Linux 4.2.1
[linux/fpc-iii.git] / fs / f2fs / segment.h
blob79e7b879a75321047bf00fd22d6b55d37a270af7
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122 enum {
123 LFS = 0,
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
141 enum {
142 BG_GC = 0,
143 FG_GC
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy {
148 int alloc_mode; /* LFS or SSR */
149 int gc_mode; /* GC_CB or GC_GREEDY */
150 unsigned long *dirty_segmap; /* dirty segment bitmap */
151 unsigned int max_search; /* maximum # of segments to search */
152 unsigned int offset; /* last scanned bitmap offset */
153 unsigned int ofs_unit; /* bitmap search unit */
154 unsigned int min_cost; /* minimum cost */
155 unsigned int min_segno; /* segment # having min. cost */
158 struct seg_entry {
159 unsigned short valid_blocks; /* # of valid blocks */
160 unsigned char *cur_valid_map; /* validity bitmap of blocks */
162 * # of valid blocks and the validity bitmap stored in the the last
163 * checkpoint pack. This information is used by the SSR mode.
165 unsigned short ckpt_valid_blocks;
166 unsigned char *ckpt_valid_map;
167 unsigned char *discard_map;
168 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
169 unsigned long long mtime; /* modification time of the segment */
172 struct sec_entry {
173 unsigned int valid_blocks; /* # of valid blocks in a section */
176 struct segment_allocation {
177 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180 struct inmem_pages {
181 struct list_head list;
182 struct page *page;
185 struct sit_info {
186 const struct segment_allocation *s_ops;
188 block_t sit_base_addr; /* start block address of SIT area */
189 block_t sit_blocks; /* # of blocks used by SIT area */
190 block_t written_valid_blocks; /* # of valid blocks in main area */
191 char *sit_bitmap; /* SIT bitmap pointer */
192 unsigned int bitmap_size; /* SIT bitmap size */
194 unsigned long *tmp_map; /* bitmap for temporal use */
195 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
196 unsigned int dirty_sentries; /* # of dirty sentries */
197 unsigned int sents_per_block; /* # of SIT entries per block */
198 struct mutex sentry_lock; /* to protect SIT cache */
199 struct seg_entry *sentries; /* SIT segment-level cache */
200 struct sec_entry *sec_entries; /* SIT section-level cache */
202 /* for cost-benefit algorithm in cleaning procedure */
203 unsigned long long elapsed_time; /* elapsed time after mount */
204 unsigned long long mounted_time; /* mount time */
205 unsigned long long min_mtime; /* min. modification time */
206 unsigned long long max_mtime; /* max. modification time */
209 struct free_segmap_info {
210 unsigned int start_segno; /* start segment number logically */
211 unsigned int free_segments; /* # of free segments */
212 unsigned int free_sections; /* # of free sections */
213 spinlock_t segmap_lock; /* free segmap lock */
214 unsigned long *free_segmap; /* free segment bitmap */
215 unsigned long *free_secmap; /* free section bitmap */
218 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
219 enum dirty_type {
220 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
221 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
222 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
223 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
224 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
225 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
226 DIRTY, /* to count # of dirty segments */
227 PRE, /* to count # of entirely obsolete segments */
228 NR_DIRTY_TYPE
231 struct dirty_seglist_info {
232 const struct victim_selection *v_ops; /* victim selction operation */
233 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
234 struct mutex seglist_lock; /* lock for segment bitmaps */
235 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
236 unsigned long *victim_secmap; /* background GC victims */
239 /* victim selection function for cleaning and SSR */
240 struct victim_selection {
241 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
242 int, int, char);
245 /* for active log information */
246 struct curseg_info {
247 struct mutex curseg_mutex; /* lock for consistency */
248 struct f2fs_summary_block *sum_blk; /* cached summary block */
249 unsigned char alloc_type; /* current allocation type */
250 unsigned int segno; /* current segment number */
251 unsigned short next_blkoff; /* next block offset to write */
252 unsigned int zone; /* current zone number */
253 unsigned int next_segno; /* preallocated segment */
256 struct sit_entry_set {
257 struct list_head set_list; /* link with all sit sets */
258 unsigned int start_segno; /* start segno of sits in set */
259 unsigned int entry_cnt; /* the # of sit entries in set */
263 * inline functions
265 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
267 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
270 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
271 unsigned int segno)
273 struct sit_info *sit_i = SIT_I(sbi);
274 return &sit_i->sentries[segno];
277 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
278 unsigned int segno)
280 struct sit_info *sit_i = SIT_I(sbi);
281 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
284 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
285 unsigned int segno, int section)
288 * In order to get # of valid blocks in a section instantly from many
289 * segments, f2fs manages two counting structures separately.
291 if (section > 1)
292 return get_sec_entry(sbi, segno)->valid_blocks;
293 else
294 return get_seg_entry(sbi, segno)->valid_blocks;
297 static inline void seg_info_from_raw_sit(struct seg_entry *se,
298 struct f2fs_sit_entry *rs)
300 se->valid_blocks = GET_SIT_VBLOCKS(rs);
301 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
302 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
303 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
304 se->type = GET_SIT_TYPE(rs);
305 se->mtime = le64_to_cpu(rs->mtime);
308 static inline void seg_info_to_raw_sit(struct seg_entry *se,
309 struct f2fs_sit_entry *rs)
311 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
312 se->valid_blocks;
313 rs->vblocks = cpu_to_le16(raw_vblocks);
314 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
315 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
316 se->ckpt_valid_blocks = se->valid_blocks;
317 rs->mtime = cpu_to_le64(se->mtime);
320 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
321 unsigned int max, unsigned int segno)
323 unsigned int ret;
324 spin_lock(&free_i->segmap_lock);
325 ret = find_next_bit(free_i->free_segmap, max, segno);
326 spin_unlock(&free_i->segmap_lock);
327 return ret;
330 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
332 struct free_segmap_info *free_i = FREE_I(sbi);
333 unsigned int secno = segno / sbi->segs_per_sec;
334 unsigned int start_segno = secno * sbi->segs_per_sec;
335 unsigned int next;
337 spin_lock(&free_i->segmap_lock);
338 clear_bit(segno, free_i->free_segmap);
339 free_i->free_segments++;
341 next = find_next_bit(free_i->free_segmap,
342 start_segno + sbi->segs_per_sec, start_segno);
343 if (next >= start_segno + sbi->segs_per_sec) {
344 clear_bit(secno, free_i->free_secmap);
345 free_i->free_sections++;
347 spin_unlock(&free_i->segmap_lock);
350 static inline void __set_inuse(struct f2fs_sb_info *sbi,
351 unsigned int segno)
353 struct free_segmap_info *free_i = FREE_I(sbi);
354 unsigned int secno = segno / sbi->segs_per_sec;
355 set_bit(segno, free_i->free_segmap);
356 free_i->free_segments--;
357 if (!test_and_set_bit(secno, free_i->free_secmap))
358 free_i->free_sections--;
361 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
362 unsigned int segno)
364 struct free_segmap_info *free_i = FREE_I(sbi);
365 unsigned int secno = segno / sbi->segs_per_sec;
366 unsigned int start_segno = secno * sbi->segs_per_sec;
367 unsigned int next;
369 spin_lock(&free_i->segmap_lock);
370 if (test_and_clear_bit(segno, free_i->free_segmap)) {
371 free_i->free_segments++;
373 next = find_next_bit(free_i->free_segmap,
374 start_segno + sbi->segs_per_sec, start_segno);
375 if (next >= start_segno + sbi->segs_per_sec) {
376 if (test_and_clear_bit(secno, free_i->free_secmap))
377 free_i->free_sections++;
380 spin_unlock(&free_i->segmap_lock);
383 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
384 unsigned int segno)
386 struct free_segmap_info *free_i = FREE_I(sbi);
387 unsigned int secno = segno / sbi->segs_per_sec;
388 spin_lock(&free_i->segmap_lock);
389 if (!test_and_set_bit(segno, free_i->free_segmap)) {
390 free_i->free_segments--;
391 if (!test_and_set_bit(secno, free_i->free_secmap))
392 free_i->free_sections--;
394 spin_unlock(&free_i->segmap_lock);
397 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
398 void *dst_addr)
400 struct sit_info *sit_i = SIT_I(sbi);
401 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
404 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
406 return SIT_I(sbi)->written_valid_blocks;
409 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
411 return FREE_I(sbi)->free_segments;
414 static inline int reserved_segments(struct f2fs_sb_info *sbi)
416 return SM_I(sbi)->reserved_segments;
419 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
421 return FREE_I(sbi)->free_sections;
424 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
426 return DIRTY_I(sbi)->nr_dirty[PRE];
429 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
431 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
435 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
436 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
439 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
441 return SM_I(sbi)->ovp_segments;
444 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
446 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
449 static inline int reserved_sections(struct f2fs_sb_info *sbi)
451 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
454 static inline bool need_SSR(struct f2fs_sb_info *sbi)
456 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
457 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
458 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
459 reserved_sections(sbi) + 1);
462 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
464 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
465 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 return false;
470 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
471 reserved_sections(sbi));
474 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
476 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
479 static inline int utilization(struct f2fs_sb_info *sbi)
481 return div_u64((u64)valid_user_blocks(sbi) * 100,
482 sbi->user_block_count);
486 * Sometimes f2fs may be better to drop out-of-place update policy.
487 * And, users can control the policy through sysfs entries.
488 * There are five policies with triggering conditions as follows.
489 * F2FS_IPU_FORCE - all the time,
490 * F2FS_IPU_SSR - if SSR mode is activated,
491 * F2FS_IPU_UTIL - if FS utilization is over threashold,
492 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
493 * threashold,
494 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
495 * storages. IPU will be triggered only if the # of dirty
496 * pages over min_fsync_blocks.
497 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
499 #define DEF_MIN_IPU_UTIL 70
500 #define DEF_MIN_FSYNC_BLOCKS 8
502 enum {
503 F2FS_IPU_FORCE,
504 F2FS_IPU_SSR,
505 F2FS_IPU_UTIL,
506 F2FS_IPU_SSR_UTIL,
507 F2FS_IPU_FSYNC,
510 static inline bool need_inplace_update(struct inode *inode)
512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
513 unsigned int policy = SM_I(sbi)->ipu_policy;
515 /* IPU can be done only for the user data */
516 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
517 return false;
519 if (policy & (0x1 << F2FS_IPU_FORCE))
520 return true;
521 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
522 return true;
523 if (policy & (0x1 << F2FS_IPU_UTIL) &&
524 utilization(sbi) > SM_I(sbi)->min_ipu_util)
525 return true;
526 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
527 utilization(sbi) > SM_I(sbi)->min_ipu_util)
528 return true;
530 /* this is only set during fdatasync */
531 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
532 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
533 return true;
535 return false;
538 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
539 int type)
541 struct curseg_info *curseg = CURSEG_I(sbi, type);
542 return curseg->segno;
545 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
546 int type)
548 struct curseg_info *curseg = CURSEG_I(sbi, type);
549 return curseg->alloc_type;
552 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
554 struct curseg_info *curseg = CURSEG_I(sbi, type);
555 return curseg->next_blkoff;
558 #ifdef CONFIG_F2FS_CHECK_FS
559 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
561 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
564 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
566 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
567 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
571 * Summary block is always treated as an invalid block
573 static inline void check_block_count(struct f2fs_sb_info *sbi,
574 int segno, struct f2fs_sit_entry *raw_sit)
576 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
577 int valid_blocks = 0;
578 int cur_pos = 0, next_pos;
580 /* check segment usage */
581 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
583 /* check boundary of a given segment number */
584 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
586 /* check bitmap with valid block count */
587 do {
588 if (is_valid) {
589 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
590 sbi->blocks_per_seg,
591 cur_pos);
592 valid_blocks += next_pos - cur_pos;
593 } else
594 next_pos = find_next_bit_le(&raw_sit->valid_map,
595 sbi->blocks_per_seg,
596 cur_pos);
597 cur_pos = next_pos;
598 is_valid = !is_valid;
599 } while (cur_pos < sbi->blocks_per_seg);
600 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
602 #else
603 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
605 if (segno > TOTAL_SEGS(sbi) - 1)
606 set_sbi_flag(sbi, SBI_NEED_FSCK);
609 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
611 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
612 set_sbi_flag(sbi, SBI_NEED_FSCK);
616 * Summary block is always treated as an invalid block
618 static inline void check_block_count(struct f2fs_sb_info *sbi,
619 int segno, struct f2fs_sit_entry *raw_sit)
621 /* check segment usage */
622 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
623 set_sbi_flag(sbi, SBI_NEED_FSCK);
625 /* check boundary of a given segment number */
626 if (segno > TOTAL_SEGS(sbi) - 1)
627 set_sbi_flag(sbi, SBI_NEED_FSCK);
629 #endif
631 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
632 unsigned int start)
634 struct sit_info *sit_i = SIT_I(sbi);
635 unsigned int offset = SIT_BLOCK_OFFSET(start);
636 block_t blk_addr = sit_i->sit_base_addr + offset;
638 check_seg_range(sbi, start);
640 /* calculate sit block address */
641 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
642 blk_addr += sit_i->sit_blocks;
644 return blk_addr;
647 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
648 pgoff_t block_addr)
650 struct sit_info *sit_i = SIT_I(sbi);
651 block_addr -= sit_i->sit_base_addr;
652 if (block_addr < sit_i->sit_blocks)
653 block_addr += sit_i->sit_blocks;
654 else
655 block_addr -= sit_i->sit_blocks;
657 return block_addr + sit_i->sit_base_addr;
660 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
662 unsigned int block_off = SIT_BLOCK_OFFSET(start);
664 f2fs_change_bit(block_off, sit_i->sit_bitmap);
667 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
669 struct sit_info *sit_i = SIT_I(sbi);
670 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
671 sit_i->mounted_time;
674 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
675 unsigned int ofs_in_node, unsigned char version)
677 sum->nid = cpu_to_le32(nid);
678 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
679 sum->version = version;
682 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
684 return __start_cp_addr(sbi) +
685 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
688 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
690 return __start_cp_addr(sbi) +
691 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
692 - (base + 1) + type;
695 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
697 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
698 return true;
699 return false;
702 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
704 struct block_device *bdev = sbi->sb->s_bdev;
705 struct request_queue *q = bdev_get_queue(bdev);
706 return SECTOR_TO_BLOCK(queue_max_sectors(q));
710 * It is very important to gather dirty pages and write at once, so that we can
711 * submit a big bio without interfering other data writes.
712 * By default, 512 pages for directory data,
713 * 512 pages (2MB) * 3 for three types of nodes, and
714 * max_bio_blocks for meta are set.
716 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
718 if (sbi->sb->s_bdi->wb.dirty_exceeded)
719 return 0;
721 if (type == DATA)
722 return sbi->blocks_per_seg;
723 else if (type == NODE)
724 return 3 * sbi->blocks_per_seg;
725 else if (type == META)
726 return MAX_BIO_BLOCKS(sbi);
727 else
728 return 0;
732 * When writing pages, it'd better align nr_to_write for segment size.
734 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
735 struct writeback_control *wbc)
737 long nr_to_write, desired;
739 if (wbc->sync_mode != WB_SYNC_NONE)
740 return 0;
742 nr_to_write = wbc->nr_to_write;
744 if (type == DATA)
745 desired = 4096;
746 else if (type == NODE)
747 desired = 3 * max_hw_blocks(sbi);
748 else
749 desired = MAX_BIO_BLOCKS(sbi);
751 wbc->nr_to_write = desired;
752 return desired - nr_to_write;