1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
28 #include "print-tree.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
45 #include <asm/cpufeature.h>
48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
55 static const struct extent_io_ops btree_extent_io_ops
;
56 static void end_workqueue_fn(struct btrfs_work
*work
);
57 static void free_fs_root(struct btrfs_root
*root
);
58 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
60 struct btrfs_fs_info
*fs_info
);
61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*dirty_pages
,
65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
66 struct extent_io_tree
*pinned_extents
);
67 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
68 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
75 struct btrfs_end_io_wq
{
79 struct btrfs_fs_info
*info
;
81 enum btrfs_wq_endio_type metadata
;
82 struct btrfs_work work
;
85 static struct kmem_cache
*btrfs_end_io_wq_cache
;
87 int __init
btrfs_end_io_wq_init(void)
89 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq
),
94 if (!btrfs_end_io_wq_cache
)
99 void __cold
btrfs_end_io_wq_exit(void)
101 kmem_cache_destroy(btrfs_end_io_wq_cache
);
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
109 struct async_submit_bio
{
111 struct btrfs_fs_info
*fs_info
;
113 extent_submit_bio_start_t
*submit_bio_start
;
114 extent_submit_bio_done_t
*submit_bio_done
;
116 unsigned long bio_flags
;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
122 struct btrfs_work work
;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
154 static struct btrfs_lockdep_keyset
{
155 u64 id
; /* root objectid */
156 const char *name_stem
; /* lock name stem */
157 char names
[BTRFS_MAX_LEVEL
+ 1][20];
158 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
159 } btrfs_lockdep_keysets
[] = {
160 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
161 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
162 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
163 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
164 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
165 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
166 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
167 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
168 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
169 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
170 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
171 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
172 { .id
= 0, .name_stem
= "tree" },
175 void __init
btrfs_init_lockdep(void)
179 /* initialize lockdep class names */
180 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
181 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
183 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
184 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
185 "btrfs-%s-%02d", ks
->name_stem
, j
);
189 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
192 struct btrfs_lockdep_keyset
*ks
;
194 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
198 if (ks
->id
== objectid
)
201 lockdep_set_class_and_name(&eb
->lock
,
202 &ks
->keys
[level
], ks
->names
[level
]);
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
212 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
215 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
216 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
217 struct extent_map
*em
;
220 read_lock(&em_tree
->lock
);
221 em
= lookup_extent_mapping(em_tree
, start
, len
);
223 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
224 read_unlock(&em_tree
->lock
);
227 read_unlock(&em_tree
->lock
);
229 em
= alloc_extent_map();
231 em
= ERR_PTR(-ENOMEM
);
236 em
->block_len
= (u64
)-1;
238 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
240 write_lock(&em_tree
->lock
);
241 ret
= add_extent_mapping(em_tree
, em
, 0);
242 if (ret
== -EEXIST
) {
244 em
= lookup_extent_mapping(em_tree
, start
, len
);
251 write_unlock(&em_tree
->lock
);
257 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
259 return crc32c(seed
, data
, len
);
262 void btrfs_csum_final(u32 crc
, u8
*result
)
264 put_unaligned_le32(~crc
, result
);
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
271 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
272 struct extent_buffer
*buf
,
275 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
276 char result
[BTRFS_CSUM_SIZE
];
278 unsigned long cur_len
;
279 unsigned long offset
= BTRFS_CSUM_SIZE
;
281 unsigned long map_start
;
282 unsigned long map_len
;
286 len
= buf
->len
- offset
;
288 err
= map_private_extent_buffer(buf
, offset
, 32,
289 &kaddr
, &map_start
, &map_len
);
292 cur_len
= min(len
, map_len
- (offset
- map_start
));
293 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
298 memset(result
, 0, BTRFS_CSUM_SIZE
);
300 btrfs_csum_final(crc
, result
);
303 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
306 memcpy(&found
, result
, csum_size
);
308 read_extent_buffer(buf
, &val
, 0, csum_size
);
309 btrfs_warn_rl(fs_info
,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info
->sb
->s_id
, buf
->start
,
312 val
, found
, btrfs_header_level(buf
));
316 write_extent_buffer(buf
, result
, 0, csum_size
);
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
328 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
329 struct extent_buffer
*eb
, u64 parent_transid
,
332 struct extent_state
*cached_state
= NULL
;
334 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
336 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
343 btrfs_tree_read_lock(eb
);
344 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
347 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
349 if (extent_buffer_uptodate(eb
) &&
350 btrfs_header_generation(eb
) == parent_transid
) {
354 btrfs_err_rl(eb
->fs_info
,
355 "parent transid verify failed on %llu wanted %llu found %llu",
357 parent_transid
, btrfs_header_generation(eb
));
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
368 if (!extent_buffer_under_io(eb
))
369 clear_extent_buffer_uptodate(eb
);
371 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
374 btrfs_tree_read_unlock_blocking(eb
);
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
382 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
385 struct btrfs_super_block
*disk_sb
=
386 (struct btrfs_super_block
*)raw_disk_sb
;
387 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
390 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
392 char result
[sizeof(crc
)];
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
399 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
400 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
401 btrfs_csum_final(crc
, result
);
403 if (memcmp(raw_disk_sb
, result
, sizeof(result
)))
407 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
408 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
416 static int verify_level_key(struct btrfs_fs_info
*fs_info
,
417 struct extent_buffer
*eb
, int level
,
418 struct btrfs_key
*first_key
, u64 parent_transid
)
421 struct btrfs_key found_key
;
424 found_level
= btrfs_header_level(eb
);
425 if (found_level
!= level
) {
426 #ifdef CONFIG_BTRFS_DEBUG
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb
->start
, level
, found_level
);
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
444 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
447 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
449 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
450 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
452 #ifdef CONFIG_BTRFS_DEBUG
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb
->start
, parent_transid
, first_key
->objectid
,
458 first_key
->type
, first_key
->offset
,
459 found_key
.objectid
, found_key
.type
,
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
475 struct extent_buffer
*eb
,
476 u64 parent_transid
, int level
,
477 struct btrfs_key
*first_key
)
479 struct extent_io_tree
*io_tree
;
484 int failed_mirror
= 0;
486 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
487 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
489 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
492 if (verify_parent_transid(io_tree
, eb
,
495 else if (verify_level_key(fs_info
, eb
, level
,
496 first_key
, parent_transid
))
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
507 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
) ||
511 num_copies
= btrfs_num_copies(fs_info
,
516 if (!failed_mirror
) {
518 failed_mirror
= eb
->read_mirror
;
522 if (mirror_num
== failed_mirror
)
525 if (mirror_num
> num_copies
)
529 if (failed
&& !ret
&& failed_mirror
)
530 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
540 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
542 u64 start
= page_offset(page
);
544 struct extent_buffer
*eb
;
546 eb
= (struct extent_buffer
*)page
->private;
547 if (page
!= eb
->pages
[0])
550 found_start
= btrfs_header_bytenr(eb
);
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
555 if (WARN_ON(found_start
!= start
))
557 if (WARN_ON(!PageUptodate(page
)))
560 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
563 return csum_tree_block(fs_info
, eb
, 0);
566 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
567 struct extent_buffer
*eb
)
569 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
570 u8 fsid
[BTRFS_FSID_SIZE
];
573 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
575 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
579 fs_devices
= fs_devices
->seed
;
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
585 u64 phy_offset
, struct page
*page
,
586 u64 start
, u64 end
, int mirror
)
590 struct extent_buffer
*eb
;
591 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
592 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
599 eb
= (struct extent_buffer
*)page
->private;
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
604 extent_buffer_get(eb
);
606 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
610 eb
->read_mirror
= mirror
;
611 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
616 found_start
= btrfs_header_bytenr(eb
);
617 if (found_start
!= eb
->start
) {
618 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
619 found_start
, eb
->start
);
623 if (check_tree_block_fsid(fs_info
, eb
)) {
624 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
629 found_level
= btrfs_header_level(eb
);
630 if (found_level
>= BTRFS_MAX_LEVEL
) {
631 btrfs_err(fs_info
, "bad tree block level %d",
632 (int)btrfs_header_level(eb
));
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
640 ret
= csum_tree_block(fs_info
, eb
, 1);
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
649 if (found_level
== 0 && btrfs_check_leaf_full(fs_info
, eb
)) {
650 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
654 if (found_level
> 0 && btrfs_check_node(fs_info
, eb
))
658 set_extent_buffer_uptodate(eb
);
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
662 btree_readahead_hook(eb
, ret
);
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
670 atomic_inc(&eb
->io_pages
);
671 clear_extent_buffer_uptodate(eb
);
673 free_extent_buffer(eb
);
678 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
680 struct extent_buffer
*eb
;
682 eb
= (struct extent_buffer
*)page
->private;
683 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
684 eb
->read_mirror
= failed_mirror
;
685 atomic_dec(&eb
->io_pages
);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
687 btree_readahead_hook(eb
, -EIO
);
688 return -EIO
; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio
*bio
)
693 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
694 struct btrfs_fs_info
*fs_info
;
695 struct btrfs_workqueue
*wq
;
696 btrfs_work_func_t func
;
698 fs_info
= end_io_wq
->info
;
699 end_io_wq
->status
= bio
->bi_status
;
701 if (bio_op(bio
) == REQ_OP_WRITE
) {
702 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
703 wq
= fs_info
->endio_meta_write_workers
;
704 func
= btrfs_endio_meta_write_helper
;
705 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
706 wq
= fs_info
->endio_freespace_worker
;
707 func
= btrfs_freespace_write_helper
;
708 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
709 wq
= fs_info
->endio_raid56_workers
;
710 func
= btrfs_endio_raid56_helper
;
712 wq
= fs_info
->endio_write_workers
;
713 func
= btrfs_endio_write_helper
;
716 if (unlikely(end_io_wq
->metadata
==
717 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
718 wq
= fs_info
->endio_repair_workers
;
719 func
= btrfs_endio_repair_helper
;
720 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
721 wq
= fs_info
->endio_raid56_workers
;
722 func
= btrfs_endio_raid56_helper
;
723 } else if (end_io_wq
->metadata
) {
724 wq
= fs_info
->endio_meta_workers
;
725 func
= btrfs_endio_meta_helper
;
727 wq
= fs_info
->endio_workers
;
728 func
= btrfs_endio_helper
;
732 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
733 btrfs_queue_work(wq
, &end_io_wq
->work
);
736 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
737 enum btrfs_wq_endio_type metadata
)
739 struct btrfs_end_io_wq
*end_io_wq
;
741 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
743 return BLK_STS_RESOURCE
;
745 end_io_wq
->private = bio
->bi_private
;
746 end_io_wq
->end_io
= bio
->bi_end_io
;
747 end_io_wq
->info
= info
;
748 end_io_wq
->status
= 0;
749 end_io_wq
->bio
= bio
;
750 end_io_wq
->metadata
= metadata
;
752 bio
->bi_private
= end_io_wq
;
753 bio
->bi_end_io
= end_workqueue_bio
;
757 static void run_one_async_start(struct btrfs_work
*work
)
759 struct async_submit_bio
*async
;
762 async
= container_of(work
, struct async_submit_bio
, work
);
763 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
769 static void run_one_async_done(struct btrfs_work
*work
)
771 struct async_submit_bio
*async
;
773 async
= container_of(work
, struct async_submit_bio
, work
);
775 /* If an error occurred we just want to clean up the bio and move on */
777 async
->bio
->bi_status
= async
->status
;
778 bio_endio(async
->bio
);
782 async
->submit_bio_done(async
->private_data
, async
->bio
, async
->mirror_num
);
785 static void run_one_async_free(struct btrfs_work
*work
)
787 struct async_submit_bio
*async
;
789 async
= container_of(work
, struct async_submit_bio
, work
);
793 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
794 int mirror_num
, unsigned long bio_flags
,
795 u64 bio_offset
, void *private_data
,
796 extent_submit_bio_start_t
*submit_bio_start
,
797 extent_submit_bio_done_t
*submit_bio_done
)
799 struct async_submit_bio
*async
;
801 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
803 return BLK_STS_RESOURCE
;
805 async
->private_data
= private_data
;
806 async
->fs_info
= fs_info
;
808 async
->mirror_num
= mirror_num
;
809 async
->submit_bio_start
= submit_bio_start
;
810 async
->submit_bio_done
= submit_bio_done
;
812 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
813 run_one_async_done
, run_one_async_free
);
815 async
->bio_flags
= bio_flags
;
816 async
->bio_offset
= bio_offset
;
820 if (op_is_sync(bio
->bi_opf
))
821 btrfs_set_work_high_priority(&async
->work
);
823 btrfs_queue_work(fs_info
->workers
, &async
->work
);
827 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
829 struct bio_vec
*bvec
;
830 struct btrfs_root
*root
;
833 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
834 bio_for_each_segment_all(bvec
, bio
, i
) {
835 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
836 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
841 return errno_to_blk_status(ret
);
844 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
851 return btree_csum_one_bio(bio
);
854 static blk_status_t
btree_submit_bio_done(void *private_data
, struct bio
*bio
,
857 struct inode
*inode
= private_data
;
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
864 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
866 bio
->bi_status
= ret
;
872 static int check_async_write(struct btrfs_inode
*bi
)
874 if (atomic_read(&bi
->sync_writers
))
877 if (static_cpu_has(X86_FEATURE_XMM4_2
))
883 static blk_status_t
btree_submit_bio_hook(void *private_data
, struct bio
*bio
,
884 int mirror_num
, unsigned long bio_flags
,
887 struct inode
*inode
= private_data
;
888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
889 int async
= check_async_write(BTRFS_I(inode
));
892 if (bio_op(bio
) != REQ_OP_WRITE
) {
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
897 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
898 BTRFS_WQ_ENDIO_METADATA
);
901 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
903 ret
= btree_csum_one_bio(bio
);
906 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
912 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
913 bio_offset
, private_data
,
914 btree_submit_bio_start
,
915 btree_submit_bio_done
);
923 bio
->bi_status
= ret
;
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space
*mapping
,
930 struct page
*newpage
, struct page
*page
,
931 enum migrate_mode mode
)
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
943 if (page_has_private(page
) &&
944 !try_to_release_page(page
, GFP_KERNEL
))
946 return migrate_page(mapping
, newpage
, page
, mode
);
951 static int btree_writepages(struct address_space
*mapping
,
952 struct writeback_control
*wbc
)
954 struct btrfs_fs_info
*fs_info
;
957 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
959 if (wbc
->for_kupdate
)
962 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
963 /* this is a bit racy, but that's ok */
964 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
965 BTRFS_DIRTY_METADATA_THRESH
);
969 return btree_write_cache_pages(mapping
, wbc
);
972 static int btree_readpage(struct file
*file
, struct page
*page
)
974 struct extent_io_tree
*tree
;
975 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
976 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
979 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
981 if (PageWriteback(page
) || PageDirty(page
))
984 return try_release_extent_buffer(page
);
987 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
990 struct extent_io_tree
*tree
;
991 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
992 extent_invalidatepage(tree
, page
, offset
);
993 btree_releasepage(page
, GFP_NOFS
);
994 if (PagePrivate(page
)) {
995 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
996 "page private not zero on page %llu",
997 (unsigned long long)page_offset(page
));
998 ClearPagePrivate(page
);
999 set_page_private(page
, 0);
1004 static int btree_set_page_dirty(struct page
*page
)
1007 struct extent_buffer
*eb
;
1009 BUG_ON(!PagePrivate(page
));
1010 eb
= (struct extent_buffer
*)page
->private;
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1013 BUG_ON(!atomic_read(&eb
->refs
));
1014 btrfs_assert_tree_locked(eb
);
1016 return __set_page_dirty_nobuffers(page
);
1019 static const struct address_space_operations btree_aops
= {
1020 .readpage
= btree_readpage
,
1021 .writepages
= btree_writepages
,
1022 .releasepage
= btree_releasepage
,
1023 .invalidatepage
= btree_invalidatepage
,
1024 #ifdef CONFIG_MIGRATION
1025 .migratepage
= btree_migratepage
,
1027 .set_page_dirty
= btree_set_page_dirty
,
1030 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1032 struct extent_buffer
*buf
= NULL
;
1033 struct inode
*btree_inode
= fs_info
->btree_inode
;
1035 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1040 free_extent_buffer(buf
);
1043 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1044 int mirror_num
, struct extent_buffer
**eb
)
1046 struct extent_buffer
*buf
= NULL
;
1047 struct inode
*btree_inode
= fs_info
->btree_inode
;
1048 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1051 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1055 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1057 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1060 free_extent_buffer(buf
);
1064 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1065 free_extent_buffer(buf
);
1067 } else if (extent_buffer_uptodate(buf
)) {
1070 free_extent_buffer(buf
);
1075 struct extent_buffer
*btrfs_find_create_tree_block(
1076 struct btrfs_fs_info
*fs_info
,
1079 if (btrfs_is_testing(fs_info
))
1080 return alloc_test_extent_buffer(fs_info
, bytenr
);
1081 return alloc_extent_buffer(fs_info
, bytenr
);
1085 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1087 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1088 buf
->start
+ buf
->len
- 1);
1091 void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1093 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1094 buf
->start
, buf
->start
+ buf
->len
- 1);
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1101 * @parent_transid: expected transid of this tree block, skip check if 0
1102 * @level: expected level, mandatory check
1103 * @first_key: expected key in slot 0, skip check if NULL
1105 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1106 u64 parent_transid
, int level
,
1107 struct btrfs_key
*first_key
)
1109 struct extent_buffer
*buf
= NULL
;
1112 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1116 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
1119 free_extent_buffer(buf
);
1120 return ERR_PTR(ret
);
1126 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1127 struct extent_buffer
*buf
)
1129 if (btrfs_header_generation(buf
) ==
1130 fs_info
->running_transaction
->transid
) {
1131 btrfs_assert_tree_locked(buf
);
1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1134 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1136 fs_info
->dirty_metadata_batch
);
1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1138 btrfs_set_lock_blocking(buf
);
1139 clear_extent_buffer_dirty(buf
);
1144 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1146 struct btrfs_subvolume_writers
*writers
;
1149 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1151 return ERR_PTR(-ENOMEM
);
1153 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1156 return ERR_PTR(ret
);
1159 init_waitqueue_head(&writers
->wait
);
1164 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1166 percpu_counter_destroy(&writers
->counter
);
1170 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1173 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1175 root
->commit_root
= NULL
;
1177 root
->orphan_cleanup_state
= 0;
1179 root
->objectid
= objectid
;
1180 root
->last_trans
= 0;
1181 root
->highest_objectid
= 0;
1182 root
->nr_delalloc_inodes
= 0;
1183 root
->nr_ordered_extents
= 0;
1185 root
->inode_tree
= RB_ROOT
;
1186 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1187 root
->block_rsv
= NULL
;
1189 INIT_LIST_HEAD(&root
->dirty_list
);
1190 INIT_LIST_HEAD(&root
->root_list
);
1191 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1192 INIT_LIST_HEAD(&root
->delalloc_root
);
1193 INIT_LIST_HEAD(&root
->ordered_extents
);
1194 INIT_LIST_HEAD(&root
->ordered_root
);
1195 INIT_LIST_HEAD(&root
->logged_list
[0]);
1196 INIT_LIST_HEAD(&root
->logged_list
[1]);
1197 spin_lock_init(&root
->inode_lock
);
1198 spin_lock_init(&root
->delalloc_lock
);
1199 spin_lock_init(&root
->ordered_extent_lock
);
1200 spin_lock_init(&root
->accounting_lock
);
1201 spin_lock_init(&root
->log_extents_lock
[0]);
1202 spin_lock_init(&root
->log_extents_lock
[1]);
1203 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1204 mutex_init(&root
->objectid_mutex
);
1205 mutex_init(&root
->log_mutex
);
1206 mutex_init(&root
->ordered_extent_mutex
);
1207 mutex_init(&root
->delalloc_mutex
);
1208 init_waitqueue_head(&root
->log_writer_wait
);
1209 init_waitqueue_head(&root
->log_commit_wait
[0]);
1210 init_waitqueue_head(&root
->log_commit_wait
[1]);
1211 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1212 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1213 atomic_set(&root
->log_commit
[0], 0);
1214 atomic_set(&root
->log_commit
[1], 0);
1215 atomic_set(&root
->log_writers
, 0);
1216 atomic_set(&root
->log_batch
, 0);
1217 refcount_set(&root
->refs
, 1);
1218 atomic_set(&root
->will_be_snapshotted
, 0);
1219 root
->log_transid
= 0;
1220 root
->log_transid_committed
= -1;
1221 root
->last_log_commit
= 0;
1223 extent_io_tree_init(&root
->dirty_log_pages
, NULL
);
1225 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1226 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1227 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1229 root
->defrag_trans_start
= fs_info
->generation
;
1231 root
->defrag_trans_start
= 0;
1232 root
->root_key
.objectid
= objectid
;
1235 spin_lock_init(&root
->root_item_lock
);
1238 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1241 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1243 root
->fs_info
= fs_info
;
1247 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1248 /* Should only be used by the testing infrastructure */
1249 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1251 struct btrfs_root
*root
;
1254 return ERR_PTR(-EINVAL
);
1256 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1258 return ERR_PTR(-ENOMEM
);
1260 /* We don't use the stripesize in selftest, set it as sectorsize */
1261 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1262 root
->alloc_bytenr
= 0;
1268 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1269 struct btrfs_fs_info
*fs_info
,
1272 struct extent_buffer
*leaf
;
1273 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1274 struct btrfs_root
*root
;
1275 struct btrfs_key key
;
1277 uuid_le uuid
= NULL_UUID_LE
;
1279 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1281 return ERR_PTR(-ENOMEM
);
1283 __setup_root(root
, fs_info
, objectid
);
1284 root
->root_key
.objectid
= objectid
;
1285 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1286 root
->root_key
.offset
= 0;
1288 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1290 ret
= PTR_ERR(leaf
);
1295 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1296 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1297 btrfs_set_header_generation(leaf
, trans
->transid
);
1298 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1299 btrfs_set_header_owner(leaf
, objectid
);
1302 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1303 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1304 btrfs_mark_buffer_dirty(leaf
);
1306 root
->commit_root
= btrfs_root_node(root
);
1307 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1309 root
->root_item
.flags
= 0;
1310 root
->root_item
.byte_limit
= 0;
1311 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1312 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1313 btrfs_set_root_level(&root
->root_item
, 0);
1314 btrfs_set_root_refs(&root
->root_item
, 1);
1315 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1316 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1317 btrfs_set_root_dirid(&root
->root_item
, 0);
1318 if (is_fstree(objectid
))
1320 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1321 root
->root_item
.drop_level
= 0;
1323 key
.objectid
= objectid
;
1324 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1326 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1330 btrfs_tree_unlock(leaf
);
1336 btrfs_tree_unlock(leaf
);
1337 free_extent_buffer(root
->commit_root
);
1338 free_extent_buffer(leaf
);
1342 return ERR_PTR(ret
);
1345 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1346 struct btrfs_fs_info
*fs_info
)
1348 struct btrfs_root
*root
;
1349 struct extent_buffer
*leaf
;
1351 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1353 return ERR_PTR(-ENOMEM
);
1355 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1357 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1358 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1359 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1362 * DON'T set REF_COWS for log trees
1364 * log trees do not get reference counted because they go away
1365 * before a real commit is actually done. They do store pointers
1366 * to file data extents, and those reference counts still get
1367 * updated (along with back refs to the log tree).
1370 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1374 return ERR_CAST(leaf
);
1377 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1378 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1379 btrfs_set_header_generation(leaf
, trans
->transid
);
1380 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1381 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1384 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1385 btrfs_mark_buffer_dirty(root
->node
);
1386 btrfs_tree_unlock(root
->node
);
1390 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1391 struct btrfs_fs_info
*fs_info
)
1393 struct btrfs_root
*log_root
;
1395 log_root
= alloc_log_tree(trans
, fs_info
);
1396 if (IS_ERR(log_root
))
1397 return PTR_ERR(log_root
);
1398 WARN_ON(fs_info
->log_root_tree
);
1399 fs_info
->log_root_tree
= log_root
;
1403 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1404 struct btrfs_root
*root
)
1406 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1407 struct btrfs_root
*log_root
;
1408 struct btrfs_inode_item
*inode_item
;
1410 log_root
= alloc_log_tree(trans
, fs_info
);
1411 if (IS_ERR(log_root
))
1412 return PTR_ERR(log_root
);
1414 log_root
->last_trans
= trans
->transid
;
1415 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1417 inode_item
= &log_root
->root_item
.inode
;
1418 btrfs_set_stack_inode_generation(inode_item
, 1);
1419 btrfs_set_stack_inode_size(inode_item
, 3);
1420 btrfs_set_stack_inode_nlink(inode_item
, 1);
1421 btrfs_set_stack_inode_nbytes(inode_item
,
1423 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1425 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1427 WARN_ON(root
->log_root
);
1428 root
->log_root
= log_root
;
1429 root
->log_transid
= 0;
1430 root
->log_transid_committed
= -1;
1431 root
->last_log_commit
= 0;
1435 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1436 struct btrfs_key
*key
)
1438 struct btrfs_root
*root
;
1439 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1440 struct btrfs_path
*path
;
1445 path
= btrfs_alloc_path();
1447 return ERR_PTR(-ENOMEM
);
1449 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1455 __setup_root(root
, fs_info
, key
->objectid
);
1457 ret
= btrfs_find_root(tree_root
, key
, path
,
1458 &root
->root_item
, &root
->root_key
);
1465 generation
= btrfs_root_generation(&root
->root_item
);
1466 level
= btrfs_root_level(&root
->root_item
);
1467 root
->node
= read_tree_block(fs_info
,
1468 btrfs_root_bytenr(&root
->root_item
),
1469 generation
, level
, NULL
);
1470 if (IS_ERR(root
->node
)) {
1471 ret
= PTR_ERR(root
->node
);
1473 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1475 free_extent_buffer(root
->node
);
1478 root
->commit_root
= btrfs_root_node(root
);
1480 btrfs_free_path(path
);
1486 root
= ERR_PTR(ret
);
1490 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1491 struct btrfs_key
*location
)
1493 struct btrfs_root
*root
;
1495 root
= btrfs_read_tree_root(tree_root
, location
);
1499 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1500 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1501 btrfs_check_and_init_root_item(&root
->root_item
);
1507 int btrfs_init_fs_root(struct btrfs_root
*root
)
1510 struct btrfs_subvolume_writers
*writers
;
1512 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1513 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1515 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1520 writers
= btrfs_alloc_subvolume_writers();
1521 if (IS_ERR(writers
)) {
1522 ret
= PTR_ERR(writers
);
1525 root
->subv_writers
= writers
;
1527 btrfs_init_free_ino_ctl(root
);
1528 spin_lock_init(&root
->ino_cache_lock
);
1529 init_waitqueue_head(&root
->ino_cache_wait
);
1531 ret
= get_anon_bdev(&root
->anon_dev
);
1535 mutex_lock(&root
->objectid_mutex
);
1536 ret
= btrfs_find_highest_objectid(root
,
1537 &root
->highest_objectid
);
1539 mutex_unlock(&root
->objectid_mutex
);
1543 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1545 mutex_unlock(&root
->objectid_mutex
);
1549 /* the caller is responsible to call free_fs_root */
1553 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1556 struct btrfs_root
*root
;
1558 spin_lock(&fs_info
->fs_roots_radix_lock
);
1559 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1560 (unsigned long)root_id
);
1561 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1565 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1566 struct btrfs_root
*root
)
1570 ret
= radix_tree_preload(GFP_NOFS
);
1574 spin_lock(&fs_info
->fs_roots_radix_lock
);
1575 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1576 (unsigned long)root
->root_key
.objectid
,
1579 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1580 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1581 radix_tree_preload_end();
1586 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1587 struct btrfs_key
*location
,
1590 struct btrfs_root
*root
;
1591 struct btrfs_path
*path
;
1592 struct btrfs_key key
;
1595 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1596 return fs_info
->tree_root
;
1597 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1598 return fs_info
->extent_root
;
1599 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1600 return fs_info
->chunk_root
;
1601 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1602 return fs_info
->dev_root
;
1603 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1604 return fs_info
->csum_root
;
1605 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1606 return fs_info
->quota_root
? fs_info
->quota_root
:
1608 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1609 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1611 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1612 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1615 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1617 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1618 return ERR_PTR(-ENOENT
);
1622 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1626 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1631 ret
= btrfs_init_fs_root(root
);
1635 path
= btrfs_alloc_path();
1640 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1641 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1642 key
.offset
= location
->objectid
;
1644 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1645 btrfs_free_path(path
);
1649 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1651 ret
= btrfs_insert_fs_root(fs_info
, root
);
1653 if (ret
== -EEXIST
) {
1662 return ERR_PTR(ret
);
1665 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1667 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1669 struct btrfs_device
*device
;
1670 struct backing_dev_info
*bdi
;
1673 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1676 bdi
= device
->bdev
->bd_bdi
;
1677 if (bdi_congested(bdi
, bdi_bits
)) {
1687 * called by the kthread helper functions to finally call the bio end_io
1688 * functions. This is where read checksum verification actually happens
1690 static void end_workqueue_fn(struct btrfs_work
*work
)
1693 struct btrfs_end_io_wq
*end_io_wq
;
1695 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1696 bio
= end_io_wq
->bio
;
1698 bio
->bi_status
= end_io_wq
->status
;
1699 bio
->bi_private
= end_io_wq
->private;
1700 bio
->bi_end_io
= end_io_wq
->end_io
;
1701 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1705 static int cleaner_kthread(void *arg
)
1707 struct btrfs_root
*root
= arg
;
1708 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1710 struct btrfs_trans_handle
*trans
;
1715 /* Make the cleaner go to sleep early. */
1716 if (btrfs_need_cleaner_sleep(fs_info
))
1720 * Do not do anything if we might cause open_ctree() to block
1721 * before we have finished mounting the filesystem.
1723 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1726 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1730 * Avoid the problem that we change the status of the fs
1731 * during the above check and trylock.
1733 if (btrfs_need_cleaner_sleep(fs_info
)) {
1734 mutex_unlock(&fs_info
->cleaner_mutex
);
1738 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1739 btrfs_run_delayed_iputs(fs_info
);
1740 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1742 again
= btrfs_clean_one_deleted_snapshot(root
);
1743 mutex_unlock(&fs_info
->cleaner_mutex
);
1746 * The defragger has dealt with the R/O remount and umount,
1747 * needn't do anything special here.
1749 btrfs_run_defrag_inodes(fs_info
);
1752 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1753 * with relocation (btrfs_relocate_chunk) and relocation
1754 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1755 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1756 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1757 * unused block groups.
1759 btrfs_delete_unused_bgs(fs_info
);
1762 set_current_state(TASK_INTERRUPTIBLE
);
1763 if (!kthread_should_stop())
1765 __set_current_state(TASK_RUNNING
);
1767 } while (!kthread_should_stop());
1770 * Transaction kthread is stopped before us and wakes us up.
1771 * However we might have started a new transaction and COWed some
1772 * tree blocks when deleting unused block groups for example. So
1773 * make sure we commit the transaction we started to have a clean
1774 * shutdown when evicting the btree inode - if it has dirty pages
1775 * when we do the final iput() on it, eviction will trigger a
1776 * writeback for it which will fail with null pointer dereferences
1777 * since work queues and other resources were already released and
1778 * destroyed by the time the iput/eviction/writeback is made.
1780 trans
= btrfs_attach_transaction(root
);
1781 if (IS_ERR(trans
)) {
1782 if (PTR_ERR(trans
) != -ENOENT
)
1784 "cleaner transaction attach returned %ld",
1789 ret
= btrfs_commit_transaction(trans
);
1792 "cleaner open transaction commit returned %d",
1799 static int transaction_kthread(void *arg
)
1801 struct btrfs_root
*root
= arg
;
1802 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1803 struct btrfs_trans_handle
*trans
;
1804 struct btrfs_transaction
*cur
;
1807 unsigned long delay
;
1811 cannot_commit
= false;
1812 delay
= HZ
* fs_info
->commit_interval
;
1813 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1815 spin_lock(&fs_info
->trans_lock
);
1816 cur
= fs_info
->running_transaction
;
1818 spin_unlock(&fs_info
->trans_lock
);
1822 now
= get_seconds();
1823 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1824 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1825 (now
< cur
->start_time
||
1826 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1827 spin_unlock(&fs_info
->trans_lock
);
1831 transid
= cur
->transid
;
1832 spin_unlock(&fs_info
->trans_lock
);
1834 /* If the file system is aborted, this will always fail. */
1835 trans
= btrfs_attach_transaction(root
);
1836 if (IS_ERR(trans
)) {
1837 if (PTR_ERR(trans
) != -ENOENT
)
1838 cannot_commit
= true;
1841 if (transid
== trans
->transid
) {
1842 btrfs_commit_transaction(trans
);
1844 btrfs_end_transaction(trans
);
1847 wake_up_process(fs_info
->cleaner_kthread
);
1848 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1850 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1851 &fs_info
->fs_state
)))
1852 btrfs_cleanup_transaction(fs_info
);
1853 if (!kthread_should_stop() &&
1854 (!btrfs_transaction_blocked(fs_info
) ||
1856 schedule_timeout_interruptible(delay
);
1857 } while (!kthread_should_stop());
1862 * this will find the highest generation in the array of
1863 * root backups. The index of the highest array is returned,
1864 * or -1 if we can't find anything.
1866 * We check to make sure the array is valid by comparing the
1867 * generation of the latest root in the array with the generation
1868 * in the super block. If they don't match we pitch it.
1870 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1873 int newest_index
= -1;
1874 struct btrfs_root_backup
*root_backup
;
1877 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1878 root_backup
= info
->super_copy
->super_roots
+ i
;
1879 cur
= btrfs_backup_tree_root_gen(root_backup
);
1880 if (cur
== newest_gen
)
1884 /* check to see if we actually wrapped around */
1885 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1886 root_backup
= info
->super_copy
->super_roots
;
1887 cur
= btrfs_backup_tree_root_gen(root_backup
);
1888 if (cur
== newest_gen
)
1891 return newest_index
;
1896 * find the oldest backup so we know where to store new entries
1897 * in the backup array. This will set the backup_root_index
1898 * field in the fs_info struct
1900 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1903 int newest_index
= -1;
1905 newest_index
= find_newest_super_backup(info
, newest_gen
);
1906 /* if there was garbage in there, just move along */
1907 if (newest_index
== -1) {
1908 info
->backup_root_index
= 0;
1910 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1915 * copy all the root pointers into the super backup array.
1916 * this will bump the backup pointer by one when it is
1919 static void backup_super_roots(struct btrfs_fs_info
*info
)
1922 struct btrfs_root_backup
*root_backup
;
1925 next_backup
= info
->backup_root_index
;
1926 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1927 BTRFS_NUM_BACKUP_ROOTS
;
1930 * just overwrite the last backup if we're at the same generation
1931 * this happens only at umount
1933 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1934 if (btrfs_backup_tree_root_gen(root_backup
) ==
1935 btrfs_header_generation(info
->tree_root
->node
))
1936 next_backup
= last_backup
;
1938 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1941 * make sure all of our padding and empty slots get zero filled
1942 * regardless of which ones we use today
1944 memset(root_backup
, 0, sizeof(*root_backup
));
1946 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1948 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1949 btrfs_set_backup_tree_root_gen(root_backup
,
1950 btrfs_header_generation(info
->tree_root
->node
));
1952 btrfs_set_backup_tree_root_level(root_backup
,
1953 btrfs_header_level(info
->tree_root
->node
));
1955 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1956 btrfs_set_backup_chunk_root_gen(root_backup
,
1957 btrfs_header_generation(info
->chunk_root
->node
));
1958 btrfs_set_backup_chunk_root_level(root_backup
,
1959 btrfs_header_level(info
->chunk_root
->node
));
1961 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1962 btrfs_set_backup_extent_root_gen(root_backup
,
1963 btrfs_header_generation(info
->extent_root
->node
));
1964 btrfs_set_backup_extent_root_level(root_backup
,
1965 btrfs_header_level(info
->extent_root
->node
));
1968 * we might commit during log recovery, which happens before we set
1969 * the fs_root. Make sure it is valid before we fill it in.
1971 if (info
->fs_root
&& info
->fs_root
->node
) {
1972 btrfs_set_backup_fs_root(root_backup
,
1973 info
->fs_root
->node
->start
);
1974 btrfs_set_backup_fs_root_gen(root_backup
,
1975 btrfs_header_generation(info
->fs_root
->node
));
1976 btrfs_set_backup_fs_root_level(root_backup
,
1977 btrfs_header_level(info
->fs_root
->node
));
1980 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1981 btrfs_set_backup_dev_root_gen(root_backup
,
1982 btrfs_header_generation(info
->dev_root
->node
));
1983 btrfs_set_backup_dev_root_level(root_backup
,
1984 btrfs_header_level(info
->dev_root
->node
));
1986 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1987 btrfs_set_backup_csum_root_gen(root_backup
,
1988 btrfs_header_generation(info
->csum_root
->node
));
1989 btrfs_set_backup_csum_root_level(root_backup
,
1990 btrfs_header_level(info
->csum_root
->node
));
1992 btrfs_set_backup_total_bytes(root_backup
,
1993 btrfs_super_total_bytes(info
->super_copy
));
1994 btrfs_set_backup_bytes_used(root_backup
,
1995 btrfs_super_bytes_used(info
->super_copy
));
1996 btrfs_set_backup_num_devices(root_backup
,
1997 btrfs_super_num_devices(info
->super_copy
));
2000 * if we don't copy this out to the super_copy, it won't get remembered
2001 * for the next commit
2003 memcpy(&info
->super_copy
->super_roots
,
2004 &info
->super_for_commit
->super_roots
,
2005 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2009 * this copies info out of the root backup array and back into
2010 * the in-memory super block. It is meant to help iterate through
2011 * the array, so you send it the number of backups you've already
2012 * tried and the last backup index you used.
2014 * this returns -1 when it has tried all the backups
2016 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2017 struct btrfs_super_block
*super
,
2018 int *num_backups_tried
, int *backup_index
)
2020 struct btrfs_root_backup
*root_backup
;
2021 int newest
= *backup_index
;
2023 if (*num_backups_tried
== 0) {
2024 u64 gen
= btrfs_super_generation(super
);
2026 newest
= find_newest_super_backup(info
, gen
);
2030 *backup_index
= newest
;
2031 *num_backups_tried
= 1;
2032 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2033 /* we've tried all the backups, all done */
2036 /* jump to the next oldest backup */
2037 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2038 BTRFS_NUM_BACKUP_ROOTS
;
2039 *backup_index
= newest
;
2040 *num_backups_tried
+= 1;
2042 root_backup
= super
->super_roots
+ newest
;
2044 btrfs_set_super_generation(super
,
2045 btrfs_backup_tree_root_gen(root_backup
));
2046 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2047 btrfs_set_super_root_level(super
,
2048 btrfs_backup_tree_root_level(root_backup
));
2049 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2052 * fixme: the total bytes and num_devices need to match or we should
2055 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2056 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2060 /* helper to cleanup workers */
2061 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2063 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2064 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2065 btrfs_destroy_workqueue(fs_info
->workers
);
2066 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2067 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2068 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2069 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2070 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2071 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2072 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2073 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2074 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2075 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2076 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2077 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2078 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2080 * Now that all other work queues are destroyed, we can safely destroy
2081 * the queues used for metadata I/O, since tasks from those other work
2082 * queues can do metadata I/O operations.
2084 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2085 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2088 static void free_root_extent_buffers(struct btrfs_root
*root
)
2091 free_extent_buffer(root
->node
);
2092 free_extent_buffer(root
->commit_root
);
2094 root
->commit_root
= NULL
;
2098 /* helper to cleanup tree roots */
2099 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2101 free_root_extent_buffers(info
->tree_root
);
2103 free_root_extent_buffers(info
->dev_root
);
2104 free_root_extent_buffers(info
->extent_root
);
2105 free_root_extent_buffers(info
->csum_root
);
2106 free_root_extent_buffers(info
->quota_root
);
2107 free_root_extent_buffers(info
->uuid_root
);
2109 free_root_extent_buffers(info
->chunk_root
);
2110 free_root_extent_buffers(info
->free_space_root
);
2113 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2116 struct btrfs_root
*gang
[8];
2119 while (!list_empty(&fs_info
->dead_roots
)) {
2120 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2121 struct btrfs_root
, root_list
);
2122 list_del(&gang
[0]->root_list
);
2124 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2125 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2127 free_extent_buffer(gang
[0]->node
);
2128 free_extent_buffer(gang
[0]->commit_root
);
2129 btrfs_put_fs_root(gang
[0]);
2134 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2139 for (i
= 0; i
< ret
; i
++)
2140 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2143 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2144 btrfs_free_log_root_tree(NULL
, fs_info
);
2145 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2149 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2151 mutex_init(&fs_info
->scrub_lock
);
2152 atomic_set(&fs_info
->scrubs_running
, 0);
2153 atomic_set(&fs_info
->scrub_pause_req
, 0);
2154 atomic_set(&fs_info
->scrubs_paused
, 0);
2155 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2156 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2157 fs_info
->scrub_workers_refcnt
= 0;
2160 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2162 spin_lock_init(&fs_info
->balance_lock
);
2163 mutex_init(&fs_info
->balance_mutex
);
2164 atomic_set(&fs_info
->balance_pause_req
, 0);
2165 atomic_set(&fs_info
->balance_cancel_req
, 0);
2166 fs_info
->balance_ctl
= NULL
;
2167 init_waitqueue_head(&fs_info
->balance_wait_q
);
2170 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2172 struct inode
*inode
= fs_info
->btree_inode
;
2174 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2175 set_nlink(inode
, 1);
2177 * we set the i_size on the btree inode to the max possible int.
2178 * the real end of the address space is determined by all of
2179 * the devices in the system
2181 inode
->i_size
= OFFSET_MAX
;
2182 inode
->i_mapping
->a_ops
= &btree_aops
;
2184 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2185 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
);
2186 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2187 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2189 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2191 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2192 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2193 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2194 btrfs_insert_inode_hash(inode
);
2197 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2199 fs_info
->dev_replace
.lock_owner
= 0;
2200 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2201 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2202 rwlock_init(&fs_info
->dev_replace
.lock
);
2203 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2204 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2205 init_waitqueue_head(&fs_info
->replace_wait
);
2206 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2209 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2211 spin_lock_init(&fs_info
->qgroup_lock
);
2212 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2213 fs_info
->qgroup_tree
= RB_ROOT
;
2214 fs_info
->qgroup_op_tree
= RB_ROOT
;
2215 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2216 fs_info
->qgroup_seq
= 1;
2217 fs_info
->qgroup_ulist
= NULL
;
2218 fs_info
->qgroup_rescan_running
= false;
2219 mutex_init(&fs_info
->qgroup_rescan_lock
);
2222 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2223 struct btrfs_fs_devices
*fs_devices
)
2225 u32 max_active
= fs_info
->thread_pool_size
;
2226 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2229 btrfs_alloc_workqueue(fs_info
, "worker",
2230 flags
| WQ_HIGHPRI
, max_active
, 16);
2232 fs_info
->delalloc_workers
=
2233 btrfs_alloc_workqueue(fs_info
, "delalloc",
2234 flags
, max_active
, 2);
2236 fs_info
->flush_workers
=
2237 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2238 flags
, max_active
, 0);
2240 fs_info
->caching_workers
=
2241 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2244 * a higher idle thresh on the submit workers makes it much more
2245 * likely that bios will be send down in a sane order to the
2248 fs_info
->submit_workers
=
2249 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2250 min_t(u64
, fs_devices
->num_devices
,
2253 fs_info
->fixup_workers
=
2254 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2257 * endios are largely parallel and should have a very
2260 fs_info
->endio_workers
=
2261 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2262 fs_info
->endio_meta_workers
=
2263 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2265 fs_info
->endio_meta_write_workers
=
2266 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2268 fs_info
->endio_raid56_workers
=
2269 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2271 fs_info
->endio_repair_workers
=
2272 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2273 fs_info
->rmw_workers
=
2274 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2275 fs_info
->endio_write_workers
=
2276 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2278 fs_info
->endio_freespace_worker
=
2279 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2281 fs_info
->delayed_workers
=
2282 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2284 fs_info
->readahead_workers
=
2285 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2287 fs_info
->qgroup_rescan_workers
=
2288 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2289 fs_info
->extent_workers
=
2290 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2291 min_t(u64
, fs_devices
->num_devices
,
2294 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2295 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2296 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2297 fs_info
->endio_meta_write_workers
&&
2298 fs_info
->endio_repair_workers
&&
2299 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2300 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2301 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2302 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2303 fs_info
->extent_workers
&&
2304 fs_info
->qgroup_rescan_workers
)) {
2311 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2312 struct btrfs_fs_devices
*fs_devices
)
2315 struct btrfs_root
*log_tree_root
;
2316 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2317 u64 bytenr
= btrfs_super_log_root(disk_super
);
2318 int level
= btrfs_super_log_root_level(disk_super
);
2320 if (fs_devices
->rw_devices
== 0) {
2321 btrfs_warn(fs_info
, "log replay required on RO media");
2325 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2329 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2331 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2332 fs_info
->generation
+ 1,
2334 if (IS_ERR(log_tree_root
->node
)) {
2335 btrfs_warn(fs_info
, "failed to read log tree");
2336 ret
= PTR_ERR(log_tree_root
->node
);
2337 kfree(log_tree_root
);
2339 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2340 btrfs_err(fs_info
, "failed to read log tree");
2341 free_extent_buffer(log_tree_root
->node
);
2342 kfree(log_tree_root
);
2345 /* returns with log_tree_root freed on success */
2346 ret
= btrfs_recover_log_trees(log_tree_root
);
2348 btrfs_handle_fs_error(fs_info
, ret
,
2349 "Failed to recover log tree");
2350 free_extent_buffer(log_tree_root
->node
);
2351 kfree(log_tree_root
);
2355 if (sb_rdonly(fs_info
->sb
)) {
2356 ret
= btrfs_commit_super(fs_info
);
2364 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2366 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2367 struct btrfs_root
*root
;
2368 struct btrfs_key location
;
2371 BUG_ON(!fs_info
->tree_root
);
2373 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2374 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2375 location
.offset
= 0;
2377 root
= btrfs_read_tree_root(tree_root
, &location
);
2379 ret
= PTR_ERR(root
);
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2383 fs_info
->extent_root
= root
;
2385 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2386 root
= btrfs_read_tree_root(tree_root
, &location
);
2388 ret
= PTR_ERR(root
);
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2392 fs_info
->dev_root
= root
;
2393 btrfs_init_devices_late(fs_info
);
2395 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2396 root
= btrfs_read_tree_root(tree_root
, &location
);
2398 ret
= PTR_ERR(root
);
2401 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2402 fs_info
->csum_root
= root
;
2404 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2405 root
= btrfs_read_tree_root(tree_root
, &location
);
2406 if (!IS_ERR(root
)) {
2407 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2408 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2409 fs_info
->quota_root
= root
;
2412 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2413 root
= btrfs_read_tree_root(tree_root
, &location
);
2415 ret
= PTR_ERR(root
);
2419 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2420 fs_info
->uuid_root
= root
;
2423 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2424 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2425 root
= btrfs_read_tree_root(tree_root
, &location
);
2427 ret
= PTR_ERR(root
);
2430 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2431 fs_info
->free_space_root
= root
;
2436 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2437 location
.objectid
, ret
);
2442 * Real super block validation
2443 * NOTE: super csum type and incompat features will not be checked here.
2445 * @sb: super block to check
2446 * @mirror_num: the super block number to check its bytenr:
2447 * 0 the primary (1st) sb
2448 * 1, 2 2nd and 3rd backup copy
2449 * -1 skip bytenr check
2451 static int validate_super(struct btrfs_fs_info
*fs_info
,
2452 struct btrfs_super_block
*sb
, int mirror_num
)
2454 u64 nodesize
= btrfs_super_nodesize(sb
);
2455 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2458 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2459 btrfs_err(fs_info
, "no valid FS found");
2462 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2463 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2464 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2467 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2468 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2469 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2472 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2473 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2474 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2477 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2478 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2479 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2484 * Check sectorsize and nodesize first, other check will need it.
2485 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2487 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2488 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2489 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2492 /* Only PAGE SIZE is supported yet */
2493 if (sectorsize
!= PAGE_SIZE
) {
2495 "sectorsize %llu not supported yet, only support %lu",
2496 sectorsize
, PAGE_SIZE
);
2499 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2500 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2501 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2504 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2505 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2506 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2510 /* Root alignment check */
2511 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2512 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2513 btrfs_super_root(sb
));
2516 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2517 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2518 btrfs_super_chunk_root(sb
));
2521 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2522 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2523 btrfs_super_log_root(sb
));
2527 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_FSID_SIZE
) != 0) {
2529 "dev_item UUID does not match fsid: %pU != %pU",
2530 fs_info
->fsid
, sb
->dev_item
.fsid
);
2535 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2538 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2539 btrfs_err(fs_info
, "bytes_used is too small %llu",
2540 btrfs_super_bytes_used(sb
));
2543 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2544 btrfs_err(fs_info
, "invalid stripesize %u",
2545 btrfs_super_stripesize(sb
));
2548 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2549 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2550 btrfs_super_num_devices(sb
));
2551 if (btrfs_super_num_devices(sb
) == 0) {
2552 btrfs_err(fs_info
, "number of devices is 0");
2556 if (mirror_num
>= 0 &&
2557 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2558 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2559 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2564 * Obvious sys_chunk_array corruptions, it must hold at least one key
2567 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2568 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2569 btrfs_super_sys_array_size(sb
),
2570 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2573 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2574 + sizeof(struct btrfs_chunk
)) {
2575 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2576 btrfs_super_sys_array_size(sb
),
2577 sizeof(struct btrfs_disk_key
)
2578 + sizeof(struct btrfs_chunk
));
2583 * The generation is a global counter, we'll trust it more than the others
2584 * but it's still possible that it's the one that's wrong.
2586 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2588 "suspicious: generation < chunk_root_generation: %llu < %llu",
2589 btrfs_super_generation(sb
),
2590 btrfs_super_chunk_root_generation(sb
));
2591 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2592 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2594 "suspicious: generation < cache_generation: %llu < %llu",
2595 btrfs_super_generation(sb
),
2596 btrfs_super_cache_generation(sb
));
2602 * Validation of super block at mount time.
2603 * Some checks already done early at mount time, like csum type and incompat
2604 * flags will be skipped.
2606 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2608 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2612 * Validation of super block at write time.
2613 * Some checks like bytenr check will be skipped as their values will be
2615 * Extra checks like csum type and incompat flags will be done here.
2617 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2618 struct btrfs_super_block
*sb
)
2622 ret
= validate_super(fs_info
, sb
, -1);
2625 if (btrfs_super_csum_type(sb
) != BTRFS_CSUM_TYPE_CRC32
) {
2627 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2628 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2631 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2634 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2635 btrfs_super_incompat_flags(sb
),
2636 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2642 "super block corruption detected before writing it to disk");
2646 int open_ctree(struct super_block
*sb
,
2647 struct btrfs_fs_devices
*fs_devices
,
2655 struct btrfs_key location
;
2656 struct buffer_head
*bh
;
2657 struct btrfs_super_block
*disk_super
;
2658 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2659 struct btrfs_root
*tree_root
;
2660 struct btrfs_root
*chunk_root
;
2663 int num_backups_tried
= 0;
2664 int backup_index
= 0;
2665 int clear_free_space_tree
= 0;
2668 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2669 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2670 if (!tree_root
|| !chunk_root
) {
2675 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2681 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2686 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2687 (1 + ilog2(nr_cpu_ids
));
2689 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2692 goto fail_dirty_metadata_bytes
;
2695 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2698 goto fail_delalloc_bytes
;
2701 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2702 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2703 INIT_LIST_HEAD(&fs_info
->trans_list
);
2704 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2705 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2706 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2707 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2708 INIT_LIST_HEAD(&fs_info
->pending_raid_kobjs
);
2709 spin_lock_init(&fs_info
->pending_raid_kobjs_lock
);
2710 spin_lock_init(&fs_info
->delalloc_root_lock
);
2711 spin_lock_init(&fs_info
->trans_lock
);
2712 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2713 spin_lock_init(&fs_info
->delayed_iput_lock
);
2714 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2715 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2716 spin_lock_init(&fs_info
->super_lock
);
2717 spin_lock_init(&fs_info
->qgroup_op_lock
);
2718 spin_lock_init(&fs_info
->buffer_lock
);
2719 spin_lock_init(&fs_info
->unused_bgs_lock
);
2720 rwlock_init(&fs_info
->tree_mod_log_lock
);
2721 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2722 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2723 mutex_init(&fs_info
->reloc_mutex
);
2724 mutex_init(&fs_info
->delalloc_root_mutex
);
2725 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2726 seqlock_init(&fs_info
->profiles_lock
);
2728 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2729 INIT_LIST_HEAD(&fs_info
->space_info
);
2730 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2731 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2732 btrfs_mapping_init(&fs_info
->mapping_tree
);
2733 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2734 BTRFS_BLOCK_RSV_GLOBAL
);
2735 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2736 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2737 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2738 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2739 BTRFS_BLOCK_RSV_DELOPS
);
2740 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2741 atomic_set(&fs_info
->defrag_running
, 0);
2742 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2743 atomic_set(&fs_info
->reada_works_cnt
, 0);
2744 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2746 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2747 fs_info
->metadata_ratio
= 0;
2748 fs_info
->defrag_inodes
= RB_ROOT
;
2749 atomic64_set(&fs_info
->free_chunk_space
, 0);
2750 fs_info
->tree_mod_log
= RB_ROOT
;
2751 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2752 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2753 /* readahead state */
2754 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2755 spin_lock_init(&fs_info
->reada_lock
);
2756 btrfs_init_ref_verify(fs_info
);
2758 fs_info
->thread_pool_size
= min_t(unsigned long,
2759 num_online_cpus() + 2, 8);
2761 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2762 spin_lock_init(&fs_info
->ordered_root_lock
);
2764 fs_info
->btree_inode
= new_inode(sb
);
2765 if (!fs_info
->btree_inode
) {
2767 goto fail_bio_counter
;
2769 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2771 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2773 if (!fs_info
->delayed_root
) {
2777 btrfs_init_delayed_root(fs_info
->delayed_root
);
2779 btrfs_init_scrub(fs_info
);
2780 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2781 fs_info
->check_integrity_print_mask
= 0;
2783 btrfs_init_balance(fs_info
);
2784 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2786 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2787 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2789 btrfs_init_btree_inode(fs_info
);
2791 spin_lock_init(&fs_info
->block_group_cache_lock
);
2792 fs_info
->block_group_cache_tree
= RB_ROOT
;
2793 fs_info
->first_logical_byte
= (u64
)-1;
2795 extent_io_tree_init(&fs_info
->freed_extents
[0], NULL
);
2796 extent_io_tree_init(&fs_info
->freed_extents
[1], NULL
);
2797 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2798 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2800 mutex_init(&fs_info
->ordered_operations_mutex
);
2801 mutex_init(&fs_info
->tree_log_mutex
);
2802 mutex_init(&fs_info
->chunk_mutex
);
2803 mutex_init(&fs_info
->transaction_kthread_mutex
);
2804 mutex_init(&fs_info
->cleaner_mutex
);
2805 mutex_init(&fs_info
->ro_block_group_mutex
);
2806 init_rwsem(&fs_info
->commit_root_sem
);
2807 init_rwsem(&fs_info
->cleanup_work_sem
);
2808 init_rwsem(&fs_info
->subvol_sem
);
2809 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2811 btrfs_init_dev_replace_locks(fs_info
);
2812 btrfs_init_qgroup(fs_info
);
2814 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2815 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2817 init_waitqueue_head(&fs_info
->transaction_throttle
);
2818 init_waitqueue_head(&fs_info
->transaction_wait
);
2819 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2820 init_waitqueue_head(&fs_info
->async_submit_wait
);
2822 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2824 /* Usable values until the real ones are cached from the superblock */
2825 fs_info
->nodesize
= 4096;
2826 fs_info
->sectorsize
= 4096;
2827 fs_info
->stripesize
= 4096;
2829 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2835 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2837 invalidate_bdev(fs_devices
->latest_bdev
);
2840 * Read super block and check the signature bytes only
2842 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2849 * We want to check superblock checksum, the type is stored inside.
2850 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2852 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2853 btrfs_err(fs_info
, "superblock checksum mismatch");
2860 * super_copy is zeroed at allocation time and we never touch the
2861 * following bytes up to INFO_SIZE, the checksum is calculated from
2862 * the whole block of INFO_SIZE
2864 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2865 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2866 sizeof(*fs_info
->super_for_commit
));
2869 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2871 ret
= btrfs_validate_mount_super(fs_info
);
2873 btrfs_err(fs_info
, "superblock contains fatal errors");
2878 disk_super
= fs_info
->super_copy
;
2879 if (!btrfs_super_root(disk_super
))
2882 /* check FS state, whether FS is broken. */
2883 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2884 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2887 * run through our array of backup supers and setup
2888 * our ring pointer to the oldest one
2890 generation
= btrfs_super_generation(disk_super
);
2891 find_oldest_super_backup(fs_info
, generation
);
2894 * In the long term, we'll store the compression type in the super
2895 * block, and it'll be used for per file compression control.
2897 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2899 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2905 features
= btrfs_super_incompat_flags(disk_super
) &
2906 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2909 "cannot mount because of unsupported optional features (%llx)",
2915 features
= btrfs_super_incompat_flags(disk_super
);
2916 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2917 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2918 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2919 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2920 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2922 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2923 btrfs_info(fs_info
, "has skinny extents");
2926 * flag our filesystem as having big metadata blocks if
2927 * they are bigger than the page size
2929 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2930 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2932 "flagging fs with big metadata feature");
2933 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2936 nodesize
= btrfs_super_nodesize(disk_super
);
2937 sectorsize
= btrfs_super_sectorsize(disk_super
);
2938 stripesize
= sectorsize
;
2939 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2940 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2942 /* Cache block sizes */
2943 fs_info
->nodesize
= nodesize
;
2944 fs_info
->sectorsize
= sectorsize
;
2945 fs_info
->stripesize
= stripesize
;
2948 * mixed block groups end up with duplicate but slightly offset
2949 * extent buffers for the same range. It leads to corruptions
2951 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2952 (sectorsize
!= nodesize
)) {
2954 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2955 nodesize
, sectorsize
);
2960 * Needn't use the lock because there is no other task which will
2963 btrfs_set_super_incompat_flags(disk_super
, features
);
2965 features
= btrfs_super_compat_ro_flags(disk_super
) &
2966 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2967 if (!sb_rdonly(sb
) && features
) {
2969 "cannot mount read-write because of unsupported optional features (%llx)",
2975 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2978 goto fail_sb_buffer
;
2981 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2982 sb
->s_bdi
->congested_data
= fs_info
;
2983 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2984 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* SZ_1K
/ PAGE_SIZE
;
2985 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2986 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2988 sb
->s_blocksize
= sectorsize
;
2989 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2990 memcpy(&sb
->s_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
);
2992 mutex_lock(&fs_info
->chunk_mutex
);
2993 ret
= btrfs_read_sys_array(fs_info
);
2994 mutex_unlock(&fs_info
->chunk_mutex
);
2996 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2997 goto fail_sb_buffer
;
3000 generation
= btrfs_super_chunk_root_generation(disk_super
);
3001 level
= btrfs_super_chunk_root_level(disk_super
);
3003 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
3005 chunk_root
->node
= read_tree_block(fs_info
,
3006 btrfs_super_chunk_root(disk_super
),
3007 generation
, level
, NULL
);
3008 if (IS_ERR(chunk_root
->node
) ||
3009 !extent_buffer_uptodate(chunk_root
->node
)) {
3010 btrfs_err(fs_info
, "failed to read chunk root");
3011 if (!IS_ERR(chunk_root
->node
))
3012 free_extent_buffer(chunk_root
->node
);
3013 chunk_root
->node
= NULL
;
3014 goto fail_tree_roots
;
3016 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3017 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3019 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3020 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
3022 ret
= btrfs_read_chunk_tree(fs_info
);
3024 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3025 goto fail_tree_roots
;
3029 * Keep the devid that is marked to be the target device for the
3030 * device replace procedure
3032 btrfs_free_extra_devids(fs_devices
, 0);
3034 if (!fs_devices
->latest_bdev
) {
3035 btrfs_err(fs_info
, "failed to read devices");
3036 goto fail_tree_roots
;
3040 generation
= btrfs_super_generation(disk_super
);
3041 level
= btrfs_super_root_level(disk_super
);
3043 tree_root
->node
= read_tree_block(fs_info
,
3044 btrfs_super_root(disk_super
),
3045 generation
, level
, NULL
);
3046 if (IS_ERR(tree_root
->node
) ||
3047 !extent_buffer_uptodate(tree_root
->node
)) {
3048 btrfs_warn(fs_info
, "failed to read tree root");
3049 if (!IS_ERR(tree_root
->node
))
3050 free_extent_buffer(tree_root
->node
);
3051 tree_root
->node
= NULL
;
3052 goto recovery_tree_root
;
3055 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
3056 tree_root
->commit_root
= btrfs_root_node(tree_root
);
3057 btrfs_set_root_refs(&tree_root
->root_item
, 1);
3059 mutex_lock(&tree_root
->objectid_mutex
);
3060 ret
= btrfs_find_highest_objectid(tree_root
,
3061 &tree_root
->highest_objectid
);
3063 mutex_unlock(&tree_root
->objectid_mutex
);
3064 goto recovery_tree_root
;
3067 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
3069 mutex_unlock(&tree_root
->objectid_mutex
);
3071 ret
= btrfs_read_roots(fs_info
);
3073 goto recovery_tree_root
;
3075 fs_info
->generation
= generation
;
3076 fs_info
->last_trans_committed
= generation
;
3078 ret
= btrfs_recover_balance(fs_info
);
3080 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3081 goto fail_block_groups
;
3084 ret
= btrfs_init_dev_stats(fs_info
);
3086 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3087 goto fail_block_groups
;
3090 ret
= btrfs_init_dev_replace(fs_info
);
3092 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3093 goto fail_block_groups
;
3096 btrfs_free_extra_devids(fs_devices
, 1);
3098 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3100 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3102 goto fail_block_groups
;
3105 ret
= btrfs_sysfs_add_device(fs_devices
);
3107 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3109 goto fail_fsdev_sysfs
;
3112 ret
= btrfs_sysfs_add_mounted(fs_info
);
3114 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3115 goto fail_fsdev_sysfs
;
3118 ret
= btrfs_init_space_info(fs_info
);
3120 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3124 ret
= btrfs_read_block_groups(fs_info
);
3126 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3130 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3132 "writeable mount is not allowed due to too many missing devices");
3136 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3138 if (IS_ERR(fs_info
->cleaner_kthread
))
3141 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3143 "btrfs-transaction");
3144 if (IS_ERR(fs_info
->transaction_kthread
))
3147 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3148 !fs_info
->fs_devices
->rotating
) {
3149 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3153 * Mount does not set all options immediately, we can do it now and do
3154 * not have to wait for transaction commit
3156 btrfs_apply_pending_changes(fs_info
);
3158 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3159 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3160 ret
= btrfsic_mount(fs_info
, fs_devices
,
3161 btrfs_test_opt(fs_info
,
3162 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3164 fs_info
->check_integrity_print_mask
);
3167 "failed to initialize integrity check module: %d",
3171 ret
= btrfs_read_qgroup_config(fs_info
);
3173 goto fail_trans_kthread
;
3175 if (btrfs_build_ref_tree(fs_info
))
3176 btrfs_err(fs_info
, "couldn't build ref tree");
3178 /* do not make disk changes in broken FS or nologreplay is given */
3179 if (btrfs_super_log_root(disk_super
) != 0 &&
3180 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3181 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3188 ret
= btrfs_find_orphan_roots(fs_info
);
3192 if (!sb_rdonly(sb
)) {
3193 ret
= btrfs_cleanup_fs_roots(fs_info
);
3197 mutex_lock(&fs_info
->cleaner_mutex
);
3198 ret
= btrfs_recover_relocation(tree_root
);
3199 mutex_unlock(&fs_info
->cleaner_mutex
);
3201 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3208 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3209 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3210 location
.offset
= 0;
3212 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3213 if (IS_ERR(fs_info
->fs_root
)) {
3214 err
= PTR_ERR(fs_info
->fs_root
);
3215 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3222 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3223 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3224 clear_free_space_tree
= 1;
3225 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3226 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3227 btrfs_warn(fs_info
, "free space tree is invalid");
3228 clear_free_space_tree
= 1;
3231 if (clear_free_space_tree
) {
3232 btrfs_info(fs_info
, "clearing free space tree");
3233 ret
= btrfs_clear_free_space_tree(fs_info
);
3236 "failed to clear free space tree: %d", ret
);
3237 close_ctree(fs_info
);
3242 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3243 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3244 btrfs_info(fs_info
, "creating free space tree");
3245 ret
= btrfs_create_free_space_tree(fs_info
);
3248 "failed to create free space tree: %d", ret
);
3249 close_ctree(fs_info
);
3254 down_read(&fs_info
->cleanup_work_sem
);
3255 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3256 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3257 up_read(&fs_info
->cleanup_work_sem
);
3258 close_ctree(fs_info
);
3261 up_read(&fs_info
->cleanup_work_sem
);
3263 ret
= btrfs_resume_balance_async(fs_info
);
3265 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3266 close_ctree(fs_info
);
3270 ret
= btrfs_resume_dev_replace_async(fs_info
);
3272 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3273 close_ctree(fs_info
);
3277 btrfs_qgroup_rescan_resume(fs_info
);
3279 if (!fs_info
->uuid_root
) {
3280 btrfs_info(fs_info
, "creating UUID tree");
3281 ret
= btrfs_create_uuid_tree(fs_info
);
3284 "failed to create the UUID tree: %d", ret
);
3285 close_ctree(fs_info
);
3288 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3289 fs_info
->generation
!=
3290 btrfs_super_uuid_tree_generation(disk_super
)) {
3291 btrfs_info(fs_info
, "checking UUID tree");
3292 ret
= btrfs_check_uuid_tree(fs_info
);
3295 "failed to check the UUID tree: %d", ret
);
3296 close_ctree(fs_info
);
3300 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3302 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3305 * backuproot only affect mount behavior, and if open_ctree succeeded,
3306 * no need to keep the flag
3308 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3313 btrfs_free_qgroup_config(fs_info
);
3315 kthread_stop(fs_info
->transaction_kthread
);
3316 btrfs_cleanup_transaction(fs_info
);
3317 btrfs_free_fs_roots(fs_info
);
3319 kthread_stop(fs_info
->cleaner_kthread
);
3322 * make sure we're done with the btree inode before we stop our
3325 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3328 btrfs_sysfs_remove_mounted(fs_info
);
3331 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3334 btrfs_put_block_group_cache(fs_info
);
3337 free_root_pointers(fs_info
, 1);
3338 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3341 btrfs_stop_all_workers(fs_info
);
3342 btrfs_free_block_groups(fs_info
);
3345 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3347 iput(fs_info
->btree_inode
);
3349 percpu_counter_destroy(&fs_info
->bio_counter
);
3350 fail_delalloc_bytes
:
3351 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3352 fail_dirty_metadata_bytes
:
3353 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3355 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3357 btrfs_free_stripe_hash_table(fs_info
);
3358 btrfs_close_devices(fs_info
->fs_devices
);
3362 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3363 goto fail_tree_roots
;
3365 free_root_pointers(fs_info
, 0);
3367 /* don't use the log in recovery mode, it won't be valid */
3368 btrfs_set_super_log_root(disk_super
, 0);
3370 /* we can't trust the free space cache either */
3371 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3373 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3374 &num_backups_tried
, &backup_index
);
3376 goto fail_block_groups
;
3377 goto retry_root_backup
;
3379 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3381 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3384 set_buffer_uptodate(bh
);
3386 struct btrfs_device
*device
= (struct btrfs_device
*)
3389 btrfs_warn_rl_in_rcu(device
->fs_info
,
3390 "lost page write due to IO error on %s",
3391 rcu_str_deref(device
->name
));
3392 /* note, we don't set_buffer_write_io_error because we have
3393 * our own ways of dealing with the IO errors
3395 clear_buffer_uptodate(bh
);
3396 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3402 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3403 struct buffer_head
**bh_ret
)
3405 struct buffer_head
*bh
;
3406 struct btrfs_super_block
*super
;
3409 bytenr
= btrfs_sb_offset(copy_num
);
3410 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3413 bh
= __bread(bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
, BTRFS_SUPER_INFO_SIZE
);
3415 * If we fail to read from the underlying devices, as of now
3416 * the best option we have is to mark it EIO.
3421 super
= (struct btrfs_super_block
*)bh
->b_data
;
3422 if (btrfs_super_bytenr(super
) != bytenr
||
3423 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3433 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3435 struct buffer_head
*bh
;
3436 struct buffer_head
*latest
= NULL
;
3437 struct btrfs_super_block
*super
;
3442 /* we would like to check all the supers, but that would make
3443 * a btrfs mount succeed after a mkfs from a different FS.
3444 * So, we need to add a special mount option to scan for
3445 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3447 for (i
= 0; i
< 1; i
++) {
3448 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3452 super
= (struct btrfs_super_block
*)bh
->b_data
;
3454 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3457 transid
= btrfs_super_generation(super
);
3464 return ERR_PTR(ret
);
3470 * Write superblock @sb to the @device. Do not wait for completion, all the
3471 * buffer heads we write are pinned.
3473 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3474 * the expected device size at commit time. Note that max_mirrors must be
3475 * same for write and wait phases.
3477 * Return number of errors when buffer head is not found or submission fails.
3479 static int write_dev_supers(struct btrfs_device
*device
,
3480 struct btrfs_super_block
*sb
, int max_mirrors
)
3482 struct buffer_head
*bh
;
3490 if (max_mirrors
== 0)
3491 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3493 for (i
= 0; i
< max_mirrors
; i
++) {
3494 bytenr
= btrfs_sb_offset(i
);
3495 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3496 device
->commit_total_bytes
)
3499 btrfs_set_super_bytenr(sb
, bytenr
);
3502 crc
= btrfs_csum_data((const char *)sb
+ BTRFS_CSUM_SIZE
, crc
,
3503 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3504 btrfs_csum_final(crc
, sb
->csum
);
3506 /* One reference for us, and we leave it for the caller */
3507 bh
= __getblk(device
->bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3508 BTRFS_SUPER_INFO_SIZE
);
3510 btrfs_err(device
->fs_info
,
3511 "couldn't get super buffer head for bytenr %llu",
3517 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3519 /* one reference for submit_bh */
3522 set_buffer_uptodate(bh
);
3524 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3525 bh
->b_private
= device
;
3528 * we fua the first super. The others we allow
3531 op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
;
3532 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3533 op_flags
|= REQ_FUA
;
3534 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3538 return errors
< i
? 0 : -1;
3542 * Wait for write completion of superblocks done by write_dev_supers,
3543 * @max_mirrors same for write and wait phases.
3545 * Return number of errors when buffer head is not found or not marked up to
3548 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3550 struct buffer_head
*bh
;
3553 bool primary_failed
= false;
3556 if (max_mirrors
== 0)
3557 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3559 for (i
= 0; i
< max_mirrors
; i
++) {
3560 bytenr
= btrfs_sb_offset(i
);
3561 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3562 device
->commit_total_bytes
)
3565 bh
= __find_get_block(device
->bdev
,
3566 bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3567 BTRFS_SUPER_INFO_SIZE
);
3571 primary_failed
= true;
3575 if (!buffer_uptodate(bh
)) {
3578 primary_failed
= true;
3581 /* drop our reference */
3584 /* drop the reference from the writing run */
3588 /* log error, force error return */
3589 if (primary_failed
) {
3590 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3595 return errors
< i
? 0 : -1;
3599 * endio for the write_dev_flush, this will wake anyone waiting
3600 * for the barrier when it is done
3602 static void btrfs_end_empty_barrier(struct bio
*bio
)
3604 complete(bio
->bi_private
);
3608 * Submit a flush request to the device if it supports it. Error handling is
3609 * done in the waiting counterpart.
3611 static void write_dev_flush(struct btrfs_device
*device
)
3613 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3614 struct bio
*bio
= device
->flush_bio
;
3616 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3620 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3621 bio_set_dev(bio
, device
->bdev
);
3622 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3623 init_completion(&device
->flush_wait
);
3624 bio
->bi_private
= &device
->flush_wait
;
3626 btrfsic_submit_bio(bio
);
3627 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3631 * If the flush bio has been submitted by write_dev_flush, wait for it.
3633 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3635 struct bio
*bio
= device
->flush_bio
;
3637 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3640 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3641 wait_for_completion_io(&device
->flush_wait
);
3643 return bio
->bi_status
;
3646 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3648 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3654 * send an empty flush down to each device in parallel,
3655 * then wait for them
3657 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3659 struct list_head
*head
;
3660 struct btrfs_device
*dev
;
3661 int errors_wait
= 0;
3664 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3665 /* send down all the barriers */
3666 head
= &info
->fs_devices
->devices
;
3667 list_for_each_entry(dev
, head
, dev_list
) {
3668 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3676 write_dev_flush(dev
);
3677 dev
->last_flush_error
= BLK_STS_OK
;
3680 /* wait for all the barriers */
3681 list_for_each_entry(dev
, head
, dev_list
) {
3682 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3688 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3689 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3692 ret
= wait_dev_flush(dev
);
3694 dev
->last_flush_error
= ret
;
3695 btrfs_dev_stat_inc_and_print(dev
,
3696 BTRFS_DEV_STAT_FLUSH_ERRS
);
3703 * At some point we need the status of all disks
3704 * to arrive at the volume status. So error checking
3705 * is being pushed to a separate loop.
3707 return check_barrier_error(info
);
3712 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3715 int min_tolerated
= INT_MAX
;
3717 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3718 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3719 min_tolerated
= min(min_tolerated
,
3720 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3721 tolerated_failures
);
3723 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3724 if (raid_type
== BTRFS_RAID_SINGLE
)
3726 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3728 min_tolerated
= min(min_tolerated
,
3729 btrfs_raid_array
[raid_type
].
3730 tolerated_failures
);
3733 if (min_tolerated
== INT_MAX
) {
3734 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3738 return min_tolerated
;
3741 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3743 struct list_head
*head
;
3744 struct btrfs_device
*dev
;
3745 struct btrfs_super_block
*sb
;
3746 struct btrfs_dev_item
*dev_item
;
3750 int total_errors
= 0;
3753 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3756 * max_mirrors == 0 indicates we're from commit_transaction,
3757 * not from fsync where the tree roots in fs_info have not
3758 * been consistent on disk.
3760 if (max_mirrors
== 0)
3761 backup_super_roots(fs_info
);
3763 sb
= fs_info
->super_for_commit
;
3764 dev_item
= &sb
->dev_item
;
3766 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3767 head
= &fs_info
->fs_devices
->devices
;
3768 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3771 ret
= barrier_all_devices(fs_info
);
3774 &fs_info
->fs_devices
->device_list_mutex
);
3775 btrfs_handle_fs_error(fs_info
, ret
,
3776 "errors while submitting device barriers.");
3781 list_for_each_entry(dev
, head
, dev_list
) {
3786 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3787 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3790 btrfs_set_stack_device_generation(dev_item
, 0);
3791 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3792 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3793 btrfs_set_stack_device_total_bytes(dev_item
,
3794 dev
->commit_total_bytes
);
3795 btrfs_set_stack_device_bytes_used(dev_item
,
3796 dev
->commit_bytes_used
);
3797 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3798 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3799 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3800 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3801 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3803 flags
= btrfs_super_flags(sb
);
3804 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3806 ret
= btrfs_validate_write_super(fs_info
, sb
);
3808 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3809 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3810 "unexpected superblock corruption detected");
3814 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3818 if (total_errors
> max_errors
) {
3819 btrfs_err(fs_info
, "%d errors while writing supers",
3821 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3823 /* FUA is masked off if unsupported and can't be the reason */
3824 btrfs_handle_fs_error(fs_info
, -EIO
,
3825 "%d errors while writing supers",
3831 list_for_each_entry(dev
, head
, dev_list
) {
3834 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3835 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3838 ret
= wait_dev_supers(dev
, max_mirrors
);
3842 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3843 if (total_errors
> max_errors
) {
3844 btrfs_handle_fs_error(fs_info
, -EIO
,
3845 "%d errors while writing supers",
3852 /* Drop a fs root from the radix tree and free it. */
3853 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3854 struct btrfs_root
*root
)
3856 spin_lock(&fs_info
->fs_roots_radix_lock
);
3857 radix_tree_delete(&fs_info
->fs_roots_radix
,
3858 (unsigned long)root
->root_key
.objectid
);
3859 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3861 if (btrfs_root_refs(&root
->root_item
) == 0)
3862 synchronize_srcu(&fs_info
->subvol_srcu
);
3864 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3865 btrfs_free_log(NULL
, root
);
3866 if (root
->reloc_root
) {
3867 free_extent_buffer(root
->reloc_root
->node
);
3868 free_extent_buffer(root
->reloc_root
->commit_root
);
3869 btrfs_put_fs_root(root
->reloc_root
);
3870 root
->reloc_root
= NULL
;
3874 if (root
->free_ino_pinned
)
3875 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3876 if (root
->free_ino_ctl
)
3877 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3881 static void free_fs_root(struct btrfs_root
*root
)
3883 iput(root
->ino_cache_inode
);
3884 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3886 free_anon_bdev(root
->anon_dev
);
3887 if (root
->subv_writers
)
3888 btrfs_free_subvolume_writers(root
->subv_writers
);
3889 free_extent_buffer(root
->node
);
3890 free_extent_buffer(root
->commit_root
);
3891 kfree(root
->free_ino_ctl
);
3892 kfree(root
->free_ino_pinned
);
3894 btrfs_put_fs_root(root
);
3897 void btrfs_free_fs_root(struct btrfs_root
*root
)
3902 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3904 u64 root_objectid
= 0;
3905 struct btrfs_root
*gang
[8];
3908 unsigned int ret
= 0;
3912 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3913 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3914 (void **)gang
, root_objectid
,
3917 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3920 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3922 for (i
= 0; i
< ret
; i
++) {
3923 /* Avoid to grab roots in dead_roots */
3924 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3928 /* grab all the search result for later use */
3929 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3931 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3933 for (i
= 0; i
< ret
; i
++) {
3936 root_objectid
= gang
[i
]->root_key
.objectid
;
3937 err
= btrfs_orphan_cleanup(gang
[i
]);
3940 btrfs_put_fs_root(gang
[i
]);
3945 /* release the uncleaned roots due to error */
3946 for (; i
< ret
; i
++) {
3948 btrfs_put_fs_root(gang
[i
]);
3953 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3955 struct btrfs_root
*root
= fs_info
->tree_root
;
3956 struct btrfs_trans_handle
*trans
;
3958 mutex_lock(&fs_info
->cleaner_mutex
);
3959 btrfs_run_delayed_iputs(fs_info
);
3960 mutex_unlock(&fs_info
->cleaner_mutex
);
3961 wake_up_process(fs_info
->cleaner_kthread
);
3963 /* wait until ongoing cleanup work done */
3964 down_write(&fs_info
->cleanup_work_sem
);
3965 up_write(&fs_info
->cleanup_work_sem
);
3967 trans
= btrfs_join_transaction(root
);
3969 return PTR_ERR(trans
);
3970 return btrfs_commit_transaction(trans
);
3973 void close_ctree(struct btrfs_fs_info
*fs_info
)
3977 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3979 /* wait for the qgroup rescan worker to stop */
3980 btrfs_qgroup_wait_for_completion(fs_info
, false);
3982 /* wait for the uuid_scan task to finish */
3983 down(&fs_info
->uuid_tree_rescan_sem
);
3984 /* avoid complains from lockdep et al., set sem back to initial state */
3985 up(&fs_info
->uuid_tree_rescan_sem
);
3987 /* pause restriper - we want to resume on mount */
3988 btrfs_pause_balance(fs_info
);
3990 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3992 btrfs_scrub_cancel(fs_info
);
3994 /* wait for any defraggers to finish */
3995 wait_event(fs_info
->transaction_wait
,
3996 (atomic_read(&fs_info
->defrag_running
) == 0));
3998 /* clear out the rbtree of defraggable inodes */
3999 btrfs_cleanup_defrag_inodes(fs_info
);
4001 cancel_work_sync(&fs_info
->async_reclaim_work
);
4003 if (!sb_rdonly(fs_info
->sb
)) {
4005 * If the cleaner thread is stopped and there are
4006 * block groups queued for removal, the deletion will be
4007 * skipped when we quit the cleaner thread.
4009 btrfs_delete_unused_bgs(fs_info
);
4011 ret
= btrfs_commit_super(fs_info
);
4013 btrfs_err(fs_info
, "commit super ret %d", ret
);
4016 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4017 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4018 btrfs_error_commit_super(fs_info
);
4020 kthread_stop(fs_info
->transaction_kthread
);
4021 kthread_stop(fs_info
->cleaner_kthread
);
4023 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4025 btrfs_free_qgroup_config(fs_info
);
4026 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4028 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4029 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4030 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4033 btrfs_sysfs_remove_mounted(fs_info
);
4034 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4036 btrfs_free_fs_roots(fs_info
);
4038 btrfs_put_block_group_cache(fs_info
);
4041 * we must make sure there is not any read request to
4042 * submit after we stopping all workers.
4044 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4045 btrfs_stop_all_workers(fs_info
);
4047 btrfs_free_block_groups(fs_info
);
4049 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4050 free_root_pointers(fs_info
, 1);
4052 iput(fs_info
->btree_inode
);
4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4056 btrfsic_unmount(fs_info
->fs_devices
);
4059 btrfs_close_devices(fs_info
->fs_devices
);
4060 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4062 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
4063 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
4064 percpu_counter_destroy(&fs_info
->bio_counter
);
4065 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
4067 btrfs_free_stripe_hash_table(fs_info
);
4068 btrfs_free_ref_cache(fs_info
);
4070 while (!list_empty(&fs_info
->pinned_chunks
)) {
4071 struct extent_map
*em
;
4073 em
= list_first_entry(&fs_info
->pinned_chunks
,
4074 struct extent_map
, list
);
4075 list_del_init(&em
->list
);
4076 free_extent_map(em
);
4080 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4084 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4086 ret
= extent_buffer_uptodate(buf
);
4090 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4091 parent_transid
, atomic
);
4097 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4099 struct btrfs_fs_info
*fs_info
;
4100 struct btrfs_root
*root
;
4101 u64 transid
= btrfs_header_generation(buf
);
4104 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4106 * This is a fast path so only do this check if we have sanity tests
4107 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4108 * outside of the sanity tests.
4110 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
4113 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4114 fs_info
= root
->fs_info
;
4115 btrfs_assert_tree_locked(buf
);
4116 if (transid
!= fs_info
->generation
)
4117 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4118 buf
->start
, transid
, fs_info
->generation
);
4119 was_dirty
= set_extent_buffer_dirty(buf
);
4121 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4123 fs_info
->dirty_metadata_batch
);
4124 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4126 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4127 * but item data not updated.
4128 * So here we should only check item pointers, not item data.
4130 if (btrfs_header_level(buf
) == 0 &&
4131 btrfs_check_leaf_relaxed(fs_info
, buf
)) {
4132 btrfs_print_leaf(buf
);
4138 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4142 * looks as though older kernels can get into trouble with
4143 * this code, they end up stuck in balance_dirty_pages forever
4147 if (current
->flags
& PF_MEMALLOC
)
4151 btrfs_balance_delayed_items(fs_info
);
4153 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4154 BTRFS_DIRTY_METADATA_THRESH
);
4156 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4160 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4162 __btrfs_btree_balance_dirty(fs_info
, 1);
4165 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4167 __btrfs_btree_balance_dirty(fs_info
, 0);
4170 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4171 struct btrfs_key
*first_key
)
4173 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4174 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4176 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
4180 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4182 /* cleanup FS via transaction */
4183 btrfs_cleanup_transaction(fs_info
);
4185 mutex_lock(&fs_info
->cleaner_mutex
);
4186 btrfs_run_delayed_iputs(fs_info
);
4187 mutex_unlock(&fs_info
->cleaner_mutex
);
4189 down_write(&fs_info
->cleanup_work_sem
);
4190 up_write(&fs_info
->cleanup_work_sem
);
4193 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4195 struct btrfs_ordered_extent
*ordered
;
4197 spin_lock(&root
->ordered_extent_lock
);
4199 * This will just short circuit the ordered completion stuff which will
4200 * make sure the ordered extent gets properly cleaned up.
4202 list_for_each_entry(ordered
, &root
->ordered_extents
,
4204 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4205 spin_unlock(&root
->ordered_extent_lock
);
4208 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4210 struct btrfs_root
*root
;
4211 struct list_head splice
;
4213 INIT_LIST_HEAD(&splice
);
4215 spin_lock(&fs_info
->ordered_root_lock
);
4216 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4217 while (!list_empty(&splice
)) {
4218 root
= list_first_entry(&splice
, struct btrfs_root
,
4220 list_move_tail(&root
->ordered_root
,
4221 &fs_info
->ordered_roots
);
4223 spin_unlock(&fs_info
->ordered_root_lock
);
4224 btrfs_destroy_ordered_extents(root
);
4227 spin_lock(&fs_info
->ordered_root_lock
);
4229 spin_unlock(&fs_info
->ordered_root_lock
);
4232 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4233 struct btrfs_fs_info
*fs_info
)
4235 struct rb_node
*node
;
4236 struct btrfs_delayed_ref_root
*delayed_refs
;
4237 struct btrfs_delayed_ref_node
*ref
;
4240 delayed_refs
= &trans
->delayed_refs
;
4242 spin_lock(&delayed_refs
->lock
);
4243 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4244 spin_unlock(&delayed_refs
->lock
);
4245 btrfs_info(fs_info
, "delayed_refs has NO entry");
4249 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4250 struct btrfs_delayed_ref_head
*head
;
4252 bool pin_bytes
= false;
4254 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4256 if (!mutex_trylock(&head
->mutex
)) {
4257 refcount_inc(&head
->refs
);
4258 spin_unlock(&delayed_refs
->lock
);
4260 mutex_lock(&head
->mutex
);
4261 mutex_unlock(&head
->mutex
);
4262 btrfs_put_delayed_ref_head(head
);
4263 spin_lock(&delayed_refs
->lock
);
4266 spin_lock(&head
->lock
);
4267 while ((n
= rb_first(&head
->ref_tree
)) != NULL
) {
4268 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4271 rb_erase(&ref
->ref_node
, &head
->ref_tree
);
4272 RB_CLEAR_NODE(&ref
->ref_node
);
4273 if (!list_empty(&ref
->add_list
))
4274 list_del(&ref
->add_list
);
4275 atomic_dec(&delayed_refs
->num_entries
);
4276 btrfs_put_delayed_ref(ref
);
4278 if (head
->must_insert_reserved
)
4280 btrfs_free_delayed_extent_op(head
->extent_op
);
4281 delayed_refs
->num_heads
--;
4282 if (head
->processing
== 0)
4283 delayed_refs
->num_heads_ready
--;
4284 atomic_dec(&delayed_refs
->num_entries
);
4285 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4286 RB_CLEAR_NODE(&head
->href_node
);
4287 spin_unlock(&head
->lock
);
4288 spin_unlock(&delayed_refs
->lock
);
4289 mutex_unlock(&head
->mutex
);
4292 btrfs_pin_extent(fs_info
, head
->bytenr
,
4293 head
->num_bytes
, 1);
4294 btrfs_put_delayed_ref_head(head
);
4296 spin_lock(&delayed_refs
->lock
);
4299 spin_unlock(&delayed_refs
->lock
);
4304 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4306 struct btrfs_inode
*btrfs_inode
;
4307 struct list_head splice
;
4309 INIT_LIST_HEAD(&splice
);
4311 spin_lock(&root
->delalloc_lock
);
4312 list_splice_init(&root
->delalloc_inodes
, &splice
);
4314 while (!list_empty(&splice
)) {
4315 struct inode
*inode
= NULL
;
4316 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4318 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4319 spin_unlock(&root
->delalloc_lock
);
4322 * Make sure we get a live inode and that it'll not disappear
4325 inode
= igrab(&btrfs_inode
->vfs_inode
);
4327 invalidate_inode_pages2(inode
->i_mapping
);
4330 spin_lock(&root
->delalloc_lock
);
4332 spin_unlock(&root
->delalloc_lock
);
4335 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4337 struct btrfs_root
*root
;
4338 struct list_head splice
;
4340 INIT_LIST_HEAD(&splice
);
4342 spin_lock(&fs_info
->delalloc_root_lock
);
4343 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4344 while (!list_empty(&splice
)) {
4345 root
= list_first_entry(&splice
, struct btrfs_root
,
4347 root
= btrfs_grab_fs_root(root
);
4349 spin_unlock(&fs_info
->delalloc_root_lock
);
4351 btrfs_destroy_delalloc_inodes(root
);
4352 btrfs_put_fs_root(root
);
4354 spin_lock(&fs_info
->delalloc_root_lock
);
4356 spin_unlock(&fs_info
->delalloc_root_lock
);
4359 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4360 struct extent_io_tree
*dirty_pages
,
4364 struct extent_buffer
*eb
;
4369 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4374 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4375 while (start
<= end
) {
4376 eb
= find_extent_buffer(fs_info
, start
);
4377 start
+= fs_info
->nodesize
;
4380 wait_on_extent_buffer_writeback(eb
);
4382 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4384 clear_extent_buffer_dirty(eb
);
4385 free_extent_buffer_stale(eb
);
4392 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4393 struct extent_io_tree
*pinned_extents
)
4395 struct extent_io_tree
*unpin
;
4401 unpin
= pinned_extents
;
4404 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4405 EXTENT_DIRTY
, NULL
);
4409 clear_extent_dirty(unpin
, start
, end
);
4410 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4415 if (unpin
== &fs_info
->freed_extents
[0])
4416 unpin
= &fs_info
->freed_extents
[1];
4418 unpin
= &fs_info
->freed_extents
[0];
4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4428 struct inode
*inode
;
4430 inode
= cache
->io_ctl
.inode
;
4432 invalidate_inode_pages2(inode
->i_mapping
);
4433 BTRFS_I(inode
)->generation
= 0;
4434 cache
->io_ctl
.inode
= NULL
;
4437 btrfs_put_block_group(cache
);
4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4441 struct btrfs_fs_info
*fs_info
)
4443 struct btrfs_block_group_cache
*cache
;
4445 spin_lock(&cur_trans
->dirty_bgs_lock
);
4446 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4447 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4448 struct btrfs_block_group_cache
,
4451 if (!list_empty(&cache
->io_list
)) {
4452 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4453 list_del_init(&cache
->io_list
);
4454 btrfs_cleanup_bg_io(cache
);
4455 spin_lock(&cur_trans
->dirty_bgs_lock
);
4458 list_del_init(&cache
->dirty_list
);
4459 spin_lock(&cache
->lock
);
4460 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4461 spin_unlock(&cache
->lock
);
4463 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4464 btrfs_put_block_group(cache
);
4465 spin_lock(&cur_trans
->dirty_bgs_lock
);
4467 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4470 * Refer to the definition of io_bgs member for details why it's safe
4471 * to use it without any locking
4473 while (!list_empty(&cur_trans
->io_bgs
)) {
4474 cache
= list_first_entry(&cur_trans
->io_bgs
,
4475 struct btrfs_block_group_cache
,
4478 list_del_init(&cache
->io_list
);
4479 spin_lock(&cache
->lock
);
4480 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4481 spin_unlock(&cache
->lock
);
4482 btrfs_cleanup_bg_io(cache
);
4486 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4487 struct btrfs_fs_info
*fs_info
)
4489 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4490 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4491 ASSERT(list_empty(&cur_trans
->io_bgs
));
4493 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4495 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4496 wake_up(&fs_info
->transaction_blocked_wait
);
4498 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4499 wake_up(&fs_info
->transaction_wait
);
4501 btrfs_destroy_delayed_inodes(fs_info
);
4502 btrfs_assert_delayed_root_empty(fs_info
);
4504 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4506 btrfs_destroy_pinned_extent(fs_info
,
4507 fs_info
->pinned_extents
);
4509 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4510 wake_up(&cur_trans
->commit_wait
);
4513 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4515 struct btrfs_transaction
*t
;
4517 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4519 spin_lock(&fs_info
->trans_lock
);
4520 while (!list_empty(&fs_info
->trans_list
)) {
4521 t
= list_first_entry(&fs_info
->trans_list
,
4522 struct btrfs_transaction
, list
);
4523 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4524 refcount_inc(&t
->use_count
);
4525 spin_unlock(&fs_info
->trans_lock
);
4526 btrfs_wait_for_commit(fs_info
, t
->transid
);
4527 btrfs_put_transaction(t
);
4528 spin_lock(&fs_info
->trans_lock
);
4531 if (t
== fs_info
->running_transaction
) {
4532 t
->state
= TRANS_STATE_COMMIT_DOING
;
4533 spin_unlock(&fs_info
->trans_lock
);
4535 * We wait for 0 num_writers since we don't hold a trans
4536 * handle open currently for this transaction.
4538 wait_event(t
->writer_wait
,
4539 atomic_read(&t
->num_writers
) == 0);
4541 spin_unlock(&fs_info
->trans_lock
);
4543 btrfs_cleanup_one_transaction(t
, fs_info
);
4545 spin_lock(&fs_info
->trans_lock
);
4546 if (t
== fs_info
->running_transaction
)
4547 fs_info
->running_transaction
= NULL
;
4548 list_del_init(&t
->list
);
4549 spin_unlock(&fs_info
->trans_lock
);
4551 btrfs_put_transaction(t
);
4552 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4553 spin_lock(&fs_info
->trans_lock
);
4555 spin_unlock(&fs_info
->trans_lock
);
4556 btrfs_destroy_all_ordered_extents(fs_info
);
4557 btrfs_destroy_delayed_inodes(fs_info
);
4558 btrfs_assert_delayed_root_empty(fs_info
);
4559 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4560 btrfs_destroy_all_delalloc_inodes(fs_info
);
4561 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4566 static struct btrfs_fs_info
*btree_fs_info(void *private_data
)
4568 struct inode
*inode
= private_data
;
4569 return btrfs_sb(inode
->i_sb
);
4572 static const struct extent_io_ops btree_extent_io_ops
= {
4573 /* mandatory callbacks */
4574 .submit_bio_hook
= btree_submit_bio_hook
,
4575 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4576 /* note we're sharing with inode.c for the merge bio hook */
4577 .merge_bio_hook
= btrfs_merge_bio_hook
,
4578 .readpage_io_failed_hook
= btree_io_failed_hook
,
4579 .set_range_writeback
= btrfs_set_range_writeback
,
4580 .tree_fs_info
= btree_fs_info
,
4582 /* optional callbacks */