2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
21 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
23 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
28 else if (!rtc
->ops
->read_time
)
31 memset(tm
, 0, sizeof(struct rtc_time
));
32 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
37 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
41 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
45 err
= __rtc_read_time(rtc
, tm
);
46 mutex_unlock(&rtc
->ops_lock
);
49 EXPORT_SYMBOL_GPL(rtc_read_time
);
51 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
55 err
= rtc_valid_tm(tm
);
59 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
65 else if (rtc
->ops
->set_time
)
66 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
67 else if (rtc
->ops
->set_mmss
) {
69 err
= rtc_tm_to_time(tm
, &secs
);
71 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
75 pm_stay_awake(rtc
->dev
.parent
);
76 mutex_unlock(&rtc
->ops_lock
);
77 /* A timer might have just expired */
78 schedule_work(&rtc
->irqwork
);
81 EXPORT_SYMBOL_GPL(rtc_set_time
);
83 int rtc_set_mmss(struct rtc_device
*rtc
, unsigned long secs
)
87 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
93 else if (rtc
->ops
->set_mmss
)
94 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
95 else if (rtc
->ops
->read_time
&& rtc
->ops
->set_time
) {
96 struct rtc_time
new, old
;
98 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, &old
);
100 rtc_time_to_tm(secs
, &new);
103 * avoid writing when we're going to change the day of
104 * the month. We will retry in the next minute. This
105 * basically means that if the RTC must not drift
106 * by more than 1 minute in 11 minutes.
108 if (!((old
.tm_hour
== 23 && old
.tm_min
== 59) ||
109 (new.tm_hour
== 23 && new.tm_min
== 59)))
110 err
= rtc
->ops
->set_time(rtc
->dev
.parent
,
117 pm_stay_awake(rtc
->dev
.parent
);
118 mutex_unlock(&rtc
->ops_lock
);
119 /* A timer might have just expired */
120 schedule_work(&rtc
->irqwork
);
124 EXPORT_SYMBOL_GPL(rtc_set_mmss
);
126 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
130 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
134 if (rtc
->ops
== NULL
)
136 else if (!rtc
->ops
->read_alarm
)
139 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
140 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
143 mutex_unlock(&rtc
->ops_lock
);
147 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
150 struct rtc_time before
, now
;
152 unsigned long t_now
, t_alm
;
153 enum { none
, day
, month
, year
} missing
= none
;
156 /* The lower level RTC driver may return -1 in some fields,
157 * creating invalid alarm->time values, for reasons like:
159 * - The hardware may not be capable of filling them in;
160 * many alarms match only on time-of-day fields, not
161 * day/month/year calendar data.
163 * - Some hardware uses illegal values as "wildcard" match
164 * values, which non-Linux firmware (like a BIOS) may try
165 * to set up as e.g. "alarm 15 minutes after each hour".
166 * Linux uses only oneshot alarms.
168 * When we see that here, we deal with it by using values from
169 * a current RTC timestamp for any missing (-1) values. The
170 * RTC driver prevents "periodic alarm" modes.
172 * But this can be racey, because some fields of the RTC timestamp
173 * may have wrapped in the interval since we read the RTC alarm,
174 * which would lead to us inserting inconsistent values in place
177 * Reading the alarm and timestamp in the reverse sequence
178 * would have the same race condition, and not solve the issue.
180 * So, we must first read the RTC timestamp,
181 * then read the RTC alarm value,
182 * and then read a second RTC timestamp.
184 * If any fields of the second timestamp have changed
185 * when compared with the first timestamp, then we know
186 * our timestamp may be inconsistent with that used by
187 * the low-level rtc_read_alarm_internal() function.
189 * So, when the two timestamps disagree, we just loop and do
190 * the process again to get a fully consistent set of values.
192 * This could all instead be done in the lower level driver,
193 * but since more than one lower level RTC implementation needs it,
194 * then it's probably best best to do it here instead of there..
197 /* Get the "before" timestamp */
198 err
= rtc_read_time(rtc
, &before
);
203 memcpy(&before
, &now
, sizeof(struct rtc_time
));
206 /* get the RTC alarm values, which may be incomplete */
207 err
= rtc_read_alarm_internal(rtc
, alarm
);
211 /* full-function RTCs won't have such missing fields */
212 if (rtc_valid_tm(&alarm
->time
) == 0)
215 /* get the "after" timestamp, to detect wrapped fields */
216 err
= rtc_read_time(rtc
, &now
);
220 /* note that tm_sec is a "don't care" value here: */
221 } while ( before
.tm_min
!= now
.tm_min
222 || before
.tm_hour
!= now
.tm_hour
223 || before
.tm_mon
!= now
.tm_mon
224 || before
.tm_year
!= now
.tm_year
);
226 /* Fill in the missing alarm fields using the timestamp; we
227 * know there's at least one since alarm->time is invalid.
229 if (alarm
->time
.tm_sec
== -1)
230 alarm
->time
.tm_sec
= now
.tm_sec
;
231 if (alarm
->time
.tm_min
== -1)
232 alarm
->time
.tm_min
= now
.tm_min
;
233 if (alarm
->time
.tm_hour
== -1)
234 alarm
->time
.tm_hour
= now
.tm_hour
;
236 /* For simplicity, only support date rollover for now */
237 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
238 alarm
->time
.tm_mday
= now
.tm_mday
;
241 if ((unsigned)alarm
->time
.tm_mon
>= 12) {
242 alarm
->time
.tm_mon
= now
.tm_mon
;
246 if (alarm
->time
.tm_year
== -1) {
247 alarm
->time
.tm_year
= now
.tm_year
;
252 /* with luck, no rollover is needed */
253 rtc_tm_to_time(&now
, &t_now
);
254 rtc_tm_to_time(&alarm
->time
, &t_alm
);
260 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
261 * that will trigger at 5am will do so at 5am Tuesday, which
262 * could also be in the next month or year. This is a common
263 * case, especially for PCs.
266 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
267 t_alm
+= 24 * 60 * 60;
268 rtc_time_to_tm(t_alm
, &alarm
->time
);
271 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
272 * be next month. An alarm matching on the 30th, 29th, or 28th
273 * may end up in the month after that! Many newer PCs support
274 * this type of alarm.
277 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
279 if (alarm
->time
.tm_mon
< 11)
280 alarm
->time
.tm_mon
++;
282 alarm
->time
.tm_mon
= 0;
283 alarm
->time
.tm_year
++;
285 days
= rtc_month_days(alarm
->time
.tm_mon
,
286 alarm
->time
.tm_year
);
287 } while (days
< alarm
->time
.tm_mday
);
290 /* Year rollover ... easy except for leap years! */
292 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
294 alarm
->time
.tm_year
++;
295 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900)
296 && rtc_valid_tm(&alarm
->time
) != 0);
300 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
304 err
= rtc_valid_tm(&alarm
->time
);
307 dev_warn(&rtc
->dev
, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
308 alarm
->time
.tm_year
+ 1900, alarm
->time
.tm_mon
+ 1,
309 alarm
->time
.tm_mday
, alarm
->time
.tm_hour
, alarm
->time
.tm_min
,
316 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
320 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
323 if (rtc
->ops
== NULL
)
325 else if (!rtc
->ops
->read_alarm
)
328 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
329 alarm
->enabled
= rtc
->aie_timer
.enabled
;
330 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
332 mutex_unlock(&rtc
->ops_lock
);
336 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
338 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
344 err
= rtc_valid_tm(&alarm
->time
);
347 rtc_tm_to_time(&alarm
->time
, &scheduled
);
349 /* Make sure we're not setting alarms in the past */
350 err
= __rtc_read_time(rtc
, &tm
);
353 rtc_tm_to_time(&tm
, &now
);
354 if (scheduled
<= now
)
357 * XXX - We just checked to make sure the alarm time is not
358 * in the past, but there is still a race window where if
359 * the is alarm set for the next second and the second ticks
360 * over right here, before we set the alarm.
365 else if (!rtc
->ops
->set_alarm
)
368 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
373 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
377 err
= rtc_valid_tm(&alarm
->time
);
381 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
384 if (rtc
->aie_timer
.enabled
)
385 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
387 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
388 rtc
->aie_timer
.period
= ktime_set(0, 0);
390 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
392 mutex_unlock(&rtc
->ops_lock
);
395 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
397 /* Called once per device from rtc_device_register */
398 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
403 err
= rtc_valid_tm(&alarm
->time
);
407 err
= rtc_read_time(rtc
, &now
);
411 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
415 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
416 rtc
->aie_timer
.period
= ktime_set(0, 0);
418 /* Alarm has to be enabled & in the futrure for us to enqueue it */
419 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
).tv64
<
420 rtc
->aie_timer
.node
.expires
.tv64
)) {
422 rtc
->aie_timer
.enabled
= 1;
423 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
425 mutex_unlock(&rtc
->ops_lock
);
428 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
432 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
434 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
438 if (rtc
->aie_timer
.enabled
!= enabled
) {
440 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
442 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
449 else if (!rtc
->ops
->alarm_irq_enable
)
452 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
454 mutex_unlock(&rtc
->ops_lock
);
457 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
459 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
461 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
465 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
466 if (enabled
== 0 && rtc
->uie_irq_active
) {
467 mutex_unlock(&rtc
->ops_lock
);
468 return rtc_dev_update_irq_enable_emul(rtc
, 0);
471 /* make sure we're changing state */
472 if (rtc
->uie_rtctimer
.enabled
== enabled
)
475 if (rtc
->uie_unsupported
) {
484 __rtc_read_time(rtc
, &tm
);
485 onesec
= ktime_set(1, 0);
486 now
= rtc_tm_to_ktime(tm
);
487 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
488 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
489 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
491 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
494 mutex_unlock(&rtc
->ops_lock
);
495 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
497 * Enable emulation if the driver did not provide
498 * the update_irq_enable function pointer or if returned
499 * -EINVAL to signal that it has been configured without
500 * interrupts or that are not available at the moment.
503 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
508 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
512 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
513 * @rtc: pointer to the rtc device
515 * This function is called when an AIE, UIE or PIE mode interrupt
516 * has occurred (or been emulated).
518 * Triggers the registered irq_task function callback.
520 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
524 /* mark one irq of the appropriate mode */
525 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
526 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
527 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
529 /* call the task func */
530 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
532 rtc
->irq_task
->func(rtc
->irq_task
->private_data
);
533 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
535 wake_up_interruptible(&rtc
->irq_queue
);
536 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
541 * rtc_aie_update_irq - AIE mode rtctimer hook
542 * @private: pointer to the rtc_device
544 * This functions is called when the aie_timer expires.
546 void rtc_aie_update_irq(void *private)
548 struct rtc_device
*rtc
= (struct rtc_device
*)private;
549 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
554 * rtc_uie_update_irq - UIE mode rtctimer hook
555 * @private: pointer to the rtc_device
557 * This functions is called when the uie_timer expires.
559 void rtc_uie_update_irq(void *private)
561 struct rtc_device
*rtc
= (struct rtc_device
*)private;
562 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
567 * rtc_pie_update_irq - PIE mode hrtimer hook
568 * @timer: pointer to the pie mode hrtimer
570 * This function is used to emulate PIE mode interrupts
571 * using an hrtimer. This function is called when the periodic
574 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
576 struct rtc_device
*rtc
;
579 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
581 period
= ktime_set(0, NSEC_PER_SEC
/rtc
->irq_freq
);
582 count
= hrtimer_forward_now(timer
, period
);
584 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
586 return HRTIMER_RESTART
;
590 * rtc_update_irq - Triggered when a RTC interrupt occurs.
591 * @rtc: the rtc device
592 * @num: how many irqs are being reported (usually one)
593 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
596 void rtc_update_irq(struct rtc_device
*rtc
,
597 unsigned long num
, unsigned long events
)
599 if (unlikely(IS_ERR_OR_NULL(rtc
)))
602 pm_stay_awake(rtc
->dev
.parent
);
603 schedule_work(&rtc
->irqwork
);
605 EXPORT_SYMBOL_GPL(rtc_update_irq
);
607 static int __rtc_match(struct device
*dev
, const void *data
)
609 const char *name
= data
;
611 if (strcmp(dev_name(dev
), name
) == 0)
616 struct rtc_device
*rtc_class_open(const char *name
)
619 struct rtc_device
*rtc
= NULL
;
621 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
623 rtc
= to_rtc_device(dev
);
626 if (!try_module_get(rtc
->owner
)) {
634 EXPORT_SYMBOL_GPL(rtc_class_open
);
636 void rtc_class_close(struct rtc_device
*rtc
)
638 module_put(rtc
->owner
);
639 put_device(&rtc
->dev
);
641 EXPORT_SYMBOL_GPL(rtc_class_close
);
643 int rtc_irq_register(struct rtc_device
*rtc
, struct rtc_task
*task
)
647 if (task
== NULL
|| task
->func
== NULL
)
650 /* Cannot register while the char dev is in use */
651 if (test_and_set_bit_lock(RTC_DEV_BUSY
, &rtc
->flags
))
654 spin_lock_irq(&rtc
->irq_task_lock
);
655 if (rtc
->irq_task
== NULL
) {
656 rtc
->irq_task
= task
;
659 spin_unlock_irq(&rtc
->irq_task_lock
);
661 clear_bit_unlock(RTC_DEV_BUSY
, &rtc
->flags
);
665 EXPORT_SYMBOL_GPL(rtc_irq_register
);
667 void rtc_irq_unregister(struct rtc_device
*rtc
, struct rtc_task
*task
)
669 spin_lock_irq(&rtc
->irq_task_lock
);
670 if (rtc
->irq_task
== task
)
671 rtc
->irq_task
= NULL
;
672 spin_unlock_irq(&rtc
->irq_task_lock
);
674 EXPORT_SYMBOL_GPL(rtc_irq_unregister
);
676 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
679 * We always cancel the timer here first, because otherwise
680 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
681 * when we manage to start the timer before the callback
682 * returns HRTIMER_RESTART.
684 * We cannot use hrtimer_cancel() here as a running callback
685 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
686 * would spin forever.
688 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
692 ktime_t period
= ktime_set(0, NSEC_PER_SEC
/ rtc
->irq_freq
);
694 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
700 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
701 * @rtc: the rtc device
702 * @task: currently registered with rtc_irq_register()
703 * @enabled: true to enable periodic IRQs
706 * Note that rtc_irq_set_freq() should previously have been used to
707 * specify the desired frequency of periodic IRQ task->func() callbacks.
709 int rtc_irq_set_state(struct rtc_device
*rtc
, struct rtc_task
*task
, int enabled
)
715 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
716 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
718 else if (rtc
->irq_task
!= task
)
721 if (rtc_update_hrtimer(rtc
, enabled
) < 0) {
722 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
726 rtc
->pie_enabled
= enabled
;
728 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
731 EXPORT_SYMBOL_GPL(rtc_irq_set_state
);
734 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
735 * @rtc: the rtc device
736 * @task: currently registered with rtc_irq_register()
737 * @freq: positive frequency with which task->func() will be called
740 * Note that rtc_irq_set_state() is used to enable or disable the
743 int rtc_irq_set_freq(struct rtc_device
*rtc
, struct rtc_task
*task
, int freq
)
748 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
751 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
752 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
754 else if (rtc
->irq_task
!= task
)
757 rtc
->irq_freq
= freq
;
758 if (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0) {
759 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
764 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
767 EXPORT_SYMBOL_GPL(rtc_irq_set_freq
);
770 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
772 * @timer timer being added.
774 * Enqueues a timer onto the rtc devices timerqueue and sets
775 * the next alarm event appropriately.
777 * Sets the enabled bit on the added timer.
779 * Must hold ops_lock for proper serialization of timerqueue
781 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
784 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
785 if (&timer
->node
== timerqueue_getnext(&rtc
->timerqueue
)) {
786 struct rtc_wkalrm alarm
;
788 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
790 err
= __rtc_set_alarm(rtc
, &alarm
);
792 pm_stay_awake(rtc
->dev
.parent
);
793 schedule_work(&rtc
->irqwork
);
795 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
803 static void rtc_alarm_disable(struct rtc_device
*rtc
)
805 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
808 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
812 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
814 * @timer timer being removed.
816 * Removes a timer onto the rtc devices timerqueue and sets
817 * the next alarm event appropriately.
819 * Clears the enabled bit on the removed timer.
821 * Must hold ops_lock for proper serialization of timerqueue
823 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
825 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
826 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
828 if (next
== &timer
->node
) {
829 struct rtc_wkalrm alarm
;
831 next
= timerqueue_getnext(&rtc
->timerqueue
);
833 rtc_alarm_disable(rtc
);
836 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
838 err
= __rtc_set_alarm(rtc
, &alarm
);
840 pm_stay_awake(rtc
->dev
.parent
);
841 schedule_work(&rtc
->irqwork
);
847 * rtc_timer_do_work - Expires rtc timers
849 * @timer timer being removed.
851 * Expires rtc timers. Reprograms next alarm event if needed.
852 * Called via worktask.
854 * Serializes access to timerqueue via ops_lock mutex
856 void rtc_timer_do_work(struct work_struct
*work
)
858 struct rtc_timer
*timer
;
859 struct timerqueue_node
*next
;
863 struct rtc_device
*rtc
=
864 container_of(work
, struct rtc_device
, irqwork
);
866 mutex_lock(&rtc
->ops_lock
);
868 __rtc_read_time(rtc
, &tm
);
869 now
= rtc_tm_to_ktime(tm
);
870 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
871 if (next
->expires
.tv64
> now
.tv64
)
875 timer
= container_of(next
, struct rtc_timer
, node
);
876 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
878 if (timer
->task
.func
)
879 timer
->task
.func(timer
->task
.private_data
);
881 /* Re-add/fwd periodic timers */
882 if (ktime_to_ns(timer
->period
)) {
883 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
886 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
892 struct rtc_wkalrm alarm
;
894 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
896 err
= __rtc_set_alarm(rtc
, &alarm
);
900 rtc_alarm_disable(rtc
);
902 pm_relax(rtc
->dev
.parent
);
903 mutex_unlock(&rtc
->ops_lock
);
907 /* rtc_timer_init - Initializes an rtc_timer
908 * @timer: timer to be intiialized
909 * @f: function pointer to be called when timer fires
910 * @data: private data passed to function pointer
912 * Kernel interface to initializing an rtc_timer.
914 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(void *p
), void *data
)
916 timerqueue_init(&timer
->node
);
918 timer
->task
.func
= f
;
919 timer
->task
.private_data
= data
;
922 /* rtc_timer_start - Sets an rtc_timer to fire in the future
923 * @ rtc: rtc device to be used
924 * @ timer: timer being set
925 * @ expires: time at which to expire the timer
926 * @ period: period that the timer will recur
928 * Kernel interface to set an rtc_timer
930 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
931 ktime_t expires
, ktime_t period
)
934 mutex_lock(&rtc
->ops_lock
);
936 rtc_timer_remove(rtc
, timer
);
938 timer
->node
.expires
= expires
;
939 timer
->period
= period
;
941 ret
= rtc_timer_enqueue(rtc
, timer
);
943 mutex_unlock(&rtc
->ops_lock
);
947 /* rtc_timer_cancel - Stops an rtc_timer
948 * @ rtc: rtc device to be used
949 * @ timer: timer being set
951 * Kernel interface to cancel an rtc_timer
953 int rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
956 mutex_lock(&rtc
->ops_lock
);
958 rtc_timer_remove(rtc
, timer
);
959 mutex_unlock(&rtc
->ops_lock
);