x86: improve UP kernel when CPU-hotplug and SMP is enabled
[linux/fpc-iii.git] / drivers / net / e1000e / ich8lan.c
blobbcd2bc477af29110636abec9920b3f4a76a244b7
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
46 * 82562GT-3 10/100 Network Connection
49 #include <linux/netdevice.h>
50 #include <linux/ethtool.h>
51 #include <linux/delay.h>
52 #include <linux/pci.h>
54 #include "e1000.h"
56 #define ICH_FLASH_GFPREG 0x0000
57 #define ICH_FLASH_HSFSTS 0x0004
58 #define ICH_FLASH_HSFCTL 0x0006
59 #define ICH_FLASH_FADDR 0x0008
60 #define ICH_FLASH_FDATA0 0x0010
61 #define ICH_FLASH_PR0 0x0074
63 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
64 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
65 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
66 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
67 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
69 #define ICH_CYCLE_READ 0
70 #define ICH_CYCLE_WRITE 2
71 #define ICH_CYCLE_ERASE 3
73 #define FLASH_GFPREG_BASE_MASK 0x1FFF
74 #define FLASH_SECTOR_ADDR_SHIFT 12
76 #define ICH_FLASH_SEG_SIZE_256 256
77 #define ICH_FLASH_SEG_SIZE_4K 4096
78 #define ICH_FLASH_SEG_SIZE_8K 8192
79 #define ICH_FLASH_SEG_SIZE_64K 65536
82 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
84 #define E1000_ICH_MNG_IAMT_MODE 0x2
86 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
87 (ID_LED_DEF1_OFF2 << 8) | \
88 (ID_LED_DEF1_ON2 << 4) | \
89 (ID_LED_DEF1_DEF2))
91 #define E1000_ICH_NVM_SIG_WORD 0x13
92 #define E1000_ICH_NVM_SIG_MASK 0xC000
94 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
96 #define E1000_FEXTNVM_SW_CONFIG 1
97 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
99 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
101 #define E1000_ICH_RAR_ENTRIES 7
103 #define PHY_PAGE_SHIFT 5
104 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
105 ((reg) & MAX_PHY_REG_ADDRESS))
106 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
107 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
109 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
110 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
111 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
113 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
114 /* Offset 04h HSFSTS */
115 union ich8_hws_flash_status {
116 struct ich8_hsfsts {
117 u16 flcdone :1; /* bit 0 Flash Cycle Done */
118 u16 flcerr :1; /* bit 1 Flash Cycle Error */
119 u16 dael :1; /* bit 2 Direct Access error Log */
120 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
121 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
122 u16 reserved1 :2; /* bit 13:6 Reserved */
123 u16 reserved2 :6; /* bit 13:6 Reserved */
124 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
125 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
126 } hsf_status;
127 u16 regval;
130 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
131 /* Offset 06h FLCTL */
132 union ich8_hws_flash_ctrl {
133 struct ich8_hsflctl {
134 u16 flcgo :1; /* 0 Flash Cycle Go */
135 u16 flcycle :2; /* 2:1 Flash Cycle */
136 u16 reserved :5; /* 7:3 Reserved */
137 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
138 u16 flockdn :6; /* 15:10 Reserved */
139 } hsf_ctrl;
140 u16 regval;
143 /* ICH Flash Region Access Permissions */
144 union ich8_hws_flash_regacc {
145 struct ich8_flracc {
146 u32 grra :8; /* 0:7 GbE region Read Access */
147 u32 grwa :8; /* 8:15 GbE region Write Access */
148 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
149 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
150 } hsf_flregacc;
151 u16 regval;
154 /* ICH Flash Protected Region */
155 union ich8_flash_protected_range {
156 struct ich8_pr {
157 u32 base:13; /* 0:12 Protected Range Base */
158 u32 reserved1:2; /* 13:14 Reserved */
159 u32 rpe:1; /* 15 Read Protection Enable */
160 u32 limit:13; /* 16:28 Protected Range Limit */
161 u32 reserved2:2; /* 29:30 Reserved */
162 u32 wpe:1; /* 31 Write Protection Enable */
163 } range;
164 u32 regval;
167 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
168 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
169 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
170 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
171 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
172 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
173 u32 offset, u8 byte);
174 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
175 u16 *data);
176 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
177 u8 size, u16 *data);
178 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
179 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
181 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
183 return readw(hw->flash_address + reg);
186 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
188 return readl(hw->flash_address + reg);
191 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
193 writew(val, hw->flash_address + reg);
196 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
198 writel(val, hw->flash_address + reg);
201 #define er16flash(reg) __er16flash(hw, (reg))
202 #define er32flash(reg) __er32flash(hw, (reg))
203 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
204 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
207 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
208 * @hw: pointer to the HW structure
210 * Initialize family-specific PHY parameters and function pointers.
212 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
214 struct e1000_phy_info *phy = &hw->phy;
215 s32 ret_val;
216 u16 i = 0;
218 phy->addr = 1;
219 phy->reset_delay_us = 100;
222 * We may need to do this twice - once for IGP and if that fails,
223 * we'll set BM func pointers and try again
225 ret_val = e1000e_determine_phy_address(hw);
226 if (ret_val) {
227 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
228 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
229 ret_val = e1000e_determine_phy_address(hw);
230 if (ret_val)
231 return ret_val;
234 phy->id = 0;
235 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
236 (i++ < 100)) {
237 msleep(1);
238 ret_val = e1000e_get_phy_id(hw);
239 if (ret_val)
240 return ret_val;
243 /* Verify phy id */
244 switch (phy->id) {
245 case IGP03E1000_E_PHY_ID:
246 phy->type = e1000_phy_igp_3;
247 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
248 break;
249 case IFE_E_PHY_ID:
250 case IFE_PLUS_E_PHY_ID:
251 case IFE_C_E_PHY_ID:
252 phy->type = e1000_phy_ife;
253 phy->autoneg_mask = E1000_ALL_NOT_GIG;
254 break;
255 case BME1000_E_PHY_ID:
256 phy->type = e1000_phy_bm;
257 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
258 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
259 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
260 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
261 break;
262 default:
263 return -E1000_ERR_PHY;
264 break;
267 return 0;
271 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
272 * @hw: pointer to the HW structure
274 * Initialize family-specific NVM parameters and function
275 * pointers.
277 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
279 struct e1000_nvm_info *nvm = &hw->nvm;
280 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
281 u32 gfpreg;
282 u32 sector_base_addr;
283 u32 sector_end_addr;
284 u16 i;
286 /* Can't read flash registers if the register set isn't mapped. */
287 if (!hw->flash_address) {
288 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
289 return -E1000_ERR_CONFIG;
292 nvm->type = e1000_nvm_flash_sw;
294 gfpreg = er32flash(ICH_FLASH_GFPREG);
297 * sector_X_addr is a "sector"-aligned address (4096 bytes)
298 * Add 1 to sector_end_addr since this sector is included in
299 * the overall size.
301 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
302 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
304 /* flash_base_addr is byte-aligned */
305 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
308 * find total size of the NVM, then cut in half since the total
309 * size represents two separate NVM banks.
311 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
312 << FLASH_SECTOR_ADDR_SHIFT;
313 nvm->flash_bank_size /= 2;
314 /* Adjust to word count */
315 nvm->flash_bank_size /= sizeof(u16);
317 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
319 /* Clear shadow ram */
320 for (i = 0; i < nvm->word_size; i++) {
321 dev_spec->shadow_ram[i].modified = 0;
322 dev_spec->shadow_ram[i].value = 0xFFFF;
325 return 0;
329 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
330 * @hw: pointer to the HW structure
332 * Initialize family-specific MAC parameters and function
333 * pointers.
335 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
337 struct e1000_hw *hw = &adapter->hw;
338 struct e1000_mac_info *mac = &hw->mac;
340 /* Set media type function pointer */
341 hw->phy.media_type = e1000_media_type_copper;
343 /* Set mta register count */
344 mac->mta_reg_count = 32;
345 /* Set rar entry count */
346 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
347 if (mac->type == e1000_ich8lan)
348 mac->rar_entry_count--;
349 /* Set if manageability features are enabled. */
350 mac->arc_subsystem_valid = 1;
352 /* Enable PCS Lock-loss workaround for ICH8 */
353 if (mac->type == e1000_ich8lan)
354 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
356 return 0;
359 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
361 struct e1000_hw *hw = &adapter->hw;
362 s32 rc;
364 rc = e1000_init_mac_params_ich8lan(adapter);
365 if (rc)
366 return rc;
368 rc = e1000_init_nvm_params_ich8lan(hw);
369 if (rc)
370 return rc;
372 rc = e1000_init_phy_params_ich8lan(hw);
373 if (rc)
374 return rc;
376 if ((adapter->hw.mac.type == e1000_ich8lan) &&
377 (adapter->hw.phy.type == e1000_phy_igp_3))
378 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
380 return 0;
383 static DEFINE_MUTEX(nvm_mutex);
384 static pid_t nvm_owner = -1;
387 * e1000_acquire_swflag_ich8lan - Acquire software control flag
388 * @hw: pointer to the HW structure
390 * Acquires the software control flag for performing NVM and PHY
391 * operations. This is a function pointer entry point only called by
392 * read/write routines for the PHY and NVM parts.
394 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
396 u32 extcnf_ctrl;
397 u32 timeout = PHY_CFG_TIMEOUT;
399 might_sleep();
401 if (!mutex_trylock(&nvm_mutex)) {
402 WARN(1, KERN_ERR "e1000e mutex contention. Owned by pid %d\n",
403 nvm_owner);
404 mutex_lock(&nvm_mutex);
406 nvm_owner = current->pid;
408 while (timeout) {
409 extcnf_ctrl = er32(EXTCNF_CTRL);
410 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
411 ew32(EXTCNF_CTRL, extcnf_ctrl);
413 extcnf_ctrl = er32(EXTCNF_CTRL);
414 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
415 break;
416 mdelay(1);
417 timeout--;
420 if (!timeout) {
421 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
422 nvm_owner = -1;
423 mutex_unlock(&nvm_mutex);
424 return -E1000_ERR_CONFIG;
427 return 0;
431 * e1000_release_swflag_ich8lan - Release software control flag
432 * @hw: pointer to the HW structure
434 * Releases the software control flag for performing NVM and PHY operations.
435 * This is a function pointer entry point only called by read/write
436 * routines for the PHY and NVM parts.
438 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
440 u32 extcnf_ctrl;
442 extcnf_ctrl = er32(EXTCNF_CTRL);
443 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
444 ew32(EXTCNF_CTRL, extcnf_ctrl);
446 nvm_owner = -1;
447 mutex_unlock(&nvm_mutex);
451 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
452 * @hw: pointer to the HW structure
454 * Checks if firmware is blocking the reset of the PHY.
455 * This is a function pointer entry point only called by
456 * reset routines.
458 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
460 u32 fwsm;
462 fwsm = er32(FWSM);
464 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
468 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
469 * @hw: pointer to the HW structure
471 * Forces the speed and duplex settings of the PHY.
472 * This is a function pointer entry point only called by
473 * PHY setup routines.
475 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
477 struct e1000_phy_info *phy = &hw->phy;
478 s32 ret_val;
479 u16 data;
480 bool link;
482 if (phy->type != e1000_phy_ife) {
483 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
484 return ret_val;
487 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
488 if (ret_val)
489 return ret_val;
491 e1000e_phy_force_speed_duplex_setup(hw, &data);
493 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
494 if (ret_val)
495 return ret_val;
497 /* Disable MDI-X support for 10/100 */
498 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
499 if (ret_val)
500 return ret_val;
502 data &= ~IFE_PMC_AUTO_MDIX;
503 data &= ~IFE_PMC_FORCE_MDIX;
505 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
506 if (ret_val)
507 return ret_val;
509 hw_dbg(hw, "IFE PMC: %X\n", data);
511 udelay(1);
513 if (phy->autoneg_wait_to_complete) {
514 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
516 ret_val = e1000e_phy_has_link_generic(hw,
517 PHY_FORCE_LIMIT,
518 100000,
519 &link);
520 if (ret_val)
521 return ret_val;
523 if (!link)
524 hw_dbg(hw, "Link taking longer than expected.\n");
526 /* Try once more */
527 ret_val = e1000e_phy_has_link_generic(hw,
528 PHY_FORCE_LIMIT,
529 100000,
530 &link);
531 if (ret_val)
532 return ret_val;
535 return 0;
539 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
540 * @hw: pointer to the HW structure
542 * Resets the PHY
543 * This is a function pointer entry point called by drivers
544 * or other shared routines.
546 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
548 struct e1000_phy_info *phy = &hw->phy;
549 u32 i;
550 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
551 s32 ret_val;
552 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
553 u16 word_addr, reg_data, reg_addr, phy_page = 0;
555 ret_val = e1000e_phy_hw_reset_generic(hw);
556 if (ret_val)
557 return ret_val;
560 * Initialize the PHY from the NVM on ICH platforms. This
561 * is needed due to an issue where the NVM configuration is
562 * not properly autoloaded after power transitions.
563 * Therefore, after each PHY reset, we will load the
564 * configuration data out of the NVM manually.
566 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
567 struct e1000_adapter *adapter = hw->adapter;
569 /* Check if SW needs configure the PHY */
570 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
571 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
572 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
573 else
574 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
576 data = er32(FEXTNVM);
577 if (!(data & sw_cfg_mask))
578 return 0;
580 /* Wait for basic configuration completes before proceeding*/
581 do {
582 data = er32(STATUS);
583 data &= E1000_STATUS_LAN_INIT_DONE;
584 udelay(100);
585 } while ((!data) && --loop);
588 * If basic configuration is incomplete before the above loop
589 * count reaches 0, loading the configuration from NVM will
590 * leave the PHY in a bad state possibly resulting in no link.
592 if (loop == 0) {
593 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
596 /* Clear the Init Done bit for the next init event */
597 data = er32(STATUS);
598 data &= ~E1000_STATUS_LAN_INIT_DONE;
599 ew32(STATUS, data);
602 * Make sure HW does not configure LCD from PHY
603 * extended configuration before SW configuration
605 data = er32(EXTCNF_CTRL);
606 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
607 return 0;
609 cnf_size = er32(EXTCNF_SIZE);
610 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
611 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
612 if (!cnf_size)
613 return 0;
615 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
616 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
618 /* Configure LCD from extended configuration region. */
620 /* cnf_base_addr is in DWORD */
621 word_addr = (u16)(cnf_base_addr << 1);
623 for (i = 0; i < cnf_size; i++) {
624 ret_val = e1000_read_nvm(hw,
625 (word_addr + i * 2),
627 &reg_data);
628 if (ret_val)
629 return ret_val;
631 ret_val = e1000_read_nvm(hw,
632 (word_addr + i * 2 + 1),
634 &reg_addr);
635 if (ret_val)
636 return ret_val;
638 /* Save off the PHY page for future writes. */
639 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
640 phy_page = reg_data;
641 continue;
644 reg_addr |= phy_page;
646 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
647 if (ret_val)
648 return ret_val;
652 return 0;
656 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
657 * @hw: pointer to the HW structure
659 * Populates "phy" structure with various feature states.
660 * This function is only called by other family-specific
661 * routines.
663 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
665 struct e1000_phy_info *phy = &hw->phy;
666 s32 ret_val;
667 u16 data;
668 bool link;
670 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
671 if (ret_val)
672 return ret_val;
674 if (!link) {
675 hw_dbg(hw, "Phy info is only valid if link is up\n");
676 return -E1000_ERR_CONFIG;
679 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
680 if (ret_val)
681 return ret_val;
682 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
684 if (phy->polarity_correction) {
685 ret_val = e1000_check_polarity_ife_ich8lan(hw);
686 if (ret_val)
687 return ret_val;
688 } else {
689 /* Polarity is forced */
690 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
691 ? e1000_rev_polarity_reversed
692 : e1000_rev_polarity_normal;
695 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
696 if (ret_val)
697 return ret_val;
699 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
701 /* The following parameters are undefined for 10/100 operation. */
702 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
703 phy->local_rx = e1000_1000t_rx_status_undefined;
704 phy->remote_rx = e1000_1000t_rx_status_undefined;
706 return 0;
710 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
711 * @hw: pointer to the HW structure
713 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
714 * This is a function pointer entry point called by drivers
715 * or other shared routines.
717 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
719 switch (hw->phy.type) {
720 case e1000_phy_ife:
721 return e1000_get_phy_info_ife_ich8lan(hw);
722 break;
723 case e1000_phy_igp_3:
724 case e1000_phy_bm:
725 return e1000e_get_phy_info_igp(hw);
726 break;
727 default:
728 break;
731 return -E1000_ERR_PHY_TYPE;
735 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
736 * @hw: pointer to the HW structure
738 * Polarity is determined on the polarity reversal feature being enabled.
739 * This function is only called by other family-specific
740 * routines.
742 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
744 struct e1000_phy_info *phy = &hw->phy;
745 s32 ret_val;
746 u16 phy_data, offset, mask;
749 * Polarity is determined based on the reversal feature being enabled.
751 if (phy->polarity_correction) {
752 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
753 mask = IFE_PESC_POLARITY_REVERSED;
754 } else {
755 offset = IFE_PHY_SPECIAL_CONTROL;
756 mask = IFE_PSC_FORCE_POLARITY;
759 ret_val = e1e_rphy(hw, offset, &phy_data);
761 if (!ret_val)
762 phy->cable_polarity = (phy_data & mask)
763 ? e1000_rev_polarity_reversed
764 : e1000_rev_polarity_normal;
766 return ret_val;
770 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
771 * @hw: pointer to the HW structure
772 * @active: TRUE to enable LPLU, FALSE to disable
774 * Sets the LPLU D0 state according to the active flag. When
775 * activating LPLU this function also disables smart speed
776 * and vice versa. LPLU will not be activated unless the
777 * device autonegotiation advertisement meets standards of
778 * either 10 or 10/100 or 10/100/1000 at all duplexes.
779 * This is a function pointer entry point only called by
780 * PHY setup routines.
782 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
784 struct e1000_phy_info *phy = &hw->phy;
785 u32 phy_ctrl;
786 s32 ret_val = 0;
787 u16 data;
789 if (phy->type == e1000_phy_ife)
790 return ret_val;
792 phy_ctrl = er32(PHY_CTRL);
794 if (active) {
795 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
796 ew32(PHY_CTRL, phy_ctrl);
799 * Call gig speed drop workaround on LPLU before accessing
800 * any PHY registers
802 if ((hw->mac.type == e1000_ich8lan) &&
803 (hw->phy.type == e1000_phy_igp_3))
804 e1000e_gig_downshift_workaround_ich8lan(hw);
806 /* When LPLU is enabled, we should disable SmartSpeed */
807 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
808 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
809 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
810 if (ret_val)
811 return ret_val;
812 } else {
813 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
814 ew32(PHY_CTRL, phy_ctrl);
817 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
818 * during Dx states where the power conservation is most
819 * important. During driver activity we should enable
820 * SmartSpeed, so performance is maintained.
822 if (phy->smart_speed == e1000_smart_speed_on) {
823 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
824 &data);
825 if (ret_val)
826 return ret_val;
828 data |= IGP01E1000_PSCFR_SMART_SPEED;
829 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
830 data);
831 if (ret_val)
832 return ret_val;
833 } else if (phy->smart_speed == e1000_smart_speed_off) {
834 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
835 &data);
836 if (ret_val)
837 return ret_val;
839 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
840 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
841 data);
842 if (ret_val)
843 return ret_val;
847 return 0;
851 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
852 * @hw: pointer to the HW structure
853 * @active: TRUE to enable LPLU, FALSE to disable
855 * Sets the LPLU D3 state according to the active flag. When
856 * activating LPLU this function also disables smart speed
857 * and vice versa. LPLU will not be activated unless the
858 * device autonegotiation advertisement meets standards of
859 * either 10 or 10/100 or 10/100/1000 at all duplexes.
860 * This is a function pointer entry point only called by
861 * PHY setup routines.
863 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
865 struct e1000_phy_info *phy = &hw->phy;
866 u32 phy_ctrl;
867 s32 ret_val;
868 u16 data;
870 phy_ctrl = er32(PHY_CTRL);
872 if (!active) {
873 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
874 ew32(PHY_CTRL, phy_ctrl);
876 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
877 * during Dx states where the power conservation is most
878 * important. During driver activity we should enable
879 * SmartSpeed, so performance is maintained.
881 if (phy->smart_speed == e1000_smart_speed_on) {
882 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
883 &data);
884 if (ret_val)
885 return ret_val;
887 data |= IGP01E1000_PSCFR_SMART_SPEED;
888 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
889 data);
890 if (ret_val)
891 return ret_val;
892 } else if (phy->smart_speed == e1000_smart_speed_off) {
893 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
894 &data);
895 if (ret_val)
896 return ret_val;
898 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
899 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
900 data);
901 if (ret_val)
902 return ret_val;
904 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
905 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
906 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
907 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
908 ew32(PHY_CTRL, phy_ctrl);
911 * Call gig speed drop workaround on LPLU before accessing
912 * any PHY registers
914 if ((hw->mac.type == e1000_ich8lan) &&
915 (hw->phy.type == e1000_phy_igp_3))
916 e1000e_gig_downshift_workaround_ich8lan(hw);
918 /* When LPLU is enabled, we should disable SmartSpeed */
919 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
920 if (ret_val)
921 return ret_val;
923 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
927 return 0;
931 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
932 * @hw: pointer to the HW structure
933 * @offset: The offset (in bytes) of the word(s) to read.
934 * @words: Size of data to read in words
935 * @data: Pointer to the word(s) to read at offset.
937 * Reads a word(s) from the NVM using the flash access registers.
939 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
940 u16 *data)
942 struct e1000_nvm_info *nvm = &hw->nvm;
943 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
944 u32 act_offset;
945 s32 ret_val;
946 u16 i, word;
948 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
949 (words == 0)) {
950 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
951 return -E1000_ERR_NVM;
954 ret_val = e1000_acquire_swflag_ich8lan(hw);
955 if (ret_val)
956 return ret_val;
958 /* Start with the bank offset, then add the relative offset. */
959 act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
960 ? nvm->flash_bank_size
961 : 0;
962 act_offset += offset;
964 for (i = 0; i < words; i++) {
965 if ((dev_spec->shadow_ram) &&
966 (dev_spec->shadow_ram[offset+i].modified)) {
967 data[i] = dev_spec->shadow_ram[offset+i].value;
968 } else {
969 ret_val = e1000_read_flash_word_ich8lan(hw,
970 act_offset + i,
971 &word);
972 if (ret_val)
973 break;
974 data[i] = word;
978 e1000_release_swflag_ich8lan(hw);
980 return ret_val;
984 * e1000_flash_cycle_init_ich8lan - Initialize flash
985 * @hw: pointer to the HW structure
987 * This function does initial flash setup so that a new read/write/erase cycle
988 * can be started.
990 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
992 union ich8_hws_flash_status hsfsts;
993 s32 ret_val = -E1000_ERR_NVM;
994 s32 i = 0;
996 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
998 /* Check if the flash descriptor is valid */
999 if (hsfsts.hsf_status.fldesvalid == 0) {
1000 hw_dbg(hw, "Flash descriptor invalid. "
1001 "SW Sequencing must be used.");
1002 return -E1000_ERR_NVM;
1005 /* Clear FCERR and DAEL in hw status by writing 1 */
1006 hsfsts.hsf_status.flcerr = 1;
1007 hsfsts.hsf_status.dael = 1;
1009 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1012 * Either we should have a hardware SPI cycle in progress
1013 * bit to check against, in order to start a new cycle or
1014 * FDONE bit should be changed in the hardware so that it
1015 * is 1 after hardware reset, which can then be used as an
1016 * indication whether a cycle is in progress or has been
1017 * completed.
1020 if (hsfsts.hsf_status.flcinprog == 0) {
1022 * There is no cycle running at present,
1023 * so we can start a cycle
1024 * Begin by setting Flash Cycle Done.
1026 hsfsts.hsf_status.flcdone = 1;
1027 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1028 ret_val = 0;
1029 } else {
1031 * otherwise poll for sometime so the current
1032 * cycle has a chance to end before giving up.
1034 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1035 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1036 if (hsfsts.hsf_status.flcinprog == 0) {
1037 ret_val = 0;
1038 break;
1040 udelay(1);
1042 if (ret_val == 0) {
1044 * Successful in waiting for previous cycle to timeout,
1045 * now set the Flash Cycle Done.
1047 hsfsts.hsf_status.flcdone = 1;
1048 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1049 } else {
1050 hw_dbg(hw, "Flash controller busy, cannot get access");
1054 return ret_val;
1058 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1059 * @hw: pointer to the HW structure
1060 * @timeout: maximum time to wait for completion
1062 * This function starts a flash cycle and waits for its completion.
1064 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1066 union ich8_hws_flash_ctrl hsflctl;
1067 union ich8_hws_flash_status hsfsts;
1068 s32 ret_val = -E1000_ERR_NVM;
1069 u32 i = 0;
1071 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1072 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1073 hsflctl.hsf_ctrl.flcgo = 1;
1074 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1076 /* wait till FDONE bit is set to 1 */
1077 do {
1078 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1079 if (hsfsts.hsf_status.flcdone == 1)
1080 break;
1081 udelay(1);
1082 } while (i++ < timeout);
1084 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1085 return 0;
1087 return ret_val;
1091 * e1000_read_flash_word_ich8lan - Read word from flash
1092 * @hw: pointer to the HW structure
1093 * @offset: offset to data location
1094 * @data: pointer to the location for storing the data
1096 * Reads the flash word at offset into data. Offset is converted
1097 * to bytes before read.
1099 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1100 u16 *data)
1102 /* Must convert offset into bytes. */
1103 offset <<= 1;
1105 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1109 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1110 * @hw: pointer to the HW structure
1111 * @offset: The offset (in bytes) of the byte or word to read.
1112 * @size: Size of data to read, 1=byte 2=word
1113 * @data: Pointer to the word to store the value read.
1115 * Reads a byte or word from the NVM using the flash access registers.
1117 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1118 u8 size, u16 *data)
1120 union ich8_hws_flash_status hsfsts;
1121 union ich8_hws_flash_ctrl hsflctl;
1122 u32 flash_linear_addr;
1123 u32 flash_data = 0;
1124 s32 ret_val = -E1000_ERR_NVM;
1125 u8 count = 0;
1127 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1128 return -E1000_ERR_NVM;
1130 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1131 hw->nvm.flash_base_addr;
1133 do {
1134 udelay(1);
1135 /* Steps */
1136 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1137 if (ret_val != 0)
1138 break;
1140 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1141 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1142 hsflctl.hsf_ctrl.fldbcount = size - 1;
1143 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1144 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1146 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1148 ret_val = e1000_flash_cycle_ich8lan(hw,
1149 ICH_FLASH_READ_COMMAND_TIMEOUT);
1152 * Check if FCERR is set to 1, if set to 1, clear it
1153 * and try the whole sequence a few more times, else
1154 * read in (shift in) the Flash Data0, the order is
1155 * least significant byte first msb to lsb
1157 if (ret_val == 0) {
1158 flash_data = er32flash(ICH_FLASH_FDATA0);
1159 if (size == 1) {
1160 *data = (u8)(flash_data & 0x000000FF);
1161 } else if (size == 2) {
1162 *data = (u16)(flash_data & 0x0000FFFF);
1164 break;
1165 } else {
1167 * If we've gotten here, then things are probably
1168 * completely hosed, but if the error condition is
1169 * detected, it won't hurt to give it another try...
1170 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1172 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1173 if (hsfsts.hsf_status.flcerr == 1) {
1174 /* Repeat for some time before giving up. */
1175 continue;
1176 } else if (hsfsts.hsf_status.flcdone == 0) {
1177 hw_dbg(hw, "Timeout error - flash cycle "
1178 "did not complete.");
1179 break;
1182 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1184 return ret_val;
1188 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1189 * @hw: pointer to the HW structure
1190 * @offset: The offset (in bytes) of the word(s) to write.
1191 * @words: Size of data to write in words
1192 * @data: Pointer to the word(s) to write at offset.
1194 * Writes a byte or word to the NVM using the flash access registers.
1196 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1197 u16 *data)
1199 struct e1000_nvm_info *nvm = &hw->nvm;
1200 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1201 s32 ret_val;
1202 u16 i;
1204 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1205 (words == 0)) {
1206 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1207 return -E1000_ERR_NVM;
1210 ret_val = e1000_acquire_swflag_ich8lan(hw);
1211 if (ret_val)
1212 return ret_val;
1214 for (i = 0; i < words; i++) {
1215 dev_spec->shadow_ram[offset+i].modified = 1;
1216 dev_spec->shadow_ram[offset+i].value = data[i];
1219 e1000_release_swflag_ich8lan(hw);
1221 return 0;
1225 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1226 * @hw: pointer to the HW structure
1228 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1229 * which writes the checksum to the shadow ram. The changes in the shadow
1230 * ram are then committed to the EEPROM by processing each bank at a time
1231 * checking for the modified bit and writing only the pending changes.
1232 * After a successful commit, the shadow ram is cleared and is ready for
1233 * future writes.
1235 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1237 struct e1000_nvm_info *nvm = &hw->nvm;
1238 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1239 u32 i, act_offset, new_bank_offset, old_bank_offset;
1240 s32 ret_val;
1241 u16 data;
1243 ret_val = e1000e_update_nvm_checksum_generic(hw);
1244 if (ret_val)
1245 return ret_val;
1247 if (nvm->type != e1000_nvm_flash_sw)
1248 return ret_val;
1250 ret_val = e1000_acquire_swflag_ich8lan(hw);
1251 if (ret_val)
1252 return ret_val;
1255 * We're writing to the opposite bank so if we're on bank 1,
1256 * write to bank 0 etc. We also need to erase the segment that
1257 * is going to be written
1259 if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
1260 new_bank_offset = nvm->flash_bank_size;
1261 old_bank_offset = 0;
1262 e1000_erase_flash_bank_ich8lan(hw, 1);
1263 } else {
1264 old_bank_offset = nvm->flash_bank_size;
1265 new_bank_offset = 0;
1266 e1000_erase_flash_bank_ich8lan(hw, 0);
1269 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1271 * Determine whether to write the value stored
1272 * in the other NVM bank or a modified value stored
1273 * in the shadow RAM
1275 if (dev_spec->shadow_ram[i].modified) {
1276 data = dev_spec->shadow_ram[i].value;
1277 } else {
1278 e1000_read_flash_word_ich8lan(hw,
1279 i + old_bank_offset,
1280 &data);
1284 * If the word is 0x13, then make sure the signature bits
1285 * (15:14) are 11b until the commit has completed.
1286 * This will allow us to write 10b which indicates the
1287 * signature is valid. We want to do this after the write
1288 * has completed so that we don't mark the segment valid
1289 * while the write is still in progress
1291 if (i == E1000_ICH_NVM_SIG_WORD)
1292 data |= E1000_ICH_NVM_SIG_MASK;
1294 /* Convert offset to bytes. */
1295 act_offset = (i + new_bank_offset) << 1;
1297 udelay(100);
1298 /* Write the bytes to the new bank. */
1299 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1300 act_offset,
1301 (u8)data);
1302 if (ret_val)
1303 break;
1305 udelay(100);
1306 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1307 act_offset + 1,
1308 (u8)(data >> 8));
1309 if (ret_val)
1310 break;
1314 * Don't bother writing the segment valid bits if sector
1315 * programming failed.
1317 if (ret_val) {
1318 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1319 hw_dbg(hw, "Flash commit failed.\n");
1320 e1000_release_swflag_ich8lan(hw);
1321 return ret_val;
1325 * Finally validate the new segment by setting bit 15:14
1326 * to 10b in word 0x13 , this can be done without an
1327 * erase as well since these bits are 11 to start with
1328 * and we need to change bit 14 to 0b
1330 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1331 e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1332 data &= 0xBFFF;
1333 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1334 act_offset * 2 + 1,
1335 (u8)(data >> 8));
1336 if (ret_val) {
1337 e1000_release_swflag_ich8lan(hw);
1338 return ret_val;
1342 * And invalidate the previously valid segment by setting
1343 * its signature word (0x13) high_byte to 0b. This can be
1344 * done without an erase because flash erase sets all bits
1345 * to 1's. We can write 1's to 0's without an erase
1347 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1348 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1349 if (ret_val) {
1350 e1000_release_swflag_ich8lan(hw);
1351 return ret_val;
1354 /* Great! Everything worked, we can now clear the cached entries. */
1355 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1356 dev_spec->shadow_ram[i].modified = 0;
1357 dev_spec->shadow_ram[i].value = 0xFFFF;
1360 e1000_release_swflag_ich8lan(hw);
1363 * Reload the EEPROM, or else modifications will not appear
1364 * until after the next adapter reset.
1366 e1000e_reload_nvm(hw);
1367 msleep(10);
1369 return ret_val;
1373 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1374 * @hw: pointer to the HW structure
1376 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1377 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1378 * calculated, in which case we need to calculate the checksum and set bit 6.
1380 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1382 s32 ret_val;
1383 u16 data;
1386 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1387 * needs to be fixed. This bit is an indication that the NVM
1388 * was prepared by OEM software and did not calculate the
1389 * checksum...a likely scenario.
1391 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1392 if (ret_val)
1393 return ret_val;
1395 if ((data & 0x40) == 0) {
1396 data |= 0x40;
1397 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1398 if (ret_val)
1399 return ret_val;
1400 ret_val = e1000e_update_nvm_checksum(hw);
1401 if (ret_val)
1402 return ret_val;
1405 return e1000e_validate_nvm_checksum_generic(hw);
1409 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1410 * @hw: pointer to the HW structure
1412 * To prevent malicious write/erase of the NVM, set it to be read-only
1413 * so that the hardware ignores all write/erase cycles of the NVM via
1414 * the flash control registers. The shadow-ram copy of the NVM will
1415 * still be updated, however any updates to this copy will not stick
1416 * across driver reloads.
1418 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1420 union ich8_flash_protected_range pr0;
1421 union ich8_hws_flash_status hsfsts;
1422 u32 gfpreg;
1423 s32 ret_val;
1425 ret_val = e1000_acquire_swflag_ich8lan(hw);
1426 if (ret_val)
1427 return;
1429 gfpreg = er32flash(ICH_FLASH_GFPREG);
1431 /* Write-protect GbE Sector of NVM */
1432 pr0.regval = er32flash(ICH_FLASH_PR0);
1433 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1434 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1435 pr0.range.wpe = true;
1436 ew32flash(ICH_FLASH_PR0, pr0.regval);
1439 * Lock down a subset of GbE Flash Control Registers, e.g.
1440 * PR0 to prevent the write-protection from being lifted.
1441 * Once FLOCKDN is set, the registers protected by it cannot
1442 * be written until FLOCKDN is cleared by a hardware reset.
1444 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1445 hsfsts.hsf_status.flockdn = true;
1446 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1448 e1000_release_swflag_ich8lan(hw);
1452 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1453 * @hw: pointer to the HW structure
1454 * @offset: The offset (in bytes) of the byte/word to read.
1455 * @size: Size of data to read, 1=byte 2=word
1456 * @data: The byte(s) to write to the NVM.
1458 * Writes one/two bytes to the NVM using the flash access registers.
1460 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1461 u8 size, u16 data)
1463 union ich8_hws_flash_status hsfsts;
1464 union ich8_hws_flash_ctrl hsflctl;
1465 u32 flash_linear_addr;
1466 u32 flash_data = 0;
1467 s32 ret_val;
1468 u8 count = 0;
1470 if (size < 1 || size > 2 || data > size * 0xff ||
1471 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1472 return -E1000_ERR_NVM;
1474 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1475 hw->nvm.flash_base_addr;
1477 do {
1478 udelay(1);
1479 /* Steps */
1480 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1481 if (ret_val)
1482 break;
1484 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1485 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1486 hsflctl.hsf_ctrl.fldbcount = size -1;
1487 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1488 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1490 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1492 if (size == 1)
1493 flash_data = (u32)data & 0x00FF;
1494 else
1495 flash_data = (u32)data;
1497 ew32flash(ICH_FLASH_FDATA0, flash_data);
1500 * check if FCERR is set to 1 , if set to 1, clear it
1501 * and try the whole sequence a few more times else done
1503 ret_val = e1000_flash_cycle_ich8lan(hw,
1504 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1505 if (!ret_val)
1506 break;
1509 * If we're here, then things are most likely
1510 * completely hosed, but if the error condition
1511 * is detected, it won't hurt to give it another
1512 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1514 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1515 if (hsfsts.hsf_status.flcerr == 1)
1516 /* Repeat for some time before giving up. */
1517 continue;
1518 if (hsfsts.hsf_status.flcdone == 0) {
1519 hw_dbg(hw, "Timeout error - flash cycle "
1520 "did not complete.");
1521 break;
1523 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1525 return ret_val;
1529 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1530 * @hw: pointer to the HW structure
1531 * @offset: The index of the byte to read.
1532 * @data: The byte to write to the NVM.
1534 * Writes a single byte to the NVM using the flash access registers.
1536 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1537 u8 data)
1539 u16 word = (u16)data;
1541 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1545 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1546 * @hw: pointer to the HW structure
1547 * @offset: The offset of the byte to write.
1548 * @byte: The byte to write to the NVM.
1550 * Writes a single byte to the NVM using the flash access registers.
1551 * Goes through a retry algorithm before giving up.
1553 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1554 u32 offset, u8 byte)
1556 s32 ret_val;
1557 u16 program_retries;
1559 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1560 if (!ret_val)
1561 return ret_val;
1563 for (program_retries = 0; program_retries < 100; program_retries++) {
1564 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1565 udelay(100);
1566 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1567 if (!ret_val)
1568 break;
1570 if (program_retries == 100)
1571 return -E1000_ERR_NVM;
1573 return 0;
1577 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1578 * @hw: pointer to the HW structure
1579 * @bank: 0 for first bank, 1 for second bank, etc.
1581 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1582 * bank N is 4096 * N + flash_reg_addr.
1584 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1586 struct e1000_nvm_info *nvm = &hw->nvm;
1587 union ich8_hws_flash_status hsfsts;
1588 union ich8_hws_flash_ctrl hsflctl;
1589 u32 flash_linear_addr;
1590 /* bank size is in 16bit words - adjust to bytes */
1591 u32 flash_bank_size = nvm->flash_bank_size * 2;
1592 s32 ret_val;
1593 s32 count = 0;
1594 s32 iteration;
1595 s32 sector_size;
1596 s32 j;
1598 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1601 * Determine HW Sector size: Read BERASE bits of hw flash status
1602 * register
1603 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1604 * consecutive sectors. The start index for the nth Hw sector
1605 * can be calculated as = bank * 4096 + n * 256
1606 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1607 * The start index for the nth Hw sector can be calculated
1608 * as = bank * 4096
1609 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1610 * (ich9 only, otherwise error condition)
1611 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1613 switch (hsfsts.hsf_status.berasesz) {
1614 case 0:
1615 /* Hw sector size 256 */
1616 sector_size = ICH_FLASH_SEG_SIZE_256;
1617 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1618 break;
1619 case 1:
1620 sector_size = ICH_FLASH_SEG_SIZE_4K;
1621 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1622 break;
1623 case 2:
1624 if (hw->mac.type == e1000_ich9lan) {
1625 sector_size = ICH_FLASH_SEG_SIZE_8K;
1626 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1627 } else {
1628 return -E1000_ERR_NVM;
1630 break;
1631 case 3:
1632 sector_size = ICH_FLASH_SEG_SIZE_64K;
1633 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1634 break;
1635 default:
1636 return -E1000_ERR_NVM;
1639 /* Start with the base address, then add the sector offset. */
1640 flash_linear_addr = hw->nvm.flash_base_addr;
1641 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1643 for (j = 0; j < iteration ; j++) {
1644 do {
1645 /* Steps */
1646 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1647 if (ret_val)
1648 return ret_val;
1651 * Write a value 11 (block Erase) in Flash
1652 * Cycle field in hw flash control
1654 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1655 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1656 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1659 * Write the last 24 bits of an index within the
1660 * block into Flash Linear address field in Flash
1661 * Address.
1663 flash_linear_addr += (j * sector_size);
1664 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1666 ret_val = e1000_flash_cycle_ich8lan(hw,
1667 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1668 if (ret_val == 0)
1669 break;
1672 * Check if FCERR is set to 1. If 1,
1673 * clear it and try the whole sequence
1674 * a few more times else Done
1676 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1677 if (hsfsts.hsf_status.flcerr == 1)
1678 /* repeat for some time before giving up */
1679 continue;
1680 else if (hsfsts.hsf_status.flcdone == 0)
1681 return ret_val;
1682 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1685 return 0;
1689 * e1000_valid_led_default_ich8lan - Set the default LED settings
1690 * @hw: pointer to the HW structure
1691 * @data: Pointer to the LED settings
1693 * Reads the LED default settings from the NVM to data. If the NVM LED
1694 * settings is all 0's or F's, set the LED default to a valid LED default
1695 * setting.
1697 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1699 s32 ret_val;
1701 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1702 if (ret_val) {
1703 hw_dbg(hw, "NVM Read Error\n");
1704 return ret_val;
1707 if (*data == ID_LED_RESERVED_0000 ||
1708 *data == ID_LED_RESERVED_FFFF)
1709 *data = ID_LED_DEFAULT_ICH8LAN;
1711 return 0;
1715 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1716 * @hw: pointer to the HW structure
1718 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1719 * register, so the the bus width is hard coded.
1721 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1723 struct e1000_bus_info *bus = &hw->bus;
1724 s32 ret_val;
1726 ret_val = e1000e_get_bus_info_pcie(hw);
1729 * ICH devices are "PCI Express"-ish. They have
1730 * a configuration space, but do not contain
1731 * PCI Express Capability registers, so bus width
1732 * must be hardcoded.
1734 if (bus->width == e1000_bus_width_unknown)
1735 bus->width = e1000_bus_width_pcie_x1;
1737 return ret_val;
1741 * e1000_reset_hw_ich8lan - Reset the hardware
1742 * @hw: pointer to the HW structure
1744 * Does a full reset of the hardware which includes a reset of the PHY and
1745 * MAC.
1747 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1749 u32 ctrl, icr, kab;
1750 s32 ret_val;
1753 * Prevent the PCI-E bus from sticking if there is no TLP connection
1754 * on the last TLP read/write transaction when MAC is reset.
1756 ret_val = e1000e_disable_pcie_master(hw);
1757 if (ret_val) {
1758 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1761 hw_dbg(hw, "Masking off all interrupts\n");
1762 ew32(IMC, 0xffffffff);
1765 * Disable the Transmit and Receive units. Then delay to allow
1766 * any pending transactions to complete before we hit the MAC
1767 * with the global reset.
1769 ew32(RCTL, 0);
1770 ew32(TCTL, E1000_TCTL_PSP);
1771 e1e_flush();
1773 msleep(10);
1775 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1776 if (hw->mac.type == e1000_ich8lan) {
1777 /* Set Tx and Rx buffer allocation to 8k apiece. */
1778 ew32(PBA, E1000_PBA_8K);
1779 /* Set Packet Buffer Size to 16k. */
1780 ew32(PBS, E1000_PBS_16K);
1783 ctrl = er32(CTRL);
1785 if (!e1000_check_reset_block(hw)) {
1787 * PHY HW reset requires MAC CORE reset at the same
1788 * time to make sure the interface between MAC and the
1789 * external PHY is reset.
1791 ctrl |= E1000_CTRL_PHY_RST;
1793 ret_val = e1000_acquire_swflag_ich8lan(hw);
1794 hw_dbg(hw, "Issuing a global reset to ich8lan");
1795 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1796 msleep(20);
1798 /* release the swflag because it is not reset by hardware reset */
1799 e1000_release_swflag_ich8lan(hw);
1801 ret_val = e1000e_get_auto_rd_done(hw);
1802 if (ret_val) {
1804 * When auto config read does not complete, do not
1805 * return with an error. This can happen in situations
1806 * where there is no eeprom and prevents getting link.
1808 hw_dbg(hw, "Auto Read Done did not complete\n");
1811 ew32(IMC, 0xffffffff);
1812 icr = er32(ICR);
1814 kab = er32(KABGTXD);
1815 kab |= E1000_KABGTXD_BGSQLBIAS;
1816 ew32(KABGTXD, kab);
1818 return ret_val;
1822 * e1000_init_hw_ich8lan - Initialize the hardware
1823 * @hw: pointer to the HW structure
1825 * Prepares the hardware for transmit and receive by doing the following:
1826 * - initialize hardware bits
1827 * - initialize LED identification
1828 * - setup receive address registers
1829 * - setup flow control
1830 * - setup transmit descriptors
1831 * - clear statistics
1833 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1835 struct e1000_mac_info *mac = &hw->mac;
1836 u32 ctrl_ext, txdctl, snoop;
1837 s32 ret_val;
1838 u16 i;
1840 e1000_initialize_hw_bits_ich8lan(hw);
1842 /* Initialize identification LED */
1843 ret_val = e1000e_id_led_init(hw);
1844 if (ret_val) {
1845 hw_dbg(hw, "Error initializing identification LED\n");
1846 return ret_val;
1849 /* Setup the receive address. */
1850 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1852 /* Zero out the Multicast HASH table */
1853 hw_dbg(hw, "Zeroing the MTA\n");
1854 for (i = 0; i < mac->mta_reg_count; i++)
1855 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1857 /* Setup link and flow control */
1858 ret_val = e1000_setup_link_ich8lan(hw);
1860 /* Set the transmit descriptor write-back policy for both queues */
1861 txdctl = er32(TXDCTL(0));
1862 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1863 E1000_TXDCTL_FULL_TX_DESC_WB;
1864 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1865 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1866 ew32(TXDCTL(0), txdctl);
1867 txdctl = er32(TXDCTL(1));
1868 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1869 E1000_TXDCTL_FULL_TX_DESC_WB;
1870 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1871 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1872 ew32(TXDCTL(1), txdctl);
1875 * ICH8 has opposite polarity of no_snoop bits.
1876 * By default, we should use snoop behavior.
1878 if (mac->type == e1000_ich8lan)
1879 snoop = PCIE_ICH8_SNOOP_ALL;
1880 else
1881 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1882 e1000e_set_pcie_no_snoop(hw, snoop);
1884 ctrl_ext = er32(CTRL_EXT);
1885 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1886 ew32(CTRL_EXT, ctrl_ext);
1889 * Clear all of the statistics registers (clear on read). It is
1890 * important that we do this after we have tried to establish link
1891 * because the symbol error count will increment wildly if there
1892 * is no link.
1894 e1000_clear_hw_cntrs_ich8lan(hw);
1896 return 0;
1899 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1900 * @hw: pointer to the HW structure
1902 * Sets/Clears required hardware bits necessary for correctly setting up the
1903 * hardware for transmit and receive.
1905 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1907 u32 reg;
1909 /* Extended Device Control */
1910 reg = er32(CTRL_EXT);
1911 reg |= (1 << 22);
1912 ew32(CTRL_EXT, reg);
1914 /* Transmit Descriptor Control 0 */
1915 reg = er32(TXDCTL(0));
1916 reg |= (1 << 22);
1917 ew32(TXDCTL(0), reg);
1919 /* Transmit Descriptor Control 1 */
1920 reg = er32(TXDCTL(1));
1921 reg |= (1 << 22);
1922 ew32(TXDCTL(1), reg);
1924 /* Transmit Arbitration Control 0 */
1925 reg = er32(TARC(0));
1926 if (hw->mac.type == e1000_ich8lan)
1927 reg |= (1 << 28) | (1 << 29);
1928 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1929 ew32(TARC(0), reg);
1931 /* Transmit Arbitration Control 1 */
1932 reg = er32(TARC(1));
1933 if (er32(TCTL) & E1000_TCTL_MULR)
1934 reg &= ~(1 << 28);
1935 else
1936 reg |= (1 << 28);
1937 reg |= (1 << 24) | (1 << 26) | (1 << 30);
1938 ew32(TARC(1), reg);
1940 /* Device Status */
1941 if (hw->mac.type == e1000_ich8lan) {
1942 reg = er32(STATUS);
1943 reg &= ~(1 << 31);
1944 ew32(STATUS, reg);
1949 * e1000_setup_link_ich8lan - Setup flow control and link settings
1950 * @hw: pointer to the HW structure
1952 * Determines which flow control settings to use, then configures flow
1953 * control. Calls the appropriate media-specific link configuration
1954 * function. Assuming the adapter has a valid link partner, a valid link
1955 * should be established. Assumes the hardware has previously been reset
1956 * and the transmitter and receiver are not enabled.
1958 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1960 s32 ret_val;
1962 if (e1000_check_reset_block(hw))
1963 return 0;
1966 * ICH parts do not have a word in the NVM to determine
1967 * the default flow control setting, so we explicitly
1968 * set it to full.
1970 if (hw->fc.type == e1000_fc_default)
1971 hw->fc.type = e1000_fc_full;
1973 hw->fc.original_type = hw->fc.type;
1975 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
1977 /* Continue to configure the copper link. */
1978 ret_val = e1000_setup_copper_link_ich8lan(hw);
1979 if (ret_val)
1980 return ret_val;
1982 ew32(FCTTV, hw->fc.pause_time);
1984 return e1000e_set_fc_watermarks(hw);
1988 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1989 * @hw: pointer to the HW structure
1991 * Configures the kumeran interface to the PHY to wait the appropriate time
1992 * when polling the PHY, then call the generic setup_copper_link to finish
1993 * configuring the copper link.
1995 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
1997 u32 ctrl;
1998 s32 ret_val;
1999 u16 reg_data;
2001 ctrl = er32(CTRL);
2002 ctrl |= E1000_CTRL_SLU;
2003 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2004 ew32(CTRL, ctrl);
2007 * Set the mac to wait the maximum time between each iteration
2008 * and increase the max iterations when polling the phy;
2009 * this fixes erroneous timeouts at 10Mbps.
2011 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2012 if (ret_val)
2013 return ret_val;
2014 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2015 if (ret_val)
2016 return ret_val;
2017 reg_data |= 0x3F;
2018 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2019 if (ret_val)
2020 return ret_val;
2022 if (hw->phy.type == e1000_phy_igp_3) {
2023 ret_val = e1000e_copper_link_setup_igp(hw);
2024 if (ret_val)
2025 return ret_val;
2026 } else if (hw->phy.type == e1000_phy_bm) {
2027 ret_val = e1000e_copper_link_setup_m88(hw);
2028 if (ret_val)
2029 return ret_val;
2032 if (hw->phy.type == e1000_phy_ife) {
2033 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2034 if (ret_val)
2035 return ret_val;
2037 reg_data &= ~IFE_PMC_AUTO_MDIX;
2039 switch (hw->phy.mdix) {
2040 case 1:
2041 reg_data &= ~IFE_PMC_FORCE_MDIX;
2042 break;
2043 case 2:
2044 reg_data |= IFE_PMC_FORCE_MDIX;
2045 break;
2046 case 0:
2047 default:
2048 reg_data |= IFE_PMC_AUTO_MDIX;
2049 break;
2051 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2052 if (ret_val)
2053 return ret_val;
2055 return e1000e_setup_copper_link(hw);
2059 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2060 * @hw: pointer to the HW structure
2061 * @speed: pointer to store current link speed
2062 * @duplex: pointer to store the current link duplex
2064 * Calls the generic get_speed_and_duplex to retrieve the current link
2065 * information and then calls the Kumeran lock loss workaround for links at
2066 * gigabit speeds.
2068 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2069 u16 *duplex)
2071 s32 ret_val;
2073 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2074 if (ret_val)
2075 return ret_val;
2077 if ((hw->mac.type == e1000_ich8lan) &&
2078 (hw->phy.type == e1000_phy_igp_3) &&
2079 (*speed == SPEED_1000)) {
2080 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2083 return ret_val;
2087 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2088 * @hw: pointer to the HW structure
2090 * Work-around for 82566 Kumeran PCS lock loss:
2091 * On link status change (i.e. PCI reset, speed change) and link is up and
2092 * speed is gigabit-
2093 * 0) if workaround is optionally disabled do nothing
2094 * 1) wait 1ms for Kumeran link to come up
2095 * 2) check Kumeran Diagnostic register PCS lock loss bit
2096 * 3) if not set the link is locked (all is good), otherwise...
2097 * 4) reset the PHY
2098 * 5) repeat up to 10 times
2099 * Note: this is only called for IGP3 copper when speed is 1gb.
2101 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2103 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2104 u32 phy_ctrl;
2105 s32 ret_val;
2106 u16 i, data;
2107 bool link;
2109 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2110 return 0;
2113 * Make sure link is up before proceeding. If not just return.
2114 * Attempting this while link is negotiating fouled up link
2115 * stability
2117 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2118 if (!link)
2119 return 0;
2121 for (i = 0; i < 10; i++) {
2122 /* read once to clear */
2123 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2124 if (ret_val)
2125 return ret_val;
2126 /* and again to get new status */
2127 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2128 if (ret_val)
2129 return ret_val;
2131 /* check for PCS lock */
2132 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2133 return 0;
2135 /* Issue PHY reset */
2136 e1000_phy_hw_reset(hw);
2137 mdelay(5);
2139 /* Disable GigE link negotiation */
2140 phy_ctrl = er32(PHY_CTRL);
2141 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2142 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2143 ew32(PHY_CTRL, phy_ctrl);
2146 * Call gig speed drop workaround on Gig disable before accessing
2147 * any PHY registers
2149 e1000e_gig_downshift_workaround_ich8lan(hw);
2151 /* unable to acquire PCS lock */
2152 return -E1000_ERR_PHY;
2156 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2157 * @hw: pointer to the HW structure
2158 * @state: boolean value used to set the current Kumeran workaround state
2160 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2161 * /disabled - FALSE).
2163 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2164 bool state)
2166 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2168 if (hw->mac.type != e1000_ich8lan) {
2169 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2170 return;
2173 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2177 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2178 * @hw: pointer to the HW structure
2180 * Workaround for 82566 power-down on D3 entry:
2181 * 1) disable gigabit link
2182 * 2) write VR power-down enable
2183 * 3) read it back
2184 * Continue if successful, else issue LCD reset and repeat
2186 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2188 u32 reg;
2189 u16 data;
2190 u8 retry = 0;
2192 if (hw->phy.type != e1000_phy_igp_3)
2193 return;
2195 /* Try the workaround twice (if needed) */
2196 do {
2197 /* Disable link */
2198 reg = er32(PHY_CTRL);
2199 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2200 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2201 ew32(PHY_CTRL, reg);
2204 * Call gig speed drop workaround on Gig disable before
2205 * accessing any PHY registers
2207 if (hw->mac.type == e1000_ich8lan)
2208 e1000e_gig_downshift_workaround_ich8lan(hw);
2210 /* Write VR power-down enable */
2211 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2212 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2213 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2215 /* Read it back and test */
2216 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2217 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2218 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2219 break;
2221 /* Issue PHY reset and repeat at most one more time */
2222 reg = er32(CTRL);
2223 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2224 retry++;
2225 } while (retry);
2229 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2230 * @hw: pointer to the HW structure
2232 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2233 * LPLU, Gig disable, MDIC PHY reset):
2234 * 1) Set Kumeran Near-end loopback
2235 * 2) Clear Kumeran Near-end loopback
2236 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2238 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2240 s32 ret_val;
2241 u16 reg_data;
2243 if ((hw->mac.type != e1000_ich8lan) ||
2244 (hw->phy.type != e1000_phy_igp_3))
2245 return;
2247 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2248 &reg_data);
2249 if (ret_val)
2250 return;
2251 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2252 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2253 reg_data);
2254 if (ret_val)
2255 return;
2256 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2257 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2258 reg_data);
2262 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2263 * @hw: pointer to the HW structure
2265 * During S0 to Sx transition, it is possible the link remains at gig
2266 * instead of negotiating to a lower speed. Before going to Sx, set
2267 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2268 * to a lower speed.
2270 * Should only be called for ICH9 devices.
2272 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2274 u32 phy_ctrl;
2276 if (hw->mac.type == e1000_ich9lan) {
2277 phy_ctrl = er32(PHY_CTRL);
2278 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2279 E1000_PHY_CTRL_GBE_DISABLE;
2280 ew32(PHY_CTRL, phy_ctrl);
2283 return;
2287 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2288 * @hw: pointer to the HW structure
2290 * Return the LED back to the default configuration.
2292 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2294 if (hw->phy.type == e1000_phy_ife)
2295 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2297 ew32(LEDCTL, hw->mac.ledctl_default);
2298 return 0;
2302 * e1000_led_on_ich8lan - Turn LEDs on
2303 * @hw: pointer to the HW structure
2305 * Turn on the LEDs.
2307 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2309 if (hw->phy.type == e1000_phy_ife)
2310 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2311 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2313 ew32(LEDCTL, hw->mac.ledctl_mode2);
2314 return 0;
2318 * e1000_led_off_ich8lan - Turn LEDs off
2319 * @hw: pointer to the HW structure
2321 * Turn off the LEDs.
2323 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2325 if (hw->phy.type == e1000_phy_ife)
2326 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2327 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2329 ew32(LEDCTL, hw->mac.ledctl_mode1);
2330 return 0;
2334 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2335 * @hw: pointer to the HW structure
2337 * Clears hardware counters specific to the silicon family and calls
2338 * clear_hw_cntrs_generic to clear all general purpose counters.
2340 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2342 u32 temp;
2344 e1000e_clear_hw_cntrs_base(hw);
2346 temp = er32(ALGNERRC);
2347 temp = er32(RXERRC);
2348 temp = er32(TNCRS);
2349 temp = er32(CEXTERR);
2350 temp = er32(TSCTC);
2351 temp = er32(TSCTFC);
2353 temp = er32(MGTPRC);
2354 temp = er32(MGTPDC);
2355 temp = er32(MGTPTC);
2357 temp = er32(IAC);
2358 temp = er32(ICRXOC);
2362 static struct e1000_mac_operations ich8_mac_ops = {
2363 .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
2364 .check_for_link = e1000e_check_for_copper_link,
2365 .cleanup_led = e1000_cleanup_led_ich8lan,
2366 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2367 .get_bus_info = e1000_get_bus_info_ich8lan,
2368 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2369 .led_on = e1000_led_on_ich8lan,
2370 .led_off = e1000_led_off_ich8lan,
2371 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2372 .reset_hw = e1000_reset_hw_ich8lan,
2373 .init_hw = e1000_init_hw_ich8lan,
2374 .setup_link = e1000_setup_link_ich8lan,
2375 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2378 static struct e1000_phy_operations ich8_phy_ops = {
2379 .acquire_phy = e1000_acquire_swflag_ich8lan,
2380 .check_reset_block = e1000_check_reset_block_ich8lan,
2381 .commit_phy = NULL,
2382 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2383 .get_cfg_done = e1000e_get_cfg_done,
2384 .get_cable_length = e1000e_get_cable_length_igp_2,
2385 .get_phy_info = e1000_get_phy_info_ich8lan,
2386 .read_phy_reg = e1000e_read_phy_reg_igp,
2387 .release_phy = e1000_release_swflag_ich8lan,
2388 .reset_phy = e1000_phy_hw_reset_ich8lan,
2389 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2390 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2391 .write_phy_reg = e1000e_write_phy_reg_igp,
2394 static struct e1000_nvm_operations ich8_nvm_ops = {
2395 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2396 .read_nvm = e1000_read_nvm_ich8lan,
2397 .release_nvm = e1000_release_swflag_ich8lan,
2398 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2399 .valid_led_default = e1000_valid_led_default_ich8lan,
2400 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2401 .write_nvm = e1000_write_nvm_ich8lan,
2404 struct e1000_info e1000_ich8_info = {
2405 .mac = e1000_ich8lan,
2406 .flags = FLAG_HAS_WOL
2407 | FLAG_IS_ICH
2408 | FLAG_RX_CSUM_ENABLED
2409 | FLAG_HAS_CTRLEXT_ON_LOAD
2410 | FLAG_HAS_AMT
2411 | FLAG_HAS_FLASH
2412 | FLAG_APME_IN_WUC,
2413 .pba = 8,
2414 .get_variants = e1000_get_variants_ich8lan,
2415 .mac_ops = &ich8_mac_ops,
2416 .phy_ops = &ich8_phy_ops,
2417 .nvm_ops = &ich8_nvm_ops,
2420 struct e1000_info e1000_ich9_info = {
2421 .mac = e1000_ich9lan,
2422 .flags = FLAG_HAS_JUMBO_FRAMES
2423 | FLAG_IS_ICH
2424 | FLAG_HAS_WOL
2425 | FLAG_RX_CSUM_ENABLED
2426 | FLAG_HAS_CTRLEXT_ON_LOAD
2427 | FLAG_HAS_AMT
2428 | FLAG_HAS_ERT
2429 | FLAG_HAS_FLASH
2430 | FLAG_APME_IN_WUC,
2431 .pba = 10,
2432 .get_variants = e1000_get_variants_ich8lan,
2433 .mac_ops = &ich8_mac_ops,
2434 .phy_ops = &ich8_phy_ops,
2435 .nvm_ops = &ich8_nvm_ops,