2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
65 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
68 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
72 .index
= HRTIMER_BASE_MONOTONIC
,
73 .clockid
= CLOCK_MONOTONIC
,
74 .get_time
= &ktime_get
,
75 .resolution
= KTIME_LOW_RES
,
78 .index
= HRTIMER_BASE_REALTIME
,
79 .clockid
= CLOCK_REALTIME
,
80 .get_time
= &ktime_get_real
,
81 .resolution
= KTIME_LOW_RES
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
87 .resolution
= KTIME_LOW_RES
,
90 .index
= HRTIMER_BASE_TAI
,
92 .get_time
= &ktime_get_clocktai
,
93 .resolution
= KTIME_LOW_RES
,
98 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
99 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
100 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
101 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
102 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
107 return hrtimer_clock_to_base_table
[clock_id
];
112 * Get the coarse grained time at the softirq based on xtime and
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
117 ktime_t xtim
, mono
, boot
;
118 struct timespec xts
, tom
, slp
;
121 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
122 tai_offset
= timekeeping_get_tai_offset();
124 xtim
= timespec_to_ktime(xts
);
125 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
126 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
127 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
128 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
129 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
130 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
=
131 ktime_add(xtim
, ktime_set(tai_offset
, 0));
135 * Functions and macros which are different for UP/SMP systems are kept in a
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
153 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
154 unsigned long *flags
)
156 struct hrtimer_clock_base
*base
;
160 if (likely(base
!= NULL
)) {
161 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
162 if (likely(base
== timer
->base
))
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
173 * Get the preferred target CPU for NOHZ
175 static int hrtimer_get_target(int this_cpu
, int pinned
)
177 #ifdef CONFIG_NO_HZ_COMMON
178 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
179 return get_nohz_timer_target();
185 * With HIGHRES=y we do not migrate the timer when it is expiring
186 * before the next event on the target cpu because we cannot reprogram
187 * the target cpu hardware and we would cause it to fire late.
189 * Called with cpu_base->lock of target cpu held.
192 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
194 #ifdef CONFIG_HIGH_RES_TIMERS
197 if (!new_base
->cpu_base
->hres_active
)
200 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
201 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
208 * Switch the timer base to the current CPU when possible.
210 static inline struct hrtimer_clock_base
*
211 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
214 struct hrtimer_clock_base
*new_base
;
215 struct hrtimer_cpu_base
*new_cpu_base
;
216 int this_cpu
= smp_processor_id();
217 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
218 int basenum
= base
->index
;
221 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
222 new_base
= &new_cpu_base
->clock_base
[basenum
];
224 if (base
!= new_base
) {
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
234 if (unlikely(hrtimer_callback_running(timer
)))
237 /* See the comment in lock_timer_base() */
239 raw_spin_unlock(&base
->cpu_base
->lock
);
240 raw_spin_lock(&new_base
->cpu_base
->lock
);
242 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
244 raw_spin_unlock(&new_base
->cpu_base
->lock
);
245 raw_spin_lock(&base
->cpu_base
->lock
);
249 timer
->base
= new_base
;
254 #else /* CONFIG_SMP */
256 static inline struct hrtimer_clock_base
*
257 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
259 struct hrtimer_clock_base
*base
= timer
->base
;
261 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
266 # define switch_hrtimer_base(t, b, p) (b)
268 #endif /* !CONFIG_SMP */
271 * Functions for the union type storage format of ktime_t which are
272 * too large for inlining:
274 #if BITS_PER_LONG < 64
275 # ifndef CONFIG_KTIME_SCALAR
277 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
279 * @nsec: the scalar nsec value to add
281 * Returns the sum of kt and nsec in ktime_t format
283 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
287 if (likely(nsec
< NSEC_PER_SEC
)) {
290 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
292 /* Make sure nsec fits into long */
293 if (unlikely(nsec
> KTIME_SEC_MAX
))
294 return (ktime_t
){ .tv64
= KTIME_MAX
};
296 tmp
= ktime_set((long)nsec
, rem
);
299 return ktime_add(kt
, tmp
);
302 EXPORT_SYMBOL_GPL(ktime_add_ns
);
305 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
307 * @nsec: the scalar nsec value to subtract
309 * Returns the subtraction of @nsec from @kt in ktime_t format
311 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
315 if (likely(nsec
< NSEC_PER_SEC
)) {
318 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
320 tmp
= ktime_set((long)nsec
, rem
);
323 return ktime_sub(kt
, tmp
);
326 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
327 # endif /* !CONFIG_KTIME_SCALAR */
330 * Divide a ktime value by a nanosecond value
332 u64
ktime_divns(const ktime_t kt
, s64 div
)
337 dclc
= ktime_to_ns(kt
);
338 /* Make sure the divisor is less than 2^32: */
344 do_div(dclc
, (unsigned long) div
);
348 #endif /* BITS_PER_LONG >= 64 */
351 * Add two ktime values and do a safety check for overflow:
353 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
355 ktime_t res
= ktime_add(lhs
, rhs
);
358 * We use KTIME_SEC_MAX here, the maximum timeout which we can
359 * return to user space in a timespec:
361 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
362 res
= ktime_set(KTIME_SEC_MAX
, 0);
367 EXPORT_SYMBOL_GPL(ktime_add_safe
);
369 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
371 static struct debug_obj_descr hrtimer_debug_descr
;
373 static void *hrtimer_debug_hint(void *addr
)
375 return ((struct hrtimer
*) addr
)->function
;
379 * fixup_init is called when:
380 * - an active object is initialized
382 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
384 struct hrtimer
*timer
= addr
;
387 case ODEBUG_STATE_ACTIVE
:
388 hrtimer_cancel(timer
);
389 debug_object_init(timer
, &hrtimer_debug_descr
);
397 * fixup_activate is called when:
398 * - an active object is activated
399 * - an unknown object is activated (might be a statically initialized object)
401 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
405 case ODEBUG_STATE_NOTAVAILABLE
:
409 case ODEBUG_STATE_ACTIVE
:
418 * fixup_free is called when:
419 * - an active object is freed
421 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
423 struct hrtimer
*timer
= addr
;
426 case ODEBUG_STATE_ACTIVE
:
427 hrtimer_cancel(timer
);
428 debug_object_free(timer
, &hrtimer_debug_descr
);
435 static struct debug_obj_descr hrtimer_debug_descr
= {
437 .debug_hint
= hrtimer_debug_hint
,
438 .fixup_init
= hrtimer_fixup_init
,
439 .fixup_activate
= hrtimer_fixup_activate
,
440 .fixup_free
= hrtimer_fixup_free
,
443 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
445 debug_object_init(timer
, &hrtimer_debug_descr
);
448 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
450 debug_object_activate(timer
, &hrtimer_debug_descr
);
453 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
455 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
458 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
460 debug_object_free(timer
, &hrtimer_debug_descr
);
463 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
464 enum hrtimer_mode mode
);
466 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
467 enum hrtimer_mode mode
)
469 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
470 __hrtimer_init(timer
, clock_id
, mode
);
472 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
474 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
476 debug_object_free(timer
, &hrtimer_debug_descr
);
480 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
481 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
482 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
486 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
487 enum hrtimer_mode mode
)
489 debug_hrtimer_init(timer
);
490 trace_hrtimer_init(timer
, clockid
, mode
);
493 static inline void debug_activate(struct hrtimer
*timer
)
495 debug_hrtimer_activate(timer
);
496 trace_hrtimer_start(timer
);
499 static inline void debug_deactivate(struct hrtimer
*timer
)
501 debug_hrtimer_deactivate(timer
);
502 trace_hrtimer_cancel(timer
);
505 /* High resolution timer related functions */
506 #ifdef CONFIG_HIGH_RES_TIMERS
509 * High resolution timer enabled ?
511 static int hrtimer_hres_enabled __read_mostly
= 1;
514 * Enable / Disable high resolution mode
516 static int __init
setup_hrtimer_hres(char *str
)
518 if (!strcmp(str
, "off"))
519 hrtimer_hres_enabled
= 0;
520 else if (!strcmp(str
, "on"))
521 hrtimer_hres_enabled
= 1;
527 __setup("highres=", setup_hrtimer_hres
);
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
532 static inline int hrtimer_is_hres_enabled(void)
534 return hrtimer_hres_enabled
;
538 * Is the high resolution mode active ?
540 static inline int hrtimer_hres_active(void)
542 return __this_cpu_read(hrtimer_bases
.hres_active
);
546 * Reprogram the event source with checking both queues for the
548 * Called with interrupts disabled and base->lock held
551 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
554 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
555 ktime_t expires
, expires_next
;
557 expires_next
.tv64
= KTIME_MAX
;
559 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
560 struct hrtimer
*timer
;
561 struct timerqueue_node
*next
;
563 next
= timerqueue_getnext(&base
->active
);
566 timer
= container_of(next
, struct hrtimer
, node
);
568 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
570 * clock_was_set() has changed base->offset so the
571 * result might be negative. Fix it up to prevent a
572 * false positive in clockevents_program_event()
574 if (expires
.tv64
< 0)
576 if (expires
.tv64
< expires_next
.tv64
)
577 expires_next
= expires
;
580 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
583 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
585 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
586 tick_program_event(cpu_base
->expires_next
, 1);
590 * Shared reprogramming for clock_realtime and clock_monotonic
592 * When a timer is enqueued and expires earlier than the already enqueued
593 * timers, we have to check, whether it expires earlier than the timer for
594 * which the clock event device was armed.
596 * Called with interrupts disabled and base->cpu_base.lock held
598 static int hrtimer_reprogram(struct hrtimer
*timer
,
599 struct hrtimer_clock_base
*base
)
601 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
602 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
605 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
608 * When the callback is running, we do not reprogram the clock event
609 * device. The timer callback is either running on a different CPU or
610 * the callback is executed in the hrtimer_interrupt context. The
611 * reprogramming is handled either by the softirq, which called the
612 * callback or at the end of the hrtimer_interrupt.
614 if (hrtimer_callback_running(timer
))
618 * CLOCK_REALTIME timer might be requested with an absolute
619 * expiry time which is less than base->offset. Nothing wrong
620 * about that, just avoid to call into the tick code, which
621 * has now objections against negative expiry values.
623 if (expires
.tv64
< 0)
626 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
630 * If a hang was detected in the last timer interrupt then we
631 * do not schedule a timer which is earlier than the expiry
632 * which we enforced in the hang detection. We want the system
635 if (cpu_base
->hang_detected
)
639 * Clockevents returns -ETIME, when the event was in the past.
641 res
= tick_program_event(expires
, 0);
642 if (!IS_ERR_VALUE(res
))
643 cpu_base
->expires_next
= expires
;
648 * Initialize the high resolution related parts of cpu_base
650 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
652 base
->expires_next
.tv64
= KTIME_MAX
;
653 base
->hres_active
= 0;
657 * When High resolution timers are active, try to reprogram. Note, that in case
658 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
659 * check happens. The timer gets enqueued into the rbtree. The reprogramming
660 * and expiry check is done in the hrtimer_interrupt or in the softirq.
662 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
663 struct hrtimer_clock_base
*base
)
665 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
668 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
670 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
671 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
672 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
674 return ktime_get_update_offsets(offs_real
, offs_boot
, offs_tai
);
678 * Retrigger next event is called after clock was set
680 * Called with interrupts disabled via on_each_cpu()
682 static void retrigger_next_event(void *arg
)
684 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
686 if (!hrtimer_hres_active())
689 raw_spin_lock(&base
->lock
);
690 hrtimer_update_base(base
);
691 hrtimer_force_reprogram(base
, 0);
692 raw_spin_unlock(&base
->lock
);
696 * Switch to high resolution mode
698 static int hrtimer_switch_to_hres(void)
700 int i
, cpu
= smp_processor_id();
701 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
704 if (base
->hres_active
)
707 local_irq_save(flags
);
709 if (tick_init_highres()) {
710 local_irq_restore(flags
);
711 printk(KERN_WARNING
"Could not switch to high resolution "
712 "mode on CPU %d\n", cpu
);
715 base
->hres_active
= 1;
716 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
717 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
719 tick_setup_sched_timer();
720 /* "Retrigger" the interrupt to get things going */
721 retrigger_next_event(NULL
);
722 local_irq_restore(flags
);
726 static void clock_was_set_work(struct work_struct
*work
)
731 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
734 * Called from timekeeping and resume code to reprogramm the hrtimer
735 * interrupt device on all cpus.
737 void clock_was_set_delayed(void)
739 schedule_work(&hrtimer_work
);
744 static inline int hrtimer_hres_active(void) { return 0; }
745 static inline int hrtimer_is_hres_enabled(void) { return 0; }
746 static inline int hrtimer_switch_to_hres(void) { return 0; }
748 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
749 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
750 struct hrtimer_clock_base
*base
)
754 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
755 static inline void retrigger_next_event(void *arg
) { }
757 #endif /* CONFIG_HIGH_RES_TIMERS */
760 * Clock realtime was set
762 * Change the offset of the realtime clock vs. the monotonic
765 * We might have to reprogram the high resolution timer interrupt. On
766 * SMP we call the architecture specific code to retrigger _all_ high
767 * resolution timer interrupts. On UP we just disable interrupts and
768 * call the high resolution interrupt code.
770 void clock_was_set(void)
772 #ifdef CONFIG_HIGH_RES_TIMERS
773 /* Retrigger the CPU local events everywhere */
774 on_each_cpu(retrigger_next_event
, NULL
, 1);
776 timerfd_clock_was_set();
780 * During resume we might have to reprogram the high resolution timer
781 * interrupt on all online CPUs. However, all other CPUs will be
782 * stopped with IRQs interrupts disabled so the clock_was_set() call
785 void hrtimers_resume(void)
787 WARN_ONCE(!irqs_disabled(),
788 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
790 /* Retrigger on the local CPU */
791 retrigger_next_event(NULL
);
792 /* And schedule a retrigger for all others */
793 clock_was_set_delayed();
796 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
798 #ifdef CONFIG_TIMER_STATS
799 if (timer
->start_site
)
801 timer
->start_site
= __builtin_return_address(0);
802 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
803 timer
->start_pid
= current
->pid
;
807 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
809 #ifdef CONFIG_TIMER_STATS
810 timer
->start_site
= NULL
;
814 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
816 #ifdef CONFIG_TIMER_STATS
817 if (likely(!timer_stats_active
))
819 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
820 timer
->function
, timer
->start_comm
, 0);
825 * Counterpart to lock_hrtimer_base above:
828 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
830 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
834 * hrtimer_forward - forward the timer expiry
835 * @timer: hrtimer to forward
836 * @now: forward past this time
837 * @interval: the interval to forward
839 * Forward the timer expiry so it will expire in the future.
840 * Returns the number of overruns.
842 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
847 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
852 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
853 interval
.tv64
= timer
->base
->resolution
.tv64
;
855 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
856 s64 incr
= ktime_to_ns(interval
);
858 orun
= ktime_divns(delta
, incr
);
859 hrtimer_add_expires_ns(timer
, incr
* orun
);
860 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
863 * This (and the ktime_add() below) is the
864 * correction for exact:
868 hrtimer_add_expires(timer
, interval
);
872 EXPORT_SYMBOL_GPL(hrtimer_forward
);
875 * enqueue_hrtimer - internal function to (re)start a timer
877 * The timer is inserted in expiry order. Insertion into the
878 * red black tree is O(log(n)). Must hold the base lock.
880 * Returns 1 when the new timer is the leftmost timer in the tree.
882 static int enqueue_hrtimer(struct hrtimer
*timer
,
883 struct hrtimer_clock_base
*base
)
885 debug_activate(timer
);
887 timerqueue_add(&base
->active
, &timer
->node
);
888 base
->cpu_base
->active_bases
|= 1 << base
->index
;
891 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
892 * state of a possibly running callback.
894 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
896 return (&timer
->node
== base
->active
.next
);
900 * __remove_hrtimer - internal function to remove a timer
902 * Caller must hold the base lock.
904 * High resolution timer mode reprograms the clock event device when the
905 * timer is the one which expires next. The caller can disable this by setting
906 * reprogram to zero. This is useful, when the context does a reprogramming
907 * anyway (e.g. timer interrupt)
909 static void __remove_hrtimer(struct hrtimer
*timer
,
910 struct hrtimer_clock_base
*base
,
911 unsigned long newstate
, int reprogram
)
913 struct timerqueue_node
*next_timer
;
914 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
917 next_timer
= timerqueue_getnext(&base
->active
);
918 timerqueue_del(&base
->active
, &timer
->node
);
919 if (&timer
->node
== next_timer
) {
920 #ifdef CONFIG_HIGH_RES_TIMERS
921 /* Reprogram the clock event device. if enabled */
922 if (reprogram
&& hrtimer_hres_active()) {
925 expires
= ktime_sub(hrtimer_get_expires(timer
),
927 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
928 hrtimer_force_reprogram(base
->cpu_base
, 1);
932 if (!timerqueue_getnext(&base
->active
))
933 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
935 timer
->state
= newstate
;
939 * remove hrtimer, called with base lock held
942 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
944 if (hrtimer_is_queued(timer
)) {
949 * Remove the timer and force reprogramming when high
950 * resolution mode is active and the timer is on the current
951 * CPU. If we remove a timer on another CPU, reprogramming is
952 * skipped. The interrupt event on this CPU is fired and
953 * reprogramming happens in the interrupt handler. This is a
954 * rare case and less expensive than a smp call.
956 debug_deactivate(timer
);
957 timer_stats_hrtimer_clear_start_info(timer
);
958 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
960 * We must preserve the CALLBACK state flag here,
961 * otherwise we could move the timer base in
962 * switch_hrtimer_base.
964 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
965 __remove_hrtimer(timer
, base
, state
, reprogram
);
971 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
972 unsigned long delta_ns
, const enum hrtimer_mode mode
,
975 struct hrtimer_clock_base
*base
, *new_base
;
979 base
= lock_hrtimer_base(timer
, &flags
);
981 /* Remove an active timer from the queue: */
982 ret
= remove_hrtimer(timer
, base
);
984 /* Switch the timer base, if necessary: */
985 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
987 if (mode
& HRTIMER_MODE_REL
) {
988 tim
= ktime_add_safe(tim
, new_base
->get_time());
990 * CONFIG_TIME_LOW_RES is a temporary way for architectures
991 * to signal that they simply return xtime in
992 * do_gettimeoffset(). In this case we want to round up by
993 * resolution when starting a relative timer, to avoid short
994 * timeouts. This will go away with the GTOD framework.
996 #ifdef CONFIG_TIME_LOW_RES
997 tim
= ktime_add_safe(tim
, base
->resolution
);
1001 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1003 timer_stats_hrtimer_set_start_info(timer
);
1005 leftmost
= enqueue_hrtimer(timer
, new_base
);
1008 * Only allow reprogramming if the new base is on this CPU.
1009 * (it might still be on another CPU if the timer was pending)
1011 * XXX send_remote_softirq() ?
1013 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1014 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1017 * We need to drop cpu_base->lock to avoid a
1018 * lock ordering issue vs. rq->lock.
1020 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1021 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1022 local_irq_restore(flags
);
1025 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1029 unlock_hrtimer_base(timer
, &flags
);
1035 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1036 * @timer: the timer to be added
1038 * @delta_ns: "slack" range for the timer
1039 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1040 * relative (HRTIMER_MODE_REL)
1044 * 1 when the timer was active
1046 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1047 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1049 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1051 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1054 * hrtimer_start - (re)start an hrtimer on the current CPU
1055 * @timer: the timer to be added
1057 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1058 * relative (HRTIMER_MODE_REL)
1062 * 1 when the timer was active
1065 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1067 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1069 EXPORT_SYMBOL_GPL(hrtimer_start
);
1073 * hrtimer_try_to_cancel - try to deactivate a timer
1074 * @timer: hrtimer to stop
1077 * 0 when the timer was not active
1078 * 1 when the timer was active
1079 * -1 when the timer is currently excuting the callback function and
1082 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1084 struct hrtimer_clock_base
*base
;
1085 unsigned long flags
;
1088 base
= lock_hrtimer_base(timer
, &flags
);
1090 if (!hrtimer_callback_running(timer
))
1091 ret
= remove_hrtimer(timer
, base
);
1093 unlock_hrtimer_base(timer
, &flags
);
1098 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1101 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1102 * @timer: the timer to be cancelled
1105 * 0 when the timer was not active
1106 * 1 when the timer was active
1108 int hrtimer_cancel(struct hrtimer
*timer
)
1111 int ret
= hrtimer_try_to_cancel(timer
);
1118 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1121 * hrtimer_get_remaining - get remaining time for the timer
1122 * @timer: the timer to read
1124 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1126 unsigned long flags
;
1129 lock_hrtimer_base(timer
, &flags
);
1130 rem
= hrtimer_expires_remaining(timer
);
1131 unlock_hrtimer_base(timer
, &flags
);
1135 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1137 #ifdef CONFIG_NO_HZ_COMMON
1139 * hrtimer_get_next_event - get the time until next expiry event
1141 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1144 ktime_t
hrtimer_get_next_event(void)
1146 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1147 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1148 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1149 unsigned long flags
;
1152 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1154 if (!hrtimer_hres_active()) {
1155 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1156 struct hrtimer
*timer
;
1157 struct timerqueue_node
*next
;
1159 next
= timerqueue_getnext(&base
->active
);
1163 timer
= container_of(next
, struct hrtimer
, node
);
1164 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1165 delta
= ktime_sub(delta
, base
->get_time());
1166 if (delta
.tv64
< mindelta
.tv64
)
1167 mindelta
.tv64
= delta
.tv64
;
1171 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1173 if (mindelta
.tv64
< 0)
1179 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1180 enum hrtimer_mode mode
)
1182 struct hrtimer_cpu_base
*cpu_base
;
1185 memset(timer
, 0, sizeof(struct hrtimer
));
1187 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1189 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1190 clock_id
= CLOCK_MONOTONIC
;
1192 base
= hrtimer_clockid_to_base(clock_id
);
1193 timer
->base
= &cpu_base
->clock_base
[base
];
1194 timerqueue_init(&timer
->node
);
1196 #ifdef CONFIG_TIMER_STATS
1197 timer
->start_site
= NULL
;
1198 timer
->start_pid
= -1;
1199 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1204 * hrtimer_init - initialize a timer to the given clock
1205 * @timer: the timer to be initialized
1206 * @clock_id: the clock to be used
1207 * @mode: timer mode abs/rel
1209 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1210 enum hrtimer_mode mode
)
1212 debug_init(timer
, clock_id
, mode
);
1213 __hrtimer_init(timer
, clock_id
, mode
);
1215 EXPORT_SYMBOL_GPL(hrtimer_init
);
1218 * hrtimer_get_res - get the timer resolution for a clock
1219 * @which_clock: which clock to query
1220 * @tp: pointer to timespec variable to store the resolution
1222 * Store the resolution of the clock selected by @which_clock in the
1223 * variable pointed to by @tp.
1225 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1227 struct hrtimer_cpu_base
*cpu_base
;
1228 int base
= hrtimer_clockid_to_base(which_clock
);
1230 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1231 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1235 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1237 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1239 struct hrtimer_clock_base
*base
= timer
->base
;
1240 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1241 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1244 WARN_ON(!irqs_disabled());
1246 debug_deactivate(timer
);
1247 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1248 timer_stats_account_hrtimer(timer
);
1249 fn
= timer
->function
;
1252 * Because we run timers from hardirq context, there is no chance
1253 * they get migrated to another cpu, therefore its safe to unlock
1256 raw_spin_unlock(&cpu_base
->lock
);
1257 trace_hrtimer_expire_entry(timer
, now
);
1258 restart
= fn(timer
);
1259 trace_hrtimer_expire_exit(timer
);
1260 raw_spin_lock(&cpu_base
->lock
);
1263 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1264 * we do not reprogramm the event hardware. Happens either in
1265 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1267 if (restart
!= HRTIMER_NORESTART
) {
1268 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1269 enqueue_hrtimer(timer
, base
);
1272 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1274 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1277 #ifdef CONFIG_HIGH_RES_TIMERS
1280 * High resolution timer interrupt
1281 * Called with interrupts disabled
1283 void hrtimer_interrupt(struct clock_event_device
*dev
)
1285 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1286 ktime_t expires_next
, now
, entry_time
, delta
;
1289 BUG_ON(!cpu_base
->hres_active
);
1290 cpu_base
->nr_events
++;
1291 dev
->next_event
.tv64
= KTIME_MAX
;
1293 raw_spin_lock(&cpu_base
->lock
);
1294 entry_time
= now
= hrtimer_update_base(cpu_base
);
1296 expires_next
.tv64
= KTIME_MAX
;
1298 * We set expires_next to KTIME_MAX here with cpu_base->lock
1299 * held to prevent that a timer is enqueued in our queue via
1300 * the migration code. This does not affect enqueueing of
1301 * timers which run their callback and need to be requeued on
1304 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1306 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1307 struct hrtimer_clock_base
*base
;
1308 struct timerqueue_node
*node
;
1311 if (!(cpu_base
->active_bases
& (1 << i
)))
1314 base
= cpu_base
->clock_base
+ i
;
1315 basenow
= ktime_add(now
, base
->offset
);
1317 while ((node
= timerqueue_getnext(&base
->active
))) {
1318 struct hrtimer
*timer
;
1320 timer
= container_of(node
, struct hrtimer
, node
);
1323 * The immediate goal for using the softexpires is
1324 * minimizing wakeups, not running timers at the
1325 * earliest interrupt after their soft expiration.
1326 * This allows us to avoid using a Priority Search
1327 * Tree, which can answer a stabbing querry for
1328 * overlapping intervals and instead use the simple
1329 * BST we already have.
1330 * We don't add extra wakeups by delaying timers that
1331 * are right-of a not yet expired timer, because that
1332 * timer will have to trigger a wakeup anyway.
1335 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1338 expires
= ktime_sub(hrtimer_get_expires(timer
),
1340 if (expires
.tv64
< 0)
1341 expires
.tv64
= KTIME_MAX
;
1342 if (expires
.tv64
< expires_next
.tv64
)
1343 expires_next
= expires
;
1347 __run_hrtimer(timer
, &basenow
);
1352 * Store the new expiry value so the migration code can verify
1355 cpu_base
->expires_next
= expires_next
;
1356 raw_spin_unlock(&cpu_base
->lock
);
1358 /* Reprogramming necessary ? */
1359 if (expires_next
.tv64
== KTIME_MAX
||
1360 !tick_program_event(expires_next
, 0)) {
1361 cpu_base
->hang_detected
= 0;
1366 * The next timer was already expired due to:
1368 * - long lasting callbacks
1369 * - being scheduled away when running in a VM
1371 * We need to prevent that we loop forever in the hrtimer
1372 * interrupt routine. We give it 3 attempts to avoid
1373 * overreacting on some spurious event.
1375 * Acquire base lock for updating the offsets and retrieving
1378 raw_spin_lock(&cpu_base
->lock
);
1379 now
= hrtimer_update_base(cpu_base
);
1380 cpu_base
->nr_retries
++;
1384 * Give the system a chance to do something else than looping
1385 * here. We stored the entry time, so we know exactly how long
1386 * we spent here. We schedule the next event this amount of
1389 cpu_base
->nr_hangs
++;
1390 cpu_base
->hang_detected
= 1;
1391 raw_spin_unlock(&cpu_base
->lock
);
1392 delta
= ktime_sub(now
, entry_time
);
1393 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1394 cpu_base
->max_hang_time
= delta
;
1396 * Limit it to a sensible value as we enforce a longer
1397 * delay. Give the CPU at least 100ms to catch up.
1399 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1400 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1402 expires_next
= ktime_add(now
, delta
);
1403 tick_program_event(expires_next
, 1);
1404 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1405 ktime_to_ns(delta
));
1409 * local version of hrtimer_peek_ahead_timers() called with interrupts
1412 static void __hrtimer_peek_ahead_timers(void)
1414 struct tick_device
*td
;
1416 if (!hrtimer_hres_active())
1419 td
= &__get_cpu_var(tick_cpu_device
);
1420 if (td
&& td
->evtdev
)
1421 hrtimer_interrupt(td
->evtdev
);
1425 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1427 * hrtimer_peek_ahead_timers will peek at the timer queue of
1428 * the current cpu and check if there are any timers for which
1429 * the soft expires time has passed. If any such timers exist,
1430 * they are run immediately and then removed from the timer queue.
1433 void hrtimer_peek_ahead_timers(void)
1435 unsigned long flags
;
1437 local_irq_save(flags
);
1438 __hrtimer_peek_ahead_timers();
1439 local_irq_restore(flags
);
1442 static void run_hrtimer_softirq(struct softirq_action
*h
)
1444 hrtimer_peek_ahead_timers();
1447 #else /* CONFIG_HIGH_RES_TIMERS */
1449 static inline void __hrtimer_peek_ahead_timers(void) { }
1451 #endif /* !CONFIG_HIGH_RES_TIMERS */
1454 * Called from timer softirq every jiffy, expire hrtimers:
1456 * For HRT its the fall back code to run the softirq in the timer
1457 * softirq context in case the hrtimer initialization failed or has
1458 * not been done yet.
1460 void hrtimer_run_pending(void)
1462 if (hrtimer_hres_active())
1466 * This _is_ ugly: We have to check in the softirq context,
1467 * whether we can switch to highres and / or nohz mode. The
1468 * clocksource switch happens in the timer interrupt with
1469 * xtime_lock held. Notification from there only sets the
1470 * check bit in the tick_oneshot code, otherwise we might
1471 * deadlock vs. xtime_lock.
1473 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1474 hrtimer_switch_to_hres();
1478 * Called from hardirq context every jiffy
1480 void hrtimer_run_queues(void)
1482 struct timerqueue_node
*node
;
1483 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1484 struct hrtimer_clock_base
*base
;
1485 int index
, gettime
= 1;
1487 if (hrtimer_hres_active())
1490 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1491 base
= &cpu_base
->clock_base
[index
];
1492 if (!timerqueue_getnext(&base
->active
))
1496 hrtimer_get_softirq_time(cpu_base
);
1500 raw_spin_lock(&cpu_base
->lock
);
1502 while ((node
= timerqueue_getnext(&base
->active
))) {
1503 struct hrtimer
*timer
;
1505 timer
= container_of(node
, struct hrtimer
, node
);
1506 if (base
->softirq_time
.tv64
<=
1507 hrtimer_get_expires_tv64(timer
))
1510 __run_hrtimer(timer
, &base
->softirq_time
);
1512 raw_spin_unlock(&cpu_base
->lock
);
1517 * Sleep related functions:
1519 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1521 struct hrtimer_sleeper
*t
=
1522 container_of(timer
, struct hrtimer_sleeper
, timer
);
1523 struct task_struct
*task
= t
->task
;
1527 wake_up_process(task
);
1529 return HRTIMER_NORESTART
;
1532 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1534 sl
->timer
.function
= hrtimer_wakeup
;
1537 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1539 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1541 hrtimer_init_sleeper(t
, current
);
1544 set_current_state(TASK_INTERRUPTIBLE
);
1545 hrtimer_start_expires(&t
->timer
, mode
);
1546 if (!hrtimer_active(&t
->timer
))
1549 if (likely(t
->task
))
1550 freezable_schedule();
1552 hrtimer_cancel(&t
->timer
);
1553 mode
= HRTIMER_MODE_ABS
;
1555 } while (t
->task
&& !signal_pending(current
));
1557 __set_current_state(TASK_RUNNING
);
1559 return t
->task
== NULL
;
1562 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1564 struct timespec rmt
;
1567 rem
= hrtimer_expires_remaining(timer
);
1570 rmt
= ktime_to_timespec(rem
);
1572 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1578 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1580 struct hrtimer_sleeper t
;
1581 struct timespec __user
*rmtp
;
1584 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1586 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1588 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1591 rmtp
= restart
->nanosleep
.rmtp
;
1593 ret
= update_rmtp(&t
.timer
, rmtp
);
1598 /* The other values in restart are already filled in */
1599 ret
= -ERESTART_RESTARTBLOCK
;
1601 destroy_hrtimer_on_stack(&t
.timer
);
1605 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1606 const enum hrtimer_mode mode
, const clockid_t clockid
)
1608 struct restart_block
*restart
;
1609 struct hrtimer_sleeper t
;
1611 unsigned long slack
;
1613 slack
= current
->timer_slack_ns
;
1614 if (dl_task(current
) || rt_task(current
))
1617 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1618 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1619 if (do_nanosleep(&t
, mode
))
1622 /* Absolute timers do not update the rmtp value and restart: */
1623 if (mode
== HRTIMER_MODE_ABS
) {
1624 ret
= -ERESTARTNOHAND
;
1629 ret
= update_rmtp(&t
.timer
, rmtp
);
1634 restart
= ¤t_thread_info()->restart_block
;
1635 restart
->fn
= hrtimer_nanosleep_restart
;
1636 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1637 restart
->nanosleep
.rmtp
= rmtp
;
1638 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1640 ret
= -ERESTART_RESTARTBLOCK
;
1642 destroy_hrtimer_on_stack(&t
.timer
);
1646 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1647 struct timespec __user
*, rmtp
)
1651 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1654 if (!timespec_valid(&tu
))
1657 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1661 * Functions related to boot-time initialization:
1663 static void init_hrtimers_cpu(int cpu
)
1665 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1668 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1669 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1670 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1673 hrtimer_init_hres(cpu_base
);
1676 #ifdef CONFIG_HOTPLUG_CPU
1678 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1679 struct hrtimer_clock_base
*new_base
)
1681 struct hrtimer
*timer
;
1682 struct timerqueue_node
*node
;
1684 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1685 timer
= container_of(node
, struct hrtimer
, node
);
1686 BUG_ON(hrtimer_callback_running(timer
));
1687 debug_deactivate(timer
);
1690 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1691 * timer could be seen as !active and just vanish away
1692 * under us on another CPU
1694 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1695 timer
->base
= new_base
;
1697 * Enqueue the timers on the new cpu. This does not
1698 * reprogram the event device in case the timer
1699 * expires before the earliest on this CPU, but we run
1700 * hrtimer_interrupt after we migrated everything to
1701 * sort out already expired timers and reprogram the
1704 enqueue_hrtimer(timer
, new_base
);
1706 /* Clear the migration state bit */
1707 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1711 static void migrate_hrtimers(int scpu
)
1713 struct hrtimer_cpu_base
*old_base
, *new_base
;
1716 BUG_ON(cpu_online(scpu
));
1717 tick_cancel_sched_timer(scpu
);
1719 local_irq_disable();
1720 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1721 new_base
= &__get_cpu_var(hrtimer_bases
);
1723 * The caller is globally serialized and nobody else
1724 * takes two locks at once, deadlock is not possible.
1726 raw_spin_lock(&new_base
->lock
);
1727 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1729 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1730 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1731 &new_base
->clock_base
[i
]);
1734 raw_spin_unlock(&old_base
->lock
);
1735 raw_spin_unlock(&new_base
->lock
);
1737 /* Check, if we got expired work to do */
1738 __hrtimer_peek_ahead_timers();
1742 #endif /* CONFIG_HOTPLUG_CPU */
1744 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1745 unsigned long action
, void *hcpu
)
1747 int scpu
= (long)hcpu
;
1751 case CPU_UP_PREPARE
:
1752 case CPU_UP_PREPARE_FROZEN
:
1753 init_hrtimers_cpu(scpu
);
1756 #ifdef CONFIG_HOTPLUG_CPU
1758 case CPU_DYING_FROZEN
:
1759 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1762 case CPU_DEAD_FROZEN
:
1764 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1765 migrate_hrtimers(scpu
);
1777 static struct notifier_block hrtimers_nb
= {
1778 .notifier_call
= hrtimer_cpu_notify
,
1781 void __init
hrtimers_init(void)
1783 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1784 (void *)(long)smp_processor_id());
1785 register_cpu_notifier(&hrtimers_nb
);
1786 #ifdef CONFIG_HIGH_RES_TIMERS
1787 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1792 * schedule_hrtimeout_range_clock - sleep until timeout
1793 * @expires: timeout value (ktime_t)
1794 * @delta: slack in expires timeout (ktime_t)
1795 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1796 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1799 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1800 const enum hrtimer_mode mode
, int clock
)
1802 struct hrtimer_sleeper t
;
1805 * Optimize when a zero timeout value is given. It does not
1806 * matter whether this is an absolute or a relative time.
1808 if (expires
&& !expires
->tv64
) {
1809 __set_current_state(TASK_RUNNING
);
1814 * A NULL parameter means "infinite"
1818 __set_current_state(TASK_RUNNING
);
1822 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1823 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1825 hrtimer_init_sleeper(&t
, current
);
1827 hrtimer_start_expires(&t
.timer
, mode
);
1828 if (!hrtimer_active(&t
.timer
))
1834 hrtimer_cancel(&t
.timer
);
1835 destroy_hrtimer_on_stack(&t
.timer
);
1837 __set_current_state(TASK_RUNNING
);
1839 return !t
.task
? 0 : -EINTR
;
1843 * schedule_hrtimeout_range - sleep until timeout
1844 * @expires: timeout value (ktime_t)
1845 * @delta: slack in expires timeout (ktime_t)
1846 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1848 * Make the current task sleep until the given expiry time has
1849 * elapsed. The routine will return immediately unless
1850 * the current task state has been set (see set_current_state()).
1852 * The @delta argument gives the kernel the freedom to schedule the
1853 * actual wakeup to a time that is both power and performance friendly.
1854 * The kernel give the normal best effort behavior for "@expires+@delta",
1855 * but may decide to fire the timer earlier, but no earlier than @expires.
1857 * You can set the task state as follows -
1859 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1860 * pass before the routine returns.
1862 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1863 * delivered to the current task.
1865 * The current task state is guaranteed to be TASK_RUNNING when this
1868 * Returns 0 when the timer has expired otherwise -EINTR
1870 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1871 const enum hrtimer_mode mode
)
1873 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1876 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1879 * schedule_hrtimeout - sleep until timeout
1880 * @expires: timeout value (ktime_t)
1881 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1883 * Make the current task sleep until the given expiry time has
1884 * elapsed. The routine will return immediately unless
1885 * the current task state has been set (see set_current_state()).
1887 * You can set the task state as follows -
1889 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1890 * pass before the routine returns.
1892 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1893 * delivered to the current task.
1895 * The current task state is guaranteed to be TASK_RUNNING when this
1898 * Returns 0 when the timer has expired otherwise -EINTR
1900 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1901 const enum hrtimer_mode mode
)
1903 return schedule_hrtimeout_range(expires
, 0, mode
);
1905 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);