cpufreq: ap806: add cpufreq driver for Armada 8K
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blobf955cd3e067798142c3f0f812af8912f55e75707
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
28 f2fs_build_fault_attr(sbi, 0, 0);
29 set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 if (!end_io)
31 f2fs_flush_merged_writes(sbi);
35 * We guarantee no failure on the returned page.
37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
39 struct address_space *mapping = META_MAPPING(sbi);
40 struct page *page = NULL;
41 repeat:
42 page = f2fs_grab_cache_page(mapping, index, false);
43 if (!page) {
44 cond_resched();
45 goto repeat;
47 f2fs_wait_on_page_writeback(page, META, true, true);
48 if (!PageUptodate(page))
49 SetPageUptodate(page);
50 return page;
54 * We guarantee no failure on the returned page.
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_meta = is_meta,
71 int err;
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
81 if (PageUptodate(page))
82 goto out;
84 fio.page = page;
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
98 if (unlikely(!PageUptodate(page))) {
99 f2fs_put_page(page, 1);
100 return ERR_PTR(-EIO);
102 out:
103 return page;
106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 return __get_meta_page(sbi, index, true);
111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
113 struct page *page;
114 int count = 0;
116 retry:
117 page = __get_meta_page(sbi, index, true);
118 if (IS_ERR(page)) {
119 if (PTR_ERR(page) == -EIO &&
120 ++count <= DEFAULT_RETRY_IO_COUNT)
121 goto retry;
122 f2fs_stop_checkpoint(sbi, false);
124 return page;
127 /* for POR only */
128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
130 return __get_meta_page(sbi, index, false);
133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
134 block_t blkaddr, int type)
136 switch (type) {
137 case META_NAT:
138 break;
139 case META_SIT:
140 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
141 return false;
142 break;
143 case META_SSA:
144 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
145 blkaddr < SM_I(sbi)->ssa_blkaddr))
146 return false;
147 break;
148 case META_CP:
149 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
150 blkaddr < __start_cp_addr(sbi)))
151 return false;
152 break;
153 case META_POR:
154 case DATA_GENERIC:
155 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
156 blkaddr < MAIN_BLKADDR(sbi))) {
157 if (type == DATA_GENERIC) {
158 f2fs_msg(sbi->sb, KERN_WARNING,
159 "access invalid blkaddr:%u", blkaddr);
160 WARN_ON(1);
162 return false;
164 break;
165 case META_GENERIC:
166 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
167 blkaddr >= MAIN_BLKADDR(sbi)))
168 return false;
169 break;
170 default:
171 BUG();
174 return true;
178 * Readahead CP/NAT/SIT/SSA pages
180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
181 int type, bool sync)
183 struct page *page;
184 block_t blkno = start;
185 struct f2fs_io_info fio = {
186 .sbi = sbi,
187 .type = META,
188 .op = REQ_OP_READ,
189 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
190 .encrypted_page = NULL,
191 .in_list = false,
192 .is_meta = (type != META_POR),
194 struct blk_plug plug;
196 if (unlikely(type == META_POR))
197 fio.op_flags &= ~REQ_META;
199 blk_start_plug(&plug);
200 for (; nrpages-- > 0; blkno++) {
202 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
203 goto out;
205 switch (type) {
206 case META_NAT:
207 if (unlikely(blkno >=
208 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
209 blkno = 0;
210 /* get nat block addr */
211 fio.new_blkaddr = current_nat_addr(sbi,
212 blkno * NAT_ENTRY_PER_BLOCK);
213 break;
214 case META_SIT:
215 /* get sit block addr */
216 fio.new_blkaddr = current_sit_addr(sbi,
217 blkno * SIT_ENTRY_PER_BLOCK);
218 break;
219 case META_SSA:
220 case META_CP:
221 case META_POR:
222 fio.new_blkaddr = blkno;
223 break;
224 default:
225 BUG();
228 page = f2fs_grab_cache_page(META_MAPPING(sbi),
229 fio.new_blkaddr, false);
230 if (!page)
231 continue;
232 if (PageUptodate(page)) {
233 f2fs_put_page(page, 1);
234 continue;
237 fio.page = page;
238 f2fs_submit_page_bio(&fio);
239 f2fs_put_page(page, 0);
241 out:
242 blk_finish_plug(&plug);
243 return blkno - start;
246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
248 struct page *page;
249 bool readahead = false;
251 page = find_get_page(META_MAPPING(sbi), index);
252 if (!page || !PageUptodate(page))
253 readahead = true;
254 f2fs_put_page(page, 0);
256 if (readahead)
257 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
260 static int __f2fs_write_meta_page(struct page *page,
261 struct writeback_control *wbc,
262 enum iostat_type io_type)
264 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
266 trace_f2fs_writepage(page, META);
268 if (unlikely(f2fs_cp_error(sbi)))
269 goto redirty_out;
270 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
271 goto redirty_out;
272 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
273 goto redirty_out;
275 f2fs_do_write_meta_page(sbi, page, io_type);
276 dec_page_count(sbi, F2FS_DIRTY_META);
278 if (wbc->for_reclaim)
279 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
281 unlock_page(page);
283 if (unlikely(f2fs_cp_error(sbi)))
284 f2fs_submit_merged_write(sbi, META);
286 return 0;
288 redirty_out:
289 redirty_page_for_writepage(wbc, page);
290 return AOP_WRITEPAGE_ACTIVATE;
293 static int f2fs_write_meta_page(struct page *page,
294 struct writeback_control *wbc)
296 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
299 static int f2fs_write_meta_pages(struct address_space *mapping,
300 struct writeback_control *wbc)
302 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
303 long diff, written;
305 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
306 goto skip_write;
308 /* collect a number of dirty meta pages and write together */
309 if (wbc->for_kupdate ||
310 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
311 goto skip_write;
313 /* if locked failed, cp will flush dirty pages instead */
314 if (!mutex_trylock(&sbi->cp_mutex))
315 goto skip_write;
317 trace_f2fs_writepages(mapping->host, wbc, META);
318 diff = nr_pages_to_write(sbi, META, wbc);
319 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
320 mutex_unlock(&sbi->cp_mutex);
321 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
322 return 0;
324 skip_write:
325 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
326 trace_f2fs_writepages(mapping->host, wbc, META);
327 return 0;
330 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
331 long nr_to_write, enum iostat_type io_type)
333 struct address_space *mapping = META_MAPPING(sbi);
334 pgoff_t index = 0, prev = ULONG_MAX;
335 struct pagevec pvec;
336 long nwritten = 0;
337 int nr_pages;
338 struct writeback_control wbc = {
339 .for_reclaim = 0,
341 struct blk_plug plug;
343 pagevec_init(&pvec);
345 blk_start_plug(&plug);
347 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
348 PAGECACHE_TAG_DIRTY))) {
349 int i;
351 for (i = 0; i < nr_pages; i++) {
352 struct page *page = pvec.pages[i];
354 if (prev == ULONG_MAX)
355 prev = page->index - 1;
356 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
357 pagevec_release(&pvec);
358 goto stop;
361 lock_page(page);
363 if (unlikely(page->mapping != mapping)) {
364 continue_unlock:
365 unlock_page(page);
366 continue;
368 if (!PageDirty(page)) {
369 /* someone wrote it for us */
370 goto continue_unlock;
373 f2fs_wait_on_page_writeback(page, META, true, true);
375 if (!clear_page_dirty_for_io(page))
376 goto continue_unlock;
378 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
379 unlock_page(page);
380 break;
382 nwritten++;
383 prev = page->index;
384 if (unlikely(nwritten >= nr_to_write))
385 break;
387 pagevec_release(&pvec);
388 cond_resched();
390 stop:
391 if (nwritten)
392 f2fs_submit_merged_write(sbi, type);
394 blk_finish_plug(&plug);
396 return nwritten;
399 static int f2fs_set_meta_page_dirty(struct page *page)
401 trace_f2fs_set_page_dirty(page, META);
403 if (!PageUptodate(page))
404 SetPageUptodate(page);
405 if (!PageDirty(page)) {
406 __set_page_dirty_nobuffers(page);
407 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
408 SetPagePrivate(page);
409 f2fs_trace_pid(page);
410 return 1;
412 return 0;
415 const struct address_space_operations f2fs_meta_aops = {
416 .writepage = f2fs_write_meta_page,
417 .writepages = f2fs_write_meta_pages,
418 .set_page_dirty = f2fs_set_meta_page_dirty,
419 .invalidatepage = f2fs_invalidate_page,
420 .releasepage = f2fs_release_page,
421 #ifdef CONFIG_MIGRATION
422 .migratepage = f2fs_migrate_page,
423 #endif
426 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
427 unsigned int devidx, int type)
429 struct inode_management *im = &sbi->im[type];
430 struct ino_entry *e, *tmp;
432 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
434 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
436 spin_lock(&im->ino_lock);
437 e = radix_tree_lookup(&im->ino_root, ino);
438 if (!e) {
439 e = tmp;
440 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
441 f2fs_bug_on(sbi, 1);
443 memset(e, 0, sizeof(struct ino_entry));
444 e->ino = ino;
446 list_add_tail(&e->list, &im->ino_list);
447 if (type != ORPHAN_INO)
448 im->ino_num++;
451 if (type == FLUSH_INO)
452 f2fs_set_bit(devidx, (char *)&e->dirty_device);
454 spin_unlock(&im->ino_lock);
455 radix_tree_preload_end();
457 if (e != tmp)
458 kmem_cache_free(ino_entry_slab, tmp);
461 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
463 struct inode_management *im = &sbi->im[type];
464 struct ino_entry *e;
466 spin_lock(&im->ino_lock);
467 e = radix_tree_lookup(&im->ino_root, ino);
468 if (e) {
469 list_del(&e->list);
470 radix_tree_delete(&im->ino_root, ino);
471 im->ino_num--;
472 spin_unlock(&im->ino_lock);
473 kmem_cache_free(ino_entry_slab, e);
474 return;
476 spin_unlock(&im->ino_lock);
479 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
481 /* add new dirty ino entry into list */
482 __add_ino_entry(sbi, ino, 0, type);
485 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
487 /* remove dirty ino entry from list */
488 __remove_ino_entry(sbi, ino, type);
491 /* mode should be APPEND_INO or UPDATE_INO */
492 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
494 struct inode_management *im = &sbi->im[mode];
495 struct ino_entry *e;
497 spin_lock(&im->ino_lock);
498 e = radix_tree_lookup(&im->ino_root, ino);
499 spin_unlock(&im->ino_lock);
500 return e ? true : false;
503 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
505 struct ino_entry *e, *tmp;
506 int i;
508 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
509 struct inode_management *im = &sbi->im[i];
511 spin_lock(&im->ino_lock);
512 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
513 list_del(&e->list);
514 radix_tree_delete(&im->ino_root, e->ino);
515 kmem_cache_free(ino_entry_slab, e);
516 im->ino_num--;
518 spin_unlock(&im->ino_lock);
522 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
523 unsigned int devidx, int type)
525 __add_ino_entry(sbi, ino, devidx, type);
528 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
529 unsigned int devidx, int type)
531 struct inode_management *im = &sbi->im[type];
532 struct ino_entry *e;
533 bool is_dirty = false;
535 spin_lock(&im->ino_lock);
536 e = radix_tree_lookup(&im->ino_root, ino);
537 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
538 is_dirty = true;
539 spin_unlock(&im->ino_lock);
540 return is_dirty;
543 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
545 struct inode_management *im = &sbi->im[ORPHAN_INO];
546 int err = 0;
548 spin_lock(&im->ino_lock);
550 if (time_to_inject(sbi, FAULT_ORPHAN)) {
551 spin_unlock(&im->ino_lock);
552 f2fs_show_injection_info(FAULT_ORPHAN);
553 return -ENOSPC;
556 if (unlikely(im->ino_num >= sbi->max_orphans))
557 err = -ENOSPC;
558 else
559 im->ino_num++;
560 spin_unlock(&im->ino_lock);
562 return err;
565 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
567 struct inode_management *im = &sbi->im[ORPHAN_INO];
569 spin_lock(&im->ino_lock);
570 f2fs_bug_on(sbi, im->ino_num == 0);
571 im->ino_num--;
572 spin_unlock(&im->ino_lock);
575 void f2fs_add_orphan_inode(struct inode *inode)
577 /* add new orphan ino entry into list */
578 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
579 f2fs_update_inode_page(inode);
582 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
584 /* remove orphan entry from orphan list */
585 __remove_ino_entry(sbi, ino, ORPHAN_INO);
588 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
590 struct inode *inode;
591 struct node_info ni;
592 int err;
594 inode = f2fs_iget_retry(sbi->sb, ino);
595 if (IS_ERR(inode)) {
597 * there should be a bug that we can't find the entry
598 * to orphan inode.
600 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
601 return PTR_ERR(inode);
604 err = dquot_initialize(inode);
605 if (err) {
606 iput(inode);
607 goto err_out;
610 clear_nlink(inode);
612 /* truncate all the data during iput */
613 iput(inode);
615 err = f2fs_get_node_info(sbi, ino, &ni);
616 if (err)
617 goto err_out;
619 /* ENOMEM was fully retried in f2fs_evict_inode. */
620 if (ni.blk_addr != NULL_ADDR) {
621 err = -EIO;
622 goto err_out;
624 return 0;
626 err_out:
627 set_sbi_flag(sbi, SBI_NEED_FSCK);
628 f2fs_msg(sbi->sb, KERN_WARNING,
629 "%s: orphan failed (ino=%x), run fsck to fix.",
630 __func__, ino);
631 return err;
634 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
636 block_t start_blk, orphan_blocks, i, j;
637 unsigned int s_flags = sbi->sb->s_flags;
638 int err = 0;
639 #ifdef CONFIG_QUOTA
640 int quota_enabled;
641 #endif
643 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
644 return 0;
646 if (s_flags & SB_RDONLY) {
647 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
648 sbi->sb->s_flags &= ~SB_RDONLY;
651 #ifdef CONFIG_QUOTA
652 /* Needed for iput() to work correctly and not trash data */
653 sbi->sb->s_flags |= SB_ACTIVE;
656 * Turn on quotas which were not enabled for read-only mounts if
657 * filesystem has quota feature, so that they are updated correctly.
659 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
660 #endif
662 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
663 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
665 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
667 for (i = 0; i < orphan_blocks; i++) {
668 struct page *page;
669 struct f2fs_orphan_block *orphan_blk;
671 page = f2fs_get_meta_page(sbi, start_blk + i);
672 if (IS_ERR(page)) {
673 err = PTR_ERR(page);
674 goto out;
677 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
678 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
679 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
680 err = recover_orphan_inode(sbi, ino);
681 if (err) {
682 f2fs_put_page(page, 1);
683 goto out;
686 f2fs_put_page(page, 1);
688 /* clear Orphan Flag */
689 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
690 out:
691 set_sbi_flag(sbi, SBI_IS_RECOVERED);
693 #ifdef CONFIG_QUOTA
694 /* Turn quotas off */
695 if (quota_enabled)
696 f2fs_quota_off_umount(sbi->sb);
697 #endif
698 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
700 return err;
703 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
705 struct list_head *head;
706 struct f2fs_orphan_block *orphan_blk = NULL;
707 unsigned int nentries = 0;
708 unsigned short index = 1;
709 unsigned short orphan_blocks;
710 struct page *page = NULL;
711 struct ino_entry *orphan = NULL;
712 struct inode_management *im = &sbi->im[ORPHAN_INO];
714 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
717 * we don't need to do spin_lock(&im->ino_lock) here, since all the
718 * orphan inode operations are covered under f2fs_lock_op().
719 * And, spin_lock should be avoided due to page operations below.
721 head = &im->ino_list;
723 /* loop for each orphan inode entry and write them in Jornal block */
724 list_for_each_entry(orphan, head, list) {
725 if (!page) {
726 page = f2fs_grab_meta_page(sbi, start_blk++);
727 orphan_blk =
728 (struct f2fs_orphan_block *)page_address(page);
729 memset(orphan_blk, 0, sizeof(*orphan_blk));
732 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
734 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
736 * an orphan block is full of 1020 entries,
737 * then we need to flush current orphan blocks
738 * and bring another one in memory
740 orphan_blk->blk_addr = cpu_to_le16(index);
741 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
742 orphan_blk->entry_count = cpu_to_le32(nentries);
743 set_page_dirty(page);
744 f2fs_put_page(page, 1);
745 index++;
746 nentries = 0;
747 page = NULL;
751 if (page) {
752 orphan_blk->blk_addr = cpu_to_le16(index);
753 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
754 orphan_blk->entry_count = cpu_to_le32(nentries);
755 set_page_dirty(page);
756 f2fs_put_page(page, 1);
760 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
761 struct f2fs_checkpoint **cp_block, struct page **cp_page,
762 unsigned long long *version)
764 unsigned long blk_size = sbi->blocksize;
765 size_t crc_offset = 0;
766 __u32 crc = 0;
768 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
769 if (IS_ERR(*cp_page))
770 return PTR_ERR(*cp_page);
772 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
774 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
775 if (crc_offset > (blk_size - sizeof(__le32))) {
776 f2fs_put_page(*cp_page, 1);
777 f2fs_msg(sbi->sb, KERN_WARNING,
778 "invalid crc_offset: %zu", crc_offset);
779 return -EINVAL;
782 crc = cur_cp_crc(*cp_block);
783 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
784 f2fs_put_page(*cp_page, 1);
785 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
786 return -EINVAL;
789 *version = cur_cp_version(*cp_block);
790 return 0;
793 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
794 block_t cp_addr, unsigned long long *version)
796 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
797 struct f2fs_checkpoint *cp_block = NULL;
798 unsigned long long cur_version = 0, pre_version = 0;
799 int err;
801 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
802 &cp_page_1, version);
803 if (err)
804 return NULL;
806 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
807 sbi->blocks_per_seg) {
808 f2fs_msg(sbi->sb, KERN_WARNING,
809 "invalid cp_pack_total_block_count:%u",
810 le32_to_cpu(cp_block->cp_pack_total_block_count));
811 goto invalid_cp;
813 pre_version = *version;
815 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
816 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
817 &cp_page_2, version);
818 if (err)
819 goto invalid_cp;
820 cur_version = *version;
822 if (cur_version == pre_version) {
823 *version = cur_version;
824 f2fs_put_page(cp_page_2, 1);
825 return cp_page_1;
827 f2fs_put_page(cp_page_2, 1);
828 invalid_cp:
829 f2fs_put_page(cp_page_1, 1);
830 return NULL;
833 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
835 struct f2fs_checkpoint *cp_block;
836 struct f2fs_super_block *fsb = sbi->raw_super;
837 struct page *cp1, *cp2, *cur_page;
838 unsigned long blk_size = sbi->blocksize;
839 unsigned long long cp1_version = 0, cp2_version = 0;
840 unsigned long long cp_start_blk_no;
841 unsigned int cp_blks = 1 + __cp_payload(sbi);
842 block_t cp_blk_no;
843 int i;
845 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
846 GFP_KERNEL);
847 if (!sbi->ckpt)
848 return -ENOMEM;
850 * Finding out valid cp block involves read both
851 * sets( cp pack1 and cp pack 2)
853 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
854 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
856 /* The second checkpoint pack should start at the next segment */
857 cp_start_blk_no += ((unsigned long long)1) <<
858 le32_to_cpu(fsb->log_blocks_per_seg);
859 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
861 if (cp1 && cp2) {
862 if (ver_after(cp2_version, cp1_version))
863 cur_page = cp2;
864 else
865 cur_page = cp1;
866 } else if (cp1) {
867 cur_page = cp1;
868 } else if (cp2) {
869 cur_page = cp2;
870 } else {
871 goto fail_no_cp;
874 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
875 memcpy(sbi->ckpt, cp_block, blk_size);
877 if (cur_page == cp1)
878 sbi->cur_cp_pack = 1;
879 else
880 sbi->cur_cp_pack = 2;
882 /* Sanity checking of checkpoint */
883 if (f2fs_sanity_check_ckpt(sbi))
884 goto free_fail_no_cp;
886 if (cp_blks <= 1)
887 goto done;
889 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
890 if (cur_page == cp2)
891 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
893 for (i = 1; i < cp_blks; i++) {
894 void *sit_bitmap_ptr;
895 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
897 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
898 if (IS_ERR(cur_page))
899 goto free_fail_no_cp;
900 sit_bitmap_ptr = page_address(cur_page);
901 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
902 f2fs_put_page(cur_page, 1);
904 done:
905 f2fs_put_page(cp1, 1);
906 f2fs_put_page(cp2, 1);
907 return 0;
909 free_fail_no_cp:
910 f2fs_put_page(cp1, 1);
911 f2fs_put_page(cp2, 1);
912 fail_no_cp:
913 kvfree(sbi->ckpt);
914 return -EINVAL;
917 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
919 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
920 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
922 if (is_inode_flag_set(inode, flag))
923 return;
925 set_inode_flag(inode, flag);
926 if (!f2fs_is_volatile_file(inode))
927 list_add_tail(&F2FS_I(inode)->dirty_list,
928 &sbi->inode_list[type]);
929 stat_inc_dirty_inode(sbi, type);
932 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
934 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
936 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
937 return;
939 list_del_init(&F2FS_I(inode)->dirty_list);
940 clear_inode_flag(inode, flag);
941 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
944 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
946 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
947 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
949 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
950 !S_ISLNK(inode->i_mode))
951 return;
953 spin_lock(&sbi->inode_lock[type]);
954 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
955 __add_dirty_inode(inode, type);
956 inode_inc_dirty_pages(inode);
957 spin_unlock(&sbi->inode_lock[type]);
959 SetPagePrivate(page);
960 f2fs_trace_pid(page);
963 void f2fs_remove_dirty_inode(struct inode *inode)
965 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
966 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
968 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
969 !S_ISLNK(inode->i_mode))
970 return;
972 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
973 return;
975 spin_lock(&sbi->inode_lock[type]);
976 __remove_dirty_inode(inode, type);
977 spin_unlock(&sbi->inode_lock[type]);
980 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
982 struct list_head *head;
983 struct inode *inode;
984 struct f2fs_inode_info *fi;
985 bool is_dir = (type == DIR_INODE);
986 unsigned long ino = 0;
988 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
989 get_pages(sbi, is_dir ?
990 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
991 retry:
992 if (unlikely(f2fs_cp_error(sbi)))
993 return -EIO;
995 spin_lock(&sbi->inode_lock[type]);
997 head = &sbi->inode_list[type];
998 if (list_empty(head)) {
999 spin_unlock(&sbi->inode_lock[type]);
1000 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1001 get_pages(sbi, is_dir ?
1002 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1003 return 0;
1005 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1006 inode = igrab(&fi->vfs_inode);
1007 spin_unlock(&sbi->inode_lock[type]);
1008 if (inode) {
1009 unsigned long cur_ino = inode->i_ino;
1011 if (is_dir)
1012 F2FS_I(inode)->cp_task = current;
1014 filemap_fdatawrite(inode->i_mapping);
1016 if (is_dir)
1017 F2FS_I(inode)->cp_task = NULL;
1019 iput(inode);
1020 /* We need to give cpu to another writers. */
1021 if (ino == cur_ino)
1022 cond_resched();
1023 else
1024 ino = cur_ino;
1025 } else {
1027 * We should submit bio, since it exists several
1028 * wribacking dentry pages in the freeing inode.
1030 f2fs_submit_merged_write(sbi, DATA);
1031 cond_resched();
1033 goto retry;
1036 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1038 struct list_head *head = &sbi->inode_list[DIRTY_META];
1039 struct inode *inode;
1040 struct f2fs_inode_info *fi;
1041 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1043 while (total--) {
1044 if (unlikely(f2fs_cp_error(sbi)))
1045 return -EIO;
1047 spin_lock(&sbi->inode_lock[DIRTY_META]);
1048 if (list_empty(head)) {
1049 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1050 return 0;
1052 fi = list_first_entry(head, struct f2fs_inode_info,
1053 gdirty_list);
1054 inode = igrab(&fi->vfs_inode);
1055 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1056 if (inode) {
1057 sync_inode_metadata(inode, 0);
1059 /* it's on eviction */
1060 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1061 f2fs_update_inode_page(inode);
1062 iput(inode);
1065 return 0;
1068 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1070 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1071 struct f2fs_nm_info *nm_i = NM_I(sbi);
1072 nid_t last_nid = nm_i->next_scan_nid;
1074 next_free_nid(sbi, &last_nid);
1075 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1076 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1077 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1078 ckpt->next_free_nid = cpu_to_le32(last_nid);
1081 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1083 if (!is_journalled_quota(sbi))
1084 return false;
1085 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1086 return false;
1087 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1088 return false;
1089 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH))
1090 return true;
1091 if (get_pages(sbi, F2FS_DIRTY_QDATA))
1092 return true;
1093 return false;
1097 * Freeze all the FS-operations for checkpoint.
1099 static int block_operations(struct f2fs_sb_info *sbi)
1101 struct writeback_control wbc = {
1102 .sync_mode = WB_SYNC_ALL,
1103 .nr_to_write = LONG_MAX,
1104 .for_reclaim = 0,
1106 struct blk_plug plug;
1107 int err = 0, cnt = 0;
1109 blk_start_plug(&plug);
1111 retry_flush_quotas:
1112 if (__need_flush_quota(sbi)) {
1113 int locked;
1115 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1116 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1117 f2fs_lock_all(sbi);
1118 goto retry_flush_dents;
1120 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1122 /* only failed during mount/umount/freeze/quotactl */
1123 locked = down_read_trylock(&sbi->sb->s_umount);
1124 f2fs_quota_sync(sbi->sb, -1);
1125 if (locked)
1126 up_read(&sbi->sb->s_umount);
1129 f2fs_lock_all(sbi);
1130 if (__need_flush_quota(sbi)) {
1131 f2fs_unlock_all(sbi);
1132 cond_resched();
1133 goto retry_flush_quotas;
1136 retry_flush_dents:
1137 /* write all the dirty dentry pages */
1138 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1139 f2fs_unlock_all(sbi);
1140 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1141 if (err)
1142 goto out;
1143 cond_resched();
1144 goto retry_flush_quotas;
1148 * POR: we should ensure that there are no dirty node pages
1149 * until finishing nat/sit flush. inode->i_blocks can be updated.
1151 down_write(&sbi->node_change);
1153 if (__need_flush_quota(sbi)) {
1154 up_write(&sbi->node_change);
1155 f2fs_unlock_all(sbi);
1156 goto retry_flush_quotas;
1159 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1160 up_write(&sbi->node_change);
1161 f2fs_unlock_all(sbi);
1162 err = f2fs_sync_inode_meta(sbi);
1163 if (err)
1164 goto out;
1165 cond_resched();
1166 goto retry_flush_quotas;
1169 retry_flush_nodes:
1170 down_write(&sbi->node_write);
1172 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1173 up_write(&sbi->node_write);
1174 atomic_inc(&sbi->wb_sync_req[NODE]);
1175 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1176 atomic_dec(&sbi->wb_sync_req[NODE]);
1177 if (err) {
1178 up_write(&sbi->node_change);
1179 f2fs_unlock_all(sbi);
1180 goto out;
1182 cond_resched();
1183 goto retry_flush_nodes;
1187 * sbi->node_change is used only for AIO write_begin path which produces
1188 * dirty node blocks and some checkpoint values by block allocation.
1190 __prepare_cp_block(sbi);
1191 up_write(&sbi->node_change);
1192 out:
1193 blk_finish_plug(&plug);
1194 return err;
1197 static void unblock_operations(struct f2fs_sb_info *sbi)
1199 up_write(&sbi->node_write);
1200 f2fs_unlock_all(sbi);
1203 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1205 DEFINE_WAIT(wait);
1207 for (;;) {
1208 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1210 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1211 break;
1213 if (unlikely(f2fs_cp_error(sbi)))
1214 break;
1216 io_schedule_timeout(5*HZ);
1218 finish_wait(&sbi->cp_wait, &wait);
1221 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1223 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1224 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1225 unsigned long flags;
1227 spin_lock_irqsave(&sbi->cp_lock, flags);
1229 if ((cpc->reason & CP_UMOUNT) &&
1230 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1231 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1232 disable_nat_bits(sbi, false);
1234 if (cpc->reason & CP_TRIMMED)
1235 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1236 else
1237 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1239 if (cpc->reason & CP_UMOUNT)
1240 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1241 else
1242 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1244 if (cpc->reason & CP_FASTBOOT)
1245 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1246 else
1247 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1249 if (orphan_num)
1250 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1251 else
1252 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1254 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1255 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1257 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1258 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1259 else
1260 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1262 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1263 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1264 else
1265 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1267 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1268 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1270 /* set this flag to activate crc|cp_ver for recovery */
1271 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1272 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1274 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1277 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1278 void *src, block_t blk_addr)
1280 struct writeback_control wbc = {
1281 .for_reclaim = 0,
1285 * pagevec_lookup_tag and lock_page again will take
1286 * some extra time. Therefore, f2fs_update_meta_pages and
1287 * f2fs_sync_meta_pages are combined in this function.
1289 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1290 int err;
1292 f2fs_wait_on_page_writeback(page, META, true, true);
1294 memcpy(page_address(page), src, PAGE_SIZE);
1296 set_page_dirty(page);
1297 if (unlikely(!clear_page_dirty_for_io(page)))
1298 f2fs_bug_on(sbi, 1);
1300 /* writeout cp pack 2 page */
1301 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1302 if (unlikely(err && f2fs_cp_error(sbi))) {
1303 f2fs_put_page(page, 1);
1304 return;
1307 f2fs_bug_on(sbi, err);
1308 f2fs_put_page(page, 0);
1310 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1311 f2fs_submit_merged_write(sbi, META_FLUSH);
1314 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1316 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1317 struct f2fs_nm_info *nm_i = NM_I(sbi);
1318 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1319 block_t start_blk;
1320 unsigned int data_sum_blocks, orphan_blocks;
1321 __u32 crc32 = 0;
1322 int i;
1323 int cp_payload_blks = __cp_payload(sbi);
1324 struct super_block *sb = sbi->sb;
1325 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1326 u64 kbytes_written;
1327 int err;
1329 /* Flush all the NAT/SIT pages */
1330 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1331 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1332 !f2fs_cp_error(sbi));
1335 * modify checkpoint
1336 * version number is already updated
1338 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1339 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1340 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1341 ckpt->cur_node_segno[i] =
1342 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1343 ckpt->cur_node_blkoff[i] =
1344 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1345 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1346 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1348 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1349 ckpt->cur_data_segno[i] =
1350 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1351 ckpt->cur_data_blkoff[i] =
1352 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1353 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1354 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1357 /* 2 cp + n data seg summary + orphan inode blocks */
1358 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1359 spin_lock_irqsave(&sbi->cp_lock, flags);
1360 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1361 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1362 else
1363 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1364 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1366 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1367 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1368 orphan_blocks);
1370 if (__remain_node_summaries(cpc->reason))
1371 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1372 cp_payload_blks + data_sum_blocks +
1373 orphan_blocks + NR_CURSEG_NODE_TYPE);
1374 else
1375 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1376 cp_payload_blks + data_sum_blocks +
1377 orphan_blocks);
1379 /* update ckpt flag for checkpoint */
1380 update_ckpt_flags(sbi, cpc);
1382 /* update SIT/NAT bitmap */
1383 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1384 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1386 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1387 *((__le32 *)((unsigned char *)ckpt +
1388 le32_to_cpu(ckpt->checksum_offset)))
1389 = cpu_to_le32(crc32);
1391 start_blk = __start_cp_next_addr(sbi);
1393 /* write nat bits */
1394 if (enabled_nat_bits(sbi, cpc)) {
1395 __u64 cp_ver = cur_cp_version(ckpt);
1396 block_t blk;
1398 cp_ver |= ((__u64)crc32 << 32);
1399 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1401 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1402 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1403 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1404 (i << F2FS_BLKSIZE_BITS), blk + i);
1407 /* write out checkpoint buffer at block 0 */
1408 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1410 for (i = 1; i < 1 + cp_payload_blks; i++)
1411 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1412 start_blk++);
1414 if (orphan_num) {
1415 write_orphan_inodes(sbi, start_blk);
1416 start_blk += orphan_blocks;
1419 f2fs_write_data_summaries(sbi, start_blk);
1420 start_blk += data_sum_blocks;
1422 /* Record write statistics in the hot node summary */
1423 kbytes_written = sbi->kbytes_written;
1424 if (sb->s_bdev->bd_part)
1425 kbytes_written += BD_PART_WRITTEN(sbi);
1427 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1429 if (__remain_node_summaries(cpc->reason)) {
1430 f2fs_write_node_summaries(sbi, start_blk);
1431 start_blk += NR_CURSEG_NODE_TYPE;
1434 /* update user_block_counts */
1435 sbi->last_valid_block_count = sbi->total_valid_block_count;
1436 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1438 /* Here, we have one bio having CP pack except cp pack 2 page */
1439 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1440 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1441 !f2fs_cp_error(sbi));
1443 /* wait for previous submitted meta pages writeback */
1444 f2fs_wait_on_all_pages_writeback(sbi);
1446 /* flush all device cache */
1447 err = f2fs_flush_device_cache(sbi);
1448 if (err)
1449 return err;
1451 /* barrier and flush checkpoint cp pack 2 page if it can */
1452 commit_checkpoint(sbi, ckpt, start_blk);
1453 f2fs_wait_on_all_pages_writeback(sbi);
1456 * invalidate intermediate page cache borrowed from meta inode
1457 * which are used for migration of encrypted inode's blocks.
1459 if (f2fs_sb_has_encrypt(sbi))
1460 invalidate_mapping_pages(META_MAPPING(sbi),
1461 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1463 f2fs_release_ino_entry(sbi, false);
1465 f2fs_reset_fsync_node_info(sbi);
1467 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1468 clear_sbi_flag(sbi, SBI_NEED_CP);
1469 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1470 sbi->unusable_block_count = 0;
1471 __set_cp_next_pack(sbi);
1474 * redirty superblock if metadata like node page or inode cache is
1475 * updated during writing checkpoint.
1477 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1478 get_pages(sbi, F2FS_DIRTY_IMETA))
1479 set_sbi_flag(sbi, SBI_IS_DIRTY);
1481 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1483 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1487 * We guarantee that this checkpoint procedure will not fail.
1489 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1491 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1492 unsigned long long ckpt_ver;
1493 int err = 0;
1495 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1496 if (cpc->reason != CP_PAUSE)
1497 return 0;
1498 f2fs_msg(sbi->sb, KERN_WARNING,
1499 "Start checkpoint disabled!");
1501 mutex_lock(&sbi->cp_mutex);
1503 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1504 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1505 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1506 goto out;
1507 if (unlikely(f2fs_cp_error(sbi))) {
1508 err = -EIO;
1509 goto out;
1511 if (f2fs_readonly(sbi->sb)) {
1512 err = -EROFS;
1513 goto out;
1516 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1518 err = block_operations(sbi);
1519 if (err)
1520 goto out;
1522 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1524 f2fs_flush_merged_writes(sbi);
1526 /* this is the case of multiple fstrims without any changes */
1527 if (cpc->reason & CP_DISCARD) {
1528 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1529 unblock_operations(sbi);
1530 goto out;
1533 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1534 SIT_I(sbi)->dirty_sentries == 0 &&
1535 prefree_segments(sbi) == 0) {
1536 f2fs_flush_sit_entries(sbi, cpc);
1537 f2fs_clear_prefree_segments(sbi, cpc);
1538 unblock_operations(sbi);
1539 goto out;
1544 * update checkpoint pack index
1545 * Increase the version number so that
1546 * SIT entries and seg summaries are written at correct place
1548 ckpt_ver = cur_cp_version(ckpt);
1549 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1551 /* write cached NAT/SIT entries to NAT/SIT area */
1552 err = f2fs_flush_nat_entries(sbi, cpc);
1553 if (err)
1554 goto stop;
1556 f2fs_flush_sit_entries(sbi, cpc);
1558 /* unlock all the fs_lock[] in do_checkpoint() */
1559 err = do_checkpoint(sbi, cpc);
1560 if (err)
1561 f2fs_release_discard_addrs(sbi);
1562 else
1563 f2fs_clear_prefree_segments(sbi, cpc);
1564 stop:
1565 unblock_operations(sbi);
1566 stat_inc_cp_count(sbi->stat_info);
1568 if (cpc->reason & CP_RECOVERY)
1569 f2fs_msg(sbi->sb, KERN_NOTICE,
1570 "checkpoint: version = %llx", ckpt_ver);
1572 /* do checkpoint periodically */
1573 f2fs_update_time(sbi, CP_TIME);
1574 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1575 out:
1576 mutex_unlock(&sbi->cp_mutex);
1577 return err;
1580 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1582 int i;
1584 for (i = 0; i < MAX_INO_ENTRY; i++) {
1585 struct inode_management *im = &sbi->im[i];
1587 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1588 spin_lock_init(&im->ino_lock);
1589 INIT_LIST_HEAD(&im->ino_list);
1590 im->ino_num = 0;
1593 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1594 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1595 F2FS_ORPHANS_PER_BLOCK;
1598 int __init f2fs_create_checkpoint_caches(void)
1600 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1601 sizeof(struct ino_entry));
1602 if (!ino_entry_slab)
1603 return -ENOMEM;
1604 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1605 sizeof(struct inode_entry));
1606 if (!f2fs_inode_entry_slab) {
1607 kmem_cache_destroy(ino_entry_slab);
1608 return -ENOMEM;
1610 return 0;
1613 void f2fs_destroy_checkpoint_caches(void)
1615 kmem_cache_destroy(ino_entry_slab);
1616 kmem_cache_destroy(f2fs_inode_entry_slab);