for (j
= 0; j
< nr
; j
++) {
5727 if (buf
[j
] == bytenr
)
5731 WARN_ON(nr
>= map
->num_stripes
);
5738 *stripe_len
= rmap_len
;
5740 free_extent_map(em
);
5744 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
, int err
)
5746 bio
->bi_private
= bbio
->private;
5747 bio
->bi_end_io
= bbio
->end_io
;
5748 bio_endio(bio
, err
);
5750 btrfs_put_bbio(bbio
);
5753 static void btrfs_end_bio(struct bio
*bio
, int err
)
5755 struct btrfs_bio
*bbio
= bio
->bi_private
;
5756 int is_orig_bio
= 0;
5759 atomic_inc(&bbio
->error
);
5760 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5761 unsigned int stripe_index
=
5762 btrfs_io_bio(bio
)->stripe_index
;
5763 struct btrfs_device
*dev
;
5765 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5766 dev
= bbio
->stripes
[stripe_index
].dev
;
5768 if (bio
->bi_rw
& WRITE
)
5769 btrfs_dev_stat_inc(dev
,
5770 BTRFS_DEV_STAT_WRITE_ERRS
);
5772 btrfs_dev_stat_inc(dev
,
5773 BTRFS_DEV_STAT_READ_ERRS
);
5774 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5775 btrfs_dev_stat_inc(dev
,
5776 BTRFS_DEV_STAT_FLUSH_ERRS
);
5777 btrfs_dev_stat_print_on_error(dev
);
5782 if (bio
== bbio
->orig_bio
)
5785 btrfs_bio_counter_dec(bbio
->fs_info
);
5787 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5790 bio
= bbio
->orig_bio
;
5793 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5794 /* only send an error to the higher layers if it is
5795 * beyond the tolerance of the btrfs bio
5797 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5801 * this bio is actually up to date, we didn't
5802 * go over the max number of errors
5804 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5808 btrfs_end_bbio(bbio
, bio
, err
);
5809 } else if (!is_orig_bio
) {
5815 * see run_scheduled_bios for a description of why bios are collected for
5818 * This will add one bio to the pending list for a device and make sure
5819 * the work struct is scheduled.
5821 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5822 struct btrfs_device
*device
,
5823 int rw
, struct bio
*bio
)
5825 int should_queue
= 1;
5826 struct btrfs_pending_bios
*pending_bios
;
5828 if (device
->missing
|| !device
->bdev
) {
5829 bio_endio(bio
, -EIO
);
5833 /* don't bother with additional async steps for reads, right now */
5834 if (!(rw
& REQ_WRITE
)) {
5836 btrfsic_submit_bio(rw
, bio
);
5842 * nr_async_bios allows us to reliably return congestion to the
5843 * higher layers. Otherwise, the async bio makes it appear we have
5844 * made progress against dirty pages when we've really just put it
5845 * on a queue for later
5847 atomic_inc(&root
->fs_info
->nr_async_bios
);
5848 WARN_ON(bio
->bi_next
);
5849 bio
->bi_next
= NULL
;
5852 spin_lock(&device
->io_lock
);
5853 if (bio
->bi_rw
& REQ_SYNC
)
5854 pending_bios
= &device
->pending_sync_bios
;
5856 pending_bios
= &device
->pending_bios
;
5858 if (pending_bios
->tail
)
5859 pending_bios
->tail
->bi_next
= bio
;
5861 pending_bios
->tail
= bio
;
5862 if (!pending_bios
->head
)
5863 pending_bios
->head
= bio
;
5864 if (device
->running_pending
)
5867 spin_unlock(&device
->io_lock
);
5870 btrfs_queue_work(root
->fs_info
->submit_workers
,
5874 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5877 struct bio_vec
*prev
;
5878 struct request_queue
*q
= bdev_get_queue(bdev
);
5879 unsigned int max_sectors
= queue_max_sectors(q
);
5880 struct bvec_merge_data bvm
= {
5882 .bi_sector
= sector
,
5883 .bi_rw
= bio
->bi_rw
,
5886 if (WARN_ON(bio
->bi_vcnt
== 0))
5889 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5890 if (bio_sectors(bio
) > max_sectors
)
5893 if (!q
->merge_bvec_fn
)
5896 bvm
.bi_size
= bio
->bi_iter
.bi_size
- prev
->bv_len
;
5897 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5902 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5903 struct bio
*bio
, u64 physical
, int dev_nr
,
5906 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5908 bio
->bi_private
= bbio
;
5909 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5910 bio
->bi_end_io
= btrfs_end_bio
;
5911 bio
->bi_iter
.bi_sector
= physical
>> 9;
5914 struct rcu_string
*name
;
5917 name
= rcu_dereference(dev
->name
);
5918 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5919 "(%s id %llu), size=%u\n", rw
,
5920 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5921 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
5925 bio
->bi_bdev
= dev
->bdev
;
5927 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
5930 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5932 btrfsic_submit_bio(rw
, bio
);
5935 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5936 struct bio
*first_bio
, struct btrfs_device
*dev
,
5937 int dev_nr
, int rw
, int async
)
5939 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5941 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5942 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5945 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5949 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5950 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5951 bvec
->bv_offset
) < bvec
->bv_len
) {
5952 u64 len
= bio
->bi_iter
.bi_size
;
5954 atomic_inc(&bbio
->stripes_pending
);
5955 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5963 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5967 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5969 atomic_inc(&bbio
->error
);
5970 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5971 /* Shoud be the original bio. */
5972 WARN_ON(bio
!= bbio
->orig_bio
);
5974 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5975 bio
->bi_iter
.bi_sector
= logical
>> 9;
5977 btrfs_end_bbio(bbio
, bio
, -EIO
);
5981 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5982 int mirror_num
, int async_submit
)
5984 struct btrfs_device
*dev
;
5985 struct bio
*first_bio
= bio
;
5986 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
5992 struct btrfs_bio
*bbio
= NULL
;
5994 length
= bio
->bi_iter
.bi_size
;
5995 map_length
= length
;
5997 btrfs_bio_counter_inc_blocked(root
->fs_info
);
5998 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
6001 btrfs_bio_counter_dec(root
->fs_info
);
6005 total_devs
= bbio
->num_stripes
;
6006 bbio
->orig_bio
= first_bio
;
6007 bbio
->private = first_bio
->bi_private
;
6008 bbio
->end_io
= first_bio
->bi_end_io
;
6009 bbio
->fs_info
= root
->fs_info
;
6010 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6012 if (bbio
->raid_map
) {
6013 /* In this case, map_length has been set to the length of
6014 a single stripe; not the whole write */
6016 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6018 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6022 btrfs_bio_counter_dec(root
->fs_info
);
6026 if (map_length
< length
) {
6027 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
6028 logical
, length
, map_length
);
6032 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6033 dev
= bbio
->stripes
[dev_nr
].dev
;
6034 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
6035 bbio_error(bbio
, first_bio
, logical
);
6040 * Check and see if we're ok with this bio based on it's size
6041 * and offset with the given device.
6043 if (!bio_size_ok(dev
->bdev
, first_bio
,
6044 bbio
->stripes
[dev_nr
].physical
>> 9)) {
6045 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
6046 dev_nr
, rw
, async_submit
);
6051 if (dev_nr
< total_devs
- 1) {
6052 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6053 BUG_ON(!bio
); /* -ENOMEM */
6057 submit_stripe_bio(root
, bbio
, bio
,
6058 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
6061 btrfs_bio_counter_dec(root
->fs_info
);
6065 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6068 struct btrfs_device
*device
;
6069 struct btrfs_fs_devices
*cur_devices
;
6071 cur_devices
= fs_info
->fs_devices
;
6072 while (cur_devices
) {
6074 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6075 device
= __find_device(&cur_devices
->devices
,
6080 cur_devices
= cur_devices
->seed
;
6085 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6086 struct btrfs_fs_devices
*fs_devices
,
6087 u64 devid
, u8
*dev_uuid
)
6089 struct btrfs_device
*device
;
6091 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6095 list_add(&device
->dev_list
, &fs_devices
->devices
);
6096 device
->fs_devices
= fs_devices
;
6097 fs_devices
->num_devices
++;
6099 device
->missing
= 1;
6100 fs_devices
->missing_devices
++;
6106 * btrfs_alloc_device - allocate struct btrfs_device
6107 * @fs_info: used only for generating a new devid, can be NULL if
6108 * devid is provided (i.e. @devid != NULL).
6109 * @devid: a pointer to devid for this device. If NULL a new devid
6111 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6114 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6115 * on error. Returned struct is not linked onto any lists and can be
6116 * destroyed with kfree() right away.
6118 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6122 struct btrfs_device
*dev
;
6125 if (WARN_ON(!devid
&& !fs_info
))
6126 return ERR_PTR(-EINVAL
);
6128 dev
= __alloc_device();
6137 ret
= find_next_devid(fs_info
, &tmp
);
6140 return ERR_PTR(ret
);
6146 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6148 generate_random_uuid(dev
->uuid
);
6150 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6151 pending_bios_fn
, NULL
, NULL
);
6156 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6157 struct extent_buffer
*leaf
,
6158 struct btrfs_chunk
*chunk
)
6160 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6161 struct map_lookup
*map
;
6162 struct extent_map
*em
;
6166 u8 uuid
[BTRFS_UUID_SIZE
];
6171 logical
= key
->offset
;
6172 length
= btrfs_chunk_length(leaf
, chunk
);
6174 read_lock(&map_tree
->map_tree
.lock
);
6175 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6176 read_unlock(&map_tree
->map_tree
.lock
);
6178 /* already mapped? */
6179 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6180 free_extent_map(em
);
6183 free_extent_map(em
);
6186 em
= alloc_extent_map();
6189 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6190 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6192 free_extent_map(em
);
6196 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6197 em
->bdev
= (struct block_device
*)map
;
6198 em
->start
= logical
;
6201 em
->block_start
= 0;
6202 em
->block_len
= em
->len
;
6204 map
->num_stripes
= num_stripes
;
6205 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6206 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6207 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6208 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6209 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6210 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6211 for (i
= 0; i
< num_stripes
; i
++) {
6212 map
->stripes
[i
].physical
=
6213 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6214 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6215 read_extent_buffer(leaf
, uuid
, (unsigned long)
6216 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6218 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6220 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6221 free_extent_map(em
);
6224 if (!map
->stripes
[i
].dev
) {
6225 map
->stripes
[i
].dev
=
6226 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6228 if (!map
->stripes
[i
].dev
) {
6229 free_extent_map(em
);
6232 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU is missing",
6235 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6238 write_lock(&map_tree
->map_tree
.lock
);
6239 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6240 write_unlock(&map_tree
->map_tree
.lock
);
6241 BUG_ON(ret
); /* Tree corruption */
6242 free_extent_map(em
);
6247 static void fill_device_from_item(struct extent_buffer
*leaf
,
6248 struct btrfs_dev_item
*dev_item
,
6249 struct btrfs_device
*device
)
6253 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6254 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6255 device
->total_bytes
= device
->disk_total_bytes
;
6256 device
->commit_total_bytes
= device
->disk_total_bytes
;
6257 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6258 device
->commit_bytes_used
= device
->bytes_used
;
6259 device
->type
= btrfs_device_type(leaf
, dev_item
);
6260 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6261 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6262 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6263 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6264 device
->is_tgtdev_for_dev_replace
= 0;
6266 ptr
= btrfs_device_uuid(dev_item
);
6267 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6270 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6273 struct btrfs_fs_devices
*fs_devices
;
6276 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6278 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6279 while (fs_devices
) {
6280 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6283 fs_devices
= fs_devices
->seed
;
6286 fs_devices
= find_fsid(fsid
);
6288 if (!btrfs_test_opt(root
, DEGRADED
))
6289 return ERR_PTR(-ENOENT
);
6291 fs_devices
= alloc_fs_devices(fsid
);
6292 if (IS_ERR(fs_devices
))
6295 fs_devices
->seeding
= 1;
6296 fs_devices
->opened
= 1;
6300 fs_devices
= clone_fs_devices(fs_devices
);
6301 if (IS_ERR(fs_devices
))
6304 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6305 root
->fs_info
->bdev_holder
);
6307 free_fs_devices(fs_devices
);
6308 fs_devices
= ERR_PTR(ret
);
6312 if (!fs_devices
->seeding
) {
6313 __btrfs_close_devices(fs_devices
);
6314 free_fs_devices(fs_devices
);
6315 fs_devices
= ERR_PTR(-EINVAL
);
6319 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6320 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6325 static int read_one_dev(struct btrfs_root
*root
,
6326 struct extent_buffer
*leaf
,
6327 struct btrfs_dev_item
*dev_item
)
6329 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6330 struct btrfs_device
*device
;
6333 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6334 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6336 devid
= btrfs_device_id(leaf
, dev_item
);
6337 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6339 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6342 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6343 fs_devices
= open_seed_devices(root
, fs_uuid
);
6344 if (IS_ERR(fs_devices
))
6345 return PTR_ERR(fs_devices
);
6348 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6350 if (!btrfs_test_opt(root
, DEGRADED
))
6353 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6356 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6359 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6362 if(!device
->bdev
&& !device
->missing
) {
6364 * this happens when a device that was properly setup
6365 * in the device info lists suddenly goes bad.
6366 * device->bdev is NULL, and so we have to set
6367 * device->missing to one here
6369 device
->fs_devices
->missing_devices
++;
6370 device
->missing
= 1;
6373 /* Move the device to its own fs_devices */
6374 if (device
->fs_devices
!= fs_devices
) {
6375 ASSERT(device
->missing
);
6377 list_move(&device
->dev_list
, &fs_devices
->devices
);
6378 device
->fs_devices
->num_devices
--;
6379 fs_devices
->num_devices
++;
6381 device
->fs_devices
->missing_devices
--;
6382 fs_devices
->missing_devices
++;
6384 device
->fs_devices
= fs_devices
;
6388 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6389 BUG_ON(device
->writeable
);
6390 if (device
->generation
!=
6391 btrfs_device_generation(leaf
, dev_item
))
6395 fill_device_from_item(leaf
, dev_item
, device
);
6396 device
->in_fs_metadata
= 1;
6397 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6398 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6399 spin_lock(&root
->fs_info
->free_chunk_lock
);
6400 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6402 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6408 int btrfs_read_sys_array(struct btrfs_root
*root
)
6410 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6411 struct extent_buffer
*sb
;
6412 struct btrfs_disk_key
*disk_key
;
6413 struct btrfs_chunk
*chunk
;
6415 unsigned long sb_array_offset
;
6421 struct btrfs_key key
;
6423 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6425 * This will create extent buffer of nodesize, superblock size is
6426 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6427 * overallocate but we can keep it as-is, only the first page is used.
6429 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6432 btrfs_set_buffer_uptodate(sb
);
6433 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6435 * The sb extent buffer is artifical and just used to read the system array.
6436 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6437 * pages up-to-date when the page is larger: extent does not cover the
6438 * whole page and consequently check_page_uptodate does not find all
6439 * the page's extents up-to-date (the hole beyond sb),
6440 * write_extent_buffer then triggers a WARN_ON.
6442 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6443 * but sb spans only this function. Add an explicit SetPageUptodate call
6444 * to silence the warning eg. on PowerPC 64.
6446 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6447 SetPageUptodate(sb
->pages
[0]);
6449 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6450 array_size
= btrfs_super_sys_array_size(super_copy
);
6452 array_ptr
= super_copy
->sys_chunk_array
;
6453 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6456 while (cur_offset
< array_size
) {
6457 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6458 len
= sizeof(*disk_key
);
6459 if (cur_offset
+ len
> array_size
)
6460 goto out_short_read
;
6462 btrfs_disk_key_to_cpu(&key
, disk_key
);
6465 sb_array_offset
+= len
;
6468 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6469 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6471 * At least one btrfs_chunk with one stripe must be
6472 * present, exact stripe count check comes afterwards
6474 len
= btrfs_chunk_item_size(1);
6475 if (cur_offset
+ len
> array_size
)
6476 goto out_short_read
;
6478 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6479 len
= btrfs_chunk_item_size(num_stripes
);
6480 if (cur_offset
+ len
> array_size
)
6481 goto out_short_read
;
6483 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6491 sb_array_offset
+= len
;
6494 free_extent_buffer(sb
);
6498 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6500 free_extent_buffer(sb
);
6504 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6506 struct btrfs_path
*path
;
6507 struct extent_buffer
*leaf
;
6508 struct btrfs_key key
;
6509 struct btrfs_key found_key
;
6513 root
= root
->fs_info
->chunk_root
;
6515 path
= btrfs_alloc_path();
6519 mutex_lock(&uuid_mutex
);
6523 * Read all device items, and then all the chunk items. All
6524 * device items are found before any chunk item (their object id
6525 * is smaller than the lowest possible object id for a chunk
6526 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6528 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6531 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6535 leaf
= path
->nodes
[0];
6536 slot
= path
->slots
[0];
6537 if (slot
>= btrfs_header_nritems(leaf
)) {
6538 ret
= btrfs_next_leaf(root
, path
);
6545 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6546 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6547 struct btrfs_dev_item
*dev_item
;
6548 dev_item
= btrfs_item_ptr(leaf
, slot
,
6549 struct btrfs_dev_item
);
6550 ret
= read_one_dev(root
, leaf
, dev_item
);
6553 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6554 struct btrfs_chunk
*chunk
;
6555 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6556 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6564 unlock_chunks(root
);
6565 mutex_unlock(&uuid_mutex
);
6567 btrfs_free_path(path
);
6571 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6573 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6574 struct btrfs_device
*device
;
6576 while (fs_devices
) {
6577 mutex_lock(&fs_devices
->device_list_mutex
);
6578 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6579 device
->dev_root
= fs_info
->dev_root
;
6580 mutex_unlock(&fs_devices
->device_list_mutex
);
6582 fs_devices
= fs_devices
->seed
;
6586 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6590 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6591 btrfs_dev_stat_reset(dev
, i
);
6594 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6596 struct btrfs_key key
;
6597 struct btrfs_key found_key
;
6598 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6599 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6600 struct extent_buffer
*eb
;
6603 struct btrfs_device
*device
;
6604 struct btrfs_path
*path
= NULL
;
6607 path
= btrfs_alloc_path();
6613 mutex_lock(&fs_devices
->device_list_mutex
);
6614 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6616 struct btrfs_dev_stats_item
*ptr
;
6619 key
.type
= BTRFS_DEV_STATS_KEY
;
6620 key
.offset
= device
->devid
;
6621 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6623 __btrfs_reset_dev_stats(device
);
6624 device
->dev_stats_valid
= 1;
6625 btrfs_release_path(path
);
6628 slot
= path
->slots
[0];
6629 eb
= path
->nodes
[0];
6630 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6631 item_size
= btrfs_item_size_nr(eb
, slot
);
6633 ptr
= btrfs_item_ptr(eb
, slot
,
6634 struct btrfs_dev_stats_item
);
6636 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6637 if (item_size
>= (1 + i
) * sizeof(__le64
))
6638 btrfs_dev_stat_set(device
, i
,
6639 btrfs_dev_stats_value(eb
, ptr
, i
));
6641 btrfs_dev_stat_reset(device
, i
);
6644 device
->dev_stats_valid
= 1;
6645 btrfs_dev_stat_print_on_load(device
);
6646 btrfs_release_path(path
);
6648 mutex_unlock(&fs_devices
->device_list_mutex
);
6651 btrfs_free_path(path
);
6652 return ret
< 0 ? ret
: 0;
6655 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6656 struct btrfs_root
*dev_root
,
6657 struct btrfs_device
*device
)
6659 struct btrfs_path
*path
;
6660 struct btrfs_key key
;
6661 struct extent_buffer
*eb
;
6662 struct btrfs_dev_stats_item
*ptr
;
6667 key
.type
= BTRFS_DEV_STATS_KEY
;
6668 key
.offset
= device
->devid
;
6670 path
= btrfs_alloc_path();
6672 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6674 printk_in_rcu(KERN_WARNING
"BTRFS: "
6675 "error %d while searching for dev_stats item for device %s!\n",
6676 ret
, rcu_str_deref(device
->name
));
6681 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6682 /* need to delete old one and insert a new one */
6683 ret
= btrfs_del_item(trans
, dev_root
, path
);
6685 printk_in_rcu(KERN_WARNING
"BTRFS: "
6686 "delete too small dev_stats item for device %s failed %d!\n",
6687 rcu_str_deref(device
->name
), ret
);
6694 /* need to insert a new item */
6695 btrfs_release_path(path
);
6696 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6697 &key
, sizeof(*ptr
));
6699 printk_in_rcu(KERN_WARNING
"BTRFS: "
6700 "insert dev_stats item for device %s failed %d!\n",
6701 rcu_str_deref(device
->name
), ret
);
6706 eb
= path
->nodes
[0];
6707 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6708 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6709 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6710 btrfs_dev_stat_read(device
, i
));
6711 btrfs_mark_buffer_dirty(eb
);
6714 btrfs_free_path(path
);
6719 * called from commit_transaction. Writes all changed device stats to disk.
6721 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6722 struct btrfs_fs_info
*fs_info
)
6724 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6725 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6726 struct btrfs_device
*device
;
6730 mutex_lock(&fs_devices
->device_list_mutex
);
6731 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6732 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6735 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6736 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6738 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6740 mutex_unlock(&fs_devices
->device_list_mutex
);
6745 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6747 btrfs_dev_stat_inc(dev
, index
);
6748 btrfs_dev_stat_print_on_error(dev
);
6751 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6753 if (!dev
->dev_stats_valid
)
6755 printk_ratelimited_in_rcu(KERN_ERR
"BTRFS: "
6756 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6757 rcu_str_deref(dev
->name
),
6758 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6759 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6760 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6761 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6762 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6765 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6769 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6770 if (btrfs_dev_stat_read(dev
, i
) != 0)
6772 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6773 return; /* all values == 0, suppress message */
6775 printk_in_rcu(KERN_INFO
"BTRFS: "
6776 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6777 rcu_str_deref(dev
->name
),
6778 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6779 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6780 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6781 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6782 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6785 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6786 struct btrfs_ioctl_get_dev_stats
*stats
)
6788 struct btrfs_device
*dev
;
6789 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6792 mutex_lock(&fs_devices
->device_list_mutex
);
6793 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6794 mutex_unlock(&fs_devices
->device_list_mutex
);
6797 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6799 } else if (!dev
->dev_stats_valid
) {
6800 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6802 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6803 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6804 if (stats
->nr_items
> i
)
6806 btrfs_dev_stat_read_and_reset(dev
, i
);
6808 btrfs_dev_stat_reset(dev
, i
);
6811 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6812 if (stats
->nr_items
> i
)
6813 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6815 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6816 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6820 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6822 struct buffer_head
*bh
;
6823 struct btrfs_super_block
*disk_super
;
6825 bh
= btrfs_read_dev_super(device
->bdev
);
6828 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6830 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6831 set_buffer_dirty(bh
);
6832 sync_dirty_buffer(bh
);
6839 * Update the size of all devices, which is used for writing out the
6842 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
6844 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6845 struct btrfs_device
*curr
, *next
;
6847 if (list_empty(&fs_devices
->resized_devices
))
6850 mutex_lock(&fs_devices
->device_list_mutex
);
6851 lock_chunks(fs_info
->dev_root
);
6852 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
6854 list_del_init(&curr
->resized_list
);
6855 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
6857 unlock_chunks(fs_info
->dev_root
);
6858 mutex_unlock(&fs_devices
->device_list_mutex
);
6861 /* Must be invoked during the transaction commit */
6862 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
6863 struct btrfs_transaction
*transaction
)
6865 struct extent_map
*em
;
6866 struct map_lookup
*map
;
6867 struct btrfs_device
*dev
;
6870 if (list_empty(&transaction
->pending_chunks
))
6873 /* In order to kick the device replace finish process */
6875 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
6876 map
= (struct map_lookup
*)em
->bdev
;
6878 for (i
= 0; i
< map
->num_stripes
; i
++) {
6879 dev
= map
->stripes
[i
].dev
;
6880 dev
->commit_bytes_used
= dev
->bytes_used
;
6883 unlock_chunks(root
);
6886 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
6888 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6889 while (fs_devices
) {
6890 fs_devices
->fs_info
= fs_info
;
6891 fs_devices
= fs_devices
->seed
;
6895 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
6897 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6898 while (fs_devices
) {
6899 fs_devices
->fs_info
= NULL
;
6900 fs_devices
= fs_devices
->seed
;