1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
12 #include "ordered-data.h"
13 #include "transaction.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover
{
56 struct btrfs_bio
*bbio
;
61 struct scrub_block
*sblock
;
63 struct btrfs_device
*dev
;
64 struct list_head list
;
65 u64 flags
; /* extent flags */
69 u64 physical_for_dev_replace
;
72 unsigned int mirror_num
:8;
73 unsigned int have_csum
:1;
74 unsigned int io_error
:1;
76 u8 csum
[BTRFS_CSUM_SIZE
];
78 struct scrub_recover
*recover
;
83 struct scrub_ctx
*sctx
;
84 struct btrfs_device
*dev
;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
92 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
96 struct btrfs_work work
;
100 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
102 atomic_t outstanding_pages
;
103 refcount_t refs
; /* free mem on transition to zero */
104 struct scrub_ctx
*sctx
;
105 struct scrub_parity
*sparity
;
107 unsigned int header_error
:1;
108 unsigned int checksum_error
:1;
109 unsigned int no_io_error_seen
:1;
110 unsigned int generation_error
:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected
:1;
116 struct btrfs_work work
;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity
{
121 struct scrub_ctx
*sctx
;
123 struct btrfs_device
*scrub_dev
;
135 struct list_head spages
;
137 /* Work of parity check and repair */
138 struct btrfs_work work
;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap
;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap
;
149 unsigned long bitmap
[0];
153 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
154 struct btrfs_fs_info
*fs_info
;
157 atomic_t bios_in_flight
;
158 atomic_t workers_pending
;
159 spinlock_t list_lock
;
160 wait_queue_head_t list_wait
;
162 struct list_head csum_list
;
165 int pages_per_rd_bio
;
169 struct scrub_bio
*wr_curr_bio
;
170 struct mutex wr_lock
;
171 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device
*wr_tgtdev
;
173 bool flush_all_writes
;
178 struct btrfs_scrub_progress stat
;
179 spinlock_t stat_lock
;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
191 struct scrub_fixup_nodatasum
{
192 struct scrub_ctx
*sctx
;
193 struct btrfs_device
*dev
;
195 struct btrfs_root
*root
;
196 struct btrfs_work work
;
200 struct scrub_nocow_inode
{
204 struct list_head list
;
207 struct scrub_copy_nocow_ctx
{
208 struct scrub_ctx
*sctx
;
212 u64 physical_for_dev_replace
;
213 struct list_head inodes
;
214 struct btrfs_work work
;
217 struct scrub_warning
{
218 struct btrfs_path
*path
;
219 u64 extent_item_size
;
223 struct btrfs_device
*dev
;
226 struct full_stripe_lock
{
233 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
234 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
235 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
236 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
237 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
238 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
239 struct scrub_block
*sblocks_for_recheck
);
240 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
241 struct scrub_block
*sblock
,
242 int retry_failed_mirror
);
243 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
244 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
245 struct scrub_block
*sblock_good
);
246 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
247 struct scrub_block
*sblock_good
,
248 int page_num
, int force_write
);
249 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
250 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
252 static int scrub_checksum_data(struct scrub_block
*sblock
);
253 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
254 static int scrub_checksum_super(struct scrub_block
*sblock
);
255 static void scrub_block_get(struct scrub_block
*sblock
);
256 static void scrub_block_put(struct scrub_block
*sblock
);
257 static void scrub_page_get(struct scrub_page
*spage
);
258 static void scrub_page_put(struct scrub_page
*spage
);
259 static void scrub_parity_get(struct scrub_parity
*sparity
);
260 static void scrub_parity_put(struct scrub_parity
*sparity
);
261 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
262 struct scrub_page
*spage
);
263 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
264 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
265 u64 gen
, int mirror_num
, u8
*csum
, int force
,
266 u64 physical_for_dev_replace
);
267 static void scrub_bio_end_io(struct bio
*bio
);
268 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
269 static void scrub_block_complete(struct scrub_block
*sblock
);
270 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
271 u64 extent_logical
, u64 extent_len
,
272 u64
*extent_physical
,
273 struct btrfs_device
**extent_dev
,
274 int *extent_mirror_num
);
275 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
276 struct scrub_page
*spage
);
277 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
278 static void scrub_wr_bio_end_io(struct bio
*bio
);
279 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
280 static int write_page_nocow(struct scrub_ctx
*sctx
,
281 u64 physical_for_dev_replace
, struct page
*page
);
282 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
283 struct scrub_copy_nocow_ctx
*ctx
);
284 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
285 int mirror_num
, u64 physical_for_dev_replace
);
286 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
287 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
288 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
289 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
291 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
293 return page
->recover
&&
294 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
297 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
299 refcount_inc(&sctx
->refs
);
300 atomic_inc(&sctx
->bios_in_flight
);
303 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
305 atomic_dec(&sctx
->bios_in_flight
);
306 wake_up(&sctx
->list_wait
);
310 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
312 while (atomic_read(&fs_info
->scrub_pause_req
)) {
313 mutex_unlock(&fs_info
->scrub_lock
);
314 wait_event(fs_info
->scrub_pause_wait
,
315 atomic_read(&fs_info
->scrub_pause_req
) == 0);
316 mutex_lock(&fs_info
->scrub_lock
);
320 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
322 atomic_inc(&fs_info
->scrubs_paused
);
323 wake_up(&fs_info
->scrub_pause_wait
);
326 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
328 mutex_lock(&fs_info
->scrub_lock
);
329 __scrub_blocked_if_needed(fs_info
);
330 atomic_dec(&fs_info
->scrubs_paused
);
331 mutex_unlock(&fs_info
->scrub_lock
);
333 wake_up(&fs_info
->scrub_pause_wait
);
336 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
338 scrub_pause_on(fs_info
);
339 scrub_pause_off(fs_info
);
343 * Insert new full stripe lock into full stripe locks tree
345 * Return pointer to existing or newly inserted full_stripe_lock structure if
346 * everything works well.
347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
352 static struct full_stripe_lock
*insert_full_stripe_lock(
353 struct btrfs_full_stripe_locks_tree
*locks_root
,
357 struct rb_node
*parent
= NULL
;
358 struct full_stripe_lock
*entry
;
359 struct full_stripe_lock
*ret
;
361 lockdep_assert_held(&locks_root
->lock
);
363 p
= &locks_root
->root
.rb_node
;
366 entry
= rb_entry(parent
, struct full_stripe_lock
, node
);
367 if (fstripe_logical
< entry
->logical
) {
369 } else if (fstripe_logical
> entry
->logical
) {
377 /* Insert new lock */
378 ret
= kmalloc(sizeof(*ret
), GFP_KERNEL
);
380 return ERR_PTR(-ENOMEM
);
381 ret
->logical
= fstripe_logical
;
383 mutex_init(&ret
->mutex
);
385 rb_link_node(&ret
->node
, parent
, p
);
386 rb_insert_color(&ret
->node
, &locks_root
->root
);
391 * Search for a full stripe lock of a block group
393 * Return pointer to existing full stripe lock if found
394 * Return NULL if not found
396 static struct full_stripe_lock
*search_full_stripe_lock(
397 struct btrfs_full_stripe_locks_tree
*locks_root
,
400 struct rb_node
*node
;
401 struct full_stripe_lock
*entry
;
403 lockdep_assert_held(&locks_root
->lock
);
405 node
= locks_root
->root
.rb_node
;
407 entry
= rb_entry(node
, struct full_stripe_lock
, node
);
408 if (fstripe_logical
< entry
->logical
)
409 node
= node
->rb_left
;
410 else if (fstripe_logical
> entry
->logical
)
411 node
= node
->rb_right
;
419 * Helper to get full stripe logical from a normal bytenr.
421 * Caller must ensure @cache is a RAID56 block group.
423 static u64
get_full_stripe_logical(struct btrfs_block_group_cache
*cache
,
429 * Due to chunk item size limit, full stripe length should not be
430 * larger than U32_MAX. Just a sanity check here.
432 WARN_ON_ONCE(cache
->full_stripe_len
>= U32_MAX
);
435 * round_down() can only handle power of 2, while RAID56 full
436 * stripe length can be 64KiB * n, so we need to manually round down.
438 ret
= div64_u64(bytenr
- cache
->key
.objectid
, cache
->full_stripe_len
) *
439 cache
->full_stripe_len
+ cache
->key
.objectid
;
444 * Lock a full stripe to avoid concurrency of recovery and read
446 * It's only used for profiles with parities (RAID5/6), for other profiles it
449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450 * So caller must call unlock_full_stripe() at the same context.
452 * Return <0 if encounters error.
454 static int lock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
457 struct btrfs_block_group_cache
*bg_cache
;
458 struct btrfs_full_stripe_locks_tree
*locks_root
;
459 struct full_stripe_lock
*existing
;
464 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
470 /* Profiles not based on parity don't need full stripe lock */
471 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
473 locks_root
= &bg_cache
->full_stripe_locks_root
;
475 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
477 /* Now insert the full stripe lock */
478 mutex_lock(&locks_root
->lock
);
479 existing
= insert_full_stripe_lock(locks_root
, fstripe_start
);
480 mutex_unlock(&locks_root
->lock
);
481 if (IS_ERR(existing
)) {
482 ret
= PTR_ERR(existing
);
485 mutex_lock(&existing
->mutex
);
488 btrfs_put_block_group(bg_cache
);
493 * Unlock a full stripe.
495 * NOTE: Caller must ensure it's the same context calling corresponding
496 * lock_full_stripe().
498 * Return 0 if we unlock full stripe without problem.
499 * Return <0 for error
501 static int unlock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
504 struct btrfs_block_group_cache
*bg_cache
;
505 struct btrfs_full_stripe_locks_tree
*locks_root
;
506 struct full_stripe_lock
*fstripe_lock
;
511 /* If we didn't acquire full stripe lock, no need to continue */
515 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
520 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
523 locks_root
= &bg_cache
->full_stripe_locks_root
;
524 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
526 mutex_lock(&locks_root
->lock
);
527 fstripe_lock
= search_full_stripe_lock(locks_root
, fstripe_start
);
528 /* Unpaired unlock_full_stripe() detected */
532 mutex_unlock(&locks_root
->lock
);
536 if (fstripe_lock
->refs
== 0) {
538 btrfs_warn(fs_info
, "full stripe lock at %llu refcount underflow",
539 fstripe_lock
->logical
);
541 fstripe_lock
->refs
--;
544 if (fstripe_lock
->refs
== 0) {
545 rb_erase(&fstripe_lock
->node
, &locks_root
->root
);
548 mutex_unlock(&locks_root
->lock
);
550 mutex_unlock(&fstripe_lock
->mutex
);
554 btrfs_put_block_group(bg_cache
);
559 * used for workers that require transaction commits (i.e., for the
562 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
564 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
566 refcount_inc(&sctx
->refs
);
568 * increment scrubs_running to prevent cancel requests from
569 * completing as long as a worker is running. we must also
570 * increment scrubs_paused to prevent deadlocking on pause
571 * requests used for transactions commits (as the worker uses a
572 * transaction context). it is safe to regard the worker
573 * as paused for all matters practical. effectively, we only
574 * avoid cancellation requests from completing.
576 mutex_lock(&fs_info
->scrub_lock
);
577 atomic_inc(&fs_info
->scrubs_running
);
578 atomic_inc(&fs_info
->scrubs_paused
);
579 mutex_unlock(&fs_info
->scrub_lock
);
582 * check if @scrubs_running=@scrubs_paused condition
583 * inside wait_event() is not an atomic operation.
584 * which means we may inc/dec @scrub_running/paused
585 * at any time. Let's wake up @scrub_pause_wait as
586 * much as we can to let commit transaction blocked less.
588 wake_up(&fs_info
->scrub_pause_wait
);
590 atomic_inc(&sctx
->workers_pending
);
593 /* used for workers that require transaction commits */
594 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
596 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
599 * see scrub_pending_trans_workers_inc() why we're pretending
600 * to be paused in the scrub counters
602 mutex_lock(&fs_info
->scrub_lock
);
603 atomic_dec(&fs_info
->scrubs_running
);
604 atomic_dec(&fs_info
->scrubs_paused
);
605 mutex_unlock(&fs_info
->scrub_lock
);
606 atomic_dec(&sctx
->workers_pending
);
607 wake_up(&fs_info
->scrub_pause_wait
);
608 wake_up(&sctx
->list_wait
);
612 static void scrub_free_csums(struct scrub_ctx
*sctx
)
614 while (!list_empty(&sctx
->csum_list
)) {
615 struct btrfs_ordered_sum
*sum
;
616 sum
= list_first_entry(&sctx
->csum_list
,
617 struct btrfs_ordered_sum
, list
);
618 list_del(&sum
->list
);
623 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
630 /* this can happen when scrub is cancelled */
631 if (sctx
->curr
!= -1) {
632 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
634 for (i
= 0; i
< sbio
->page_count
; i
++) {
635 WARN_ON(!sbio
->pagev
[i
]->page
);
636 scrub_block_put(sbio
->pagev
[i
]->sblock
);
641 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
642 struct scrub_bio
*sbio
= sctx
->bios
[i
];
649 kfree(sctx
->wr_curr_bio
);
650 scrub_free_csums(sctx
);
654 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
656 if (refcount_dec_and_test(&sctx
->refs
))
657 scrub_free_ctx(sctx
);
660 static noinline_for_stack
661 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
663 struct scrub_ctx
*sctx
;
665 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
667 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
670 refcount_set(&sctx
->refs
, 1);
671 sctx
->is_dev_replace
= is_dev_replace
;
672 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
674 sctx
->fs_info
= dev
->fs_info
;
675 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
676 struct scrub_bio
*sbio
;
678 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
681 sctx
->bios
[i
] = sbio
;
685 sbio
->page_count
= 0;
686 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
687 scrub_bio_end_io_worker
, NULL
, NULL
);
689 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
690 sctx
->bios
[i
]->next_free
= i
+ 1;
692 sctx
->bios
[i
]->next_free
= -1;
694 sctx
->first_free
= 0;
695 atomic_set(&sctx
->bios_in_flight
, 0);
696 atomic_set(&sctx
->workers_pending
, 0);
697 atomic_set(&sctx
->cancel_req
, 0);
698 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
699 INIT_LIST_HEAD(&sctx
->csum_list
);
701 spin_lock_init(&sctx
->list_lock
);
702 spin_lock_init(&sctx
->stat_lock
);
703 init_waitqueue_head(&sctx
->list_wait
);
705 WARN_ON(sctx
->wr_curr_bio
!= NULL
);
706 mutex_init(&sctx
->wr_lock
);
707 sctx
->wr_curr_bio
= NULL
;
708 if (is_dev_replace
) {
709 WARN_ON(!fs_info
->dev_replace
.tgtdev
);
710 sctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
711 sctx
->wr_tgtdev
= fs_info
->dev_replace
.tgtdev
;
712 sctx
->flush_all_writes
= false;
718 scrub_free_ctx(sctx
);
719 return ERR_PTR(-ENOMEM
);
722 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
730 struct extent_buffer
*eb
;
731 struct btrfs_inode_item
*inode_item
;
732 struct scrub_warning
*swarn
= warn_ctx
;
733 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
734 struct inode_fs_paths
*ipath
= NULL
;
735 struct btrfs_root
*local_root
;
736 struct btrfs_key root_key
;
737 struct btrfs_key key
;
739 root_key
.objectid
= root
;
740 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
741 root_key
.offset
= (u64
)-1;
742 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
743 if (IS_ERR(local_root
)) {
744 ret
= PTR_ERR(local_root
);
749 * this makes the path point to (inum INODE_ITEM ioff)
752 key
.type
= BTRFS_INODE_ITEM_KEY
;
755 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
757 btrfs_release_path(swarn
->path
);
761 eb
= swarn
->path
->nodes
[0];
762 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
763 struct btrfs_inode_item
);
764 isize
= btrfs_inode_size(eb
, inode_item
);
765 nlink
= btrfs_inode_nlink(eb
, inode_item
);
766 btrfs_release_path(swarn
->path
);
769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 * not seem to be strictly necessary.
773 nofs_flag
= memalloc_nofs_save();
774 ipath
= init_ipath(4096, local_root
, swarn
->path
);
775 memalloc_nofs_restore(nofs_flag
);
777 ret
= PTR_ERR(ipath
);
781 ret
= paths_from_inode(inum
, ipath
);
787 * we deliberately ignore the bit ipath might have been too small to
788 * hold all of the paths here
790 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
791 btrfs_warn_in_rcu(fs_info
,
792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 swarn
->errstr
, swarn
->logical
,
794 rcu_str_deref(swarn
->dev
->name
),
797 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
798 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
804 btrfs_warn_in_rcu(fs_info
,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 swarn
->errstr
, swarn
->logical
,
807 rcu_str_deref(swarn
->dev
->name
),
809 root
, inum
, offset
, ret
);
815 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
817 struct btrfs_device
*dev
;
818 struct btrfs_fs_info
*fs_info
;
819 struct btrfs_path
*path
;
820 struct btrfs_key found_key
;
821 struct extent_buffer
*eb
;
822 struct btrfs_extent_item
*ei
;
823 struct scrub_warning swarn
;
824 unsigned long ptr
= 0;
832 WARN_ON(sblock
->page_count
< 1);
833 dev
= sblock
->pagev
[0]->dev
;
834 fs_info
= sblock
->sctx
->fs_info
;
836 path
= btrfs_alloc_path();
840 swarn
.physical
= sblock
->pagev
[0]->physical
;
841 swarn
.logical
= sblock
->pagev
[0]->logical
;
842 swarn
.errstr
= errstr
;
845 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
850 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
851 swarn
.extent_item_size
= found_key
.offset
;
854 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
855 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
857 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
859 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
860 item_size
, &ref_root
,
862 btrfs_warn_in_rcu(fs_info
,
863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 errstr
, swarn
.logical
,
865 rcu_str_deref(dev
->name
),
867 ref_level
? "node" : "leaf",
868 ret
< 0 ? -1 : ref_level
,
869 ret
< 0 ? -1 : ref_root
);
871 btrfs_release_path(path
);
873 btrfs_release_path(path
);
876 iterate_extent_inodes(fs_info
, found_key
.objectid
,
878 scrub_print_warning_inode
, &swarn
, false);
882 btrfs_free_path(path
);
885 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
887 struct page
*page
= NULL
;
889 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
892 struct btrfs_key key
;
893 struct inode
*inode
= NULL
;
894 struct btrfs_fs_info
*fs_info
;
895 u64 end
= offset
+ PAGE_SIZE
- 1;
896 struct btrfs_root
*local_root
;
900 key
.type
= BTRFS_ROOT_ITEM_KEY
;
901 key
.offset
= (u64
)-1;
903 fs_info
= fixup
->root
->fs_info
;
904 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
906 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
907 if (IS_ERR(local_root
)) {
908 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
909 return PTR_ERR(local_root
);
912 key
.type
= BTRFS_INODE_ITEM_KEY
;
915 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
916 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
918 return PTR_ERR(inode
);
920 index
= offset
>> PAGE_SHIFT
;
922 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
928 if (PageUptodate(page
)) {
929 if (PageDirty(page
)) {
931 * we need to write the data to the defect sector. the
932 * data that was in that sector is not in memory,
933 * because the page was modified. we must not write the
934 * modified page to that sector.
936 * TODO: what could be done here: wait for the delalloc
937 * runner to write out that page (might involve
938 * COW) and see whether the sector is still
939 * referenced afterwards.
941 * For the meantime, we'll treat this error
942 * incorrectable, although there is a chance that a
943 * later scrub will find the bad sector again and that
944 * there's no dirty page in memory, then.
949 ret
= repair_io_failure(fs_info
, inum
, offset
, PAGE_SIZE
,
950 fixup
->logical
, page
,
951 offset
- page_offset(page
),
957 * we need to get good data first. the general readpage path
958 * will call repair_io_failure for us, we just have to make
959 * sure we read the bad mirror.
961 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
964 /* set_extent_bits should give proper error */
971 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
974 wait_on_page_locked(page
);
976 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
977 end
, EXTENT_DAMAGED
, 0, NULL
);
979 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
992 if (ret
== 0 && corrected
) {
994 * we only need to call readpage for one of the inodes belonging
995 * to this extent. so make iterate_extent_inodes stop
1003 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
1005 struct btrfs_fs_info
*fs_info
;
1007 struct scrub_fixup_nodatasum
*fixup
;
1008 struct scrub_ctx
*sctx
;
1009 struct btrfs_trans_handle
*trans
= NULL
;
1010 struct btrfs_path
*path
;
1011 int uncorrectable
= 0;
1013 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
1015 fs_info
= fixup
->root
->fs_info
;
1017 path
= btrfs_alloc_path();
1019 spin_lock(&sctx
->stat_lock
);
1020 ++sctx
->stat
.malloc_errors
;
1021 spin_unlock(&sctx
->stat_lock
);
1026 trans
= btrfs_join_transaction(fixup
->root
);
1027 if (IS_ERR(trans
)) {
1033 * the idea is to trigger a regular read through the standard path. we
1034 * read a page from the (failed) logical address by specifying the
1035 * corresponding copynum of the failed sector. thus, that readpage is
1037 * that is the point where on-the-fly error correction will kick in
1038 * (once it's finished) and rewrite the failed sector if a good copy
1041 ret
= iterate_inodes_from_logical(fixup
->logical
, fs_info
, path
,
1042 scrub_fixup_readpage
, fixup
, false);
1049 spin_lock(&sctx
->stat_lock
);
1050 ++sctx
->stat
.corrected_errors
;
1051 spin_unlock(&sctx
->stat_lock
);
1054 if (trans
&& !IS_ERR(trans
))
1055 btrfs_end_transaction(trans
);
1056 if (uncorrectable
) {
1057 spin_lock(&sctx
->stat_lock
);
1058 ++sctx
->stat
.uncorrectable_errors
;
1059 spin_unlock(&sctx
->stat_lock
);
1060 btrfs_dev_replace_stats_inc(
1061 &fs_info
->dev_replace
.num_uncorrectable_read_errors
);
1062 btrfs_err_rl_in_rcu(fs_info
,
1063 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
1067 btrfs_free_path(path
);
1070 scrub_pending_trans_workers_dec(sctx
);
1073 static inline void scrub_get_recover(struct scrub_recover
*recover
)
1075 refcount_inc(&recover
->refs
);
1078 static inline void scrub_put_recover(struct btrfs_fs_info
*fs_info
,
1079 struct scrub_recover
*recover
)
1081 if (refcount_dec_and_test(&recover
->refs
)) {
1082 btrfs_bio_counter_dec(fs_info
);
1083 btrfs_put_bbio(recover
->bbio
);
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1096 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
1098 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
1099 struct btrfs_device
*dev
;
1100 struct btrfs_fs_info
*fs_info
;
1102 unsigned int failed_mirror_index
;
1103 unsigned int is_metadata
;
1104 unsigned int have_csum
;
1105 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
1106 struct scrub_block
*sblock_bad
;
1111 bool full_stripe_locked
;
1112 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1113 DEFAULT_RATELIMIT_BURST
);
1115 BUG_ON(sblock_to_check
->page_count
< 1);
1116 fs_info
= sctx
->fs_info
;
1117 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
1119 * if we find an error in a super block, we just report it.
1120 * They will get written with the next transaction commit
1123 spin_lock(&sctx
->stat_lock
);
1124 ++sctx
->stat
.super_errors
;
1125 spin_unlock(&sctx
->stat_lock
);
1128 logical
= sblock_to_check
->pagev
[0]->logical
;
1129 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
1130 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
1131 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
1132 BTRFS_EXTENT_FLAG_DATA
);
1133 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
1134 dev
= sblock_to_check
->pagev
[0]->dev
;
1137 * For RAID5/6, race can happen for a different device scrub thread.
1138 * For data corruption, Parity and Data threads will both try
1139 * to recovery the data.
1140 * Race can lead to doubly added csum error, or even unrecoverable
1143 ret
= lock_full_stripe(fs_info
, logical
, &full_stripe_locked
);
1145 spin_lock(&sctx
->stat_lock
);
1147 sctx
->stat
.malloc_errors
++;
1148 sctx
->stat
.read_errors
++;
1149 sctx
->stat
.uncorrectable_errors
++;
1150 spin_unlock(&sctx
->stat_lock
);
1154 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
1155 sblocks_for_recheck
= NULL
;
1156 goto nodatasum_case
;
1160 * read all mirrors one after the other. This includes to
1161 * re-read the extent or metadata block that failed (that was
1162 * the cause that this fixup code is called) another time,
1163 * page by page this time in order to know which pages
1164 * caused I/O errors and which ones are good (for all mirrors).
1165 * It is the goal to handle the situation when more than one
1166 * mirror contains I/O errors, but the errors do not
1167 * overlap, i.e. the data can be repaired by selecting the
1168 * pages from those mirrors without I/O error on the
1169 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170 * would be that mirror #1 has an I/O error on the first page,
1171 * the second page is good, and mirror #2 has an I/O error on
1172 * the second page, but the first page is good.
1173 * Then the first page of the first mirror can be repaired by
1174 * taking the first page of the second mirror, and the
1175 * second page of the second mirror can be repaired by
1176 * copying the contents of the 2nd page of the 1st mirror.
1177 * One more note: if the pages of one mirror contain I/O
1178 * errors, the checksum cannot be verified. In order to get
1179 * the best data for repairing, the first attempt is to find
1180 * a mirror without I/O errors and with a validated checksum.
1181 * Only if this is not possible, the pages are picked from
1182 * mirrors with I/O errors without considering the checksum.
1183 * If the latter is the case, at the end, the checksum of the
1184 * repaired area is verified in order to correctly maintain
1188 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
1189 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
1190 if (!sblocks_for_recheck
) {
1191 spin_lock(&sctx
->stat_lock
);
1192 sctx
->stat
.malloc_errors
++;
1193 sctx
->stat
.read_errors
++;
1194 sctx
->stat
.uncorrectable_errors
++;
1195 spin_unlock(&sctx
->stat_lock
);
1196 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1200 /* setup the context, map the logical blocks and alloc the pages */
1201 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
1203 spin_lock(&sctx
->stat_lock
);
1204 sctx
->stat
.read_errors
++;
1205 sctx
->stat
.uncorrectable_errors
++;
1206 spin_unlock(&sctx
->stat_lock
);
1207 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1210 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
1211 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
1213 /* build and submit the bios for the failed mirror, check checksums */
1214 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1216 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
1217 sblock_bad
->no_io_error_seen
) {
1219 * the error disappeared after reading page by page, or
1220 * the area was part of a huge bio and other parts of the
1221 * bio caused I/O errors, or the block layer merged several
1222 * read requests into one and the error is caused by a
1223 * different bio (usually one of the two latter cases is
1226 spin_lock(&sctx
->stat_lock
);
1227 sctx
->stat
.unverified_errors
++;
1228 sblock_to_check
->data_corrected
= 1;
1229 spin_unlock(&sctx
->stat_lock
);
1231 if (sctx
->is_dev_replace
)
1232 scrub_write_block_to_dev_replace(sblock_bad
);
1236 if (!sblock_bad
->no_io_error_seen
) {
1237 spin_lock(&sctx
->stat_lock
);
1238 sctx
->stat
.read_errors
++;
1239 spin_unlock(&sctx
->stat_lock
);
1240 if (__ratelimit(&_rs
))
1241 scrub_print_warning("i/o error", sblock_to_check
);
1242 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1243 } else if (sblock_bad
->checksum_error
) {
1244 spin_lock(&sctx
->stat_lock
);
1245 sctx
->stat
.csum_errors
++;
1246 spin_unlock(&sctx
->stat_lock
);
1247 if (__ratelimit(&_rs
))
1248 scrub_print_warning("checksum error", sblock_to_check
);
1249 btrfs_dev_stat_inc_and_print(dev
,
1250 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1251 } else if (sblock_bad
->header_error
) {
1252 spin_lock(&sctx
->stat_lock
);
1253 sctx
->stat
.verify_errors
++;
1254 spin_unlock(&sctx
->stat_lock
);
1255 if (__ratelimit(&_rs
))
1256 scrub_print_warning("checksum/header error",
1258 if (sblock_bad
->generation_error
)
1259 btrfs_dev_stat_inc_and_print(dev
,
1260 BTRFS_DEV_STAT_GENERATION_ERRS
);
1262 btrfs_dev_stat_inc_and_print(dev
,
1263 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1266 if (sctx
->readonly
) {
1267 ASSERT(!sctx
->is_dev_replace
);
1271 if (!is_metadata
&& !have_csum
) {
1272 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1274 WARN_ON(sctx
->is_dev_replace
);
1279 * !is_metadata and !have_csum, this means that the data
1280 * might not be COWed, that it might be modified
1281 * concurrently. The general strategy to work on the
1282 * commit root does not help in the case when COW is not
1285 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1286 if (!fixup_nodatasum
)
1287 goto did_not_correct_error
;
1288 fixup_nodatasum
->sctx
= sctx
;
1289 fixup_nodatasum
->dev
= dev
;
1290 fixup_nodatasum
->logical
= logical
;
1291 fixup_nodatasum
->root
= fs_info
->extent_root
;
1292 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1293 scrub_pending_trans_workers_inc(sctx
);
1294 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1295 scrub_fixup_nodatasum
, NULL
, NULL
);
1296 btrfs_queue_work(fs_info
->scrub_workers
,
1297 &fixup_nodatasum
->work
);
1302 * now build and submit the bios for the other mirrors, check
1304 * First try to pick the mirror which is completely without I/O
1305 * errors and also does not have a checksum error.
1306 * If one is found, and if a checksum is present, the full block
1307 * that is known to contain an error is rewritten. Afterwards
1308 * the block is known to be corrected.
1309 * If a mirror is found which is completely correct, and no
1310 * checksum is present, only those pages are rewritten that had
1311 * an I/O error in the block to be repaired, since it cannot be
1312 * determined, which copy of the other pages is better (and it
1313 * could happen otherwise that a correct page would be
1314 * overwritten by a bad one).
1316 for (mirror_index
= 0; ;mirror_index
++) {
1317 struct scrub_block
*sblock_other
;
1319 if (mirror_index
== failed_mirror_index
)
1322 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323 if (!scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1324 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1326 if (!sblocks_for_recheck
[mirror_index
].page_count
)
1329 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1331 struct scrub_recover
*r
= sblock_bad
->pagev
[0]->recover
;
1332 int max_allowed
= r
->bbio
->num_stripes
-
1333 r
->bbio
->num_tgtdevs
;
1335 if (mirror_index
>= max_allowed
)
1337 if (!sblocks_for_recheck
[1].page_count
)
1340 ASSERT(failed_mirror_index
== 0);
1341 sblock_other
= sblocks_for_recheck
+ 1;
1342 sblock_other
->pagev
[0]->mirror_num
= 1 + mirror_index
;
1345 /* build and submit the bios, check checksums */
1346 scrub_recheck_block(fs_info
, sblock_other
, 0);
1348 if (!sblock_other
->header_error
&&
1349 !sblock_other
->checksum_error
&&
1350 sblock_other
->no_io_error_seen
) {
1351 if (sctx
->is_dev_replace
) {
1352 scrub_write_block_to_dev_replace(sblock_other
);
1353 goto corrected_error
;
1355 ret
= scrub_repair_block_from_good_copy(
1356 sblock_bad
, sblock_other
);
1358 goto corrected_error
;
1363 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1364 goto did_not_correct_error
;
1367 * In case of I/O errors in the area that is supposed to be
1368 * repaired, continue by picking good copies of those pages.
1369 * Select the good pages from mirrors to rewrite bad pages from
1370 * the area to fix. Afterwards verify the checksum of the block
1371 * that is supposed to be repaired. This verification step is
1372 * only done for the purpose of statistic counting and for the
1373 * final scrub report, whether errors remain.
1374 * A perfect algorithm could make use of the checksum and try
1375 * all possible combinations of pages from the different mirrors
1376 * until the checksum verification succeeds. For example, when
1377 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378 * of mirror #2 is readable but the final checksum test fails,
1379 * then the 2nd page of mirror #3 could be tried, whether now
1380 * the final checksum succeeds. But this would be a rare
1381 * exception and is therefore not implemented. At least it is
1382 * avoided that the good copy is overwritten.
1383 * A more useful improvement would be to pick the sectors
1384 * without I/O error based on sector sizes (512 bytes on legacy
1385 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386 * mirror could be repaired by taking 512 byte of a different
1387 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388 * area are unreadable.
1391 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1393 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1394 struct scrub_block
*sblock_other
= NULL
;
1396 /* skip no-io-error page in scrub */
1397 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1400 if (scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1402 * In case of dev replace, if raid56 rebuild process
1403 * didn't work out correct data, then copy the content
1404 * in sblock_bad to make sure target device is identical
1405 * to source device, instead of writing garbage data in
1406 * sblock_for_recheck array to target device.
1408 sblock_other
= NULL
;
1409 } else if (page_bad
->io_error
) {
1410 /* try to find no-io-error page in mirrors */
1411 for (mirror_index
= 0;
1412 mirror_index
< BTRFS_MAX_MIRRORS
&&
1413 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1415 if (!sblocks_for_recheck
[mirror_index
].
1416 pagev
[page_num
]->io_error
) {
1417 sblock_other
= sblocks_for_recheck
+
1426 if (sctx
->is_dev_replace
) {
1428 * did not find a mirror to fetch the page
1429 * from. scrub_write_page_to_dev_replace()
1430 * handles this case (page->io_error), by
1431 * filling the block with zeros before
1432 * submitting the write request
1435 sblock_other
= sblock_bad
;
1437 if (scrub_write_page_to_dev_replace(sblock_other
,
1439 btrfs_dev_replace_stats_inc(
1440 &fs_info
->dev_replace
.num_write_errors
);
1443 } else if (sblock_other
) {
1444 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1448 page_bad
->io_error
= 0;
1454 if (success
&& !sctx
->is_dev_replace
) {
1455 if (is_metadata
|| have_csum
) {
1457 * need to verify the checksum now that all
1458 * sectors on disk are repaired (the write
1459 * request for data to be repaired is on its way).
1460 * Just be lazy and use scrub_recheck_block()
1461 * which re-reads the data before the checksum
1462 * is verified, but most likely the data comes out
1463 * of the page cache.
1465 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1466 if (!sblock_bad
->header_error
&&
1467 !sblock_bad
->checksum_error
&&
1468 sblock_bad
->no_io_error_seen
)
1469 goto corrected_error
;
1471 goto did_not_correct_error
;
1474 spin_lock(&sctx
->stat_lock
);
1475 sctx
->stat
.corrected_errors
++;
1476 sblock_to_check
->data_corrected
= 1;
1477 spin_unlock(&sctx
->stat_lock
);
1478 btrfs_err_rl_in_rcu(fs_info
,
1479 "fixed up error at logical %llu on dev %s",
1480 logical
, rcu_str_deref(dev
->name
));
1483 did_not_correct_error
:
1484 spin_lock(&sctx
->stat_lock
);
1485 sctx
->stat
.uncorrectable_errors
++;
1486 spin_unlock(&sctx
->stat_lock
);
1487 btrfs_err_rl_in_rcu(fs_info
,
1488 "unable to fixup (regular) error at logical %llu on dev %s",
1489 logical
, rcu_str_deref(dev
->name
));
1493 if (sblocks_for_recheck
) {
1494 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1496 struct scrub_block
*sblock
= sblocks_for_recheck
+
1498 struct scrub_recover
*recover
;
1501 for (page_index
= 0; page_index
< sblock
->page_count
;
1503 sblock
->pagev
[page_index
]->sblock
= NULL
;
1504 recover
= sblock
->pagev
[page_index
]->recover
;
1506 scrub_put_recover(fs_info
, recover
);
1507 sblock
->pagev
[page_index
]->recover
=
1510 scrub_page_put(sblock
->pagev
[page_index
]);
1513 kfree(sblocks_for_recheck
);
1516 ret
= unlock_full_stripe(fs_info
, logical
, full_stripe_locked
);
1522 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1524 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1526 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1529 return (int)bbio
->num_stripes
;
1532 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1535 int nstripes
, int mirror
,
1541 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1543 for (i
= 0; i
< nstripes
; i
++) {
1544 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1545 raid_map
[i
] == RAID5_P_STRIPE
)
1548 if (logical
>= raid_map
[i
] &&
1549 logical
< raid_map
[i
] + mapped_length
)
1554 *stripe_offset
= logical
- raid_map
[i
];
1556 /* The other RAID type */
1557 *stripe_index
= mirror
;
1562 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1563 struct scrub_block
*sblocks_for_recheck
)
1565 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1566 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1567 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1568 u64 logical
= original_sblock
->pagev
[0]->logical
;
1569 u64 generation
= original_sblock
->pagev
[0]->generation
;
1570 u64 flags
= original_sblock
->pagev
[0]->flags
;
1571 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1572 struct scrub_recover
*recover
;
1573 struct btrfs_bio
*bbio
;
1584 * note: the two members refs and outstanding_pages
1585 * are not used (and not set) in the blocks that are used for
1586 * the recheck procedure
1589 while (length
> 0) {
1590 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1591 mapped_length
= sublen
;
1595 * with a length of PAGE_SIZE, each returned stripe
1596 * represents one mirror
1598 btrfs_bio_counter_inc_blocked(fs_info
);
1599 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1600 logical
, &mapped_length
, &bbio
);
1601 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1602 btrfs_put_bbio(bbio
);
1603 btrfs_bio_counter_dec(fs_info
);
1607 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1609 btrfs_put_bbio(bbio
);
1610 btrfs_bio_counter_dec(fs_info
);
1614 refcount_set(&recover
->refs
, 1);
1615 recover
->bbio
= bbio
;
1616 recover
->map_length
= mapped_length
;
1618 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1620 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1622 for (mirror_index
= 0; mirror_index
< nmirrors
;
1624 struct scrub_block
*sblock
;
1625 struct scrub_page
*page
;
1627 sblock
= sblocks_for_recheck
+ mirror_index
;
1628 sblock
->sctx
= sctx
;
1630 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1633 spin_lock(&sctx
->stat_lock
);
1634 sctx
->stat
.malloc_errors
++;
1635 spin_unlock(&sctx
->stat_lock
);
1636 scrub_put_recover(fs_info
, recover
);
1639 scrub_page_get(page
);
1640 sblock
->pagev
[page_index
] = page
;
1641 page
->sblock
= sblock
;
1642 page
->flags
= flags
;
1643 page
->generation
= generation
;
1644 page
->logical
= logical
;
1645 page
->have_csum
= have_csum
;
1648 original_sblock
->pagev
[0]->csum
,
1651 scrub_stripe_index_and_offset(logical
,
1660 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1662 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1664 BUG_ON(page_index
>= original_sblock
->page_count
);
1665 page
->physical_for_dev_replace
=
1666 original_sblock
->pagev
[page_index
]->
1667 physical_for_dev_replace
;
1668 /* for missing devices, dev->bdev is NULL */
1669 page
->mirror_num
= mirror_index
+ 1;
1670 sblock
->page_count
++;
1671 page
->page
= alloc_page(GFP_NOFS
);
1675 scrub_get_recover(recover
);
1676 page
->recover
= recover
;
1678 scrub_put_recover(fs_info
, recover
);
1687 static void scrub_bio_wait_endio(struct bio
*bio
)
1689 complete(bio
->bi_private
);
1692 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1694 struct scrub_page
*page
)
1696 DECLARE_COMPLETION_ONSTACK(done
);
1700 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1701 bio
->bi_private
= &done
;
1702 bio
->bi_end_io
= scrub_bio_wait_endio
;
1704 mirror_num
= page
->sblock
->pagev
[0]->mirror_num
;
1705 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1706 page
->recover
->map_length
,
1711 wait_for_completion_io(&done
);
1712 return blk_status_to_errno(bio
->bi_status
);
1715 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info
*fs_info
,
1716 struct scrub_block
*sblock
)
1718 struct scrub_page
*first_page
= sblock
->pagev
[0];
1722 /* All pages in sblock belong to the same stripe on the same device. */
1723 ASSERT(first_page
->dev
);
1724 if (!first_page
->dev
->bdev
)
1727 bio
= btrfs_io_bio_alloc(BIO_MAX_PAGES
);
1728 bio_set_dev(bio
, first_page
->dev
->bdev
);
1730 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1731 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1733 WARN_ON(!page
->page
);
1734 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1737 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, first_page
)) {
1744 scrub_recheck_block_checksum(sblock
);
1748 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++)
1749 sblock
->pagev
[page_num
]->io_error
= 1;
1751 sblock
->no_io_error_seen
= 0;
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1761 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1762 struct scrub_block
*sblock
,
1763 int retry_failed_mirror
)
1767 sblock
->no_io_error_seen
= 1;
1769 /* short cut for raid56 */
1770 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(sblock
->pagev
[0]))
1771 return scrub_recheck_block_on_raid56(fs_info
, sblock
);
1773 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1775 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1777 if (page
->dev
->bdev
== NULL
) {
1779 sblock
->no_io_error_seen
= 0;
1783 WARN_ON(!page
->page
);
1784 bio
= btrfs_io_bio_alloc(1);
1785 bio_set_dev(bio
, page
->dev
->bdev
);
1787 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1788 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1789 bio
->bi_opf
= REQ_OP_READ
;
1791 if (btrfsic_submit_bio_wait(bio
)) {
1793 sblock
->no_io_error_seen
= 0;
1799 if (sblock
->no_io_error_seen
)
1800 scrub_recheck_block_checksum(sblock
);
1803 static inline int scrub_check_fsid(u8 fsid
[],
1804 struct scrub_page
*spage
)
1806 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1809 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1813 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1815 sblock
->header_error
= 0;
1816 sblock
->checksum_error
= 0;
1817 sblock
->generation_error
= 0;
1819 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1820 scrub_checksum_data(sblock
);
1822 scrub_checksum_tree_block(sblock
);
1825 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1826 struct scrub_block
*sblock_good
)
1831 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1834 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1844 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1845 struct scrub_block
*sblock_good
,
1846 int page_num
, int force_write
)
1848 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1849 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1850 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1852 BUG_ON(page_bad
->page
== NULL
);
1853 BUG_ON(page_good
->page
== NULL
);
1854 if (force_write
|| sblock_bad
->header_error
||
1855 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1859 if (!page_bad
->dev
->bdev
) {
1860 btrfs_warn_rl(fs_info
,
1861 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1865 bio
= btrfs_io_bio_alloc(1);
1866 bio_set_dev(bio
, page_bad
->dev
->bdev
);
1867 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1868 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1870 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1871 if (PAGE_SIZE
!= ret
) {
1876 if (btrfsic_submit_bio_wait(bio
)) {
1877 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1878 BTRFS_DEV_STAT_WRITE_ERRS
);
1879 btrfs_dev_replace_stats_inc(
1880 &fs_info
->dev_replace
.num_write_errors
);
1890 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1892 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1896 * This block is used for the check of the parity on the source device,
1897 * so the data needn't be written into the destination device.
1899 if (sblock
->sparity
)
1902 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1905 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1907 btrfs_dev_replace_stats_inc(
1908 &fs_info
->dev_replace
.num_write_errors
);
1912 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1915 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1917 BUG_ON(spage
->page
== NULL
);
1918 if (spage
->io_error
) {
1919 void *mapped_buffer
= kmap_atomic(spage
->page
);
1921 clear_page(mapped_buffer
);
1922 flush_dcache_page(spage
->page
);
1923 kunmap_atomic(mapped_buffer
);
1925 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1928 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1929 struct scrub_page
*spage
)
1931 struct scrub_bio
*sbio
;
1934 mutex_lock(&sctx
->wr_lock
);
1936 if (!sctx
->wr_curr_bio
) {
1937 sctx
->wr_curr_bio
= kzalloc(sizeof(*sctx
->wr_curr_bio
),
1939 if (!sctx
->wr_curr_bio
) {
1940 mutex_unlock(&sctx
->wr_lock
);
1943 sctx
->wr_curr_bio
->sctx
= sctx
;
1944 sctx
->wr_curr_bio
->page_count
= 0;
1946 sbio
= sctx
->wr_curr_bio
;
1947 if (sbio
->page_count
== 0) {
1950 sbio
->physical
= spage
->physical_for_dev_replace
;
1951 sbio
->logical
= spage
->logical
;
1952 sbio
->dev
= sctx
->wr_tgtdev
;
1955 bio
= btrfs_io_bio_alloc(sctx
->pages_per_wr_bio
);
1959 bio
->bi_private
= sbio
;
1960 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1961 bio_set_dev(bio
, sbio
->dev
->bdev
);
1962 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1963 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1965 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1966 spage
->physical_for_dev_replace
||
1967 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1969 scrub_wr_submit(sctx
);
1973 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1974 if (ret
!= PAGE_SIZE
) {
1975 if (sbio
->page_count
< 1) {
1978 mutex_unlock(&sctx
->wr_lock
);
1981 scrub_wr_submit(sctx
);
1985 sbio
->pagev
[sbio
->page_count
] = spage
;
1986 scrub_page_get(spage
);
1988 if (sbio
->page_count
== sctx
->pages_per_wr_bio
)
1989 scrub_wr_submit(sctx
);
1990 mutex_unlock(&sctx
->wr_lock
);
1995 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1997 struct scrub_bio
*sbio
;
1999 if (!sctx
->wr_curr_bio
)
2002 sbio
= sctx
->wr_curr_bio
;
2003 sctx
->wr_curr_bio
= NULL
;
2004 WARN_ON(!sbio
->bio
->bi_disk
);
2005 scrub_pending_bio_inc(sctx
);
2006 /* process all writes in a single worker thread. Then the block layer
2007 * orders the requests before sending them to the driver which
2008 * doubled the write performance on spinning disks when measured
2010 btrfsic_submit_bio(sbio
->bio
);
2013 static void scrub_wr_bio_end_io(struct bio
*bio
)
2015 struct scrub_bio
*sbio
= bio
->bi_private
;
2016 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2018 sbio
->status
= bio
->bi_status
;
2021 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
2022 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
2023 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
2026 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
2028 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2029 struct scrub_ctx
*sctx
= sbio
->sctx
;
2032 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
2034 struct btrfs_dev_replace
*dev_replace
=
2035 &sbio
->sctx
->fs_info
->dev_replace
;
2037 for (i
= 0; i
< sbio
->page_count
; i
++) {
2038 struct scrub_page
*spage
= sbio
->pagev
[i
];
2040 spage
->io_error
= 1;
2041 btrfs_dev_replace_stats_inc(&dev_replace
->
2046 for (i
= 0; i
< sbio
->page_count
; i
++)
2047 scrub_page_put(sbio
->pagev
[i
]);
2051 scrub_pending_bio_dec(sctx
);
2054 static int scrub_checksum(struct scrub_block
*sblock
)
2060 * No need to initialize these stats currently,
2061 * because this function only use return value
2062 * instead of these stats value.
2067 sblock
->header_error
= 0;
2068 sblock
->generation_error
= 0;
2069 sblock
->checksum_error
= 0;
2071 WARN_ON(sblock
->page_count
< 1);
2072 flags
= sblock
->pagev
[0]->flags
;
2074 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
2075 ret
= scrub_checksum_data(sblock
);
2076 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
2077 ret
= scrub_checksum_tree_block(sblock
);
2078 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
2079 (void)scrub_checksum_super(sblock
);
2083 scrub_handle_errored_block(sblock
);
2088 static int scrub_checksum_data(struct scrub_block
*sblock
)
2090 struct scrub_ctx
*sctx
= sblock
->sctx
;
2091 u8 csum
[BTRFS_CSUM_SIZE
];
2099 BUG_ON(sblock
->page_count
< 1);
2100 if (!sblock
->pagev
[0]->have_csum
)
2103 on_disk_csum
= sblock
->pagev
[0]->csum
;
2104 page
= sblock
->pagev
[0]->page
;
2105 buffer
= kmap_atomic(page
);
2107 len
= sctx
->fs_info
->sectorsize
;
2110 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2112 crc
= btrfs_csum_data(buffer
, crc
, l
);
2113 kunmap_atomic(buffer
);
2118 BUG_ON(index
>= sblock
->page_count
);
2119 BUG_ON(!sblock
->pagev
[index
]->page
);
2120 page
= sblock
->pagev
[index
]->page
;
2121 buffer
= kmap_atomic(page
);
2124 btrfs_csum_final(crc
, csum
);
2125 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
2126 sblock
->checksum_error
= 1;
2128 return sblock
->checksum_error
;
2131 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
2133 struct scrub_ctx
*sctx
= sblock
->sctx
;
2134 struct btrfs_header
*h
;
2135 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2136 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2137 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2139 void *mapped_buffer
;
2146 BUG_ON(sblock
->page_count
< 1);
2147 page
= sblock
->pagev
[0]->page
;
2148 mapped_buffer
= kmap_atomic(page
);
2149 h
= (struct btrfs_header
*)mapped_buffer
;
2150 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
2153 * we don't use the getter functions here, as we
2154 * a) don't have an extent buffer and
2155 * b) the page is already kmapped
2157 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
2158 sblock
->header_error
= 1;
2160 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
2161 sblock
->header_error
= 1;
2162 sblock
->generation_error
= 1;
2165 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
2166 sblock
->header_error
= 1;
2168 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
2170 sblock
->header_error
= 1;
2172 len
= sctx
->fs_info
->nodesize
- BTRFS_CSUM_SIZE
;
2173 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2174 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2177 u64 l
= min_t(u64
, len
, mapped_size
);
2179 crc
= btrfs_csum_data(p
, crc
, l
);
2180 kunmap_atomic(mapped_buffer
);
2185 BUG_ON(index
>= sblock
->page_count
);
2186 BUG_ON(!sblock
->pagev
[index
]->page
);
2187 page
= sblock
->pagev
[index
]->page
;
2188 mapped_buffer
= kmap_atomic(page
);
2189 mapped_size
= PAGE_SIZE
;
2193 btrfs_csum_final(crc
, calculated_csum
);
2194 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2195 sblock
->checksum_error
= 1;
2197 return sblock
->header_error
|| sblock
->checksum_error
;
2200 static int scrub_checksum_super(struct scrub_block
*sblock
)
2202 struct btrfs_super_block
*s
;
2203 struct scrub_ctx
*sctx
= sblock
->sctx
;
2204 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2205 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2207 void *mapped_buffer
;
2216 BUG_ON(sblock
->page_count
< 1);
2217 page
= sblock
->pagev
[0]->page
;
2218 mapped_buffer
= kmap_atomic(page
);
2219 s
= (struct btrfs_super_block
*)mapped_buffer
;
2220 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
2222 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
2225 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
2228 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
2231 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
2232 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2233 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2236 u64 l
= min_t(u64
, len
, mapped_size
);
2238 crc
= btrfs_csum_data(p
, crc
, l
);
2239 kunmap_atomic(mapped_buffer
);
2244 BUG_ON(index
>= sblock
->page_count
);
2245 BUG_ON(!sblock
->pagev
[index
]->page
);
2246 page
= sblock
->pagev
[index
]->page
;
2247 mapped_buffer
= kmap_atomic(page
);
2248 mapped_size
= PAGE_SIZE
;
2252 btrfs_csum_final(crc
, calculated_csum
);
2253 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2256 if (fail_cor
+ fail_gen
) {
2258 * if we find an error in a super block, we just report it.
2259 * They will get written with the next transaction commit
2262 spin_lock(&sctx
->stat_lock
);
2263 ++sctx
->stat
.super_errors
;
2264 spin_unlock(&sctx
->stat_lock
);
2266 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2267 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
2269 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2270 BTRFS_DEV_STAT_GENERATION_ERRS
);
2273 return fail_cor
+ fail_gen
;
2276 static void scrub_block_get(struct scrub_block
*sblock
)
2278 refcount_inc(&sblock
->refs
);
2281 static void scrub_block_put(struct scrub_block
*sblock
)
2283 if (refcount_dec_and_test(&sblock
->refs
)) {
2286 if (sblock
->sparity
)
2287 scrub_parity_put(sblock
->sparity
);
2289 for (i
= 0; i
< sblock
->page_count
; i
++)
2290 scrub_page_put(sblock
->pagev
[i
]);
2295 static void scrub_page_get(struct scrub_page
*spage
)
2297 atomic_inc(&spage
->refs
);
2300 static void scrub_page_put(struct scrub_page
*spage
)
2302 if (atomic_dec_and_test(&spage
->refs
)) {
2304 __free_page(spage
->page
);
2309 static void scrub_submit(struct scrub_ctx
*sctx
)
2311 struct scrub_bio
*sbio
;
2313 if (sctx
->curr
== -1)
2316 sbio
= sctx
->bios
[sctx
->curr
];
2318 scrub_pending_bio_inc(sctx
);
2319 btrfsic_submit_bio(sbio
->bio
);
2322 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2323 struct scrub_page
*spage
)
2325 struct scrub_block
*sblock
= spage
->sblock
;
2326 struct scrub_bio
*sbio
;
2331 * grab a fresh bio or wait for one to become available
2333 while (sctx
->curr
== -1) {
2334 spin_lock(&sctx
->list_lock
);
2335 sctx
->curr
= sctx
->first_free
;
2336 if (sctx
->curr
!= -1) {
2337 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2338 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2339 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2340 spin_unlock(&sctx
->list_lock
);
2342 spin_unlock(&sctx
->list_lock
);
2343 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2346 sbio
= sctx
->bios
[sctx
->curr
];
2347 if (sbio
->page_count
== 0) {
2350 sbio
->physical
= spage
->physical
;
2351 sbio
->logical
= spage
->logical
;
2352 sbio
->dev
= spage
->dev
;
2355 bio
= btrfs_io_bio_alloc(sctx
->pages_per_rd_bio
);
2359 bio
->bi_private
= sbio
;
2360 bio
->bi_end_io
= scrub_bio_end_io
;
2361 bio_set_dev(bio
, sbio
->dev
->bdev
);
2362 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2363 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2365 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2367 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2369 sbio
->dev
!= spage
->dev
) {
2374 sbio
->pagev
[sbio
->page_count
] = spage
;
2375 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2376 if (ret
!= PAGE_SIZE
) {
2377 if (sbio
->page_count
< 1) {
2386 scrub_block_get(sblock
); /* one for the page added to the bio */
2387 atomic_inc(&sblock
->outstanding_pages
);
2389 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2395 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2397 struct scrub_block
*sblock
= bio
->bi_private
;
2398 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2401 sblock
->no_io_error_seen
= 0;
2405 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2408 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2410 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2411 struct scrub_ctx
*sctx
= sblock
->sctx
;
2412 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2414 struct btrfs_device
*dev
;
2416 logical
= sblock
->pagev
[0]->logical
;
2417 dev
= sblock
->pagev
[0]->dev
;
2419 if (sblock
->no_io_error_seen
)
2420 scrub_recheck_block_checksum(sblock
);
2422 if (!sblock
->no_io_error_seen
) {
2423 spin_lock(&sctx
->stat_lock
);
2424 sctx
->stat
.read_errors
++;
2425 spin_unlock(&sctx
->stat_lock
);
2426 btrfs_err_rl_in_rcu(fs_info
,
2427 "IO error rebuilding logical %llu for dev %s",
2428 logical
, rcu_str_deref(dev
->name
));
2429 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2430 spin_lock(&sctx
->stat_lock
);
2431 sctx
->stat
.uncorrectable_errors
++;
2432 spin_unlock(&sctx
->stat_lock
);
2433 btrfs_err_rl_in_rcu(fs_info
,
2434 "failed to rebuild valid logical %llu for dev %s",
2435 logical
, rcu_str_deref(dev
->name
));
2437 scrub_write_block_to_dev_replace(sblock
);
2440 scrub_block_put(sblock
);
2442 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2443 mutex_lock(&sctx
->wr_lock
);
2444 scrub_wr_submit(sctx
);
2445 mutex_unlock(&sctx
->wr_lock
);
2448 scrub_pending_bio_dec(sctx
);
2451 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2453 struct scrub_ctx
*sctx
= sblock
->sctx
;
2454 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2455 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2456 u64 logical
= sblock
->pagev
[0]->logical
;
2457 struct btrfs_bio
*bbio
= NULL
;
2459 struct btrfs_raid_bio
*rbio
;
2463 btrfs_bio_counter_inc_blocked(fs_info
);
2464 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2466 if (ret
|| !bbio
|| !bbio
->raid_map
)
2469 if (WARN_ON(!sctx
->is_dev_replace
||
2470 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2472 * We shouldn't be scrubbing a missing device. Even for dev
2473 * replace, we should only get here for RAID 5/6. We either
2474 * managed to mount something with no mirrors remaining or
2475 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2480 bio
= btrfs_io_bio_alloc(0);
2481 bio
->bi_iter
.bi_sector
= logical
>> 9;
2482 bio
->bi_private
= sblock
;
2483 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2485 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2489 for (i
= 0; i
< sblock
->page_count
; i
++) {
2490 struct scrub_page
*spage
= sblock
->pagev
[i
];
2492 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2495 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2496 scrub_missing_raid56_worker
, NULL
, NULL
);
2497 scrub_block_get(sblock
);
2498 scrub_pending_bio_inc(sctx
);
2499 raid56_submit_missing_rbio(rbio
);
2505 btrfs_bio_counter_dec(fs_info
);
2506 btrfs_put_bbio(bbio
);
2507 spin_lock(&sctx
->stat_lock
);
2508 sctx
->stat
.malloc_errors
++;
2509 spin_unlock(&sctx
->stat_lock
);
2512 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2513 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2514 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2515 u64 physical_for_dev_replace
)
2517 struct scrub_block
*sblock
;
2520 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2522 spin_lock(&sctx
->stat_lock
);
2523 sctx
->stat
.malloc_errors
++;
2524 spin_unlock(&sctx
->stat_lock
);
2528 /* one ref inside this function, plus one for each page added to
2530 refcount_set(&sblock
->refs
, 1);
2531 sblock
->sctx
= sctx
;
2532 sblock
->no_io_error_seen
= 1;
2534 for (index
= 0; len
> 0; index
++) {
2535 struct scrub_page
*spage
;
2536 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2538 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2541 spin_lock(&sctx
->stat_lock
);
2542 sctx
->stat
.malloc_errors
++;
2543 spin_unlock(&sctx
->stat_lock
);
2544 scrub_block_put(sblock
);
2547 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2548 scrub_page_get(spage
);
2549 sblock
->pagev
[index
] = spage
;
2550 spage
->sblock
= sblock
;
2552 spage
->flags
= flags
;
2553 spage
->generation
= gen
;
2554 spage
->logical
= logical
;
2555 spage
->physical
= physical
;
2556 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2557 spage
->mirror_num
= mirror_num
;
2559 spage
->have_csum
= 1;
2560 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2562 spage
->have_csum
= 0;
2564 sblock
->page_count
++;
2565 spage
->page
= alloc_page(GFP_KERNEL
);
2571 physical_for_dev_replace
+= l
;
2574 WARN_ON(sblock
->page_count
== 0);
2575 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2577 * This case should only be hit for RAID 5/6 device replace. See
2578 * the comment in scrub_missing_raid56_pages() for details.
2580 scrub_missing_raid56_pages(sblock
);
2582 for (index
= 0; index
< sblock
->page_count
; index
++) {
2583 struct scrub_page
*spage
= sblock
->pagev
[index
];
2586 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2588 scrub_block_put(sblock
);
2597 /* last one frees, either here or in bio completion for last page */
2598 scrub_block_put(sblock
);
2602 static void scrub_bio_end_io(struct bio
*bio
)
2604 struct scrub_bio
*sbio
= bio
->bi_private
;
2605 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2607 sbio
->status
= bio
->bi_status
;
2610 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2613 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2615 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2616 struct scrub_ctx
*sctx
= sbio
->sctx
;
2619 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2621 for (i
= 0; i
< sbio
->page_count
; i
++) {
2622 struct scrub_page
*spage
= sbio
->pagev
[i
];
2624 spage
->io_error
= 1;
2625 spage
->sblock
->no_io_error_seen
= 0;
2629 /* now complete the scrub_block items that have all pages completed */
2630 for (i
= 0; i
< sbio
->page_count
; i
++) {
2631 struct scrub_page
*spage
= sbio
->pagev
[i
];
2632 struct scrub_block
*sblock
= spage
->sblock
;
2634 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2635 scrub_block_complete(sblock
);
2636 scrub_block_put(sblock
);
2641 spin_lock(&sctx
->list_lock
);
2642 sbio
->next_free
= sctx
->first_free
;
2643 sctx
->first_free
= sbio
->index
;
2644 spin_unlock(&sctx
->list_lock
);
2646 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2647 mutex_lock(&sctx
->wr_lock
);
2648 scrub_wr_submit(sctx
);
2649 mutex_unlock(&sctx
->wr_lock
);
2652 scrub_pending_bio_dec(sctx
);
2655 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2656 unsigned long *bitmap
,
2662 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2664 if (len
>= sparity
->stripe_len
) {
2665 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2669 start
-= sparity
->logic_start
;
2670 start
= div64_u64_rem(start
, sparity
->stripe_len
, &offset
);
2671 offset
= div_u64(offset
, sectorsize
);
2672 nsectors64
= div_u64(len
, sectorsize
);
2674 ASSERT(nsectors64
< UINT_MAX
);
2675 nsectors
= (u32
)nsectors64
;
2677 if (offset
+ nsectors
<= sparity
->nsectors
) {
2678 bitmap_set(bitmap
, offset
, nsectors
);
2682 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2683 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2686 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2689 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2692 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2695 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2698 static void scrub_block_complete(struct scrub_block
*sblock
)
2702 if (!sblock
->no_io_error_seen
) {
2704 scrub_handle_errored_block(sblock
);
2707 * if has checksum error, write via repair mechanism in
2708 * dev replace case, otherwise write here in dev replace
2711 corrupted
= scrub_checksum(sblock
);
2712 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2713 scrub_write_block_to_dev_replace(sblock
);
2716 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2717 u64 start
= sblock
->pagev
[0]->logical
;
2718 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2721 scrub_parity_mark_sectors_error(sblock
->sparity
,
2722 start
, end
- start
);
2726 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2728 struct btrfs_ordered_sum
*sum
= NULL
;
2729 unsigned long index
;
2730 unsigned long num_sectors
;
2732 while (!list_empty(&sctx
->csum_list
)) {
2733 sum
= list_first_entry(&sctx
->csum_list
,
2734 struct btrfs_ordered_sum
, list
);
2735 if (sum
->bytenr
> logical
)
2737 if (sum
->bytenr
+ sum
->len
> logical
)
2740 ++sctx
->stat
.csum_discards
;
2741 list_del(&sum
->list
);
2748 index
= div_u64(logical
- sum
->bytenr
, sctx
->fs_info
->sectorsize
);
2749 ASSERT(index
< UINT_MAX
);
2751 num_sectors
= sum
->len
/ sctx
->fs_info
->sectorsize
;
2752 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2753 if (index
== num_sectors
- 1) {
2754 list_del(&sum
->list
);
2760 /* scrub extent tries to collect up to 64 kB for each bio */
2761 static int scrub_extent(struct scrub_ctx
*sctx
, struct map_lookup
*map
,
2762 u64 logical
, u64 len
,
2763 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2764 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2767 u8 csum
[BTRFS_CSUM_SIZE
];
2770 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2771 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2772 blocksize
= map
->stripe_len
;
2774 blocksize
= sctx
->fs_info
->sectorsize
;
2775 spin_lock(&sctx
->stat_lock
);
2776 sctx
->stat
.data_extents_scrubbed
++;
2777 sctx
->stat
.data_bytes_scrubbed
+= len
;
2778 spin_unlock(&sctx
->stat_lock
);
2779 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2780 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2781 blocksize
= map
->stripe_len
;
2783 blocksize
= sctx
->fs_info
->nodesize
;
2784 spin_lock(&sctx
->stat_lock
);
2785 sctx
->stat
.tree_extents_scrubbed
++;
2786 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2787 spin_unlock(&sctx
->stat_lock
);
2789 blocksize
= sctx
->fs_info
->sectorsize
;
2794 u64 l
= min_t(u64
, len
, blocksize
);
2797 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2798 /* push csums to sbio */
2799 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2801 ++sctx
->stat
.no_csum
;
2802 if (0 && sctx
->is_dev_replace
&& !have_csum
) {
2803 ret
= copy_nocow_pages(sctx
, logical
, l
,
2805 physical_for_dev_replace
);
2806 goto behind_scrub_pages
;
2809 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2810 mirror_num
, have_csum
? csum
: NULL
, 0,
2811 physical_for_dev_replace
);
2818 physical_for_dev_replace
+= l
;
2823 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2824 u64 logical
, u64 len
,
2825 u64 physical
, struct btrfs_device
*dev
,
2826 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2828 struct scrub_ctx
*sctx
= sparity
->sctx
;
2829 struct scrub_block
*sblock
;
2832 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2834 spin_lock(&sctx
->stat_lock
);
2835 sctx
->stat
.malloc_errors
++;
2836 spin_unlock(&sctx
->stat_lock
);
2840 /* one ref inside this function, plus one for each page added to
2842 refcount_set(&sblock
->refs
, 1);
2843 sblock
->sctx
= sctx
;
2844 sblock
->no_io_error_seen
= 1;
2845 sblock
->sparity
= sparity
;
2846 scrub_parity_get(sparity
);
2848 for (index
= 0; len
> 0; index
++) {
2849 struct scrub_page
*spage
;
2850 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2852 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2855 spin_lock(&sctx
->stat_lock
);
2856 sctx
->stat
.malloc_errors
++;
2857 spin_unlock(&sctx
->stat_lock
);
2858 scrub_block_put(sblock
);
2861 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2862 /* For scrub block */
2863 scrub_page_get(spage
);
2864 sblock
->pagev
[index
] = spage
;
2865 /* For scrub parity */
2866 scrub_page_get(spage
);
2867 list_add_tail(&spage
->list
, &sparity
->spages
);
2868 spage
->sblock
= sblock
;
2870 spage
->flags
= flags
;
2871 spage
->generation
= gen
;
2872 spage
->logical
= logical
;
2873 spage
->physical
= physical
;
2874 spage
->mirror_num
= mirror_num
;
2876 spage
->have_csum
= 1;
2877 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2879 spage
->have_csum
= 0;
2881 sblock
->page_count
++;
2882 spage
->page
= alloc_page(GFP_KERNEL
);
2890 WARN_ON(sblock
->page_count
== 0);
2891 for (index
= 0; index
< sblock
->page_count
; index
++) {
2892 struct scrub_page
*spage
= sblock
->pagev
[index
];
2895 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2897 scrub_block_put(sblock
);
2902 /* last one frees, either here or in bio completion for last page */
2903 scrub_block_put(sblock
);
2907 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2908 u64 logical
, u64 len
,
2909 u64 physical
, struct btrfs_device
*dev
,
2910 u64 flags
, u64 gen
, int mirror_num
)
2912 struct scrub_ctx
*sctx
= sparity
->sctx
;
2914 u8 csum
[BTRFS_CSUM_SIZE
];
2917 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2918 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2922 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2923 blocksize
= sparity
->stripe_len
;
2924 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2925 blocksize
= sparity
->stripe_len
;
2927 blocksize
= sctx
->fs_info
->sectorsize
;
2932 u64 l
= min_t(u64
, len
, blocksize
);
2935 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2936 /* push csums to sbio */
2937 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2941 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2942 flags
, gen
, mirror_num
,
2943 have_csum
? csum
: NULL
);
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2961 static int get_raid56_logic_offset(u64 physical
, int num
,
2962 struct map_lookup
*map
, u64
*offset
,
2972 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2973 nr_data_stripes(map
);
2975 *stripe_start
= last_offset
;
2977 *offset
= last_offset
;
2978 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2979 *offset
= last_offset
+ i
* map
->stripe_len
;
2981 stripe_nr
= div64_u64(*offset
, map
->stripe_len
);
2982 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2984 /* Work out the disk rotation on this stripe-set */
2985 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2986 /* calculate which stripe this data locates */
2988 stripe_index
= rot
% map
->num_stripes
;
2989 if (stripe_index
== num
)
2991 if (stripe_index
< num
)
2994 *offset
= last_offset
+ j
* map
->stripe_len
;
2998 static void scrub_free_parity(struct scrub_parity
*sparity
)
3000 struct scrub_ctx
*sctx
= sparity
->sctx
;
3001 struct scrub_page
*curr
, *next
;
3004 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
3006 spin_lock(&sctx
->stat_lock
);
3007 sctx
->stat
.read_errors
+= nbits
;
3008 sctx
->stat
.uncorrectable_errors
+= nbits
;
3009 spin_unlock(&sctx
->stat_lock
);
3012 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
3013 list_del_init(&curr
->list
);
3014 scrub_page_put(curr
);
3020 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
3022 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
3024 struct scrub_ctx
*sctx
= sparity
->sctx
;
3026 scrub_free_parity(sparity
);
3027 scrub_pending_bio_dec(sctx
);
3030 static void scrub_parity_bio_endio(struct bio
*bio
)
3032 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
3033 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
3036 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3041 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
3042 scrub_parity_bio_endio_worker
, NULL
, NULL
);
3043 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
3046 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
3048 struct scrub_ctx
*sctx
= sparity
->sctx
;
3049 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3051 struct btrfs_raid_bio
*rbio
;
3052 struct btrfs_bio
*bbio
= NULL
;
3056 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
3060 length
= sparity
->logic_end
- sparity
->logic_start
;
3062 btrfs_bio_counter_inc_blocked(fs_info
);
3063 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
3065 if (ret
|| !bbio
|| !bbio
->raid_map
)
3068 bio
= btrfs_io_bio_alloc(0);
3069 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
3070 bio
->bi_private
= sparity
;
3071 bio
->bi_end_io
= scrub_parity_bio_endio
;
3073 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
3074 length
, sparity
->scrub_dev
,
3080 scrub_pending_bio_inc(sctx
);
3081 raid56_parity_submit_scrub_rbio(rbio
);
3087 btrfs_bio_counter_dec(fs_info
);
3088 btrfs_put_bbio(bbio
);
3089 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3091 spin_lock(&sctx
->stat_lock
);
3092 sctx
->stat
.malloc_errors
++;
3093 spin_unlock(&sctx
->stat_lock
);
3095 scrub_free_parity(sparity
);
3098 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
3100 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
3103 static void scrub_parity_get(struct scrub_parity
*sparity
)
3105 refcount_inc(&sparity
->refs
);
3108 static void scrub_parity_put(struct scrub_parity
*sparity
)
3110 if (!refcount_dec_and_test(&sparity
->refs
))
3113 scrub_parity_check_and_repair(sparity
);
3116 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
3117 struct map_lookup
*map
,
3118 struct btrfs_device
*sdev
,
3119 struct btrfs_path
*path
,
3123 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3124 struct btrfs_root
*root
= fs_info
->extent_root
;
3125 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3126 struct btrfs_extent_item
*extent
;
3127 struct btrfs_bio
*bbio
= NULL
;
3131 struct extent_buffer
*l
;
3132 struct btrfs_key key
;
3135 u64 extent_physical
;
3138 struct btrfs_device
*extent_dev
;
3139 struct scrub_parity
*sparity
;
3142 int extent_mirror_num
;
3145 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
3146 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
3147 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
3150 spin_lock(&sctx
->stat_lock
);
3151 sctx
->stat
.malloc_errors
++;
3152 spin_unlock(&sctx
->stat_lock
);
3156 sparity
->stripe_len
= map
->stripe_len
;
3157 sparity
->nsectors
= nsectors
;
3158 sparity
->sctx
= sctx
;
3159 sparity
->scrub_dev
= sdev
;
3160 sparity
->logic_start
= logic_start
;
3161 sparity
->logic_end
= logic_end
;
3162 refcount_set(&sparity
->refs
, 1);
3163 INIT_LIST_HEAD(&sparity
->spages
);
3164 sparity
->dbitmap
= sparity
->bitmap
;
3165 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
3168 while (logic_start
< logic_end
) {
3169 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3170 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3172 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3173 key
.objectid
= logic_start
;
3174 key
.offset
= (u64
)-1;
3176 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3181 ret
= btrfs_previous_extent_item(root
, path
, 0);
3185 btrfs_release_path(path
);
3186 ret
= btrfs_search_slot(NULL
, root
, &key
,
3198 slot
= path
->slots
[0];
3199 if (slot
>= btrfs_header_nritems(l
)) {
3200 ret
= btrfs_next_leaf(root
, path
);
3209 btrfs_item_key_to_cpu(l
, &key
, slot
);
3211 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3212 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3215 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3216 bytes
= fs_info
->nodesize
;
3220 if (key
.objectid
+ bytes
<= logic_start
)
3223 if (key
.objectid
>= logic_end
) {
3228 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
3229 logic_start
+= map
->stripe_len
;
3231 extent
= btrfs_item_ptr(l
, slot
,
3232 struct btrfs_extent_item
);
3233 flags
= btrfs_extent_flags(l
, extent
);
3234 generation
= btrfs_extent_generation(l
, extent
);
3236 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3237 (key
.objectid
< logic_start
||
3238 key
.objectid
+ bytes
>
3239 logic_start
+ map
->stripe_len
)) {
3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242 key
.objectid
, logic_start
);
3243 spin_lock(&sctx
->stat_lock
);
3244 sctx
->stat
.uncorrectable_errors
++;
3245 spin_unlock(&sctx
->stat_lock
);
3249 extent_logical
= key
.objectid
;
3252 if (extent_logical
< logic_start
) {
3253 extent_len
-= logic_start
- extent_logical
;
3254 extent_logical
= logic_start
;
3257 if (extent_logical
+ extent_len
>
3258 logic_start
+ map
->stripe_len
)
3259 extent_len
= logic_start
+ map
->stripe_len
-
3262 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
3265 mapped_length
= extent_len
;
3267 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
3268 extent_logical
, &mapped_length
, &bbio
,
3271 if (!bbio
|| mapped_length
< extent_len
)
3275 btrfs_put_bbio(bbio
);
3278 extent_physical
= bbio
->stripes
[0].physical
;
3279 extent_mirror_num
= bbio
->mirror_num
;
3280 extent_dev
= bbio
->stripes
[0].dev
;
3281 btrfs_put_bbio(bbio
);
3283 ret
= btrfs_lookup_csums_range(csum_root
,
3285 extent_logical
+ extent_len
- 1,
3286 &sctx
->csum_list
, 1);
3290 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3297 scrub_free_csums(sctx
);
3302 if (extent_logical
+ extent_len
<
3303 key
.objectid
+ bytes
) {
3304 logic_start
+= map
->stripe_len
;
3306 if (logic_start
>= logic_end
) {
3311 if (logic_start
< key
.objectid
+ bytes
) {
3320 btrfs_release_path(path
);
3325 logic_start
+= map
->stripe_len
;
3329 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3330 logic_end
- logic_start
);
3331 scrub_parity_put(sparity
);
3333 mutex_lock(&sctx
->wr_lock
);
3334 scrub_wr_submit(sctx
);
3335 mutex_unlock(&sctx
->wr_lock
);
3337 btrfs_release_path(path
);
3338 return ret
< 0 ? ret
: 0;
3341 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3342 struct map_lookup
*map
,
3343 struct btrfs_device
*scrub_dev
,
3344 int num
, u64 base
, u64 length
,
3347 struct btrfs_path
*path
, *ppath
;
3348 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3349 struct btrfs_root
*root
= fs_info
->extent_root
;
3350 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3351 struct btrfs_extent_item
*extent
;
3352 struct blk_plug plug
;
3357 struct extent_buffer
*l
;
3364 struct reada_control
*reada1
;
3365 struct reada_control
*reada2
;
3366 struct btrfs_key key
;
3367 struct btrfs_key key_end
;
3368 u64 increment
= map
->stripe_len
;
3371 u64 extent_physical
;
3375 struct btrfs_device
*extent_dev
;
3376 int extent_mirror_num
;
3379 physical
= map
->stripes
[num
].physical
;
3381 nstripes
= div64_u64(length
, map
->stripe_len
);
3382 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3383 offset
= map
->stripe_len
* num
;
3384 increment
= map
->stripe_len
* map
->num_stripes
;
3386 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3387 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3388 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3389 increment
= map
->stripe_len
* factor
;
3390 mirror_num
= num
% map
->sub_stripes
+ 1;
3391 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3392 increment
= map
->stripe_len
;
3393 mirror_num
= num
% map
->num_stripes
+ 1;
3394 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3395 increment
= map
->stripe_len
;
3396 mirror_num
= num
% map
->num_stripes
+ 1;
3397 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3398 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3399 increment
= map
->stripe_len
* nr_data_stripes(map
);
3402 increment
= map
->stripe_len
;
3406 path
= btrfs_alloc_path();
3410 ppath
= btrfs_alloc_path();
3412 btrfs_free_path(path
);
3417 * work on commit root. The related disk blocks are static as
3418 * long as COW is applied. This means, it is save to rewrite
3419 * them to repair disk errors without any race conditions
3421 path
->search_commit_root
= 1;
3422 path
->skip_locking
= 1;
3424 ppath
->search_commit_root
= 1;
3425 ppath
->skip_locking
= 1;
3427 * trigger the readahead for extent tree csum tree and wait for
3428 * completion. During readahead, the scrub is officially paused
3429 * to not hold off transaction commits
3431 logical
= base
+ offset
;
3432 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3433 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3434 get_raid56_logic_offset(physical_end
, num
,
3435 map
, &logic_end
, NULL
);
3438 logic_end
= logical
+ increment
* nstripes
;
3440 wait_event(sctx
->list_wait
,
3441 atomic_read(&sctx
->bios_in_flight
) == 0);
3442 scrub_blocked_if_needed(fs_info
);
3444 /* FIXME it might be better to start readahead at commit root */
3445 key
.objectid
= logical
;
3446 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3447 key
.offset
= (u64
)0;
3448 key_end
.objectid
= logic_end
;
3449 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3450 key_end
.offset
= (u64
)-1;
3451 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3453 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3454 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3455 key
.offset
= logical
;
3456 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3457 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3458 key_end
.offset
= logic_end
;
3459 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3461 if (!IS_ERR(reada1
))
3462 btrfs_reada_wait(reada1
);
3463 if (!IS_ERR(reada2
))
3464 btrfs_reada_wait(reada2
);
3468 * collect all data csums for the stripe to avoid seeking during
3469 * the scrub. This might currently (crc32) end up to be about 1MB
3471 blk_start_plug(&plug
);
3474 * now find all extents for each stripe and scrub them
3477 while (physical
< physical_end
) {
3481 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3482 atomic_read(&sctx
->cancel_req
)) {
3487 * check to see if we have to pause
3489 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3490 /* push queued extents */
3491 sctx
->flush_all_writes
= true;
3493 mutex_lock(&sctx
->wr_lock
);
3494 scrub_wr_submit(sctx
);
3495 mutex_unlock(&sctx
->wr_lock
);
3496 wait_event(sctx
->list_wait
,
3497 atomic_read(&sctx
->bios_in_flight
) == 0);
3498 sctx
->flush_all_writes
= false;
3499 scrub_blocked_if_needed(fs_info
);
3502 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3503 ret
= get_raid56_logic_offset(physical
, num
, map
,
3508 /* it is parity strip */
3509 stripe_logical
+= base
;
3510 stripe_end
= stripe_logical
+ increment
;
3511 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3512 ppath
, stripe_logical
,
3520 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3521 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3523 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3524 key
.objectid
= logical
;
3525 key
.offset
= (u64
)-1;
3527 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3532 ret
= btrfs_previous_extent_item(root
, path
, 0);
3536 /* there's no smaller item, so stick with the
3538 btrfs_release_path(path
);
3539 ret
= btrfs_search_slot(NULL
, root
, &key
,
3551 slot
= path
->slots
[0];
3552 if (slot
>= btrfs_header_nritems(l
)) {
3553 ret
= btrfs_next_leaf(root
, path
);
3562 btrfs_item_key_to_cpu(l
, &key
, slot
);
3564 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3565 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3568 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3569 bytes
= fs_info
->nodesize
;
3573 if (key
.objectid
+ bytes
<= logical
)
3576 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3577 /* out of this device extent */
3578 if (key
.objectid
>= logic_end
)
3583 extent
= btrfs_item_ptr(l
, slot
,
3584 struct btrfs_extent_item
);
3585 flags
= btrfs_extent_flags(l
, extent
);
3586 generation
= btrfs_extent_generation(l
, extent
);
3588 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3589 (key
.objectid
< logical
||
3590 key
.objectid
+ bytes
>
3591 logical
+ map
->stripe_len
)) {
3593 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594 key
.objectid
, logical
);
3595 spin_lock(&sctx
->stat_lock
);
3596 sctx
->stat
.uncorrectable_errors
++;
3597 spin_unlock(&sctx
->stat_lock
);
3602 extent_logical
= key
.objectid
;
3606 * trim extent to this stripe
3608 if (extent_logical
< logical
) {
3609 extent_len
-= logical
- extent_logical
;
3610 extent_logical
= logical
;
3612 if (extent_logical
+ extent_len
>
3613 logical
+ map
->stripe_len
) {
3614 extent_len
= logical
+ map
->stripe_len
-
3618 extent_physical
= extent_logical
- logical
+ physical
;
3619 extent_dev
= scrub_dev
;
3620 extent_mirror_num
= mirror_num
;
3622 scrub_remap_extent(fs_info
, extent_logical
,
3623 extent_len
, &extent_physical
,
3625 &extent_mirror_num
);
3627 ret
= btrfs_lookup_csums_range(csum_root
,
3631 &sctx
->csum_list
, 1);
3635 ret
= scrub_extent(sctx
, map
, extent_logical
, extent_len
,
3636 extent_physical
, extent_dev
, flags
,
3637 generation
, extent_mirror_num
,
3638 extent_logical
- logical
+ physical
);
3640 scrub_free_csums(sctx
);
3645 if (extent_logical
+ extent_len
<
3646 key
.objectid
+ bytes
) {
3647 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3649 * loop until we find next data stripe
3650 * or we have finished all stripes.
3653 physical
+= map
->stripe_len
;
3654 ret
= get_raid56_logic_offset(physical
,
3659 if (ret
&& physical
< physical_end
) {
3660 stripe_logical
+= base
;
3661 stripe_end
= stripe_logical
+
3663 ret
= scrub_raid56_parity(sctx
,
3664 map
, scrub_dev
, ppath
,
3672 physical
+= map
->stripe_len
;
3673 logical
+= increment
;
3675 if (logical
< key
.objectid
+ bytes
) {
3680 if (physical
>= physical_end
) {
3688 btrfs_release_path(path
);
3690 logical
+= increment
;
3691 physical
+= map
->stripe_len
;
3692 spin_lock(&sctx
->stat_lock
);
3694 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3697 sctx
->stat
.last_physical
= physical
;
3698 spin_unlock(&sctx
->stat_lock
);
3703 /* push queued extents */
3705 mutex_lock(&sctx
->wr_lock
);
3706 scrub_wr_submit(sctx
);
3707 mutex_unlock(&sctx
->wr_lock
);
3709 blk_finish_plug(&plug
);
3710 btrfs_free_path(path
);
3711 btrfs_free_path(ppath
);
3712 return ret
< 0 ? ret
: 0;
3715 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3716 struct btrfs_device
*scrub_dev
,
3717 u64 chunk_offset
, u64 length
,
3719 struct btrfs_block_group_cache
*cache
,
3722 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3723 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3724 struct map_lookup
*map
;
3725 struct extent_map
*em
;
3729 read_lock(&map_tree
->map_tree
.lock
);
3730 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3731 read_unlock(&map_tree
->map_tree
.lock
);
3735 * Might have been an unused block group deleted by the cleaner
3736 * kthread or relocation.
3738 spin_lock(&cache
->lock
);
3739 if (!cache
->removed
)
3741 spin_unlock(&cache
->lock
);
3746 map
= em
->map_lookup
;
3747 if (em
->start
!= chunk_offset
)
3750 if (em
->len
< length
)
3753 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3754 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3755 map
->stripes
[i
].physical
== dev_offset
) {
3756 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3757 chunk_offset
, length
,
3764 free_extent_map(em
);
3769 static noinline_for_stack
3770 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3771 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3774 struct btrfs_dev_extent
*dev_extent
= NULL
;
3775 struct btrfs_path
*path
;
3776 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3777 struct btrfs_root
*root
= fs_info
->dev_root
;
3783 struct extent_buffer
*l
;
3784 struct btrfs_key key
;
3785 struct btrfs_key found_key
;
3786 struct btrfs_block_group_cache
*cache
;
3787 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3789 path
= btrfs_alloc_path();
3793 path
->reada
= READA_FORWARD
;
3794 path
->search_commit_root
= 1;
3795 path
->skip_locking
= 1;
3797 key
.objectid
= scrub_dev
->devid
;
3799 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3802 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3806 if (path
->slots
[0] >=
3807 btrfs_header_nritems(path
->nodes
[0])) {
3808 ret
= btrfs_next_leaf(root
, path
);
3821 slot
= path
->slots
[0];
3823 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3825 if (found_key
.objectid
!= scrub_dev
->devid
)
3828 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3831 if (found_key
.offset
>= end
)
3834 if (found_key
.offset
< key
.offset
)
3837 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3838 length
= btrfs_dev_extent_length(l
, dev_extent
);
3840 if (found_key
.offset
+ length
<= start
)
3843 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3846 * get a reference on the corresponding block group to prevent
3847 * the chunk from going away while we scrub it
3849 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3851 /* some chunks are removed but not committed to disk yet,
3852 * continue scrubbing */
3857 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858 * to avoid deadlock caused by:
3859 * btrfs_inc_block_group_ro()
3860 * -> btrfs_wait_for_commit()
3861 * -> btrfs_commit_transaction()
3862 * -> btrfs_scrub_pause()
3864 scrub_pause_on(fs_info
);
3865 ret
= btrfs_inc_block_group_ro(fs_info
, cache
);
3866 if (!ret
&& is_dev_replace
) {
3868 * If we are doing a device replace wait for any tasks
3869 * that started dellaloc right before we set the block
3870 * group to RO mode, as they might have just allocated
3871 * an extent from it or decided they could do a nocow
3872 * write. And if any such tasks did that, wait for their
3873 * ordered extents to complete and then commit the
3874 * current transaction, so that we can later see the new
3875 * extent items in the extent tree - the ordered extents
3876 * create delayed data references (for cow writes) when
3877 * they complete, which will be run and insert the
3878 * corresponding extent items into the extent tree when
3879 * we commit the transaction they used when running
3880 * inode.c:btrfs_finish_ordered_io(). We later use
3881 * the commit root of the extent tree to find extents
3882 * to copy from the srcdev into the tgtdev, and we don't
3883 * want to miss any new extents.
3885 btrfs_wait_block_group_reservations(cache
);
3886 btrfs_wait_nocow_writers(cache
);
3887 ret
= btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3888 cache
->key
.objectid
,
3891 struct btrfs_trans_handle
*trans
;
3893 trans
= btrfs_join_transaction(root
);
3895 ret
= PTR_ERR(trans
);
3897 ret
= btrfs_commit_transaction(trans
);
3899 scrub_pause_off(fs_info
);
3900 btrfs_put_block_group(cache
);
3905 scrub_pause_off(fs_info
);
3909 } else if (ret
== -ENOSPC
) {
3911 * btrfs_inc_block_group_ro return -ENOSPC when it
3912 * failed in creating new chunk for metadata.
3913 * It is not a problem for scrub/replace, because
3914 * metadata are always cowed, and our scrub paused
3915 * commit_transactions.
3920 "failed setting block group ro: %d", ret
);
3921 btrfs_put_block_group(cache
);
3925 btrfs_dev_replace_write_lock(&fs_info
->dev_replace
);
3926 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3927 dev_replace
->cursor_left
= found_key
.offset
;
3928 dev_replace
->item_needs_writeback
= 1;
3929 btrfs_dev_replace_write_unlock(&fs_info
->dev_replace
);
3930 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3931 found_key
.offset
, cache
, is_dev_replace
);
3934 * flush, submit all pending read and write bios, afterwards
3936 * Note that in the dev replace case, a read request causes
3937 * write requests that are submitted in the read completion
3938 * worker. Therefore in the current situation, it is required
3939 * that all write requests are flushed, so that all read and
3940 * write requests are really completed when bios_in_flight
3943 sctx
->flush_all_writes
= true;
3945 mutex_lock(&sctx
->wr_lock
);
3946 scrub_wr_submit(sctx
);
3947 mutex_unlock(&sctx
->wr_lock
);
3949 wait_event(sctx
->list_wait
,
3950 atomic_read(&sctx
->bios_in_flight
) == 0);
3952 scrub_pause_on(fs_info
);
3955 * must be called before we decrease @scrub_paused.
3956 * make sure we don't block transaction commit while
3957 * we are waiting pending workers finished.
3959 wait_event(sctx
->list_wait
,
3960 atomic_read(&sctx
->workers_pending
) == 0);
3961 sctx
->flush_all_writes
= false;
3963 scrub_pause_off(fs_info
);
3965 btrfs_dev_replace_write_lock(&fs_info
->dev_replace
);
3966 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3967 dev_replace
->item_needs_writeback
= 1;
3968 btrfs_dev_replace_write_unlock(&fs_info
->dev_replace
);
3971 btrfs_dec_block_group_ro(cache
);
3974 * We might have prevented the cleaner kthread from deleting
3975 * this block group if it was already unused because we raced
3976 * and set it to RO mode first. So add it back to the unused
3977 * list, otherwise it might not ever be deleted unless a manual
3978 * balance is triggered or it becomes used and unused again.
3980 spin_lock(&cache
->lock
);
3981 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3982 btrfs_block_group_used(&cache
->item
) == 0) {
3983 spin_unlock(&cache
->lock
);
3984 spin_lock(&fs_info
->unused_bgs_lock
);
3985 if (list_empty(&cache
->bg_list
)) {
3986 btrfs_get_block_group(cache
);
3987 trace_btrfs_add_unused_block_group(cache
);
3988 list_add_tail(&cache
->bg_list
,
3989 &fs_info
->unused_bgs
);
3991 spin_unlock(&fs_info
->unused_bgs_lock
);
3993 spin_unlock(&cache
->lock
);
3996 btrfs_put_block_group(cache
);
3999 if (is_dev_replace
&&
4000 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
4004 if (sctx
->stat
.malloc_errors
> 0) {
4009 key
.offset
= found_key
.offset
+ length
;
4010 btrfs_release_path(path
);
4013 btrfs_free_path(path
);
4018 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
4019 struct btrfs_device
*scrub_dev
)
4025 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4027 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4030 /* Seed devices of a new filesystem has their own generation. */
4031 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
4032 gen
= scrub_dev
->generation
;
4034 gen
= fs_info
->last_trans_committed
;
4036 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
4037 bytenr
= btrfs_sb_offset(i
);
4038 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
4039 scrub_dev
->commit_total_bytes
)
4042 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
4043 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
4048 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4054 * get a reference count on fs_info->scrub_workers. start worker if necessary
4056 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
4059 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
4060 int max_active
= fs_info
->thread_pool_size
;
4062 if (fs_info
->scrub_workers_refcnt
== 0) {
4063 fs_info
->scrub_workers
= btrfs_alloc_workqueue(fs_info
, "scrub",
4064 flags
, is_dev_replace
? 1 : max_active
, 4);
4065 if (!fs_info
->scrub_workers
)
4066 goto fail_scrub_workers
;
4068 fs_info
->scrub_wr_completion_workers
=
4069 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
4071 if (!fs_info
->scrub_wr_completion_workers
)
4072 goto fail_scrub_wr_completion_workers
;
4074 fs_info
->scrub_nocow_workers
=
4075 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
4076 if (!fs_info
->scrub_nocow_workers
)
4077 goto fail_scrub_nocow_workers
;
4078 fs_info
->scrub_parity_workers
=
4079 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
4081 if (!fs_info
->scrub_parity_workers
)
4082 goto fail_scrub_parity_workers
;
4084 ++fs_info
->scrub_workers_refcnt
;
4087 fail_scrub_parity_workers
:
4088 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4089 fail_scrub_nocow_workers
:
4090 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4091 fail_scrub_wr_completion_workers
:
4092 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4097 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
4099 if (--fs_info
->scrub_workers_refcnt
== 0) {
4100 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4101 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4102 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4103 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
4105 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
4108 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
4109 u64 end
, struct btrfs_scrub_progress
*progress
,
4110 int readonly
, int is_dev_replace
)
4112 struct scrub_ctx
*sctx
;
4114 struct btrfs_device
*dev
;
4115 struct rcu_string
*name
;
4117 if (btrfs_fs_closing(fs_info
))
4120 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
4122 * in this case scrub is unable to calculate the checksum
4123 * the way scrub is implemented. Do not handle this
4124 * situation at all because it won't ever happen.
4127 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4133 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
4134 /* not supported for data w/o checksums */
4135 btrfs_err_rl(fs_info
,
4136 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4137 fs_info
->sectorsize
, PAGE_SIZE
);
4141 if (fs_info
->nodesize
>
4142 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
4143 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
4145 * would exhaust the array bounds of pagev member in
4146 * struct scrub_block
4149 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4151 SCRUB_MAX_PAGES_PER_BLOCK
,
4152 fs_info
->sectorsize
,
4153 SCRUB_MAX_PAGES_PER_BLOCK
);
4158 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4159 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4160 if (!dev
|| (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) &&
4162 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4166 if (!is_dev_replace
&& !readonly
&&
4167 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
4168 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4170 name
= rcu_dereference(dev
->name
);
4171 btrfs_err(fs_info
, "scrub: device %s is not writable",
4177 mutex_lock(&fs_info
->scrub_lock
);
4178 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
4179 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &dev
->dev_state
)) {
4180 mutex_unlock(&fs_info
->scrub_lock
);
4181 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4185 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
4186 if (dev
->scrub_ctx
||
4188 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
4189 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
4190 mutex_unlock(&fs_info
->scrub_lock
);
4191 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4192 return -EINPROGRESS
;
4194 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
4196 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
4198 mutex_unlock(&fs_info
->scrub_lock
);
4199 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4203 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
4205 mutex_unlock(&fs_info
->scrub_lock
);
4206 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4207 scrub_workers_put(fs_info
);
4208 return PTR_ERR(sctx
);
4210 sctx
->readonly
= readonly
;
4211 dev
->scrub_ctx
= sctx
;
4212 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4215 * checking @scrub_pause_req here, we can avoid
4216 * race between committing transaction and scrubbing.
4218 __scrub_blocked_if_needed(fs_info
);
4219 atomic_inc(&fs_info
->scrubs_running
);
4220 mutex_unlock(&fs_info
->scrub_lock
);
4222 if (!is_dev_replace
) {
4224 * by holding device list mutex, we can
4225 * kick off writing super in log tree sync.
4227 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4228 ret
= scrub_supers(sctx
, dev
);
4229 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4233 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
4236 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4237 atomic_dec(&fs_info
->scrubs_running
);
4238 wake_up(&fs_info
->scrub_pause_wait
);
4240 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
4243 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4245 mutex_lock(&fs_info
->scrub_lock
);
4246 dev
->scrub_ctx
= NULL
;
4247 scrub_workers_put(fs_info
);
4248 mutex_unlock(&fs_info
->scrub_lock
);
4250 scrub_put_ctx(sctx
);
4255 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
4257 mutex_lock(&fs_info
->scrub_lock
);
4258 atomic_inc(&fs_info
->scrub_pause_req
);
4259 while (atomic_read(&fs_info
->scrubs_paused
) !=
4260 atomic_read(&fs_info
->scrubs_running
)) {
4261 mutex_unlock(&fs_info
->scrub_lock
);
4262 wait_event(fs_info
->scrub_pause_wait
,
4263 atomic_read(&fs_info
->scrubs_paused
) ==
4264 atomic_read(&fs_info
->scrubs_running
));
4265 mutex_lock(&fs_info
->scrub_lock
);
4267 mutex_unlock(&fs_info
->scrub_lock
);
4270 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
4272 atomic_dec(&fs_info
->scrub_pause_req
);
4273 wake_up(&fs_info
->scrub_pause_wait
);
4276 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4278 mutex_lock(&fs_info
->scrub_lock
);
4279 if (!atomic_read(&fs_info
->scrubs_running
)) {
4280 mutex_unlock(&fs_info
->scrub_lock
);
4284 atomic_inc(&fs_info
->scrub_cancel_req
);
4285 while (atomic_read(&fs_info
->scrubs_running
)) {
4286 mutex_unlock(&fs_info
->scrub_lock
);
4287 wait_event(fs_info
->scrub_pause_wait
,
4288 atomic_read(&fs_info
->scrubs_running
) == 0);
4289 mutex_lock(&fs_info
->scrub_lock
);
4291 atomic_dec(&fs_info
->scrub_cancel_req
);
4292 mutex_unlock(&fs_info
->scrub_lock
);
4297 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4298 struct btrfs_device
*dev
)
4300 struct scrub_ctx
*sctx
;
4302 mutex_lock(&fs_info
->scrub_lock
);
4303 sctx
= dev
->scrub_ctx
;
4305 mutex_unlock(&fs_info
->scrub_lock
);
4308 atomic_inc(&sctx
->cancel_req
);
4309 while (dev
->scrub_ctx
) {
4310 mutex_unlock(&fs_info
->scrub_lock
);
4311 wait_event(fs_info
->scrub_pause_wait
,
4312 dev
->scrub_ctx
== NULL
);
4313 mutex_lock(&fs_info
->scrub_lock
);
4315 mutex_unlock(&fs_info
->scrub_lock
);
4320 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4321 struct btrfs_scrub_progress
*progress
)
4323 struct btrfs_device
*dev
;
4324 struct scrub_ctx
*sctx
= NULL
;
4326 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4327 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4329 sctx
= dev
->scrub_ctx
;
4331 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4332 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4334 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4337 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4338 u64 extent_logical
, u64 extent_len
,
4339 u64
*extent_physical
,
4340 struct btrfs_device
**extent_dev
,
4341 int *extent_mirror_num
)
4344 struct btrfs_bio
*bbio
= NULL
;
4347 mapped_length
= extent_len
;
4348 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4349 &mapped_length
, &bbio
, 0);
4350 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4351 !bbio
->stripes
[0].dev
->bdev
) {
4352 btrfs_put_bbio(bbio
);
4356 *extent_physical
= bbio
->stripes
[0].physical
;
4357 *extent_mirror_num
= bbio
->mirror_num
;
4358 *extent_dev
= bbio
->stripes
[0].dev
;
4359 btrfs_put_bbio(bbio
);
4362 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4363 int mirror_num
, u64 physical_for_dev_replace
)
4365 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4366 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4368 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4370 spin_lock(&sctx
->stat_lock
);
4371 sctx
->stat
.malloc_errors
++;
4372 spin_unlock(&sctx
->stat_lock
);
4376 scrub_pending_trans_workers_inc(sctx
);
4378 nocow_ctx
->sctx
= sctx
;
4379 nocow_ctx
->logical
= logical
;
4380 nocow_ctx
->len
= len
;
4381 nocow_ctx
->mirror_num
= mirror_num
;
4382 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4383 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4384 copy_nocow_pages_worker
, NULL
, NULL
);
4385 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4386 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4392 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4394 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4395 struct scrub_nocow_inode
*nocow_inode
;
4397 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4400 nocow_inode
->inum
= inum
;
4401 nocow_inode
->offset
= offset
;
4402 nocow_inode
->root
= root
;
4403 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4407 #define COPY_COMPLETE 1
4409 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4411 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4412 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4413 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4414 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4415 struct btrfs_root
*root
= fs_info
->extent_root
;
4416 u64 logical
= nocow_ctx
->logical
;
4417 u64 len
= nocow_ctx
->len
;
4418 int mirror_num
= nocow_ctx
->mirror_num
;
4419 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4421 struct btrfs_trans_handle
*trans
= NULL
;
4422 struct btrfs_path
*path
;
4423 int not_written
= 0;
4425 path
= btrfs_alloc_path();
4427 spin_lock(&sctx
->stat_lock
);
4428 sctx
->stat
.malloc_errors
++;
4429 spin_unlock(&sctx
->stat_lock
);
4434 trans
= btrfs_join_transaction(root
);
4435 if (IS_ERR(trans
)) {
4440 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4441 record_inode_for_nocow
, nocow_ctx
, false);
4442 if (ret
!= 0 && ret
!= -ENOENT
) {
4444 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4445 logical
, physical_for_dev_replace
, len
, mirror_num
,
4451 btrfs_end_transaction(trans
);
4453 while (!list_empty(&nocow_ctx
->inodes
)) {
4454 struct scrub_nocow_inode
*entry
;
4455 entry
= list_first_entry(&nocow_ctx
->inodes
,
4456 struct scrub_nocow_inode
,
4458 list_del_init(&entry
->list
);
4459 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4460 entry
->root
, nocow_ctx
);
4462 if (ret
== COPY_COMPLETE
) {
4470 while (!list_empty(&nocow_ctx
->inodes
)) {
4471 struct scrub_nocow_inode
*entry
;
4472 entry
= list_first_entry(&nocow_ctx
->inodes
,
4473 struct scrub_nocow_inode
,
4475 list_del_init(&entry
->list
);
4478 if (trans
&& !IS_ERR(trans
))
4479 btrfs_end_transaction(trans
);
4481 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4482 num_uncorrectable_read_errors
);
4484 btrfs_free_path(path
);
4487 scrub_pending_trans_workers_dec(sctx
);
4490 static int check_extent_to_block(struct btrfs_inode
*inode
, u64 start
, u64 len
,
4493 struct extent_state
*cached_state
= NULL
;
4494 struct btrfs_ordered_extent
*ordered
;
4495 struct extent_io_tree
*io_tree
;
4496 struct extent_map
*em
;
4497 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4500 io_tree
= &inode
->io_tree
;
4502 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4503 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4505 btrfs_put_ordered_extent(ordered
);
4510 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4517 * This extent does not actually cover the logical extent anymore,
4518 * move on to the next inode.
4520 if (em
->block_start
> logical
||
4521 em
->block_start
+ em
->block_len
< logical
+ len
||
4522 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4523 free_extent_map(em
);
4527 free_extent_map(em
);
4530 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
);
4534 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4535 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4537 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->fs_info
;
4538 struct btrfs_key key
;
4539 struct inode
*inode
;
4541 struct btrfs_root
*local_root
;
4542 struct extent_io_tree
*io_tree
;
4543 u64 physical_for_dev_replace
;
4544 u64 nocow_ctx_logical
;
4545 u64 len
= nocow_ctx
->len
;
4546 unsigned long index
;
4551 key
.objectid
= root
;
4552 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4553 key
.offset
= (u64
)-1;
4555 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4557 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4558 if (IS_ERR(local_root
)) {
4559 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4560 return PTR_ERR(local_root
);
4563 key
.type
= BTRFS_INODE_ITEM_KEY
;
4564 key
.objectid
= inum
;
4566 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4567 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4569 return PTR_ERR(inode
);
4571 /* Avoid truncate/dio/punch hole.. */
4573 inode_dio_wait(inode
);
4575 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4576 io_tree
= &BTRFS_I(inode
)->io_tree
;
4577 nocow_ctx_logical
= nocow_ctx
->logical
;
4579 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4582 ret
= ret
> 0 ? 0 : ret
;
4586 while (len
>= PAGE_SIZE
) {
4587 index
= offset
>> PAGE_SHIFT
;
4589 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4591 btrfs_err(fs_info
, "find_or_create_page() failed");
4596 if (PageUptodate(page
)) {
4597 if (PageDirty(page
))
4600 ClearPageError(page
);
4601 err
= extent_read_full_page(io_tree
, page
,
4603 nocow_ctx
->mirror_num
);
4611 * If the page has been remove from the page cache,
4612 * the data on it is meaningless, because it may be
4613 * old one, the new data may be written into the new
4614 * page in the page cache.
4616 if (page
->mapping
!= inode
->i_mapping
) {
4621 if (!PageUptodate(page
)) {
4627 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4630 ret
= ret
> 0 ? 0 : ret
;
4634 err
= write_page_nocow(nocow_ctx
->sctx
,
4635 physical_for_dev_replace
, page
);
4645 offset
+= PAGE_SIZE
;
4646 physical_for_dev_replace
+= PAGE_SIZE
;
4647 nocow_ctx_logical
+= PAGE_SIZE
;
4650 ret
= COPY_COMPLETE
;
4652 inode_unlock(inode
);
4657 static int write_page_nocow(struct scrub_ctx
*sctx
,
4658 u64 physical_for_dev_replace
, struct page
*page
)
4661 struct btrfs_device
*dev
;
4663 dev
= sctx
->wr_tgtdev
;
4667 btrfs_warn_rl(dev
->fs_info
,
4668 "scrub write_page_nocow(bdev == NULL) is unexpected");
4671 bio
= btrfs_io_bio_alloc(1);
4672 bio
->bi_iter
.bi_size
= 0;
4673 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4674 bio_set_dev(bio
, dev
->bdev
);
4675 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
4676 /* bio_add_page won't fail on a freshly allocated bio */
4677 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4679 if (btrfsic_submit_bio_wait(bio
)) {
4681 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);