4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy
{
148 int alloc_mode
; /* LFS or SSR */
149 int gc_mode
; /* GC_CB or GC_GREEDY */
150 unsigned long *dirty_segmap
; /* dirty segment bitmap */
151 unsigned int max_search
; /* maximum # of segments to search */
152 unsigned int offset
; /* last scanned bitmap offset */
153 unsigned int ofs_unit
; /* bitmap search unit */
154 unsigned int min_cost
; /* minimum cost */
155 unsigned int min_segno
; /* segment # having min. cost */
159 unsigned short valid_blocks
; /* # of valid blocks */
160 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
162 * # of valid blocks and the validity bitmap stored in the the last
163 * checkpoint pack. This information is used by the SSR mode.
165 unsigned short ckpt_valid_blocks
;
166 unsigned char *ckpt_valid_map
;
167 unsigned char *discard_map
;
168 unsigned char type
; /* segment type like CURSEG_XXX_TYPE */
169 unsigned long long mtime
; /* modification time of the segment */
173 unsigned int valid_blocks
; /* # of valid blocks in a section */
176 struct segment_allocation
{
177 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
181 struct list_head list
;
186 const struct segment_allocation
*s_ops
;
188 block_t sit_base_addr
; /* start block address of SIT area */
189 block_t sit_blocks
; /* # of blocks used by SIT area */
190 block_t written_valid_blocks
; /* # of valid blocks in main area */
191 char *sit_bitmap
; /* SIT bitmap pointer */
192 unsigned int bitmap_size
; /* SIT bitmap size */
194 unsigned long *tmp_map
; /* bitmap for temporal use */
195 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
196 unsigned int dirty_sentries
; /* # of dirty sentries */
197 unsigned int sents_per_block
; /* # of SIT entries per block */
198 struct mutex sentry_lock
; /* to protect SIT cache */
199 struct seg_entry
*sentries
; /* SIT segment-level cache */
200 struct sec_entry
*sec_entries
; /* SIT section-level cache */
202 /* for cost-benefit algorithm in cleaning procedure */
203 unsigned long long elapsed_time
; /* elapsed time after mount */
204 unsigned long long mounted_time
; /* mount time */
205 unsigned long long min_mtime
; /* min. modification time */
206 unsigned long long max_mtime
; /* max. modification time */
209 struct free_segmap_info
{
210 unsigned int start_segno
; /* start segment number logically */
211 unsigned int free_segments
; /* # of free segments */
212 unsigned int free_sections
; /* # of free sections */
213 spinlock_t segmap_lock
; /* free segmap lock */
214 unsigned long *free_segmap
; /* free segment bitmap */
215 unsigned long *free_secmap
; /* free section bitmap */
218 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
220 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
221 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
222 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
223 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
224 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
225 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
226 DIRTY
, /* to count # of dirty segments */
227 PRE
, /* to count # of entirely obsolete segments */
231 struct dirty_seglist_info
{
232 const struct victim_selection
*v_ops
; /* victim selction operation */
233 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
234 struct mutex seglist_lock
; /* lock for segment bitmaps */
235 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
236 unsigned long *victim_secmap
; /* background GC victims */
239 /* victim selection function for cleaning and SSR */
240 struct victim_selection
{
241 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
245 /* for active log information */
247 struct mutex curseg_mutex
; /* lock for consistency */
248 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
249 unsigned char alloc_type
; /* current allocation type */
250 unsigned int segno
; /* current segment number */
251 unsigned short next_blkoff
; /* next block offset to write */
252 unsigned int zone
; /* current zone number */
253 unsigned int next_segno
; /* preallocated segment */
256 struct sit_entry_set
{
257 struct list_head set_list
; /* link with all sit sets */
258 unsigned int start_segno
; /* start segno of sits in set */
259 unsigned int entry_cnt
; /* the # of sit entries in set */
265 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
267 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
270 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
273 struct sit_info
*sit_i
= SIT_I(sbi
);
274 return &sit_i
->sentries
[segno
];
277 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
280 struct sit_info
*sit_i
= SIT_I(sbi
);
281 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
284 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
285 unsigned int segno
, int section
)
288 * In order to get # of valid blocks in a section instantly from many
289 * segments, f2fs manages two counting structures separately.
292 return get_sec_entry(sbi
, segno
)->valid_blocks
;
294 return get_seg_entry(sbi
, segno
)->valid_blocks
;
297 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
298 struct f2fs_sit_entry
*rs
)
300 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
301 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
302 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
303 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
304 se
->type
= GET_SIT_TYPE(rs
);
305 se
->mtime
= le64_to_cpu(rs
->mtime
);
308 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
309 struct f2fs_sit_entry
*rs
)
311 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
313 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
314 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
315 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
316 se
->ckpt_valid_blocks
= se
->valid_blocks
;
317 rs
->mtime
= cpu_to_le64(se
->mtime
);
320 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
321 unsigned int max
, unsigned int segno
)
324 spin_lock(&free_i
->segmap_lock
);
325 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
326 spin_unlock(&free_i
->segmap_lock
);
330 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
332 struct free_segmap_info
*free_i
= FREE_I(sbi
);
333 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
334 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
337 spin_lock(&free_i
->segmap_lock
);
338 clear_bit(segno
, free_i
->free_segmap
);
339 free_i
->free_segments
++;
341 next
= find_next_bit(free_i
->free_segmap
,
342 start_segno
+ sbi
->segs_per_sec
, start_segno
);
343 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
344 clear_bit(secno
, free_i
->free_secmap
);
345 free_i
->free_sections
++;
347 spin_unlock(&free_i
->segmap_lock
);
350 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
353 struct free_segmap_info
*free_i
= FREE_I(sbi
);
354 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
355 set_bit(segno
, free_i
->free_segmap
);
356 free_i
->free_segments
--;
357 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
358 free_i
->free_sections
--;
361 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
364 struct free_segmap_info
*free_i
= FREE_I(sbi
);
365 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
366 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
369 spin_lock(&free_i
->segmap_lock
);
370 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
371 free_i
->free_segments
++;
373 next
= find_next_bit(free_i
->free_segmap
,
374 start_segno
+ sbi
->segs_per_sec
, start_segno
);
375 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
376 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
377 free_i
->free_sections
++;
380 spin_unlock(&free_i
->segmap_lock
);
383 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
386 struct free_segmap_info
*free_i
= FREE_I(sbi
);
387 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
388 spin_lock(&free_i
->segmap_lock
);
389 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
390 free_i
->free_segments
--;
391 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
392 free_i
->free_sections
--;
394 spin_unlock(&free_i
->segmap_lock
);
397 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
400 struct sit_info
*sit_i
= SIT_I(sbi
);
401 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
404 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
406 return SIT_I(sbi
)->written_valid_blocks
;
409 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
411 return FREE_I(sbi
)->free_segments
;
414 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
416 return SM_I(sbi
)->reserved_segments
;
419 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
421 return FREE_I(sbi
)->free_sections
;
424 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
426 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
429 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
431 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
432 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
433 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
434 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
435 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
436 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
439 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
441 return SM_I(sbi
)->ovp_segments
;
444 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
446 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
449 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
451 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
454 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
456 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
457 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
458 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+
459 reserved_sections(sbi
) + 1);
462 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
, int freed
)
464 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
465 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
467 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
470 return (free_sections(sbi
) + freed
) <= (node_secs
+ 2 * dent_secs
+
471 reserved_sections(sbi
));
474 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
476 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
479 static inline int utilization(struct f2fs_sb_info
*sbi
)
481 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
482 sbi
->user_block_count
);
486 * Sometimes f2fs may be better to drop out-of-place update policy.
487 * And, users can control the policy through sysfs entries.
488 * There are five policies with triggering conditions as follows.
489 * F2FS_IPU_FORCE - all the time,
490 * F2FS_IPU_SSR - if SSR mode is activated,
491 * F2FS_IPU_UTIL - if FS utilization is over threashold,
492 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
494 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
495 * storages. IPU will be triggered only if the # of dirty
496 * pages over min_fsync_blocks.
497 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
499 #define DEF_MIN_IPU_UTIL 70
500 #define DEF_MIN_FSYNC_BLOCKS 8
510 static inline bool need_inplace_update(struct inode
*inode
)
512 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
513 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
515 /* IPU can be done only for the user data */
516 if (S_ISDIR(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
519 if (policy
& (0x1 << F2FS_IPU_FORCE
))
521 if (policy
& (0x1 << F2FS_IPU_SSR
) && need_SSR(sbi
))
523 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
524 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
526 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && need_SSR(sbi
) &&
527 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
530 /* this is only set during fdatasync */
531 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
532 is_inode_flag_set(F2FS_I(inode
), FI_NEED_IPU
))
538 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
541 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
542 return curseg
->segno
;
545 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
548 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
549 return curseg
->alloc_type
;
552 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
554 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
555 return curseg
->next_blkoff
;
558 #ifdef CONFIG_F2FS_CHECK_FS
559 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
561 BUG_ON(segno
> TOTAL_SEGS(sbi
) - 1);
564 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
566 BUG_ON(blk_addr
< SEG0_BLKADDR(sbi
));
567 BUG_ON(blk_addr
>= MAX_BLKADDR(sbi
));
571 * Summary block is always treated as an invalid block
573 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
574 int segno
, struct f2fs_sit_entry
*raw_sit
)
576 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
577 int valid_blocks
= 0;
578 int cur_pos
= 0, next_pos
;
580 /* check segment usage */
581 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
);
583 /* check boundary of a given segment number */
584 BUG_ON(segno
> TOTAL_SEGS(sbi
) - 1);
586 /* check bitmap with valid block count */
589 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
592 valid_blocks
+= next_pos
- cur_pos
;
594 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
598 is_valid
= !is_valid
;
599 } while (cur_pos
< sbi
->blocks_per_seg
);
600 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
603 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
605 if (segno
> TOTAL_SEGS(sbi
) - 1)
606 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
609 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
611 if (blk_addr
< SEG0_BLKADDR(sbi
) || blk_addr
>= MAX_BLKADDR(sbi
))
612 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
616 * Summary block is always treated as an invalid block
618 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
619 int segno
, struct f2fs_sit_entry
*raw_sit
)
621 /* check segment usage */
622 if (GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
)
623 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
625 /* check boundary of a given segment number */
626 if (segno
> TOTAL_SEGS(sbi
) - 1)
627 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
631 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
634 struct sit_info
*sit_i
= SIT_I(sbi
);
635 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
636 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
638 check_seg_range(sbi
, start
);
640 /* calculate sit block address */
641 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
642 blk_addr
+= sit_i
->sit_blocks
;
647 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
650 struct sit_info
*sit_i
= SIT_I(sbi
);
651 block_addr
-= sit_i
->sit_base_addr
;
652 if (block_addr
< sit_i
->sit_blocks
)
653 block_addr
+= sit_i
->sit_blocks
;
655 block_addr
-= sit_i
->sit_blocks
;
657 return block_addr
+ sit_i
->sit_base_addr
;
660 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
662 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
664 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
667 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
669 struct sit_info
*sit_i
= SIT_I(sbi
);
670 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
674 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
675 unsigned int ofs_in_node
, unsigned char version
)
677 sum
->nid
= cpu_to_le32(nid
);
678 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
679 sum
->version
= version
;
682 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
684 return __start_cp_addr(sbi
) +
685 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
688 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
690 return __start_cp_addr(sbi
) +
691 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
695 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
697 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
702 static inline unsigned int max_hw_blocks(struct f2fs_sb_info
*sbi
)
704 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
705 struct request_queue
*q
= bdev_get_queue(bdev
);
706 return SECTOR_TO_BLOCK(queue_max_sectors(q
));
710 * It is very important to gather dirty pages and write at once, so that we can
711 * submit a big bio without interfering other data writes.
712 * By default, 512 pages for directory data,
713 * 512 pages (2MB) * 3 for three types of nodes, and
714 * max_bio_blocks for meta are set.
716 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
718 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
722 return sbi
->blocks_per_seg
;
723 else if (type
== NODE
)
724 return 3 * sbi
->blocks_per_seg
;
725 else if (type
== META
)
726 return MAX_BIO_BLOCKS(sbi
);
732 * When writing pages, it'd better align nr_to_write for segment size.
734 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
735 struct writeback_control
*wbc
)
737 long nr_to_write
, desired
;
739 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
742 nr_to_write
= wbc
->nr_to_write
;
746 else if (type
== NODE
)
747 desired
= 3 * max_hw_blocks(sbi
);
749 desired
= MAX_BIO_BLOCKS(sbi
);
751 wbc
->nr_to_write
= desired
;
752 return desired
- nr_to_write
;