Linux 4.2.1
[linux/fpc-iii.git] / fs / f2fs / file.c
blobb0f38c3b37f4d5577551e6d517e801a6f644ac09
1 /*
2 * fs/f2fs/file.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
33 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
34 struct vm_fault *vmf)
36 struct page *page = vmf->page;
37 struct inode *inode = file_inode(vma->vm_file);
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 struct dnode_of_data dn;
40 int err;
42 f2fs_balance_fs(sbi);
44 sb_start_pagefault(inode->i_sb);
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
59 file_update_time(vma->vm_file);
60 lock_page(page);
61 if (unlikely(page->mapping != inode->i_mapping ||
62 page_offset(page) > i_size_read(inode) ||
63 !PageUptodate(page))) {
64 unlock_page(page);
65 err = -EFAULT;
66 goto out;
70 * check to see if the page is mapped already (no holes)
72 if (PageMappedToDisk(page))
73 goto mapped;
75 /* page is wholly or partially inside EOF */
76 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
77 unsigned offset;
78 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
79 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
81 set_page_dirty(page);
82 SetPageUptodate(page);
84 trace_f2fs_vm_page_mkwrite(page, DATA);
85 mapped:
86 /* fill the page */
87 f2fs_wait_on_page_writeback(page, DATA);
88 out:
89 sb_end_pagefault(inode->i_sb);
90 return block_page_mkwrite_return(err);
93 static const struct vm_operations_struct f2fs_file_vm_ops = {
94 .fault = filemap_fault,
95 .map_pages = filemap_map_pages,
96 .page_mkwrite = f2fs_vm_page_mkwrite,
99 static int get_parent_ino(struct inode *inode, nid_t *pino)
101 struct dentry *dentry;
103 inode = igrab(inode);
104 dentry = d_find_any_alias(inode);
105 iput(inode);
106 if (!dentry)
107 return 0;
109 if (update_dent_inode(inode, inode, &dentry->d_name)) {
110 dput(dentry);
111 return 0;
114 *pino = parent_ino(dentry);
115 dput(dentry);
116 return 1;
119 static inline bool need_do_checkpoint(struct inode *inode)
121 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
122 bool need_cp = false;
124 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
125 need_cp = true;
126 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
127 need_cp = true;
128 else if (file_wrong_pino(inode))
129 need_cp = true;
130 else if (!space_for_roll_forward(sbi))
131 need_cp = true;
132 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
133 need_cp = true;
134 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
135 need_cp = true;
136 else if (test_opt(sbi, FASTBOOT))
137 need_cp = true;
138 else if (sbi->active_logs == 2)
139 need_cp = true;
141 return need_cp;
144 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
146 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
147 bool ret = false;
148 /* But we need to avoid that there are some inode updates */
149 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
150 ret = true;
151 f2fs_put_page(i, 0);
152 return ret;
155 static void try_to_fix_pino(struct inode *inode)
157 struct f2fs_inode_info *fi = F2FS_I(inode);
158 nid_t pino;
160 down_write(&fi->i_sem);
161 fi->xattr_ver = 0;
162 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
163 get_parent_ino(inode, &pino)) {
164 fi->i_pino = pino;
165 file_got_pino(inode);
166 up_write(&fi->i_sem);
168 mark_inode_dirty_sync(inode);
169 f2fs_write_inode(inode, NULL);
170 } else {
171 up_write(&fi->i_sem);
175 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
177 struct inode *inode = file->f_mapping->host;
178 struct f2fs_inode_info *fi = F2FS_I(inode);
179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
180 nid_t ino = inode->i_ino;
181 int ret = 0;
182 bool need_cp = false;
183 struct writeback_control wbc = {
184 .sync_mode = WB_SYNC_ALL,
185 .nr_to_write = LONG_MAX,
186 .for_reclaim = 0,
189 if (unlikely(f2fs_readonly(inode->i_sb)))
190 return 0;
192 trace_f2fs_sync_file_enter(inode);
194 /* if fdatasync is triggered, let's do in-place-update */
195 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
196 set_inode_flag(fi, FI_NEED_IPU);
197 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
198 clear_inode_flag(fi, FI_NEED_IPU);
200 if (ret) {
201 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
202 return ret;
205 /* if the inode is dirty, let's recover all the time */
206 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
207 update_inode_page(inode);
208 goto go_write;
212 * if there is no written data, don't waste time to write recovery info.
214 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
215 !exist_written_data(sbi, ino, APPEND_INO)) {
217 /* it may call write_inode just prior to fsync */
218 if (need_inode_page_update(sbi, ino))
219 goto go_write;
221 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
222 exist_written_data(sbi, ino, UPDATE_INO))
223 goto flush_out;
224 goto out;
226 go_write:
227 /* guarantee free sections for fsync */
228 f2fs_balance_fs(sbi);
231 * Both of fdatasync() and fsync() are able to be recovered from
232 * sudden-power-off.
234 down_read(&fi->i_sem);
235 need_cp = need_do_checkpoint(inode);
236 up_read(&fi->i_sem);
238 if (need_cp) {
239 /* all the dirty node pages should be flushed for POR */
240 ret = f2fs_sync_fs(inode->i_sb, 1);
243 * We've secured consistency through sync_fs. Following pino
244 * will be used only for fsynced inodes after checkpoint.
246 try_to_fix_pino(inode);
247 clear_inode_flag(fi, FI_APPEND_WRITE);
248 clear_inode_flag(fi, FI_UPDATE_WRITE);
249 goto out;
251 sync_nodes:
252 sync_node_pages(sbi, ino, &wbc);
254 /* if cp_error was enabled, we should avoid infinite loop */
255 if (unlikely(f2fs_cp_error(sbi)))
256 goto out;
258 if (need_inode_block_update(sbi, ino)) {
259 mark_inode_dirty_sync(inode);
260 f2fs_write_inode(inode, NULL);
261 goto sync_nodes;
264 ret = wait_on_node_pages_writeback(sbi, ino);
265 if (ret)
266 goto out;
268 /* once recovery info is written, don't need to tack this */
269 remove_dirty_inode(sbi, ino, APPEND_INO);
270 clear_inode_flag(fi, FI_APPEND_WRITE);
271 flush_out:
272 remove_dirty_inode(sbi, ino, UPDATE_INO);
273 clear_inode_flag(fi, FI_UPDATE_WRITE);
274 ret = f2fs_issue_flush(sbi);
275 out:
276 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
277 f2fs_trace_ios(NULL, 1);
278 return ret;
281 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
282 pgoff_t pgofs, int whence)
284 struct pagevec pvec;
285 int nr_pages;
287 if (whence != SEEK_DATA)
288 return 0;
290 /* find first dirty page index */
291 pagevec_init(&pvec, 0);
292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
293 PAGECACHE_TAG_DIRTY, 1);
294 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
295 pagevec_release(&pvec);
296 return pgofs;
299 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
300 int whence)
302 switch (whence) {
303 case SEEK_DATA:
304 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
305 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
306 return true;
307 break;
308 case SEEK_HOLE:
309 if (blkaddr == NULL_ADDR)
310 return true;
311 break;
313 return false;
316 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
318 struct inode *inode = file->f_mapping->host;
319 loff_t maxbytes = inode->i_sb->s_maxbytes;
320 struct dnode_of_data dn;
321 pgoff_t pgofs, end_offset, dirty;
322 loff_t data_ofs = offset;
323 loff_t isize;
324 int err = 0;
326 mutex_lock(&inode->i_mutex);
328 isize = i_size_read(inode);
329 if (offset >= isize)
330 goto fail;
332 /* handle inline data case */
333 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
334 if (whence == SEEK_HOLE)
335 data_ofs = isize;
336 goto found;
339 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
341 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
343 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
344 set_new_dnode(&dn, inode, NULL, NULL, 0);
345 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
346 if (err && err != -ENOENT) {
347 goto fail;
348 } else if (err == -ENOENT) {
349 /* direct node does not exists */
350 if (whence == SEEK_DATA) {
351 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
352 F2FS_I(inode));
353 continue;
354 } else {
355 goto found;
359 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
361 /* find data/hole in dnode block */
362 for (; dn.ofs_in_node < end_offset;
363 dn.ofs_in_node++, pgofs++,
364 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
365 block_t blkaddr;
366 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
368 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
369 f2fs_put_dnode(&dn);
370 goto found;
373 f2fs_put_dnode(&dn);
376 if (whence == SEEK_DATA)
377 goto fail;
378 found:
379 if (whence == SEEK_HOLE && data_ofs > isize)
380 data_ofs = isize;
381 mutex_unlock(&inode->i_mutex);
382 return vfs_setpos(file, data_ofs, maxbytes);
383 fail:
384 mutex_unlock(&inode->i_mutex);
385 return -ENXIO;
388 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
390 struct inode *inode = file->f_mapping->host;
391 loff_t maxbytes = inode->i_sb->s_maxbytes;
393 switch (whence) {
394 case SEEK_SET:
395 case SEEK_CUR:
396 case SEEK_END:
397 return generic_file_llseek_size(file, offset, whence,
398 maxbytes, i_size_read(inode));
399 case SEEK_DATA:
400 case SEEK_HOLE:
401 if (offset < 0)
402 return -ENXIO;
403 return f2fs_seek_block(file, offset, whence);
406 return -EINVAL;
409 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
411 struct inode *inode = file_inode(file);
413 if (f2fs_encrypted_inode(inode)) {
414 int err = f2fs_get_encryption_info(inode);
415 if (err)
416 return 0;
419 /* we don't need to use inline_data strictly */
420 if (f2fs_has_inline_data(inode)) {
421 int err = f2fs_convert_inline_inode(inode);
422 if (err)
423 return err;
426 file_accessed(file);
427 vma->vm_ops = &f2fs_file_vm_ops;
428 return 0;
431 static int f2fs_file_open(struct inode *inode, struct file *filp)
433 int ret = generic_file_open(inode, filp);
435 if (!ret && f2fs_encrypted_inode(inode)) {
436 ret = f2fs_get_encryption_info(inode);
437 if (ret)
438 ret = -EACCES;
440 return ret;
443 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
445 int nr_free = 0, ofs = dn->ofs_in_node;
446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
447 struct f2fs_node *raw_node;
448 __le32 *addr;
450 raw_node = F2FS_NODE(dn->node_page);
451 addr = blkaddr_in_node(raw_node) + ofs;
453 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
454 block_t blkaddr = le32_to_cpu(*addr);
455 if (blkaddr == NULL_ADDR)
456 continue;
458 dn->data_blkaddr = NULL_ADDR;
459 set_data_blkaddr(dn);
460 f2fs_update_extent_cache(dn);
461 invalidate_blocks(sbi, blkaddr);
462 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
463 clear_inode_flag(F2FS_I(dn->inode),
464 FI_FIRST_BLOCK_WRITTEN);
465 nr_free++;
467 if (nr_free) {
468 dec_valid_block_count(sbi, dn->inode, nr_free);
469 set_page_dirty(dn->node_page);
470 sync_inode_page(dn);
472 dn->ofs_in_node = ofs;
474 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
475 dn->ofs_in_node, nr_free);
476 return nr_free;
479 void truncate_data_blocks(struct dnode_of_data *dn)
481 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
484 static int truncate_partial_data_page(struct inode *inode, u64 from,
485 bool cache_only)
487 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
488 pgoff_t index = from >> PAGE_CACHE_SHIFT;
489 struct address_space *mapping = inode->i_mapping;
490 struct page *page;
492 if (!offset && !cache_only)
493 return 0;
495 if (cache_only) {
496 page = grab_cache_page(mapping, index);
497 if (page && PageUptodate(page))
498 goto truncate_out;
499 f2fs_put_page(page, 1);
500 return 0;
503 page = get_lock_data_page(inode, index);
504 if (IS_ERR(page))
505 return 0;
506 truncate_out:
507 f2fs_wait_on_page_writeback(page, DATA);
508 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
509 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
510 set_page_dirty(page);
511 f2fs_put_page(page, 1);
512 return 0;
515 int truncate_blocks(struct inode *inode, u64 from, bool lock)
517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
518 unsigned int blocksize = inode->i_sb->s_blocksize;
519 struct dnode_of_data dn;
520 pgoff_t free_from;
521 int count = 0, err = 0;
522 struct page *ipage;
523 bool truncate_page = false;
525 trace_f2fs_truncate_blocks_enter(inode, from);
527 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
529 if (lock)
530 f2fs_lock_op(sbi);
532 ipage = get_node_page(sbi, inode->i_ino);
533 if (IS_ERR(ipage)) {
534 err = PTR_ERR(ipage);
535 goto out;
538 if (f2fs_has_inline_data(inode)) {
539 if (truncate_inline_inode(ipage, from))
540 set_page_dirty(ipage);
541 f2fs_put_page(ipage, 1);
542 truncate_page = true;
543 goto out;
546 set_new_dnode(&dn, inode, ipage, NULL, 0);
547 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
548 if (err) {
549 if (err == -ENOENT)
550 goto free_next;
551 goto out;
554 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
556 count -= dn.ofs_in_node;
557 f2fs_bug_on(sbi, count < 0);
559 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
560 truncate_data_blocks_range(&dn, count);
561 free_from += count;
564 f2fs_put_dnode(&dn);
565 free_next:
566 err = truncate_inode_blocks(inode, free_from);
567 out:
568 if (lock)
569 f2fs_unlock_op(sbi);
571 /* lastly zero out the first data page */
572 if (!err)
573 err = truncate_partial_data_page(inode, from, truncate_page);
575 trace_f2fs_truncate_blocks_exit(inode, err);
576 return err;
579 void f2fs_truncate(struct inode *inode)
581 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
582 S_ISLNK(inode->i_mode)))
583 return;
585 trace_f2fs_truncate(inode);
587 /* we should check inline_data size */
588 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
589 if (f2fs_convert_inline_inode(inode))
590 return;
593 if (!truncate_blocks(inode, i_size_read(inode), true)) {
594 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
595 mark_inode_dirty(inode);
599 int f2fs_getattr(struct vfsmount *mnt,
600 struct dentry *dentry, struct kstat *stat)
602 struct inode *inode = d_inode(dentry);
603 generic_fillattr(inode, stat);
604 stat->blocks <<= 3;
605 return 0;
608 #ifdef CONFIG_F2FS_FS_POSIX_ACL
609 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
611 struct f2fs_inode_info *fi = F2FS_I(inode);
612 unsigned int ia_valid = attr->ia_valid;
614 if (ia_valid & ATTR_UID)
615 inode->i_uid = attr->ia_uid;
616 if (ia_valid & ATTR_GID)
617 inode->i_gid = attr->ia_gid;
618 if (ia_valid & ATTR_ATIME)
619 inode->i_atime = timespec_trunc(attr->ia_atime,
620 inode->i_sb->s_time_gran);
621 if (ia_valid & ATTR_MTIME)
622 inode->i_mtime = timespec_trunc(attr->ia_mtime,
623 inode->i_sb->s_time_gran);
624 if (ia_valid & ATTR_CTIME)
625 inode->i_ctime = timespec_trunc(attr->ia_ctime,
626 inode->i_sb->s_time_gran);
627 if (ia_valid & ATTR_MODE) {
628 umode_t mode = attr->ia_mode;
630 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
631 mode &= ~S_ISGID;
632 set_acl_inode(fi, mode);
635 #else
636 #define __setattr_copy setattr_copy
637 #endif
639 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
641 struct inode *inode = d_inode(dentry);
642 struct f2fs_inode_info *fi = F2FS_I(inode);
643 int err;
645 err = inode_change_ok(inode, attr);
646 if (err)
647 return err;
649 if (attr->ia_valid & ATTR_SIZE) {
650 if (f2fs_encrypted_inode(inode) &&
651 f2fs_get_encryption_info(inode))
652 return -EACCES;
654 if (attr->ia_size <= i_size_read(inode)) {
655 truncate_setsize(inode, attr->ia_size);
656 f2fs_truncate(inode);
657 f2fs_balance_fs(F2FS_I_SB(inode));
658 } else {
660 * do not trim all blocks after i_size if target size is
661 * larger than i_size.
663 truncate_setsize(inode, attr->ia_size);
667 __setattr_copy(inode, attr);
669 if (attr->ia_valid & ATTR_MODE) {
670 err = posix_acl_chmod(inode, get_inode_mode(inode));
671 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
672 inode->i_mode = fi->i_acl_mode;
673 clear_inode_flag(fi, FI_ACL_MODE);
677 mark_inode_dirty(inode);
678 return err;
681 const struct inode_operations f2fs_file_inode_operations = {
682 .getattr = f2fs_getattr,
683 .setattr = f2fs_setattr,
684 .get_acl = f2fs_get_acl,
685 .set_acl = f2fs_set_acl,
686 #ifdef CONFIG_F2FS_FS_XATTR
687 .setxattr = generic_setxattr,
688 .getxattr = generic_getxattr,
689 .listxattr = f2fs_listxattr,
690 .removexattr = generic_removexattr,
691 #endif
692 .fiemap = f2fs_fiemap,
695 static void fill_zero(struct inode *inode, pgoff_t index,
696 loff_t start, loff_t len)
698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
699 struct page *page;
701 if (!len)
702 return;
704 f2fs_balance_fs(sbi);
706 f2fs_lock_op(sbi);
707 page = get_new_data_page(inode, NULL, index, false);
708 f2fs_unlock_op(sbi);
710 if (!IS_ERR(page)) {
711 f2fs_wait_on_page_writeback(page, DATA);
712 zero_user(page, start, len);
713 set_page_dirty(page);
714 f2fs_put_page(page, 1);
718 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
720 pgoff_t index;
721 int err;
723 for (index = pg_start; index < pg_end; index++) {
724 struct dnode_of_data dn;
726 set_new_dnode(&dn, inode, NULL, NULL, 0);
727 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
728 if (err) {
729 if (err == -ENOENT)
730 continue;
731 return err;
734 if (dn.data_blkaddr != NULL_ADDR)
735 truncate_data_blocks_range(&dn, 1);
736 f2fs_put_dnode(&dn);
738 return 0;
741 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
743 pgoff_t pg_start, pg_end;
744 loff_t off_start, off_end;
745 int ret = 0;
747 if (!S_ISREG(inode->i_mode))
748 return -EOPNOTSUPP;
750 if (f2fs_has_inline_data(inode)) {
751 ret = f2fs_convert_inline_inode(inode);
752 if (ret)
753 return ret;
756 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
757 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
759 off_start = offset & (PAGE_CACHE_SIZE - 1);
760 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
762 if (pg_start == pg_end) {
763 fill_zero(inode, pg_start, off_start,
764 off_end - off_start);
765 } else {
766 if (off_start)
767 fill_zero(inode, pg_start++, off_start,
768 PAGE_CACHE_SIZE - off_start);
769 if (off_end)
770 fill_zero(inode, pg_end, 0, off_end);
772 if (pg_start < pg_end) {
773 struct address_space *mapping = inode->i_mapping;
774 loff_t blk_start, blk_end;
775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
777 f2fs_balance_fs(sbi);
779 blk_start = pg_start << PAGE_CACHE_SHIFT;
780 blk_end = pg_end << PAGE_CACHE_SHIFT;
781 truncate_inode_pages_range(mapping, blk_start,
782 blk_end - 1);
784 f2fs_lock_op(sbi);
785 ret = truncate_hole(inode, pg_start, pg_end);
786 f2fs_unlock_op(sbi);
790 return ret;
793 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
796 struct dnode_of_data dn;
797 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
798 int ret = 0;
800 f2fs_lock_op(sbi);
802 for (; end < nrpages; start++, end++) {
803 block_t new_addr, old_addr;
805 set_new_dnode(&dn, inode, NULL, NULL, 0);
806 ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
807 if (ret && ret != -ENOENT) {
808 goto out;
809 } else if (ret == -ENOENT) {
810 new_addr = NULL_ADDR;
811 } else {
812 new_addr = dn.data_blkaddr;
813 truncate_data_blocks_range(&dn, 1);
814 f2fs_put_dnode(&dn);
817 if (new_addr == NULL_ADDR) {
818 set_new_dnode(&dn, inode, NULL, NULL, 0);
819 ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
820 if (ret && ret != -ENOENT)
821 goto out;
822 else if (ret == -ENOENT)
823 continue;
825 if (dn.data_blkaddr == NULL_ADDR) {
826 f2fs_put_dnode(&dn);
827 continue;
828 } else {
829 truncate_data_blocks_range(&dn, 1);
832 f2fs_put_dnode(&dn);
833 } else {
834 struct page *ipage;
836 ipage = get_node_page(sbi, inode->i_ino);
837 if (IS_ERR(ipage)) {
838 ret = PTR_ERR(ipage);
839 goto out;
842 set_new_dnode(&dn, inode, ipage, NULL, 0);
843 ret = f2fs_reserve_block(&dn, start);
844 if (ret)
845 goto out;
847 old_addr = dn.data_blkaddr;
848 if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
849 dn.data_blkaddr = NULL_ADDR;
850 f2fs_update_extent_cache(&dn);
851 invalidate_blocks(sbi, old_addr);
853 dn.data_blkaddr = new_addr;
854 set_data_blkaddr(&dn);
855 } else if (new_addr != NEW_ADDR) {
856 struct node_info ni;
858 get_node_info(sbi, dn.nid, &ni);
859 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
860 ni.version, true);
863 f2fs_put_dnode(&dn);
866 ret = 0;
867 out:
868 f2fs_unlock_op(sbi);
869 return ret;
872 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
874 pgoff_t pg_start, pg_end;
875 loff_t new_size;
876 int ret;
878 if (!S_ISREG(inode->i_mode))
879 return -EINVAL;
881 if (offset + len >= i_size_read(inode))
882 return -EINVAL;
884 /* collapse range should be aligned to block size of f2fs. */
885 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
886 return -EINVAL;
888 pg_start = offset >> PAGE_CACHE_SHIFT;
889 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
891 /* write out all dirty pages from offset */
892 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
893 if (ret)
894 return ret;
896 truncate_pagecache(inode, offset);
898 ret = f2fs_do_collapse(inode, pg_start, pg_end);
899 if (ret)
900 return ret;
902 new_size = i_size_read(inode) - len;
904 ret = truncate_blocks(inode, new_size, true);
905 if (!ret)
906 i_size_write(inode, new_size);
908 return ret;
911 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
912 int mode)
914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
915 struct address_space *mapping = inode->i_mapping;
916 pgoff_t index, pg_start, pg_end;
917 loff_t new_size = i_size_read(inode);
918 loff_t off_start, off_end;
919 int ret = 0;
921 if (!S_ISREG(inode->i_mode))
922 return -EINVAL;
924 ret = inode_newsize_ok(inode, (len + offset));
925 if (ret)
926 return ret;
928 f2fs_balance_fs(sbi);
930 if (f2fs_has_inline_data(inode)) {
931 ret = f2fs_convert_inline_inode(inode);
932 if (ret)
933 return ret;
936 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
937 if (ret)
938 return ret;
940 truncate_pagecache_range(inode, offset, offset + len - 1);
942 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
943 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
945 off_start = offset & (PAGE_CACHE_SIZE - 1);
946 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
948 if (pg_start == pg_end) {
949 fill_zero(inode, pg_start, off_start, off_end - off_start);
950 if (offset + len > new_size)
951 new_size = offset + len;
952 new_size = max_t(loff_t, new_size, offset + len);
953 } else {
954 if (off_start) {
955 fill_zero(inode, pg_start++, off_start,
956 PAGE_CACHE_SIZE - off_start);
957 new_size = max_t(loff_t, new_size,
958 pg_start << PAGE_CACHE_SHIFT);
961 for (index = pg_start; index < pg_end; index++) {
962 struct dnode_of_data dn;
963 struct page *ipage;
965 f2fs_lock_op(sbi);
967 ipage = get_node_page(sbi, inode->i_ino);
968 if (IS_ERR(ipage)) {
969 ret = PTR_ERR(ipage);
970 f2fs_unlock_op(sbi);
971 goto out;
974 set_new_dnode(&dn, inode, ipage, NULL, 0);
975 ret = f2fs_reserve_block(&dn, index);
976 if (ret) {
977 f2fs_unlock_op(sbi);
978 goto out;
981 if (dn.data_blkaddr != NEW_ADDR) {
982 invalidate_blocks(sbi, dn.data_blkaddr);
984 dn.data_blkaddr = NEW_ADDR;
985 set_data_blkaddr(&dn);
987 dn.data_blkaddr = NULL_ADDR;
988 f2fs_update_extent_cache(&dn);
990 f2fs_put_dnode(&dn);
991 f2fs_unlock_op(sbi);
993 new_size = max_t(loff_t, new_size,
994 (index + 1) << PAGE_CACHE_SHIFT);
997 if (off_end) {
998 fill_zero(inode, pg_end, 0, off_end);
999 new_size = max_t(loff_t, new_size, offset + len);
1003 out:
1004 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1005 i_size_write(inode, new_size);
1006 mark_inode_dirty(inode);
1007 update_inode_page(inode);
1010 return ret;
1013 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1016 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1017 loff_t new_size;
1018 int ret;
1020 if (!S_ISREG(inode->i_mode))
1021 return -EINVAL;
1023 new_size = i_size_read(inode) + len;
1024 if (new_size > inode->i_sb->s_maxbytes)
1025 return -EFBIG;
1027 if (offset >= i_size_read(inode))
1028 return -EINVAL;
1030 /* insert range should be aligned to block size of f2fs. */
1031 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1032 return -EINVAL;
1034 f2fs_balance_fs(sbi);
1036 ret = truncate_blocks(inode, i_size_read(inode), true);
1037 if (ret)
1038 return ret;
1040 /* write out all dirty pages from offset */
1041 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1042 if (ret)
1043 return ret;
1045 truncate_pagecache(inode, offset);
1047 pg_start = offset >> PAGE_CACHE_SHIFT;
1048 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1049 delta = pg_end - pg_start;
1050 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1052 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1053 struct dnode_of_data dn;
1054 struct page *ipage;
1055 block_t new_addr, old_addr;
1057 f2fs_lock_op(sbi);
1059 set_new_dnode(&dn, inode, NULL, NULL, 0);
1060 ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
1061 if (ret && ret != -ENOENT) {
1062 goto out;
1063 } else if (ret == -ENOENT) {
1064 goto next;
1065 } else if (dn.data_blkaddr == NULL_ADDR) {
1066 f2fs_put_dnode(&dn);
1067 goto next;
1068 } else {
1069 new_addr = dn.data_blkaddr;
1070 truncate_data_blocks_range(&dn, 1);
1071 f2fs_put_dnode(&dn);
1074 ipage = get_node_page(sbi, inode->i_ino);
1075 if (IS_ERR(ipage)) {
1076 ret = PTR_ERR(ipage);
1077 goto out;
1080 set_new_dnode(&dn, inode, ipage, NULL, 0);
1081 ret = f2fs_reserve_block(&dn, idx + delta);
1082 if (ret)
1083 goto out;
1085 old_addr = dn.data_blkaddr;
1086 f2fs_bug_on(sbi, old_addr != NEW_ADDR);
1088 if (new_addr != NEW_ADDR) {
1089 struct node_info ni;
1091 get_node_info(sbi, dn.nid, &ni);
1092 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
1093 ni.version, true);
1095 f2fs_put_dnode(&dn);
1096 next:
1097 f2fs_unlock_op(sbi);
1100 i_size_write(inode, new_size);
1101 return 0;
1102 out:
1103 f2fs_unlock_op(sbi);
1104 return ret;
1107 static int expand_inode_data(struct inode *inode, loff_t offset,
1108 loff_t len, int mode)
1110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1111 pgoff_t index, pg_start, pg_end;
1112 loff_t new_size = i_size_read(inode);
1113 loff_t off_start, off_end;
1114 int ret = 0;
1116 f2fs_balance_fs(sbi);
1118 ret = inode_newsize_ok(inode, (len + offset));
1119 if (ret)
1120 return ret;
1122 if (f2fs_has_inline_data(inode)) {
1123 ret = f2fs_convert_inline_inode(inode);
1124 if (ret)
1125 return ret;
1128 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1129 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1131 off_start = offset & (PAGE_CACHE_SIZE - 1);
1132 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1134 f2fs_lock_op(sbi);
1136 for (index = pg_start; index <= pg_end; index++) {
1137 struct dnode_of_data dn;
1139 if (index == pg_end && !off_end)
1140 goto noalloc;
1142 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 ret = f2fs_reserve_block(&dn, index);
1144 if (ret)
1145 break;
1146 noalloc:
1147 if (pg_start == pg_end)
1148 new_size = offset + len;
1149 else if (index == pg_start && off_start)
1150 new_size = (index + 1) << PAGE_CACHE_SHIFT;
1151 else if (index == pg_end)
1152 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
1153 else
1154 new_size += PAGE_CACHE_SIZE;
1157 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1158 i_size_read(inode) < new_size) {
1159 i_size_write(inode, new_size);
1160 mark_inode_dirty(inode);
1161 update_inode_page(inode);
1163 f2fs_unlock_op(sbi);
1165 return ret;
1168 static long f2fs_fallocate(struct file *file, int mode,
1169 loff_t offset, loff_t len)
1171 struct inode *inode = file_inode(file);
1172 long ret = 0;
1174 if (f2fs_encrypted_inode(inode) &&
1175 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1176 return -EOPNOTSUPP;
1178 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1179 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1180 FALLOC_FL_INSERT_RANGE))
1181 return -EOPNOTSUPP;
1183 mutex_lock(&inode->i_mutex);
1185 if (mode & FALLOC_FL_PUNCH_HOLE) {
1186 if (offset >= inode->i_size)
1187 goto out;
1189 ret = punch_hole(inode, offset, len);
1190 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1191 ret = f2fs_collapse_range(inode, offset, len);
1192 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1193 ret = f2fs_zero_range(inode, offset, len, mode);
1194 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1195 ret = f2fs_insert_range(inode, offset, len);
1196 } else {
1197 ret = expand_inode_data(inode, offset, len, mode);
1200 if (!ret) {
1201 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1202 mark_inode_dirty(inode);
1205 out:
1206 mutex_unlock(&inode->i_mutex);
1208 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1209 return ret;
1212 static int f2fs_release_file(struct inode *inode, struct file *filp)
1214 /* some remained atomic pages should discarded */
1215 if (f2fs_is_atomic_file(inode))
1216 commit_inmem_pages(inode, true);
1217 if (f2fs_is_volatile_file(inode)) {
1218 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1219 filemap_fdatawrite(inode->i_mapping);
1220 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1222 return 0;
1225 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1226 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1228 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1230 if (S_ISDIR(mode))
1231 return flags;
1232 else if (S_ISREG(mode))
1233 return flags & F2FS_REG_FLMASK;
1234 else
1235 return flags & F2FS_OTHER_FLMASK;
1238 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1240 struct inode *inode = file_inode(filp);
1241 struct f2fs_inode_info *fi = F2FS_I(inode);
1242 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1243 return put_user(flags, (int __user *)arg);
1246 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1248 struct inode *inode = file_inode(filp);
1249 struct f2fs_inode_info *fi = F2FS_I(inode);
1250 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1251 unsigned int oldflags;
1252 int ret;
1254 ret = mnt_want_write_file(filp);
1255 if (ret)
1256 return ret;
1258 if (!inode_owner_or_capable(inode)) {
1259 ret = -EACCES;
1260 goto out;
1263 if (get_user(flags, (int __user *)arg)) {
1264 ret = -EFAULT;
1265 goto out;
1268 flags = f2fs_mask_flags(inode->i_mode, flags);
1270 mutex_lock(&inode->i_mutex);
1272 oldflags = fi->i_flags;
1274 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1275 if (!capable(CAP_LINUX_IMMUTABLE)) {
1276 mutex_unlock(&inode->i_mutex);
1277 ret = -EPERM;
1278 goto out;
1282 flags = flags & FS_FL_USER_MODIFIABLE;
1283 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1284 fi->i_flags = flags;
1285 mutex_unlock(&inode->i_mutex);
1287 f2fs_set_inode_flags(inode);
1288 inode->i_ctime = CURRENT_TIME;
1289 mark_inode_dirty(inode);
1290 out:
1291 mnt_drop_write_file(filp);
1292 return ret;
1295 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1297 struct inode *inode = file_inode(filp);
1299 return put_user(inode->i_generation, (int __user *)arg);
1302 static int f2fs_ioc_start_atomic_write(struct file *filp)
1304 struct inode *inode = file_inode(filp);
1306 if (!inode_owner_or_capable(inode))
1307 return -EACCES;
1309 f2fs_balance_fs(F2FS_I_SB(inode));
1311 if (f2fs_is_atomic_file(inode))
1312 return 0;
1314 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1316 return f2fs_convert_inline_inode(inode);
1319 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1321 struct inode *inode = file_inode(filp);
1322 int ret;
1324 if (!inode_owner_or_capable(inode))
1325 return -EACCES;
1327 if (f2fs_is_volatile_file(inode))
1328 return 0;
1330 ret = mnt_want_write_file(filp);
1331 if (ret)
1332 return ret;
1334 if (f2fs_is_atomic_file(inode)) {
1335 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1336 commit_inmem_pages(inode, false);
1339 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
1340 mnt_drop_write_file(filp);
1341 return ret;
1344 static int f2fs_ioc_start_volatile_write(struct file *filp)
1346 struct inode *inode = file_inode(filp);
1348 if (!inode_owner_or_capable(inode))
1349 return -EACCES;
1351 if (f2fs_is_volatile_file(inode))
1352 return 0;
1354 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1356 return f2fs_convert_inline_inode(inode);
1359 static int f2fs_ioc_release_volatile_write(struct file *filp)
1361 struct inode *inode = file_inode(filp);
1363 if (!inode_owner_or_capable(inode))
1364 return -EACCES;
1366 if (!f2fs_is_volatile_file(inode))
1367 return 0;
1369 if (!f2fs_is_first_block_written(inode))
1370 return truncate_partial_data_page(inode, 0, true);
1372 punch_hole(inode, 0, F2FS_BLKSIZE);
1373 return 0;
1376 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1378 struct inode *inode = file_inode(filp);
1379 int ret;
1381 if (!inode_owner_or_capable(inode))
1382 return -EACCES;
1384 ret = mnt_want_write_file(filp);
1385 if (ret)
1386 return ret;
1388 f2fs_balance_fs(F2FS_I_SB(inode));
1390 if (f2fs_is_atomic_file(inode)) {
1391 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1392 commit_inmem_pages(inode, false);
1395 if (f2fs_is_volatile_file(inode))
1396 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1398 mnt_drop_write_file(filp);
1399 return ret;
1402 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1404 struct inode *inode = file_inode(filp);
1405 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1406 struct super_block *sb = sbi->sb;
1407 __u32 in;
1409 if (!capable(CAP_SYS_ADMIN))
1410 return -EPERM;
1412 if (get_user(in, (__u32 __user *)arg))
1413 return -EFAULT;
1415 switch (in) {
1416 case F2FS_GOING_DOWN_FULLSYNC:
1417 sb = freeze_bdev(sb->s_bdev);
1418 if (sb && !IS_ERR(sb)) {
1419 f2fs_stop_checkpoint(sbi);
1420 thaw_bdev(sb->s_bdev, sb);
1422 break;
1423 case F2FS_GOING_DOWN_METASYNC:
1424 /* do checkpoint only */
1425 f2fs_sync_fs(sb, 1);
1426 f2fs_stop_checkpoint(sbi);
1427 break;
1428 case F2FS_GOING_DOWN_NOSYNC:
1429 f2fs_stop_checkpoint(sbi);
1430 break;
1431 default:
1432 return -EINVAL;
1434 return 0;
1437 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1439 struct inode *inode = file_inode(filp);
1440 struct super_block *sb = inode->i_sb;
1441 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1442 struct fstrim_range range;
1443 int ret;
1445 if (!capable(CAP_SYS_ADMIN))
1446 return -EPERM;
1448 if (!blk_queue_discard(q))
1449 return -EOPNOTSUPP;
1451 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1452 sizeof(range)))
1453 return -EFAULT;
1455 range.minlen = max((unsigned int)range.minlen,
1456 q->limits.discard_granularity);
1457 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1458 if (ret < 0)
1459 return ret;
1461 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1462 sizeof(range)))
1463 return -EFAULT;
1464 return 0;
1467 static bool uuid_is_nonzero(__u8 u[16])
1469 int i;
1471 for (i = 0; i < 16; i++)
1472 if (u[i])
1473 return true;
1474 return false;
1477 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1479 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1480 struct f2fs_encryption_policy policy;
1481 struct inode *inode = file_inode(filp);
1483 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1484 sizeof(policy)))
1485 return -EFAULT;
1487 return f2fs_process_policy(&policy, inode);
1488 #else
1489 return -EOPNOTSUPP;
1490 #endif
1493 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1495 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1496 struct f2fs_encryption_policy policy;
1497 struct inode *inode = file_inode(filp);
1498 int err;
1500 err = f2fs_get_policy(inode, &policy);
1501 if (err)
1502 return err;
1504 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1505 sizeof(policy)))
1506 return -EFAULT;
1507 return 0;
1508 #else
1509 return -EOPNOTSUPP;
1510 #endif
1513 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1515 struct inode *inode = file_inode(filp);
1516 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1517 int err;
1519 if (!f2fs_sb_has_crypto(inode->i_sb))
1520 return -EOPNOTSUPP;
1522 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1523 goto got_it;
1525 err = mnt_want_write_file(filp);
1526 if (err)
1527 return err;
1529 /* update superblock with uuid */
1530 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1532 err = f2fs_commit_super(sbi, false);
1534 mnt_drop_write_file(filp);
1535 if (err) {
1536 /* undo new data */
1537 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1538 return err;
1540 got_it:
1541 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1542 16))
1543 return -EFAULT;
1544 return 0;
1547 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1549 switch (cmd) {
1550 case F2FS_IOC_GETFLAGS:
1551 return f2fs_ioc_getflags(filp, arg);
1552 case F2FS_IOC_SETFLAGS:
1553 return f2fs_ioc_setflags(filp, arg);
1554 case F2FS_IOC_GETVERSION:
1555 return f2fs_ioc_getversion(filp, arg);
1556 case F2FS_IOC_START_ATOMIC_WRITE:
1557 return f2fs_ioc_start_atomic_write(filp);
1558 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1559 return f2fs_ioc_commit_atomic_write(filp);
1560 case F2FS_IOC_START_VOLATILE_WRITE:
1561 return f2fs_ioc_start_volatile_write(filp);
1562 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1563 return f2fs_ioc_release_volatile_write(filp);
1564 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1565 return f2fs_ioc_abort_volatile_write(filp);
1566 case F2FS_IOC_SHUTDOWN:
1567 return f2fs_ioc_shutdown(filp, arg);
1568 case FITRIM:
1569 return f2fs_ioc_fitrim(filp, arg);
1570 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1571 return f2fs_ioc_set_encryption_policy(filp, arg);
1572 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1573 return f2fs_ioc_get_encryption_policy(filp, arg);
1574 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1575 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1576 default:
1577 return -ENOTTY;
1581 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1583 struct inode *inode = file_inode(iocb->ki_filp);
1585 if (f2fs_encrypted_inode(inode) &&
1586 !f2fs_has_encryption_key(inode) &&
1587 f2fs_get_encryption_info(inode))
1588 return -EACCES;
1590 return generic_file_write_iter(iocb, from);
1593 #ifdef CONFIG_COMPAT
1594 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1596 switch (cmd) {
1597 case F2FS_IOC32_GETFLAGS:
1598 cmd = F2FS_IOC_GETFLAGS;
1599 break;
1600 case F2FS_IOC32_SETFLAGS:
1601 cmd = F2FS_IOC_SETFLAGS;
1602 break;
1603 default:
1604 return -ENOIOCTLCMD;
1606 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1608 #endif
1610 const struct file_operations f2fs_file_operations = {
1611 .llseek = f2fs_llseek,
1612 .read_iter = generic_file_read_iter,
1613 .write_iter = f2fs_file_write_iter,
1614 .open = f2fs_file_open,
1615 .release = f2fs_release_file,
1616 .mmap = f2fs_file_mmap,
1617 .fsync = f2fs_sync_file,
1618 .fallocate = f2fs_fallocate,
1619 .unlocked_ioctl = f2fs_ioctl,
1620 #ifdef CONFIG_COMPAT
1621 .compat_ioctl = f2fs_compat_ioctl,
1622 #endif
1623 .splice_read = generic_file_splice_read,
1624 .splice_write = iter_file_splice_write,