1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
46 * 82562GT-3 10/100 Network Connection
49 #include <linux/netdevice.h>
50 #include <linux/ethtool.h>
51 #include <linux/delay.h>
52 #include <linux/pci.h>
56 #define ICH_FLASH_GFPREG 0x0000
57 #define ICH_FLASH_HSFSTS 0x0004
58 #define ICH_FLASH_HSFCTL 0x0006
59 #define ICH_FLASH_FADDR 0x0008
60 #define ICH_FLASH_FDATA0 0x0010
61 #define ICH_FLASH_PR0 0x0074
63 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
64 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
65 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
66 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
67 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
69 #define ICH_CYCLE_READ 0
70 #define ICH_CYCLE_WRITE 2
71 #define ICH_CYCLE_ERASE 3
73 #define FLASH_GFPREG_BASE_MASK 0x1FFF
74 #define FLASH_SECTOR_ADDR_SHIFT 12
76 #define ICH_FLASH_SEG_SIZE_256 256
77 #define ICH_FLASH_SEG_SIZE_4K 4096
78 #define ICH_FLASH_SEG_SIZE_8K 8192
79 #define ICH_FLASH_SEG_SIZE_64K 65536
82 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
84 #define E1000_ICH_MNG_IAMT_MODE 0x2
86 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
87 (ID_LED_DEF1_OFF2 << 8) | \
88 (ID_LED_DEF1_ON2 << 4) | \
91 #define E1000_ICH_NVM_SIG_WORD 0x13
92 #define E1000_ICH_NVM_SIG_MASK 0xC000
94 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
96 #define E1000_FEXTNVM_SW_CONFIG 1
97 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
99 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
101 #define E1000_ICH_RAR_ENTRIES 7
103 #define PHY_PAGE_SHIFT 5
104 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
105 ((reg) & MAX_PHY_REG_ADDRESS))
106 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
107 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
109 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
110 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
111 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
113 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
114 /* Offset 04h HSFSTS */
115 union ich8_hws_flash_status
{
117 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
118 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
119 u16 dael
:1; /* bit 2 Direct Access error Log */
120 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
121 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
122 u16 reserved1
:2; /* bit 13:6 Reserved */
123 u16 reserved2
:6; /* bit 13:6 Reserved */
124 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
125 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
130 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
131 /* Offset 06h FLCTL */
132 union ich8_hws_flash_ctrl
{
133 struct ich8_hsflctl
{
134 u16 flcgo
:1; /* 0 Flash Cycle Go */
135 u16 flcycle
:2; /* 2:1 Flash Cycle */
136 u16 reserved
:5; /* 7:3 Reserved */
137 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
138 u16 flockdn
:6; /* 15:10 Reserved */
143 /* ICH Flash Region Access Permissions */
144 union ich8_hws_flash_regacc
{
146 u32 grra
:8; /* 0:7 GbE region Read Access */
147 u32 grwa
:8; /* 8:15 GbE region Write Access */
148 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
149 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
154 /* ICH Flash Protected Region */
155 union ich8_flash_protected_range
{
157 u32 base
:13; /* 0:12 Protected Range Base */
158 u32 reserved1
:2; /* 13:14 Reserved */
159 u32 rpe
:1; /* 15 Read Protection Enable */
160 u32 limit
:13; /* 16:28 Protected Range Limit */
161 u32 reserved2
:2; /* 29:30 Reserved */
162 u32 wpe
:1; /* 31 Write Protection Enable */
167 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
168 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
169 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
170 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
171 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
172 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
173 u32 offset
, u8 byte
);
174 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
176 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
178 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
179 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
181 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
183 return readw(hw
->flash_address
+ reg
);
186 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
188 return readl(hw
->flash_address
+ reg
);
191 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
193 writew(val
, hw
->flash_address
+ reg
);
196 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
198 writel(val
, hw
->flash_address
+ reg
);
201 #define er16flash(reg) __er16flash(hw, (reg))
202 #define er32flash(reg) __er32flash(hw, (reg))
203 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
204 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
207 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
208 * @hw: pointer to the HW structure
210 * Initialize family-specific PHY parameters and function pointers.
212 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
214 struct e1000_phy_info
*phy
= &hw
->phy
;
219 phy
->reset_delay_us
= 100;
222 * We may need to do this twice - once for IGP and if that fails,
223 * we'll set BM func pointers and try again
225 ret_val
= e1000e_determine_phy_address(hw
);
227 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
228 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
229 ret_val
= e1000e_determine_phy_address(hw
);
235 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
238 ret_val
= e1000e_get_phy_id(hw
);
245 case IGP03E1000_E_PHY_ID
:
246 phy
->type
= e1000_phy_igp_3
;
247 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
250 case IFE_PLUS_E_PHY_ID
:
252 phy
->type
= e1000_phy_ife
;
253 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
255 case BME1000_E_PHY_ID
:
256 phy
->type
= e1000_phy_bm
;
257 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
258 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
259 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
260 hw
->phy
.ops
.commit_phy
= e1000e_phy_sw_reset
;
263 return -E1000_ERR_PHY
;
271 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
272 * @hw: pointer to the HW structure
274 * Initialize family-specific NVM parameters and function
277 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
279 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
280 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
282 u32 sector_base_addr
;
286 /* Can't read flash registers if the register set isn't mapped. */
287 if (!hw
->flash_address
) {
288 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
289 return -E1000_ERR_CONFIG
;
292 nvm
->type
= e1000_nvm_flash_sw
;
294 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
297 * sector_X_addr is a "sector"-aligned address (4096 bytes)
298 * Add 1 to sector_end_addr since this sector is included in
301 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
302 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
304 /* flash_base_addr is byte-aligned */
305 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
308 * find total size of the NVM, then cut in half since the total
309 * size represents two separate NVM banks.
311 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
312 << FLASH_SECTOR_ADDR_SHIFT
;
313 nvm
->flash_bank_size
/= 2;
314 /* Adjust to word count */
315 nvm
->flash_bank_size
/= sizeof(u16
);
317 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
319 /* Clear shadow ram */
320 for (i
= 0; i
< nvm
->word_size
; i
++) {
321 dev_spec
->shadow_ram
[i
].modified
= 0;
322 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
329 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
330 * @hw: pointer to the HW structure
332 * Initialize family-specific MAC parameters and function
335 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
337 struct e1000_hw
*hw
= &adapter
->hw
;
338 struct e1000_mac_info
*mac
= &hw
->mac
;
340 /* Set media type function pointer */
341 hw
->phy
.media_type
= e1000_media_type_copper
;
343 /* Set mta register count */
344 mac
->mta_reg_count
= 32;
345 /* Set rar entry count */
346 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
347 if (mac
->type
== e1000_ich8lan
)
348 mac
->rar_entry_count
--;
349 /* Set if manageability features are enabled. */
350 mac
->arc_subsystem_valid
= 1;
352 /* Enable PCS Lock-loss workaround for ICH8 */
353 if (mac
->type
== e1000_ich8lan
)
354 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
359 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
361 struct e1000_hw
*hw
= &adapter
->hw
;
364 rc
= e1000_init_mac_params_ich8lan(adapter
);
368 rc
= e1000_init_nvm_params_ich8lan(hw
);
372 rc
= e1000_init_phy_params_ich8lan(hw
);
376 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
377 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
378 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
383 static DEFINE_MUTEX(nvm_mutex
);
384 static pid_t nvm_owner
= -1;
387 * e1000_acquire_swflag_ich8lan - Acquire software control flag
388 * @hw: pointer to the HW structure
390 * Acquires the software control flag for performing NVM and PHY
391 * operations. This is a function pointer entry point only called by
392 * read/write routines for the PHY and NVM parts.
394 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
397 u32 timeout
= PHY_CFG_TIMEOUT
;
401 if (!mutex_trylock(&nvm_mutex
)) {
402 WARN(1, KERN_ERR
"e1000e mutex contention. Owned by pid %d\n",
404 mutex_lock(&nvm_mutex
);
406 nvm_owner
= current
->pid
;
409 extcnf_ctrl
= er32(EXTCNF_CTRL
);
410 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
411 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
413 extcnf_ctrl
= er32(EXTCNF_CTRL
);
414 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
421 hw_dbg(hw
, "FW or HW has locked the resource for too long.\n");
423 mutex_unlock(&nvm_mutex
);
424 return -E1000_ERR_CONFIG
;
431 * e1000_release_swflag_ich8lan - Release software control flag
432 * @hw: pointer to the HW structure
434 * Releases the software control flag for performing NVM and PHY operations.
435 * This is a function pointer entry point only called by read/write
436 * routines for the PHY and NVM parts.
438 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
442 extcnf_ctrl
= er32(EXTCNF_CTRL
);
443 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
444 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
447 mutex_unlock(&nvm_mutex
);
451 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
452 * @hw: pointer to the HW structure
454 * Checks if firmware is blocking the reset of the PHY.
455 * This is a function pointer entry point only called by
458 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
464 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
468 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
469 * @hw: pointer to the HW structure
471 * Forces the speed and duplex settings of the PHY.
472 * This is a function pointer entry point only called by
473 * PHY setup routines.
475 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
477 struct e1000_phy_info
*phy
= &hw
->phy
;
482 if (phy
->type
!= e1000_phy_ife
) {
483 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
487 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
491 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
493 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
497 /* Disable MDI-X support for 10/100 */
498 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
502 data
&= ~IFE_PMC_AUTO_MDIX
;
503 data
&= ~IFE_PMC_FORCE_MDIX
;
505 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
509 hw_dbg(hw
, "IFE PMC: %X\n", data
);
513 if (phy
->autoneg_wait_to_complete
) {
514 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
516 ret_val
= e1000e_phy_has_link_generic(hw
,
524 hw_dbg(hw
, "Link taking longer than expected.\n");
527 ret_val
= e1000e_phy_has_link_generic(hw
,
539 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
540 * @hw: pointer to the HW structure
543 * This is a function pointer entry point called by drivers
544 * or other shared routines.
546 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
548 struct e1000_phy_info
*phy
= &hw
->phy
;
550 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
552 u16 loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
553 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
555 ret_val
= e1000e_phy_hw_reset_generic(hw
);
560 * Initialize the PHY from the NVM on ICH platforms. This
561 * is needed due to an issue where the NVM configuration is
562 * not properly autoloaded after power transitions.
563 * Therefore, after each PHY reset, we will load the
564 * configuration data out of the NVM manually.
566 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
567 struct e1000_adapter
*adapter
= hw
->adapter
;
569 /* Check if SW needs configure the PHY */
570 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
571 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
572 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
574 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
576 data
= er32(FEXTNVM
);
577 if (!(data
& sw_cfg_mask
))
580 /* Wait for basic configuration completes before proceeding*/
583 data
&= E1000_STATUS_LAN_INIT_DONE
;
585 } while ((!data
) && --loop
);
588 * If basic configuration is incomplete before the above loop
589 * count reaches 0, loading the configuration from NVM will
590 * leave the PHY in a bad state possibly resulting in no link.
593 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
596 /* Clear the Init Done bit for the next init event */
598 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
602 * Make sure HW does not configure LCD from PHY
603 * extended configuration before SW configuration
605 data
= er32(EXTCNF_CTRL
);
606 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
609 cnf_size
= er32(EXTCNF_SIZE
);
610 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
611 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
615 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
616 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
618 /* Configure LCD from extended configuration region. */
620 /* cnf_base_addr is in DWORD */
621 word_addr
= (u16
)(cnf_base_addr
<< 1);
623 for (i
= 0; i
< cnf_size
; i
++) {
624 ret_val
= e1000_read_nvm(hw
,
631 ret_val
= e1000_read_nvm(hw
,
632 (word_addr
+ i
* 2 + 1),
638 /* Save off the PHY page for future writes. */
639 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
644 reg_addr
|= phy_page
;
646 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
656 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
657 * @hw: pointer to the HW structure
659 * Populates "phy" structure with various feature states.
660 * This function is only called by other family-specific
663 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
665 struct e1000_phy_info
*phy
= &hw
->phy
;
670 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
675 hw_dbg(hw
, "Phy info is only valid if link is up\n");
676 return -E1000_ERR_CONFIG
;
679 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
682 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
684 if (phy
->polarity_correction
) {
685 ret_val
= e1000_check_polarity_ife_ich8lan(hw
);
689 /* Polarity is forced */
690 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
691 ? e1000_rev_polarity_reversed
692 : e1000_rev_polarity_normal
;
695 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
699 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
701 /* The following parameters are undefined for 10/100 operation. */
702 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
703 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
704 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
710 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
711 * @hw: pointer to the HW structure
713 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
714 * This is a function pointer entry point called by drivers
715 * or other shared routines.
717 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
719 switch (hw
->phy
.type
) {
721 return e1000_get_phy_info_ife_ich8lan(hw
);
723 case e1000_phy_igp_3
:
725 return e1000e_get_phy_info_igp(hw
);
731 return -E1000_ERR_PHY_TYPE
;
735 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
736 * @hw: pointer to the HW structure
738 * Polarity is determined on the polarity reversal feature being enabled.
739 * This function is only called by other family-specific
742 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
744 struct e1000_phy_info
*phy
= &hw
->phy
;
746 u16 phy_data
, offset
, mask
;
749 * Polarity is determined based on the reversal feature being enabled.
751 if (phy
->polarity_correction
) {
752 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
753 mask
= IFE_PESC_POLARITY_REVERSED
;
755 offset
= IFE_PHY_SPECIAL_CONTROL
;
756 mask
= IFE_PSC_FORCE_POLARITY
;
759 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
762 phy
->cable_polarity
= (phy_data
& mask
)
763 ? e1000_rev_polarity_reversed
764 : e1000_rev_polarity_normal
;
770 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
771 * @hw: pointer to the HW structure
772 * @active: TRUE to enable LPLU, FALSE to disable
774 * Sets the LPLU D0 state according to the active flag. When
775 * activating LPLU this function also disables smart speed
776 * and vice versa. LPLU will not be activated unless the
777 * device autonegotiation advertisement meets standards of
778 * either 10 or 10/100 or 10/100/1000 at all duplexes.
779 * This is a function pointer entry point only called by
780 * PHY setup routines.
782 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
784 struct e1000_phy_info
*phy
= &hw
->phy
;
789 if (phy
->type
== e1000_phy_ife
)
792 phy_ctrl
= er32(PHY_CTRL
);
795 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
796 ew32(PHY_CTRL
, phy_ctrl
);
799 * Call gig speed drop workaround on LPLU before accessing
802 if ((hw
->mac
.type
== e1000_ich8lan
) &&
803 (hw
->phy
.type
== e1000_phy_igp_3
))
804 e1000e_gig_downshift_workaround_ich8lan(hw
);
806 /* When LPLU is enabled, we should disable SmartSpeed */
807 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
808 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
809 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
813 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
814 ew32(PHY_CTRL
, phy_ctrl
);
817 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
818 * during Dx states where the power conservation is most
819 * important. During driver activity we should enable
820 * SmartSpeed, so performance is maintained.
822 if (phy
->smart_speed
== e1000_smart_speed_on
) {
823 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
828 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
829 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
833 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
834 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
839 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
840 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
851 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
852 * @hw: pointer to the HW structure
853 * @active: TRUE to enable LPLU, FALSE to disable
855 * Sets the LPLU D3 state according to the active flag. When
856 * activating LPLU this function also disables smart speed
857 * and vice versa. LPLU will not be activated unless the
858 * device autonegotiation advertisement meets standards of
859 * either 10 or 10/100 or 10/100/1000 at all duplexes.
860 * This is a function pointer entry point only called by
861 * PHY setup routines.
863 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
865 struct e1000_phy_info
*phy
= &hw
->phy
;
870 phy_ctrl
= er32(PHY_CTRL
);
873 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
874 ew32(PHY_CTRL
, phy_ctrl
);
876 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
877 * during Dx states where the power conservation is most
878 * important. During driver activity we should enable
879 * SmartSpeed, so performance is maintained.
881 if (phy
->smart_speed
== e1000_smart_speed_on
) {
882 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
887 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
888 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
892 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
893 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
898 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
899 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
904 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
905 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
906 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
907 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
908 ew32(PHY_CTRL
, phy_ctrl
);
911 * Call gig speed drop workaround on LPLU before accessing
914 if ((hw
->mac
.type
== e1000_ich8lan
) &&
915 (hw
->phy
.type
== e1000_phy_igp_3
))
916 e1000e_gig_downshift_workaround_ich8lan(hw
);
918 /* When LPLU is enabled, we should disable SmartSpeed */
919 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
923 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
924 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
931 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
932 * @hw: pointer to the HW structure
933 * @offset: The offset (in bytes) of the word(s) to read.
934 * @words: Size of data to read in words
935 * @data: Pointer to the word(s) to read at offset.
937 * Reads a word(s) from the NVM using the flash access registers.
939 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
942 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
943 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
948 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
950 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
951 return -E1000_ERR_NVM
;
954 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
958 /* Start with the bank offset, then add the relative offset. */
959 act_offset
= (er32(EECD
) & E1000_EECD_SEC1VAL
)
960 ? nvm
->flash_bank_size
962 act_offset
+= offset
;
964 for (i
= 0; i
< words
; i
++) {
965 if ((dev_spec
->shadow_ram
) &&
966 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
967 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
969 ret_val
= e1000_read_flash_word_ich8lan(hw
,
978 e1000_release_swflag_ich8lan(hw
);
984 * e1000_flash_cycle_init_ich8lan - Initialize flash
985 * @hw: pointer to the HW structure
987 * This function does initial flash setup so that a new read/write/erase cycle
990 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
992 union ich8_hws_flash_status hsfsts
;
993 s32 ret_val
= -E1000_ERR_NVM
;
996 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
998 /* Check if the flash descriptor is valid */
999 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1000 hw_dbg(hw
, "Flash descriptor invalid. "
1001 "SW Sequencing must be used.");
1002 return -E1000_ERR_NVM
;
1005 /* Clear FCERR and DAEL in hw status by writing 1 */
1006 hsfsts
.hsf_status
.flcerr
= 1;
1007 hsfsts
.hsf_status
.dael
= 1;
1009 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1012 * Either we should have a hardware SPI cycle in progress
1013 * bit to check against, in order to start a new cycle or
1014 * FDONE bit should be changed in the hardware so that it
1015 * is 1 after hardware reset, which can then be used as an
1016 * indication whether a cycle is in progress or has been
1020 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1022 * There is no cycle running at present,
1023 * so we can start a cycle
1024 * Begin by setting Flash Cycle Done.
1026 hsfsts
.hsf_status
.flcdone
= 1;
1027 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1031 * otherwise poll for sometime so the current
1032 * cycle has a chance to end before giving up.
1034 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1035 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1036 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1044 * Successful in waiting for previous cycle to timeout,
1045 * now set the Flash Cycle Done.
1047 hsfsts
.hsf_status
.flcdone
= 1;
1048 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1050 hw_dbg(hw
, "Flash controller busy, cannot get access");
1058 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1059 * @hw: pointer to the HW structure
1060 * @timeout: maximum time to wait for completion
1062 * This function starts a flash cycle and waits for its completion.
1064 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1066 union ich8_hws_flash_ctrl hsflctl
;
1067 union ich8_hws_flash_status hsfsts
;
1068 s32 ret_val
= -E1000_ERR_NVM
;
1071 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1072 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1073 hsflctl
.hsf_ctrl
.flcgo
= 1;
1074 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1076 /* wait till FDONE bit is set to 1 */
1078 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1079 if (hsfsts
.hsf_status
.flcdone
== 1)
1082 } while (i
++ < timeout
);
1084 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1091 * e1000_read_flash_word_ich8lan - Read word from flash
1092 * @hw: pointer to the HW structure
1093 * @offset: offset to data location
1094 * @data: pointer to the location for storing the data
1096 * Reads the flash word at offset into data. Offset is converted
1097 * to bytes before read.
1099 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1102 /* Must convert offset into bytes. */
1105 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1109 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1110 * @hw: pointer to the HW structure
1111 * @offset: The offset (in bytes) of the byte or word to read.
1112 * @size: Size of data to read, 1=byte 2=word
1113 * @data: Pointer to the word to store the value read.
1115 * Reads a byte or word from the NVM using the flash access registers.
1117 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1120 union ich8_hws_flash_status hsfsts
;
1121 union ich8_hws_flash_ctrl hsflctl
;
1122 u32 flash_linear_addr
;
1124 s32 ret_val
= -E1000_ERR_NVM
;
1127 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1128 return -E1000_ERR_NVM
;
1130 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1131 hw
->nvm
.flash_base_addr
;
1136 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1140 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1141 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1142 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1143 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1144 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1146 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1148 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1149 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1152 * Check if FCERR is set to 1, if set to 1, clear it
1153 * and try the whole sequence a few more times, else
1154 * read in (shift in) the Flash Data0, the order is
1155 * least significant byte first msb to lsb
1158 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1160 *data
= (u8
)(flash_data
& 0x000000FF);
1161 } else if (size
== 2) {
1162 *data
= (u16
)(flash_data
& 0x0000FFFF);
1167 * If we've gotten here, then things are probably
1168 * completely hosed, but if the error condition is
1169 * detected, it won't hurt to give it another try...
1170 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1172 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1173 if (hsfsts
.hsf_status
.flcerr
== 1) {
1174 /* Repeat for some time before giving up. */
1176 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1177 hw_dbg(hw
, "Timeout error - flash cycle "
1178 "did not complete.");
1182 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1188 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1189 * @hw: pointer to the HW structure
1190 * @offset: The offset (in bytes) of the word(s) to write.
1191 * @words: Size of data to write in words
1192 * @data: Pointer to the word(s) to write at offset.
1194 * Writes a byte or word to the NVM using the flash access registers.
1196 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1199 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1200 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1204 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1206 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1207 return -E1000_ERR_NVM
;
1210 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1214 for (i
= 0; i
< words
; i
++) {
1215 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1216 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1219 e1000_release_swflag_ich8lan(hw
);
1225 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1226 * @hw: pointer to the HW structure
1228 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1229 * which writes the checksum to the shadow ram. The changes in the shadow
1230 * ram are then committed to the EEPROM by processing each bank at a time
1231 * checking for the modified bit and writing only the pending changes.
1232 * After a successful commit, the shadow ram is cleared and is ready for
1235 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1237 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1238 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1239 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
;
1243 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1247 if (nvm
->type
!= e1000_nvm_flash_sw
)
1250 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1255 * We're writing to the opposite bank so if we're on bank 1,
1256 * write to bank 0 etc. We also need to erase the segment that
1257 * is going to be written
1259 if (!(er32(EECD
) & E1000_EECD_SEC1VAL
)) {
1260 new_bank_offset
= nvm
->flash_bank_size
;
1261 old_bank_offset
= 0;
1262 e1000_erase_flash_bank_ich8lan(hw
, 1);
1264 old_bank_offset
= nvm
->flash_bank_size
;
1265 new_bank_offset
= 0;
1266 e1000_erase_flash_bank_ich8lan(hw
, 0);
1269 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1271 * Determine whether to write the value stored
1272 * in the other NVM bank or a modified value stored
1275 if (dev_spec
->shadow_ram
[i
].modified
) {
1276 data
= dev_spec
->shadow_ram
[i
].value
;
1278 e1000_read_flash_word_ich8lan(hw
,
1279 i
+ old_bank_offset
,
1284 * If the word is 0x13, then make sure the signature bits
1285 * (15:14) are 11b until the commit has completed.
1286 * This will allow us to write 10b which indicates the
1287 * signature is valid. We want to do this after the write
1288 * has completed so that we don't mark the segment valid
1289 * while the write is still in progress
1291 if (i
== E1000_ICH_NVM_SIG_WORD
)
1292 data
|= E1000_ICH_NVM_SIG_MASK
;
1294 /* Convert offset to bytes. */
1295 act_offset
= (i
+ new_bank_offset
) << 1;
1298 /* Write the bytes to the new bank. */
1299 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1306 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1314 * Don't bother writing the segment valid bits if sector
1315 * programming failed.
1318 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1319 hw_dbg(hw
, "Flash commit failed.\n");
1320 e1000_release_swflag_ich8lan(hw
);
1325 * Finally validate the new segment by setting bit 15:14
1326 * to 10b in word 0x13 , this can be done without an
1327 * erase as well since these bits are 11 to start with
1328 * and we need to change bit 14 to 0b
1330 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1331 e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1333 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1337 e1000_release_swflag_ich8lan(hw
);
1342 * And invalidate the previously valid segment by setting
1343 * its signature word (0x13) high_byte to 0b. This can be
1344 * done without an erase because flash erase sets all bits
1345 * to 1's. We can write 1's to 0's without an erase
1347 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1348 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1350 e1000_release_swflag_ich8lan(hw
);
1354 /* Great! Everything worked, we can now clear the cached entries. */
1355 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1356 dev_spec
->shadow_ram
[i
].modified
= 0;
1357 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1360 e1000_release_swflag_ich8lan(hw
);
1363 * Reload the EEPROM, or else modifications will not appear
1364 * until after the next adapter reset.
1366 e1000e_reload_nvm(hw
);
1373 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1374 * @hw: pointer to the HW structure
1376 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1377 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1378 * calculated, in which case we need to calculate the checksum and set bit 6.
1380 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1386 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1387 * needs to be fixed. This bit is an indication that the NVM
1388 * was prepared by OEM software and did not calculate the
1389 * checksum...a likely scenario.
1391 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1395 if ((data
& 0x40) == 0) {
1397 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1400 ret_val
= e1000e_update_nvm_checksum(hw
);
1405 return e1000e_validate_nvm_checksum_generic(hw
);
1409 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1410 * @hw: pointer to the HW structure
1412 * To prevent malicious write/erase of the NVM, set it to be read-only
1413 * so that the hardware ignores all write/erase cycles of the NVM via
1414 * the flash control registers. The shadow-ram copy of the NVM will
1415 * still be updated, however any updates to this copy will not stick
1416 * across driver reloads.
1418 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
1420 union ich8_flash_protected_range pr0
;
1421 union ich8_hws_flash_status hsfsts
;
1425 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1429 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
1431 /* Write-protect GbE Sector of NVM */
1432 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
1433 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
1434 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
1435 pr0
.range
.wpe
= true;
1436 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
1439 * Lock down a subset of GbE Flash Control Registers, e.g.
1440 * PR0 to prevent the write-protection from being lifted.
1441 * Once FLOCKDN is set, the registers protected by it cannot
1442 * be written until FLOCKDN is cleared by a hardware reset.
1444 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1445 hsfsts
.hsf_status
.flockdn
= true;
1446 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1448 e1000_release_swflag_ich8lan(hw
);
1452 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1453 * @hw: pointer to the HW structure
1454 * @offset: The offset (in bytes) of the byte/word to read.
1455 * @size: Size of data to read, 1=byte 2=word
1456 * @data: The byte(s) to write to the NVM.
1458 * Writes one/two bytes to the NVM using the flash access registers.
1460 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1463 union ich8_hws_flash_status hsfsts
;
1464 union ich8_hws_flash_ctrl hsflctl
;
1465 u32 flash_linear_addr
;
1470 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1471 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1472 return -E1000_ERR_NVM
;
1474 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1475 hw
->nvm
.flash_base_addr
;
1480 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1484 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1485 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1486 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1487 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1488 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1490 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1493 flash_data
= (u32
)data
& 0x00FF;
1495 flash_data
= (u32
)data
;
1497 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1500 * check if FCERR is set to 1 , if set to 1, clear it
1501 * and try the whole sequence a few more times else done
1503 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1504 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1509 * If we're here, then things are most likely
1510 * completely hosed, but if the error condition
1511 * is detected, it won't hurt to give it another
1512 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1514 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1515 if (hsfsts
.hsf_status
.flcerr
== 1)
1516 /* Repeat for some time before giving up. */
1518 if (hsfsts
.hsf_status
.flcdone
== 0) {
1519 hw_dbg(hw
, "Timeout error - flash cycle "
1520 "did not complete.");
1523 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1529 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1530 * @hw: pointer to the HW structure
1531 * @offset: The index of the byte to read.
1532 * @data: The byte to write to the NVM.
1534 * Writes a single byte to the NVM using the flash access registers.
1536 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1539 u16 word
= (u16
)data
;
1541 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1545 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1546 * @hw: pointer to the HW structure
1547 * @offset: The offset of the byte to write.
1548 * @byte: The byte to write to the NVM.
1550 * Writes a single byte to the NVM using the flash access registers.
1551 * Goes through a retry algorithm before giving up.
1553 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1554 u32 offset
, u8 byte
)
1557 u16 program_retries
;
1559 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1563 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1564 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1566 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1570 if (program_retries
== 100)
1571 return -E1000_ERR_NVM
;
1577 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1578 * @hw: pointer to the HW structure
1579 * @bank: 0 for first bank, 1 for second bank, etc.
1581 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1582 * bank N is 4096 * N + flash_reg_addr.
1584 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
1586 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1587 union ich8_hws_flash_status hsfsts
;
1588 union ich8_hws_flash_ctrl hsflctl
;
1589 u32 flash_linear_addr
;
1590 /* bank size is in 16bit words - adjust to bytes */
1591 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
1598 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1601 * Determine HW Sector size: Read BERASE bits of hw flash status
1603 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1604 * consecutive sectors. The start index for the nth Hw sector
1605 * can be calculated as = bank * 4096 + n * 256
1606 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1607 * The start index for the nth Hw sector can be calculated
1609 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1610 * (ich9 only, otherwise error condition)
1611 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1613 switch (hsfsts
.hsf_status
.berasesz
) {
1615 /* Hw sector size 256 */
1616 sector_size
= ICH_FLASH_SEG_SIZE_256
;
1617 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
1620 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
1621 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_4K
;
1624 if (hw
->mac
.type
== e1000_ich9lan
) {
1625 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
1626 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_8K
;
1628 return -E1000_ERR_NVM
;
1632 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
1633 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_64K
;
1636 return -E1000_ERR_NVM
;
1639 /* Start with the base address, then add the sector offset. */
1640 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
1641 flash_linear_addr
+= (bank
) ? (sector_size
* iteration
) : 0;
1643 for (j
= 0; j
< iteration
; j
++) {
1646 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1651 * Write a value 11 (block Erase) in Flash
1652 * Cycle field in hw flash control
1654 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1655 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
1656 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1659 * Write the last 24 bits of an index within the
1660 * block into Flash Linear address field in Flash
1663 flash_linear_addr
+= (j
* sector_size
);
1664 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1666 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1667 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
1672 * Check if FCERR is set to 1. If 1,
1673 * clear it and try the whole sequence
1674 * a few more times else Done
1676 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1677 if (hsfsts
.hsf_status
.flcerr
== 1)
1678 /* repeat for some time before giving up */
1680 else if (hsfsts
.hsf_status
.flcdone
== 0)
1682 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
1689 * e1000_valid_led_default_ich8lan - Set the default LED settings
1690 * @hw: pointer to the HW structure
1691 * @data: Pointer to the LED settings
1693 * Reads the LED default settings from the NVM to data. If the NVM LED
1694 * settings is all 0's or F's, set the LED default to a valid LED default
1697 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
1701 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1703 hw_dbg(hw
, "NVM Read Error\n");
1707 if (*data
== ID_LED_RESERVED_0000
||
1708 *data
== ID_LED_RESERVED_FFFF
)
1709 *data
= ID_LED_DEFAULT_ICH8LAN
;
1715 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1716 * @hw: pointer to the HW structure
1718 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1719 * register, so the the bus width is hard coded.
1721 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
1723 struct e1000_bus_info
*bus
= &hw
->bus
;
1726 ret_val
= e1000e_get_bus_info_pcie(hw
);
1729 * ICH devices are "PCI Express"-ish. They have
1730 * a configuration space, but do not contain
1731 * PCI Express Capability registers, so bus width
1732 * must be hardcoded.
1734 if (bus
->width
== e1000_bus_width_unknown
)
1735 bus
->width
= e1000_bus_width_pcie_x1
;
1741 * e1000_reset_hw_ich8lan - Reset the hardware
1742 * @hw: pointer to the HW structure
1744 * Does a full reset of the hardware which includes a reset of the PHY and
1747 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
1753 * Prevent the PCI-E bus from sticking if there is no TLP connection
1754 * on the last TLP read/write transaction when MAC is reset.
1756 ret_val
= e1000e_disable_pcie_master(hw
);
1758 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
1761 hw_dbg(hw
, "Masking off all interrupts\n");
1762 ew32(IMC
, 0xffffffff);
1765 * Disable the Transmit and Receive units. Then delay to allow
1766 * any pending transactions to complete before we hit the MAC
1767 * with the global reset.
1770 ew32(TCTL
, E1000_TCTL_PSP
);
1775 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1776 if (hw
->mac
.type
== e1000_ich8lan
) {
1777 /* Set Tx and Rx buffer allocation to 8k apiece. */
1778 ew32(PBA
, E1000_PBA_8K
);
1779 /* Set Packet Buffer Size to 16k. */
1780 ew32(PBS
, E1000_PBS_16K
);
1785 if (!e1000_check_reset_block(hw
)) {
1787 * PHY HW reset requires MAC CORE reset at the same
1788 * time to make sure the interface between MAC and the
1789 * external PHY is reset.
1791 ctrl
|= E1000_CTRL_PHY_RST
;
1793 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1794 hw_dbg(hw
, "Issuing a global reset to ich8lan");
1795 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
1798 /* release the swflag because it is not reset by hardware reset */
1799 e1000_release_swflag_ich8lan(hw
);
1801 ret_val
= e1000e_get_auto_rd_done(hw
);
1804 * When auto config read does not complete, do not
1805 * return with an error. This can happen in situations
1806 * where there is no eeprom and prevents getting link.
1808 hw_dbg(hw
, "Auto Read Done did not complete\n");
1811 ew32(IMC
, 0xffffffff);
1814 kab
= er32(KABGTXD
);
1815 kab
|= E1000_KABGTXD_BGSQLBIAS
;
1822 * e1000_init_hw_ich8lan - Initialize the hardware
1823 * @hw: pointer to the HW structure
1825 * Prepares the hardware for transmit and receive by doing the following:
1826 * - initialize hardware bits
1827 * - initialize LED identification
1828 * - setup receive address registers
1829 * - setup flow control
1830 * - setup transmit descriptors
1831 * - clear statistics
1833 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
1835 struct e1000_mac_info
*mac
= &hw
->mac
;
1836 u32 ctrl_ext
, txdctl
, snoop
;
1840 e1000_initialize_hw_bits_ich8lan(hw
);
1842 /* Initialize identification LED */
1843 ret_val
= e1000e_id_led_init(hw
);
1845 hw_dbg(hw
, "Error initializing identification LED\n");
1849 /* Setup the receive address. */
1850 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
1852 /* Zero out the Multicast HASH table */
1853 hw_dbg(hw
, "Zeroing the MTA\n");
1854 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1855 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1857 /* Setup link and flow control */
1858 ret_val
= e1000_setup_link_ich8lan(hw
);
1860 /* Set the transmit descriptor write-back policy for both queues */
1861 txdctl
= er32(TXDCTL(0));
1862 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1863 E1000_TXDCTL_FULL_TX_DESC_WB
;
1864 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1865 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1866 ew32(TXDCTL(0), txdctl
);
1867 txdctl
= er32(TXDCTL(1));
1868 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1869 E1000_TXDCTL_FULL_TX_DESC_WB
;
1870 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1871 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1872 ew32(TXDCTL(1), txdctl
);
1875 * ICH8 has opposite polarity of no_snoop bits.
1876 * By default, we should use snoop behavior.
1878 if (mac
->type
== e1000_ich8lan
)
1879 snoop
= PCIE_ICH8_SNOOP_ALL
;
1881 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
1882 e1000e_set_pcie_no_snoop(hw
, snoop
);
1884 ctrl_ext
= er32(CTRL_EXT
);
1885 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
1886 ew32(CTRL_EXT
, ctrl_ext
);
1889 * Clear all of the statistics registers (clear on read). It is
1890 * important that we do this after we have tried to establish link
1891 * because the symbol error count will increment wildly if there
1894 e1000_clear_hw_cntrs_ich8lan(hw
);
1899 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1900 * @hw: pointer to the HW structure
1902 * Sets/Clears required hardware bits necessary for correctly setting up the
1903 * hardware for transmit and receive.
1905 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
1909 /* Extended Device Control */
1910 reg
= er32(CTRL_EXT
);
1912 ew32(CTRL_EXT
, reg
);
1914 /* Transmit Descriptor Control 0 */
1915 reg
= er32(TXDCTL(0));
1917 ew32(TXDCTL(0), reg
);
1919 /* Transmit Descriptor Control 1 */
1920 reg
= er32(TXDCTL(1));
1922 ew32(TXDCTL(1), reg
);
1924 /* Transmit Arbitration Control 0 */
1925 reg
= er32(TARC(0));
1926 if (hw
->mac
.type
== e1000_ich8lan
)
1927 reg
|= (1 << 28) | (1 << 29);
1928 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1931 /* Transmit Arbitration Control 1 */
1932 reg
= er32(TARC(1));
1933 if (er32(TCTL
) & E1000_TCTL_MULR
)
1937 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
1941 if (hw
->mac
.type
== e1000_ich8lan
) {
1949 * e1000_setup_link_ich8lan - Setup flow control and link settings
1950 * @hw: pointer to the HW structure
1952 * Determines which flow control settings to use, then configures flow
1953 * control. Calls the appropriate media-specific link configuration
1954 * function. Assuming the adapter has a valid link partner, a valid link
1955 * should be established. Assumes the hardware has previously been reset
1956 * and the transmitter and receiver are not enabled.
1958 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
1962 if (e1000_check_reset_block(hw
))
1966 * ICH parts do not have a word in the NVM to determine
1967 * the default flow control setting, so we explicitly
1970 if (hw
->fc
.type
== e1000_fc_default
)
1971 hw
->fc
.type
= e1000_fc_full
;
1973 hw
->fc
.original_type
= hw
->fc
.type
;
1975 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
1977 /* Continue to configure the copper link. */
1978 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
1982 ew32(FCTTV
, hw
->fc
.pause_time
);
1984 return e1000e_set_fc_watermarks(hw
);
1988 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1989 * @hw: pointer to the HW structure
1991 * Configures the kumeran interface to the PHY to wait the appropriate time
1992 * when polling the PHY, then call the generic setup_copper_link to finish
1993 * configuring the copper link.
1995 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2002 ctrl
|= E1000_CTRL_SLU
;
2003 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2007 * Set the mac to wait the maximum time between each iteration
2008 * and increase the max iterations when polling the phy;
2009 * this fixes erroneous timeouts at 10Mbps.
2011 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
2014 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
2018 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
2022 if (hw
->phy
.type
== e1000_phy_igp_3
) {
2023 ret_val
= e1000e_copper_link_setup_igp(hw
);
2026 } else if (hw
->phy
.type
== e1000_phy_bm
) {
2027 ret_val
= e1000e_copper_link_setup_m88(hw
);
2032 if (hw
->phy
.type
== e1000_phy_ife
) {
2033 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
2037 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2039 switch (hw
->phy
.mdix
) {
2041 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2044 reg_data
|= IFE_PMC_FORCE_MDIX
;
2048 reg_data
|= IFE_PMC_AUTO_MDIX
;
2051 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
2055 return e1000e_setup_copper_link(hw
);
2059 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2060 * @hw: pointer to the HW structure
2061 * @speed: pointer to store current link speed
2062 * @duplex: pointer to store the current link duplex
2064 * Calls the generic get_speed_and_duplex to retrieve the current link
2065 * information and then calls the Kumeran lock loss workaround for links at
2068 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
2073 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
2077 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2078 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2079 (*speed
== SPEED_1000
)) {
2080 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2087 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2088 * @hw: pointer to the HW structure
2090 * Work-around for 82566 Kumeran PCS lock loss:
2091 * On link status change (i.e. PCI reset, speed change) and link is up and
2093 * 0) if workaround is optionally disabled do nothing
2094 * 1) wait 1ms for Kumeran link to come up
2095 * 2) check Kumeran Diagnostic register PCS lock loss bit
2096 * 3) if not set the link is locked (all is good), otherwise...
2098 * 5) repeat up to 10 times
2099 * Note: this is only called for IGP3 copper when speed is 1gb.
2101 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2103 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2109 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2113 * Make sure link is up before proceeding. If not just return.
2114 * Attempting this while link is negotiating fouled up link
2117 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2121 for (i
= 0; i
< 10; i
++) {
2122 /* read once to clear */
2123 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2126 /* and again to get new status */
2127 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2131 /* check for PCS lock */
2132 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2135 /* Issue PHY reset */
2136 e1000_phy_hw_reset(hw
);
2139 /* Disable GigE link negotiation */
2140 phy_ctrl
= er32(PHY_CTRL
);
2141 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2142 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2143 ew32(PHY_CTRL
, phy_ctrl
);
2146 * Call gig speed drop workaround on Gig disable before accessing
2149 e1000e_gig_downshift_workaround_ich8lan(hw
);
2151 /* unable to acquire PCS lock */
2152 return -E1000_ERR_PHY
;
2156 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2157 * @hw: pointer to the HW structure
2158 * @state: boolean value used to set the current Kumeran workaround state
2160 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2161 * /disabled - FALSE).
2163 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2166 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2168 if (hw
->mac
.type
!= e1000_ich8lan
) {
2169 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2173 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2177 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2178 * @hw: pointer to the HW structure
2180 * Workaround for 82566 power-down on D3 entry:
2181 * 1) disable gigabit link
2182 * 2) write VR power-down enable
2184 * Continue if successful, else issue LCD reset and repeat
2186 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2192 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2195 /* Try the workaround twice (if needed) */
2198 reg
= er32(PHY_CTRL
);
2199 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2200 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2201 ew32(PHY_CTRL
, reg
);
2204 * Call gig speed drop workaround on Gig disable before
2205 * accessing any PHY registers
2207 if (hw
->mac
.type
== e1000_ich8lan
)
2208 e1000e_gig_downshift_workaround_ich8lan(hw
);
2210 /* Write VR power-down enable */
2211 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2212 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2213 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2215 /* Read it back and test */
2216 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2217 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2218 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2221 /* Issue PHY reset and repeat at most one more time */
2223 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2229 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2230 * @hw: pointer to the HW structure
2232 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2233 * LPLU, Gig disable, MDIC PHY reset):
2234 * 1) Set Kumeran Near-end loopback
2235 * 2) Clear Kumeran Near-end loopback
2236 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2238 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2243 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2244 (hw
->phy
.type
!= e1000_phy_igp_3
))
2247 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2251 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2252 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2256 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2257 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2262 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2263 * @hw: pointer to the HW structure
2265 * During S0 to Sx transition, it is possible the link remains at gig
2266 * instead of negotiating to a lower speed. Before going to Sx, set
2267 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2270 * Should only be called for ICH9 devices.
2272 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
2276 if (hw
->mac
.type
== e1000_ich9lan
) {
2277 phy_ctrl
= er32(PHY_CTRL
);
2278 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
2279 E1000_PHY_CTRL_GBE_DISABLE
;
2280 ew32(PHY_CTRL
, phy_ctrl
);
2287 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2288 * @hw: pointer to the HW structure
2290 * Return the LED back to the default configuration.
2292 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2294 if (hw
->phy
.type
== e1000_phy_ife
)
2295 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2297 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2302 * e1000_led_on_ich8lan - Turn LEDs on
2303 * @hw: pointer to the HW structure
2307 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2309 if (hw
->phy
.type
== e1000_phy_ife
)
2310 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2311 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2313 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2318 * e1000_led_off_ich8lan - Turn LEDs off
2319 * @hw: pointer to the HW structure
2321 * Turn off the LEDs.
2323 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2325 if (hw
->phy
.type
== e1000_phy_ife
)
2326 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2327 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2329 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2334 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2335 * @hw: pointer to the HW structure
2337 * Clears hardware counters specific to the silicon family and calls
2338 * clear_hw_cntrs_generic to clear all general purpose counters.
2340 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
2344 e1000e_clear_hw_cntrs_base(hw
);
2346 temp
= er32(ALGNERRC
);
2347 temp
= er32(RXERRC
);
2349 temp
= er32(CEXTERR
);
2351 temp
= er32(TSCTFC
);
2353 temp
= er32(MGTPRC
);
2354 temp
= er32(MGTPDC
);
2355 temp
= er32(MGTPTC
);
2358 temp
= er32(ICRXOC
);
2362 static struct e1000_mac_operations ich8_mac_ops
= {
2363 .mng_mode_enab
= E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
2364 .check_for_link
= e1000e_check_for_copper_link
,
2365 .cleanup_led
= e1000_cleanup_led_ich8lan
,
2366 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
2367 .get_bus_info
= e1000_get_bus_info_ich8lan
,
2368 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
2369 .led_on
= e1000_led_on_ich8lan
,
2370 .led_off
= e1000_led_off_ich8lan
,
2371 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
2372 .reset_hw
= e1000_reset_hw_ich8lan
,
2373 .init_hw
= e1000_init_hw_ich8lan
,
2374 .setup_link
= e1000_setup_link_ich8lan
,
2375 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
2378 static struct e1000_phy_operations ich8_phy_ops
= {
2379 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
2380 .check_reset_block
= e1000_check_reset_block_ich8lan
,
2382 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
2383 .get_cfg_done
= e1000e_get_cfg_done
,
2384 .get_cable_length
= e1000e_get_cable_length_igp_2
,
2385 .get_phy_info
= e1000_get_phy_info_ich8lan
,
2386 .read_phy_reg
= e1000e_read_phy_reg_igp
,
2387 .release_phy
= e1000_release_swflag_ich8lan
,
2388 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
2389 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
2390 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
2391 .write_phy_reg
= e1000e_write_phy_reg_igp
,
2394 static struct e1000_nvm_operations ich8_nvm_ops
= {
2395 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
2396 .read_nvm
= e1000_read_nvm_ich8lan
,
2397 .release_nvm
= e1000_release_swflag_ich8lan
,
2398 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
2399 .valid_led_default
= e1000_valid_led_default_ich8lan
,
2400 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
2401 .write_nvm
= e1000_write_nvm_ich8lan
,
2404 struct e1000_info e1000_ich8_info
= {
2405 .mac
= e1000_ich8lan
,
2406 .flags
= FLAG_HAS_WOL
2408 | FLAG_RX_CSUM_ENABLED
2409 | FLAG_HAS_CTRLEXT_ON_LOAD
2414 .get_variants
= e1000_get_variants_ich8lan
,
2415 .mac_ops
= &ich8_mac_ops
,
2416 .phy_ops
= &ich8_phy_ops
,
2417 .nvm_ops
= &ich8_nvm_ops
,
2420 struct e1000_info e1000_ich9_info
= {
2421 .mac
= e1000_ich9lan
,
2422 .flags
= FLAG_HAS_JUMBO_FRAMES
2425 | FLAG_RX_CSUM_ENABLED
2426 | FLAG_HAS_CTRLEXT_ON_LOAD
2432 .get_variants
= e1000_get_variants_ich8lan
,
2433 .mac_ops
= &ich8_mac_ops
,
2434 .phy_ops
= &ich8_phy_ops
,
2435 .nvm_ops
= &ich8_nvm_ops
,