Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[linux/fpc-iii.git] / kernel / kexec_core.c
blob8d34308ea449ad31bae472f0403c5f1b25324683
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
42 #include <asm/page.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
49 DEFINE_MUTEX(kexec_mutex);
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57 size_t vmcoreinfo_size;
58 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress = false;
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 .desc = IORES_DESC_CRASH_KERNEL
72 struct resource crashk_low_res = {
73 .name = "Crash kernel",
74 .start = 0,
75 .end = 0,
76 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
77 .desc = IORES_DESC_CRASH_KERNEL
80 int kexec_should_crash(struct task_struct *p)
83 * If crash_kexec_post_notifiers is enabled, don't run
84 * crash_kexec() here yet, which must be run after panic
85 * notifiers in panic().
87 if (crash_kexec_post_notifiers)
88 return 0;
90 * There are 4 panic() calls in do_exit() path, each of which
91 * corresponds to each of these 4 conditions.
93 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
94 return 1;
95 return 0;
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
142 #define KIMAGE_NO_DEST (-1UL)
144 static struct page *kimage_alloc_page(struct kimage *image,
145 gfp_t gfp_mask,
146 unsigned long dest);
148 int sanity_check_segment_list(struct kimage *image)
150 int result, i;
151 unsigned long nr_segments = image->nr_segments;
154 * Verify we have good destination addresses. The caller is
155 * responsible for making certain we don't attempt to load
156 * the new image into invalid or reserved areas of RAM. This
157 * just verifies it is an address we can use.
159 * Since the kernel does everything in page size chunks ensure
160 * the destination addresses are page aligned. Too many
161 * special cases crop of when we don't do this. The most
162 * insidious is getting overlapping destination addresses
163 * simply because addresses are changed to page size
164 * granularity.
166 result = -EADDRNOTAVAIL;
167 for (i = 0; i < nr_segments; i++) {
168 unsigned long mstart, mend;
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
173 return result;
174 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
175 return result;
178 /* Verify our destination addresses do not overlap.
179 * If we alloed overlapping destination addresses
180 * through very weird things can happen with no
181 * easy explanation as one segment stops on another.
183 result = -EINVAL;
184 for (i = 0; i < nr_segments; i++) {
185 unsigned long mstart, mend;
186 unsigned long j;
188 mstart = image->segment[i].mem;
189 mend = mstart + image->segment[i].memsz;
190 for (j = 0; j < i; j++) {
191 unsigned long pstart, pend;
193 pstart = image->segment[j].mem;
194 pend = pstart + image->segment[j].memsz;
195 /* Do the segments overlap ? */
196 if ((mend > pstart) && (mstart < pend))
197 return result;
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
204 * later on.
206 result = -EINVAL;
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
209 return result;
213 * Verify we have good destination addresses. Normally
214 * the caller is responsible for making certain we don't
215 * attempt to load the new image into invalid or reserved
216 * areas of RAM. But crash kernels are preloaded into a
217 * reserved area of ram. We must ensure the addresses
218 * are in the reserved area otherwise preloading the
219 * kernel could corrupt things.
222 if (image->type == KEXEC_TYPE_CRASH) {
223 result = -EADDRNOTAVAIL;
224 for (i = 0; i < nr_segments; i++) {
225 unsigned long mstart, mend;
227 mstart = image->segment[i].mem;
228 mend = mstart + image->segment[i].memsz - 1;
229 /* Ensure we are within the crash kernel limits */
230 if ((mstart < crashk_res.start) ||
231 (mend > crashk_res.end))
232 return result;
236 return 0;
239 struct kimage *do_kimage_alloc_init(void)
241 struct kimage *image;
243 /* Allocate a controlling structure */
244 image = kzalloc(sizeof(*image), GFP_KERNEL);
245 if (!image)
246 return NULL;
248 image->head = 0;
249 image->entry = &image->head;
250 image->last_entry = &image->head;
251 image->control_page = ~0; /* By default this does not apply */
252 image->type = KEXEC_TYPE_DEFAULT;
254 /* Initialize the list of control pages */
255 INIT_LIST_HEAD(&image->control_pages);
257 /* Initialize the list of destination pages */
258 INIT_LIST_HEAD(&image->dest_pages);
260 /* Initialize the list of unusable pages */
261 INIT_LIST_HEAD(&image->unusable_pages);
263 return image;
266 int kimage_is_destination_range(struct kimage *image,
267 unsigned long start,
268 unsigned long end)
270 unsigned long i;
272 for (i = 0; i < image->nr_segments; i++) {
273 unsigned long mstart, mend;
275 mstart = image->segment[i].mem;
276 mend = mstart + image->segment[i].memsz;
277 if ((end > mstart) && (start < mend))
278 return 1;
281 return 0;
284 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
286 struct page *pages;
288 pages = alloc_pages(gfp_mask, order);
289 if (pages) {
290 unsigned int count, i;
292 pages->mapping = NULL;
293 set_page_private(pages, order);
294 count = 1 << order;
295 for (i = 0; i < count; i++)
296 SetPageReserved(pages + i);
299 return pages;
302 static void kimage_free_pages(struct page *page)
304 unsigned int order, count, i;
306 order = page_private(page);
307 count = 1 << order;
308 for (i = 0; i < count; i++)
309 ClearPageReserved(page + i);
310 __free_pages(page, order);
313 void kimage_free_page_list(struct list_head *list)
315 struct page *page, *next;
317 list_for_each_entry_safe(page, next, list, lru) {
318 list_del(&page->lru);
319 kimage_free_pages(page);
323 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
324 unsigned int order)
326 /* Control pages are special, they are the intermediaries
327 * that are needed while we copy the rest of the pages
328 * to their final resting place. As such they must
329 * not conflict with either the destination addresses
330 * or memory the kernel is already using.
332 * The only case where we really need more than one of
333 * these are for architectures where we cannot disable
334 * the MMU and must instead generate an identity mapped
335 * page table for all of the memory.
337 * At worst this runs in O(N) of the image size.
339 struct list_head extra_pages;
340 struct page *pages;
341 unsigned int count;
343 count = 1 << order;
344 INIT_LIST_HEAD(&extra_pages);
346 /* Loop while I can allocate a page and the page allocated
347 * is a destination page.
349 do {
350 unsigned long pfn, epfn, addr, eaddr;
352 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
353 if (!pages)
354 break;
355 pfn = page_to_pfn(pages);
356 epfn = pfn + count;
357 addr = pfn << PAGE_SHIFT;
358 eaddr = epfn << PAGE_SHIFT;
359 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
360 kimage_is_destination_range(image, addr, eaddr)) {
361 list_add(&pages->lru, &extra_pages);
362 pages = NULL;
364 } while (!pages);
366 if (pages) {
367 /* Remember the allocated page... */
368 list_add(&pages->lru, &image->control_pages);
370 /* Because the page is already in it's destination
371 * location we will never allocate another page at
372 * that address. Therefore kimage_alloc_pages
373 * will not return it (again) and we don't need
374 * to give it an entry in image->segment[].
377 /* Deal with the destination pages I have inadvertently allocated.
379 * Ideally I would convert multi-page allocations into single
380 * page allocations, and add everything to image->dest_pages.
382 * For now it is simpler to just free the pages.
384 kimage_free_page_list(&extra_pages);
386 return pages;
389 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
390 unsigned int order)
392 /* Control pages are special, they are the intermediaries
393 * that are needed while we copy the rest of the pages
394 * to their final resting place. As such they must
395 * not conflict with either the destination addresses
396 * or memory the kernel is already using.
398 * Control pages are also the only pags we must allocate
399 * when loading a crash kernel. All of the other pages
400 * are specified by the segments and we just memcpy
401 * into them directly.
403 * The only case where we really need more than one of
404 * these are for architectures where we cannot disable
405 * the MMU and must instead generate an identity mapped
406 * page table for all of the memory.
408 * Given the low demand this implements a very simple
409 * allocator that finds the first hole of the appropriate
410 * size in the reserved memory region, and allocates all
411 * of the memory up to and including the hole.
413 unsigned long hole_start, hole_end, size;
414 struct page *pages;
416 pages = NULL;
417 size = (1 << order) << PAGE_SHIFT;
418 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
419 hole_end = hole_start + size - 1;
420 while (hole_end <= crashk_res.end) {
421 unsigned long i;
423 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
424 break;
425 /* See if I overlap any of the segments */
426 for (i = 0; i < image->nr_segments; i++) {
427 unsigned long mstart, mend;
429 mstart = image->segment[i].mem;
430 mend = mstart + image->segment[i].memsz - 1;
431 if ((hole_end >= mstart) && (hole_start <= mend)) {
432 /* Advance the hole to the end of the segment */
433 hole_start = (mend + (size - 1)) & ~(size - 1);
434 hole_end = hole_start + size - 1;
435 break;
438 /* If I don't overlap any segments I have found my hole! */
439 if (i == image->nr_segments) {
440 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
441 image->control_page = hole_end;
442 break;
446 return pages;
450 struct page *kimage_alloc_control_pages(struct kimage *image,
451 unsigned int order)
453 struct page *pages = NULL;
455 switch (image->type) {
456 case KEXEC_TYPE_DEFAULT:
457 pages = kimage_alloc_normal_control_pages(image, order);
458 break;
459 case KEXEC_TYPE_CRASH:
460 pages = kimage_alloc_crash_control_pages(image, order);
461 break;
464 return pages;
467 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
469 if (*image->entry != 0)
470 image->entry++;
472 if (image->entry == image->last_entry) {
473 kimage_entry_t *ind_page;
474 struct page *page;
476 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
477 if (!page)
478 return -ENOMEM;
480 ind_page = page_address(page);
481 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
482 image->entry = ind_page;
483 image->last_entry = ind_page +
484 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
486 *image->entry = entry;
487 image->entry++;
488 *image->entry = 0;
490 return 0;
493 static int kimage_set_destination(struct kimage *image,
494 unsigned long destination)
496 int result;
498 destination &= PAGE_MASK;
499 result = kimage_add_entry(image, destination | IND_DESTINATION);
501 return result;
505 static int kimage_add_page(struct kimage *image, unsigned long page)
507 int result;
509 page &= PAGE_MASK;
510 result = kimage_add_entry(image, page | IND_SOURCE);
512 return result;
516 static void kimage_free_extra_pages(struct kimage *image)
518 /* Walk through and free any extra destination pages I may have */
519 kimage_free_page_list(&image->dest_pages);
521 /* Walk through and free any unusable pages I have cached */
522 kimage_free_page_list(&image->unusable_pages);
525 void kimage_terminate(struct kimage *image)
527 if (*image->entry != 0)
528 image->entry++;
530 *image->entry = IND_DONE;
533 #define for_each_kimage_entry(image, ptr, entry) \
534 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535 ptr = (entry & IND_INDIRECTION) ? \
536 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
538 static void kimage_free_entry(kimage_entry_t entry)
540 struct page *page;
542 page = pfn_to_page(entry >> PAGE_SHIFT);
543 kimage_free_pages(page);
546 void kimage_free(struct kimage *image)
548 kimage_entry_t *ptr, entry;
549 kimage_entry_t ind = 0;
551 if (!image)
552 return;
554 kimage_free_extra_pages(image);
555 for_each_kimage_entry(image, ptr, entry) {
556 if (entry & IND_INDIRECTION) {
557 /* Free the previous indirection page */
558 if (ind & IND_INDIRECTION)
559 kimage_free_entry(ind);
560 /* Save this indirection page until we are
561 * done with it.
563 ind = entry;
564 } else if (entry & IND_SOURCE)
565 kimage_free_entry(entry);
567 /* Free the final indirection page */
568 if (ind & IND_INDIRECTION)
569 kimage_free_entry(ind);
571 /* Handle any machine specific cleanup */
572 machine_kexec_cleanup(image);
574 /* Free the kexec control pages... */
575 kimage_free_page_list(&image->control_pages);
578 * Free up any temporary buffers allocated. This might hit if
579 * error occurred much later after buffer allocation.
581 if (image->file_mode)
582 kimage_file_post_load_cleanup(image);
584 kfree(image);
587 static kimage_entry_t *kimage_dst_used(struct kimage *image,
588 unsigned long page)
590 kimage_entry_t *ptr, entry;
591 unsigned long destination = 0;
593 for_each_kimage_entry(image, ptr, entry) {
594 if (entry & IND_DESTINATION)
595 destination = entry & PAGE_MASK;
596 else if (entry & IND_SOURCE) {
597 if (page == destination)
598 return ptr;
599 destination += PAGE_SIZE;
603 return NULL;
606 static struct page *kimage_alloc_page(struct kimage *image,
607 gfp_t gfp_mask,
608 unsigned long destination)
611 * Here we implement safeguards to ensure that a source page
612 * is not copied to its destination page before the data on
613 * the destination page is no longer useful.
615 * To do this we maintain the invariant that a source page is
616 * either its own destination page, or it is not a
617 * destination page at all.
619 * That is slightly stronger than required, but the proof
620 * that no problems will not occur is trivial, and the
621 * implementation is simply to verify.
623 * When allocating all pages normally this algorithm will run
624 * in O(N) time, but in the worst case it will run in O(N^2)
625 * time. If the runtime is a problem the data structures can
626 * be fixed.
628 struct page *page;
629 unsigned long addr;
632 * Walk through the list of destination pages, and see if I
633 * have a match.
635 list_for_each_entry(page, &image->dest_pages, lru) {
636 addr = page_to_pfn(page) << PAGE_SHIFT;
637 if (addr == destination) {
638 list_del(&page->lru);
639 return page;
642 page = NULL;
643 while (1) {
644 kimage_entry_t *old;
646 /* Allocate a page, if we run out of memory give up */
647 page = kimage_alloc_pages(gfp_mask, 0);
648 if (!page)
649 return NULL;
650 /* If the page cannot be used file it away */
651 if (page_to_pfn(page) >
652 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
653 list_add(&page->lru, &image->unusable_pages);
654 continue;
656 addr = page_to_pfn(page) << PAGE_SHIFT;
658 /* If it is the destination page we want use it */
659 if (addr == destination)
660 break;
662 /* If the page is not a destination page use it */
663 if (!kimage_is_destination_range(image, addr,
664 addr + PAGE_SIZE))
665 break;
668 * I know that the page is someones destination page.
669 * See if there is already a source page for this
670 * destination page. And if so swap the source pages.
672 old = kimage_dst_used(image, addr);
673 if (old) {
674 /* If so move it */
675 unsigned long old_addr;
676 struct page *old_page;
678 old_addr = *old & PAGE_MASK;
679 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
680 copy_highpage(page, old_page);
681 *old = addr | (*old & ~PAGE_MASK);
683 /* The old page I have found cannot be a
684 * destination page, so return it if it's
685 * gfp_flags honor the ones passed in.
687 if (!(gfp_mask & __GFP_HIGHMEM) &&
688 PageHighMem(old_page)) {
689 kimage_free_pages(old_page);
690 continue;
692 addr = old_addr;
693 page = old_page;
694 break;
696 /* Place the page on the destination list, to be used later */
697 list_add(&page->lru, &image->dest_pages);
700 return page;
703 static int kimage_load_normal_segment(struct kimage *image,
704 struct kexec_segment *segment)
706 unsigned long maddr;
707 size_t ubytes, mbytes;
708 int result;
709 unsigned char __user *buf = NULL;
710 unsigned char *kbuf = NULL;
712 result = 0;
713 if (image->file_mode)
714 kbuf = segment->kbuf;
715 else
716 buf = segment->buf;
717 ubytes = segment->bufsz;
718 mbytes = segment->memsz;
719 maddr = segment->mem;
721 result = kimage_set_destination(image, maddr);
722 if (result < 0)
723 goto out;
725 while (mbytes) {
726 struct page *page;
727 char *ptr;
728 size_t uchunk, mchunk;
730 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
731 if (!page) {
732 result = -ENOMEM;
733 goto out;
735 result = kimage_add_page(image, page_to_pfn(page)
736 << PAGE_SHIFT);
737 if (result < 0)
738 goto out;
740 ptr = kmap(page);
741 /* Start with a clear page */
742 clear_page(ptr);
743 ptr += maddr & ~PAGE_MASK;
744 mchunk = min_t(size_t, mbytes,
745 PAGE_SIZE - (maddr & ~PAGE_MASK));
746 uchunk = min(ubytes, mchunk);
748 /* For file based kexec, source pages are in kernel memory */
749 if (image->file_mode)
750 memcpy(ptr, kbuf, uchunk);
751 else
752 result = copy_from_user(ptr, buf, uchunk);
753 kunmap(page);
754 if (result) {
755 result = -EFAULT;
756 goto out;
758 ubytes -= uchunk;
759 maddr += mchunk;
760 if (image->file_mode)
761 kbuf += mchunk;
762 else
763 buf += mchunk;
764 mbytes -= mchunk;
766 out:
767 return result;
770 static int kimage_load_crash_segment(struct kimage *image,
771 struct kexec_segment *segment)
773 /* For crash dumps kernels we simply copy the data from
774 * user space to it's destination.
775 * We do things a page at a time for the sake of kmap.
777 unsigned long maddr;
778 size_t ubytes, mbytes;
779 int result;
780 unsigned char __user *buf = NULL;
781 unsigned char *kbuf = NULL;
783 result = 0;
784 if (image->file_mode)
785 kbuf = segment->kbuf;
786 else
787 buf = segment->buf;
788 ubytes = segment->bufsz;
789 mbytes = segment->memsz;
790 maddr = segment->mem;
791 while (mbytes) {
792 struct page *page;
793 char *ptr;
794 size_t uchunk, mchunk;
796 page = pfn_to_page(maddr >> PAGE_SHIFT);
797 if (!page) {
798 result = -ENOMEM;
799 goto out;
801 ptr = kmap(page);
802 ptr += maddr & ~PAGE_MASK;
803 mchunk = min_t(size_t, mbytes,
804 PAGE_SIZE - (maddr & ~PAGE_MASK));
805 uchunk = min(ubytes, mchunk);
806 if (mchunk > uchunk) {
807 /* Zero the trailing part of the page */
808 memset(ptr + uchunk, 0, mchunk - uchunk);
811 /* For file based kexec, source pages are in kernel memory */
812 if (image->file_mode)
813 memcpy(ptr, kbuf, uchunk);
814 else
815 result = copy_from_user(ptr, buf, uchunk);
816 kexec_flush_icache_page(page);
817 kunmap(page);
818 if (result) {
819 result = -EFAULT;
820 goto out;
822 ubytes -= uchunk;
823 maddr += mchunk;
824 if (image->file_mode)
825 kbuf += mchunk;
826 else
827 buf += mchunk;
828 mbytes -= mchunk;
830 out:
831 return result;
834 int kimage_load_segment(struct kimage *image,
835 struct kexec_segment *segment)
837 int result = -ENOMEM;
839 switch (image->type) {
840 case KEXEC_TYPE_DEFAULT:
841 result = kimage_load_normal_segment(image, segment);
842 break;
843 case KEXEC_TYPE_CRASH:
844 result = kimage_load_crash_segment(image, segment);
845 break;
848 return result;
851 struct kimage *kexec_image;
852 struct kimage *kexec_crash_image;
853 int kexec_load_disabled;
856 * No panic_cpu check version of crash_kexec(). This function is called
857 * only when panic_cpu holds the current CPU number; this is the only CPU
858 * which processes crash_kexec routines.
860 void __crash_kexec(struct pt_regs *regs)
862 /* Take the kexec_mutex here to prevent sys_kexec_load
863 * running on one cpu from replacing the crash kernel
864 * we are using after a panic on a different cpu.
866 * If the crash kernel was not located in a fixed area
867 * of memory the xchg(&kexec_crash_image) would be
868 * sufficient. But since I reuse the memory...
870 if (mutex_trylock(&kexec_mutex)) {
871 if (kexec_crash_image) {
872 struct pt_regs fixed_regs;
874 crash_setup_regs(&fixed_regs, regs);
875 crash_save_vmcoreinfo();
876 machine_crash_shutdown(&fixed_regs);
877 machine_kexec(kexec_crash_image);
879 mutex_unlock(&kexec_mutex);
883 void crash_kexec(struct pt_regs *regs)
885 int old_cpu, this_cpu;
888 * Only one CPU is allowed to execute the crash_kexec() code as with
889 * panic(). Otherwise parallel calls of panic() and crash_kexec()
890 * may stop each other. To exclude them, we use panic_cpu here too.
892 this_cpu = raw_smp_processor_id();
893 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
894 if (old_cpu == PANIC_CPU_INVALID) {
895 /* This is the 1st CPU which comes here, so go ahead. */
896 __crash_kexec(regs);
899 * Reset panic_cpu to allow another panic()/crash_kexec()
900 * call.
902 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
906 size_t crash_get_memory_size(void)
908 size_t size = 0;
910 mutex_lock(&kexec_mutex);
911 if (crashk_res.end != crashk_res.start)
912 size = resource_size(&crashk_res);
913 mutex_unlock(&kexec_mutex);
914 return size;
917 void __weak crash_free_reserved_phys_range(unsigned long begin,
918 unsigned long end)
920 unsigned long addr;
922 for (addr = begin; addr < end; addr += PAGE_SIZE)
923 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
926 int crash_shrink_memory(unsigned long new_size)
928 int ret = 0;
929 unsigned long start, end;
930 unsigned long old_size;
931 struct resource *ram_res;
933 mutex_lock(&kexec_mutex);
935 if (kexec_crash_image) {
936 ret = -ENOENT;
937 goto unlock;
939 start = crashk_res.start;
940 end = crashk_res.end;
941 old_size = (end == 0) ? 0 : end - start + 1;
942 if (new_size >= old_size) {
943 ret = (new_size == old_size) ? 0 : -EINVAL;
944 goto unlock;
947 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
948 if (!ram_res) {
949 ret = -ENOMEM;
950 goto unlock;
953 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
954 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
956 crash_map_reserved_pages();
957 crash_free_reserved_phys_range(end, crashk_res.end);
959 if ((start == end) && (crashk_res.parent != NULL))
960 release_resource(&crashk_res);
962 ram_res->start = end;
963 ram_res->end = crashk_res.end;
964 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
965 ram_res->name = "System RAM";
967 crashk_res.end = end - 1;
969 insert_resource(&iomem_resource, ram_res);
970 crash_unmap_reserved_pages();
972 unlock:
973 mutex_unlock(&kexec_mutex);
974 return ret;
977 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
978 size_t data_len)
980 struct elf_note note;
982 note.n_namesz = strlen(name) + 1;
983 note.n_descsz = data_len;
984 note.n_type = type;
985 memcpy(buf, &note, sizeof(note));
986 buf += (sizeof(note) + 3)/4;
987 memcpy(buf, name, note.n_namesz);
988 buf += (note.n_namesz + 3)/4;
989 memcpy(buf, data, note.n_descsz);
990 buf += (note.n_descsz + 3)/4;
992 return buf;
995 static void final_note(u32 *buf)
997 struct elf_note note;
999 note.n_namesz = 0;
1000 note.n_descsz = 0;
1001 note.n_type = 0;
1002 memcpy(buf, &note, sizeof(note));
1005 void crash_save_cpu(struct pt_regs *regs, int cpu)
1007 struct elf_prstatus prstatus;
1008 u32 *buf;
1010 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1011 return;
1013 /* Using ELF notes here is opportunistic.
1014 * I need a well defined structure format
1015 * for the data I pass, and I need tags
1016 * on the data to indicate what information I have
1017 * squirrelled away. ELF notes happen to provide
1018 * all of that, so there is no need to invent something new.
1020 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1021 if (!buf)
1022 return;
1023 memset(&prstatus, 0, sizeof(prstatus));
1024 prstatus.pr_pid = current->pid;
1025 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1026 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1027 &prstatus, sizeof(prstatus));
1028 final_note(buf);
1031 static int __init crash_notes_memory_init(void)
1033 /* Allocate memory for saving cpu registers. */
1034 size_t size, align;
1037 * crash_notes could be allocated across 2 vmalloc pages when percpu
1038 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1039 * pages are also on 2 continuous physical pages. In this case the
1040 * 2nd part of crash_notes in 2nd page could be lost since only the
1041 * starting address and size of crash_notes are exported through sysfs.
1042 * Here round up the size of crash_notes to the nearest power of two
1043 * and pass it to __alloc_percpu as align value. This can make sure
1044 * crash_notes is allocated inside one physical page.
1046 size = sizeof(note_buf_t);
1047 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1050 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1051 * definitely will be in 2 pages with that.
1053 BUILD_BUG_ON(size > PAGE_SIZE);
1055 crash_notes = __alloc_percpu(size, align);
1056 if (!crash_notes) {
1057 pr_warn("Memory allocation for saving cpu register states failed\n");
1058 return -ENOMEM;
1060 return 0;
1062 subsys_initcall(crash_notes_memory_init);
1066 * parsing the "crashkernel" commandline
1068 * this code is intended to be called from architecture specific code
1073 * This function parses command lines in the format
1075 * crashkernel=ramsize-range:size[,...][@offset]
1077 * The function returns 0 on success and -EINVAL on failure.
1079 static int __init parse_crashkernel_mem(char *cmdline,
1080 unsigned long long system_ram,
1081 unsigned long long *crash_size,
1082 unsigned long long *crash_base)
1084 char *cur = cmdline, *tmp;
1086 /* for each entry of the comma-separated list */
1087 do {
1088 unsigned long long start, end = ULLONG_MAX, size;
1090 /* get the start of the range */
1091 start = memparse(cur, &tmp);
1092 if (cur == tmp) {
1093 pr_warn("crashkernel: Memory value expected\n");
1094 return -EINVAL;
1096 cur = tmp;
1097 if (*cur != '-') {
1098 pr_warn("crashkernel: '-' expected\n");
1099 return -EINVAL;
1101 cur++;
1103 /* if no ':' is here, than we read the end */
1104 if (*cur != ':') {
1105 end = memparse(cur, &tmp);
1106 if (cur == tmp) {
1107 pr_warn("crashkernel: Memory value expected\n");
1108 return -EINVAL;
1110 cur = tmp;
1111 if (end <= start) {
1112 pr_warn("crashkernel: end <= start\n");
1113 return -EINVAL;
1117 if (*cur != ':') {
1118 pr_warn("crashkernel: ':' expected\n");
1119 return -EINVAL;
1121 cur++;
1123 size = memparse(cur, &tmp);
1124 if (cur == tmp) {
1125 pr_warn("Memory value expected\n");
1126 return -EINVAL;
1128 cur = tmp;
1129 if (size >= system_ram) {
1130 pr_warn("crashkernel: invalid size\n");
1131 return -EINVAL;
1134 /* match ? */
1135 if (system_ram >= start && system_ram < end) {
1136 *crash_size = size;
1137 break;
1139 } while (*cur++ == ',');
1141 if (*crash_size > 0) {
1142 while (*cur && *cur != ' ' && *cur != '@')
1143 cur++;
1144 if (*cur == '@') {
1145 cur++;
1146 *crash_base = memparse(cur, &tmp);
1147 if (cur == tmp) {
1148 pr_warn("Memory value expected after '@'\n");
1149 return -EINVAL;
1154 return 0;
1158 * That function parses "simple" (old) crashkernel command lines like
1160 * crashkernel=size[@offset]
1162 * It returns 0 on success and -EINVAL on failure.
1164 static int __init parse_crashkernel_simple(char *cmdline,
1165 unsigned long long *crash_size,
1166 unsigned long long *crash_base)
1168 char *cur = cmdline;
1170 *crash_size = memparse(cmdline, &cur);
1171 if (cmdline == cur) {
1172 pr_warn("crashkernel: memory value expected\n");
1173 return -EINVAL;
1176 if (*cur == '@')
1177 *crash_base = memparse(cur+1, &cur);
1178 else if (*cur != ' ' && *cur != '\0') {
1179 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1180 return -EINVAL;
1183 return 0;
1186 #define SUFFIX_HIGH 0
1187 #define SUFFIX_LOW 1
1188 #define SUFFIX_NULL 2
1189 static __initdata char *suffix_tbl[] = {
1190 [SUFFIX_HIGH] = ",high",
1191 [SUFFIX_LOW] = ",low",
1192 [SUFFIX_NULL] = NULL,
1196 * That function parses "suffix" crashkernel command lines like
1198 * crashkernel=size,[high|low]
1200 * It returns 0 on success and -EINVAL on failure.
1202 static int __init parse_crashkernel_suffix(char *cmdline,
1203 unsigned long long *crash_size,
1204 const char *suffix)
1206 char *cur = cmdline;
1208 *crash_size = memparse(cmdline, &cur);
1209 if (cmdline == cur) {
1210 pr_warn("crashkernel: memory value expected\n");
1211 return -EINVAL;
1214 /* check with suffix */
1215 if (strncmp(cur, suffix, strlen(suffix))) {
1216 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1217 return -EINVAL;
1219 cur += strlen(suffix);
1220 if (*cur != ' ' && *cur != '\0') {
1221 pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1222 return -EINVAL;
1225 return 0;
1228 static __init char *get_last_crashkernel(char *cmdline,
1229 const char *name,
1230 const char *suffix)
1232 char *p = cmdline, *ck_cmdline = NULL;
1234 /* find crashkernel and use the last one if there are more */
1235 p = strstr(p, name);
1236 while (p) {
1237 char *end_p = strchr(p, ' ');
1238 char *q;
1240 if (!end_p)
1241 end_p = p + strlen(p);
1243 if (!suffix) {
1244 int i;
1246 /* skip the one with any known suffix */
1247 for (i = 0; suffix_tbl[i]; i++) {
1248 q = end_p - strlen(suffix_tbl[i]);
1249 if (!strncmp(q, suffix_tbl[i],
1250 strlen(suffix_tbl[i])))
1251 goto next;
1253 ck_cmdline = p;
1254 } else {
1255 q = end_p - strlen(suffix);
1256 if (!strncmp(q, suffix, strlen(suffix)))
1257 ck_cmdline = p;
1259 next:
1260 p = strstr(p+1, name);
1263 if (!ck_cmdline)
1264 return NULL;
1266 return ck_cmdline;
1269 static int __init __parse_crashkernel(char *cmdline,
1270 unsigned long long system_ram,
1271 unsigned long long *crash_size,
1272 unsigned long long *crash_base,
1273 const char *name,
1274 const char *suffix)
1276 char *first_colon, *first_space;
1277 char *ck_cmdline;
1279 BUG_ON(!crash_size || !crash_base);
1280 *crash_size = 0;
1281 *crash_base = 0;
1283 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1285 if (!ck_cmdline)
1286 return -EINVAL;
1288 ck_cmdline += strlen(name);
1290 if (suffix)
1291 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1292 suffix);
1294 * if the commandline contains a ':', then that's the extended
1295 * syntax -- if not, it must be the classic syntax
1297 first_colon = strchr(ck_cmdline, ':');
1298 first_space = strchr(ck_cmdline, ' ');
1299 if (first_colon && (!first_space || first_colon < first_space))
1300 return parse_crashkernel_mem(ck_cmdline, system_ram,
1301 crash_size, crash_base);
1303 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1307 * That function is the entry point for command line parsing and should be
1308 * called from the arch-specific code.
1310 int __init parse_crashkernel(char *cmdline,
1311 unsigned long long system_ram,
1312 unsigned long long *crash_size,
1313 unsigned long long *crash_base)
1315 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1316 "crashkernel=", NULL);
1319 int __init parse_crashkernel_high(char *cmdline,
1320 unsigned long long system_ram,
1321 unsigned long long *crash_size,
1322 unsigned long long *crash_base)
1324 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1325 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1328 int __init parse_crashkernel_low(char *cmdline,
1329 unsigned long long system_ram,
1330 unsigned long long *crash_size,
1331 unsigned long long *crash_base)
1333 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1334 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1337 static void update_vmcoreinfo_note(void)
1339 u32 *buf = vmcoreinfo_note;
1341 if (!vmcoreinfo_size)
1342 return;
1343 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1344 vmcoreinfo_size);
1345 final_note(buf);
1348 void crash_save_vmcoreinfo(void)
1350 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1351 update_vmcoreinfo_note();
1354 void vmcoreinfo_append_str(const char *fmt, ...)
1356 va_list args;
1357 char buf[0x50];
1358 size_t r;
1360 va_start(args, fmt);
1361 r = vscnprintf(buf, sizeof(buf), fmt, args);
1362 va_end(args);
1364 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1366 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1368 vmcoreinfo_size += r;
1372 * provide an empty default implementation here -- architecture
1373 * code may override this
1375 void __weak arch_crash_save_vmcoreinfo(void)
1378 unsigned long __weak paddr_vmcoreinfo_note(void)
1380 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1383 static int __init crash_save_vmcoreinfo_init(void)
1385 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1386 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1388 VMCOREINFO_SYMBOL(init_uts_ns);
1389 VMCOREINFO_SYMBOL(node_online_map);
1390 #ifdef CONFIG_MMU
1391 VMCOREINFO_SYMBOL(swapper_pg_dir);
1392 #endif
1393 VMCOREINFO_SYMBOL(_stext);
1394 VMCOREINFO_SYMBOL(vmap_area_list);
1396 #ifndef CONFIG_NEED_MULTIPLE_NODES
1397 VMCOREINFO_SYMBOL(mem_map);
1398 VMCOREINFO_SYMBOL(contig_page_data);
1399 #endif
1400 #ifdef CONFIG_SPARSEMEM
1401 VMCOREINFO_SYMBOL(mem_section);
1402 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1403 VMCOREINFO_STRUCT_SIZE(mem_section);
1404 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1405 #endif
1406 VMCOREINFO_STRUCT_SIZE(page);
1407 VMCOREINFO_STRUCT_SIZE(pglist_data);
1408 VMCOREINFO_STRUCT_SIZE(zone);
1409 VMCOREINFO_STRUCT_SIZE(free_area);
1410 VMCOREINFO_STRUCT_SIZE(list_head);
1411 VMCOREINFO_SIZE(nodemask_t);
1412 VMCOREINFO_OFFSET(page, flags);
1413 VMCOREINFO_OFFSET(page, _count);
1414 VMCOREINFO_OFFSET(page, mapping);
1415 VMCOREINFO_OFFSET(page, lru);
1416 VMCOREINFO_OFFSET(page, _mapcount);
1417 VMCOREINFO_OFFSET(page, private);
1418 VMCOREINFO_OFFSET(pglist_data, node_zones);
1419 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1420 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1421 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1422 #endif
1423 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1424 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1425 VMCOREINFO_OFFSET(pglist_data, node_id);
1426 VMCOREINFO_OFFSET(zone, free_area);
1427 VMCOREINFO_OFFSET(zone, vm_stat);
1428 VMCOREINFO_OFFSET(zone, spanned_pages);
1429 VMCOREINFO_OFFSET(free_area, free_list);
1430 VMCOREINFO_OFFSET(list_head, next);
1431 VMCOREINFO_OFFSET(list_head, prev);
1432 VMCOREINFO_OFFSET(vmap_area, va_start);
1433 VMCOREINFO_OFFSET(vmap_area, list);
1434 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1435 log_buf_kexec_setup();
1436 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1437 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1438 VMCOREINFO_NUMBER(PG_lru);
1439 VMCOREINFO_NUMBER(PG_private);
1440 VMCOREINFO_NUMBER(PG_swapcache);
1441 VMCOREINFO_NUMBER(PG_slab);
1442 #ifdef CONFIG_MEMORY_FAILURE
1443 VMCOREINFO_NUMBER(PG_hwpoison);
1444 #endif
1445 VMCOREINFO_NUMBER(PG_head_mask);
1446 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1447 #ifdef CONFIG_X86
1448 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1449 #endif
1450 #ifdef CONFIG_HUGETLBFS
1451 VMCOREINFO_SYMBOL(free_huge_page);
1452 #endif
1454 arch_crash_save_vmcoreinfo();
1455 update_vmcoreinfo_note();
1457 return 0;
1460 subsys_initcall(crash_save_vmcoreinfo_init);
1463 * Move into place and start executing a preloaded standalone
1464 * executable. If nothing was preloaded return an error.
1466 int kernel_kexec(void)
1468 int error = 0;
1470 if (!mutex_trylock(&kexec_mutex))
1471 return -EBUSY;
1472 if (!kexec_image) {
1473 error = -EINVAL;
1474 goto Unlock;
1477 #ifdef CONFIG_KEXEC_JUMP
1478 if (kexec_image->preserve_context) {
1479 lock_system_sleep();
1480 pm_prepare_console();
1481 error = freeze_processes();
1482 if (error) {
1483 error = -EBUSY;
1484 goto Restore_console;
1486 suspend_console();
1487 error = dpm_suspend_start(PMSG_FREEZE);
1488 if (error)
1489 goto Resume_console;
1490 /* At this point, dpm_suspend_start() has been called,
1491 * but *not* dpm_suspend_end(). We *must* call
1492 * dpm_suspend_end() now. Otherwise, drivers for
1493 * some devices (e.g. interrupt controllers) become
1494 * desynchronized with the actual state of the
1495 * hardware at resume time, and evil weirdness ensues.
1497 error = dpm_suspend_end(PMSG_FREEZE);
1498 if (error)
1499 goto Resume_devices;
1500 error = disable_nonboot_cpus();
1501 if (error)
1502 goto Enable_cpus;
1503 local_irq_disable();
1504 error = syscore_suspend();
1505 if (error)
1506 goto Enable_irqs;
1507 } else
1508 #endif
1510 kexec_in_progress = true;
1511 kernel_restart_prepare(NULL);
1512 migrate_to_reboot_cpu();
1515 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1516 * no further code needs to use CPU hotplug (which is true in
1517 * the reboot case). However, the kexec path depends on using
1518 * CPU hotplug again; so re-enable it here.
1520 cpu_hotplug_enable();
1521 pr_emerg("Starting new kernel\n");
1522 machine_shutdown();
1525 machine_kexec(kexec_image);
1527 #ifdef CONFIG_KEXEC_JUMP
1528 if (kexec_image->preserve_context) {
1529 syscore_resume();
1530 Enable_irqs:
1531 local_irq_enable();
1532 Enable_cpus:
1533 enable_nonboot_cpus();
1534 dpm_resume_start(PMSG_RESTORE);
1535 Resume_devices:
1536 dpm_resume_end(PMSG_RESTORE);
1537 Resume_console:
1538 resume_console();
1539 thaw_processes();
1540 Restore_console:
1541 pm_restore_console();
1542 unlock_system_sleep();
1544 #endif
1546 Unlock:
1547 mutex_unlock(&kexec_mutex);
1548 return error;
1552 * Add and remove page tables for crashkernel memory
1554 * Provide an empty default implementation here -- architecture
1555 * code may override this
1557 void __weak crash_map_reserved_pages(void)
1560 void __weak crash_unmap_reserved_pages(void)