1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name
[] = "e1000e";
52 const char e1000e_driver_version
[] = DRV_VERSION
;
54 static const struct e1000_info
*e1000_info_tbl
[] = {
55 [board_82571
] = &e1000_82571_info
,
56 [board_82572
] = &e1000_82572_info
,
57 [board_82573
] = &e1000_82573_info
,
58 [board_80003es2lan
] = &e1000_es2_info
,
59 [board_ich8lan
] = &e1000_ich8_info
,
60 [board_ich9lan
] = &e1000_ich9_info
,
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
68 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
70 return hw
->adapter
->netdev
->name
;
75 * e1000_desc_unused - calculate if we have unused descriptors
77 static int e1000_desc_unused(struct e1000_ring
*ring
)
79 if (ring
->next_to_clean
> ring
->next_to_use
)
80 return ring
->next_to_clean
- ring
->next_to_use
- 1;
82 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
92 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
93 struct net_device
*netdev
,
95 u8 status
, __le16 vlan
)
97 skb
->protocol
= eth_type_trans(skb
, netdev
);
99 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
100 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
103 netif_receive_skb(skb
);
105 netdev
->last_rx
= jiffies
;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
116 u32 csum
, struct sk_buff
*skb
)
118 u16 status
= (u16
)status_err
;
119 u8 errors
= (u8
)(status_err
>> 24);
120 skb
->ip_summed
= CHECKSUM_NONE
;
122 /* Ignore Checksum bit is set */
123 if (status
& E1000_RXD_STAT_IXSM
)
125 /* TCP/UDP checksum error bit is set */
126 if (errors
& E1000_RXD_ERR_TCPE
) {
127 /* let the stack verify checksum errors */
128 adapter
->hw_csum_err
++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status
& E1000_RXD_STAT_TCPCS
) {
138 /* TCP checksum is good */
139 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum
= (__force __sum16
)htons(csum
);
147 skb
->csum
= csum_unfold(~sum
);
148 skb
->ip_summed
= CHECKSUM_COMPLETE
;
150 adapter
->hw_csum_good
++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
160 struct net_device
*netdev
= adapter
->netdev
;
161 struct pci_dev
*pdev
= adapter
->pdev
;
162 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
163 struct e1000_rx_desc
*rx_desc
;
164 struct e1000_buffer
*buffer_info
;
167 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
169 i
= rx_ring
->next_to_use
;
170 buffer_info
= &rx_ring
->buffer_info
[i
];
172 while (cleaned_count
--) {
173 skb
= buffer_info
->skb
;
179 skb
= netdev_alloc_skb(netdev
, bufsz
);
181 /* Better luck next round */
182 adapter
->alloc_rx_buff_failed
++;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb
, NET_IP_ALIGN
);
193 buffer_info
->skb
= skb
;
195 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
196 adapter
->rx_buffer_len
,
198 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
199 dev_err(&pdev
->dev
, "RX DMA map failed\n");
200 adapter
->rx_dma_failed
++;
204 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
205 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
208 if (i
== rx_ring
->count
)
210 buffer_info
= &rx_ring
->buffer_info
[i
];
213 if (rx_ring
->next_to_use
!= i
) {
214 rx_ring
->next_to_use
= i
;
216 i
= (rx_ring
->count
- 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
225 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
236 struct net_device
*netdev
= adapter
->netdev
;
237 struct pci_dev
*pdev
= adapter
->pdev
;
238 union e1000_rx_desc_packet_split
*rx_desc
;
239 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
240 struct e1000_buffer
*buffer_info
;
241 struct e1000_ps_page
*ps_page
;
245 i
= rx_ring
->next_to_use
;
246 buffer_info
= &rx_ring
->buffer_info
[i
];
248 while (cleaned_count
--) {
249 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
251 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
252 ps_page
= &buffer_info
->ps_pages
[j
];
253 if (j
>= adapter
->rx_ps_pages
) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
258 if (!ps_page
->page
) {
259 ps_page
->page
= alloc_page(GFP_ATOMIC
);
260 if (!ps_page
->page
) {
261 adapter
->alloc_rx_buff_failed
++;
264 ps_page
->dma
= pci_map_page(pdev
,
268 if (pci_dma_mapping_error(pdev
, ps_page
->dma
)) {
269 dev_err(&adapter
->pdev
->dev
,
270 "RX DMA page map failed\n");
271 adapter
->rx_dma_failed
++;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
280 rx_desc
->read
.buffer_addr
[j
+1] =
281 cpu_to_le64(ps_page
->dma
);
284 skb
= netdev_alloc_skb(netdev
,
285 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
288 adapter
->alloc_rx_buff_failed
++;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb
, NET_IP_ALIGN
);
299 buffer_info
->skb
= skb
;
300 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
301 adapter
->rx_ps_bsize0
,
303 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
304 dev_err(&pdev
->dev
, "RX DMA map failed\n");
305 adapter
->rx_dma_failed
++;
307 dev_kfree_skb_any(skb
);
308 buffer_info
->skb
= NULL
;
312 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
315 if (i
== rx_ring
->count
)
317 buffer_info
= &rx_ring
->buffer_info
[i
];
321 if (rx_ring
->next_to_use
!= i
) {
322 rx_ring
->next_to_use
= i
;
325 i
= (rx_ring
->count
- 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
339 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
353 struct net_device
*netdev
= adapter
->netdev
;
354 struct pci_dev
*pdev
= adapter
->pdev
;
355 struct e1000_rx_desc
*rx_desc
;
356 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
357 struct e1000_buffer
*buffer_info
;
360 unsigned int bufsz
= 256 -
361 16 /* for skb_reserve */ -
364 i
= rx_ring
->next_to_use
;
365 buffer_info
= &rx_ring
->buffer_info
[i
];
367 while (cleaned_count
--) {
368 skb
= buffer_info
->skb
;
374 skb
= netdev_alloc_skb(netdev
, bufsz
);
375 if (unlikely(!skb
)) {
376 /* Better luck next round */
377 adapter
->alloc_rx_buff_failed
++;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb
, NET_IP_ALIGN
);
387 buffer_info
->skb
= skb
;
389 /* allocate a new page if necessary */
390 if (!buffer_info
->page
) {
391 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
392 if (unlikely(!buffer_info
->page
)) {
393 adapter
->alloc_rx_buff_failed
++;
398 if (!buffer_info
->dma
)
399 buffer_info
->dma
= pci_map_page(pdev
,
400 buffer_info
->page
, 0,
404 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
405 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
407 if (unlikely(++i
== rx_ring
->count
))
409 buffer_info
= &rx_ring
->buffer_info
[i
];
412 if (likely(rx_ring
->next_to_use
!= i
)) {
413 rx_ring
->next_to_use
= i
;
414 if (unlikely(i
-- == 0))
415 i
= (rx_ring
->count
- 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
422 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
434 int *work_done
, int work_to_do
)
436 struct net_device
*netdev
= adapter
->netdev
;
437 struct pci_dev
*pdev
= adapter
->pdev
;
438 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
439 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
440 struct e1000_buffer
*buffer_info
, *next_buffer
;
443 int cleaned_count
= 0;
445 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
447 i
= rx_ring
->next_to_clean
;
448 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
449 buffer_info
= &rx_ring
->buffer_info
[i
];
451 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
455 if (*work_done
>= work_to_do
)
459 status
= rx_desc
->status
;
460 skb
= buffer_info
->skb
;
461 buffer_info
->skb
= NULL
;
463 prefetch(skb
->data
- NET_IP_ALIGN
);
466 if (i
== rx_ring
->count
)
468 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
471 next_buffer
= &rx_ring
->buffer_info
[i
];
475 pci_unmap_single(pdev
,
477 adapter
->rx_buffer_len
,
479 buffer_info
->dma
= 0;
481 length
= le16_to_cpu(rx_desc
->length
);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 buffer_info
->skb
= skb
;
494 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
496 buffer_info
->skb
= skb
;
500 total_rx_bytes
+= length
;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length
< copybreak
) {
509 struct sk_buff
*new_skb
=
510 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
512 skb_reserve(new_skb
, NET_IP_ALIGN
);
513 skb_copy_to_linear_data_offset(new_skb
,
519 /* save the skb in buffer_info as good */
520 buffer_info
->skb
= skb
;
523 /* else just continue with the old one */
525 /* end copybreak code */
526 skb_put(skb
, length
);
528 /* Receive Checksum Offload */
529 e1000_rx_checksum(adapter
,
531 ((u32
)(rx_desc
->errors
) << 24),
532 le16_to_cpu(rx_desc
->csum
), skb
);
534 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
539 /* return some buffers to hardware, one at a time is too slow */
540 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
541 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
545 /* use prefetched values */
547 buffer_info
= next_buffer
;
549 rx_ring
->next_to_clean
= i
;
551 cleaned_count
= e1000_desc_unused(rx_ring
);
553 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
555 adapter
->total_rx_bytes
+= total_rx_bytes
;
556 adapter
->total_rx_packets
+= total_rx_packets
;
557 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
558 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
562 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
563 struct e1000_buffer
*buffer_info
)
565 if (buffer_info
->dma
) {
566 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
567 buffer_info
->length
, PCI_DMA_TODEVICE
);
568 buffer_info
->dma
= 0;
570 if (buffer_info
->skb
) {
571 dev_kfree_skb_any(buffer_info
->skb
);
572 buffer_info
->skb
= NULL
;
576 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
578 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
579 unsigned int i
= tx_ring
->next_to_clean
;
580 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
581 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
583 /* detected Tx unit hang */
584 e_err("Detected Tx Unit Hang:\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
595 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
596 tx_ring
->next_to_use
,
597 tx_ring
->next_to_clean
,
598 tx_ring
->buffer_info
[eop
].time_stamp
,
601 eop_desc
->upper
.fields
.status
);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
613 struct net_device
*netdev
= adapter
->netdev
;
614 struct e1000_hw
*hw
= &adapter
->hw
;
615 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
616 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
617 struct e1000_buffer
*buffer_info
;
619 unsigned int count
= 0;
621 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
623 i
= tx_ring
->next_to_clean
;
624 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
625 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
627 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
628 for (cleaned
= 0; !cleaned
; ) {
629 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
630 buffer_info
= &tx_ring
->buffer_info
[i
];
631 cleaned
= (i
== eop
);
634 struct sk_buff
*skb
= buffer_info
->skb
;
635 unsigned int segs
, bytecount
;
636 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
640 total_tx_packets
+= segs
;
641 total_tx_bytes
+= bytecount
;
644 e1000_put_txbuf(adapter
, buffer_info
);
645 tx_desc
->upper
.data
= 0;
648 if (i
== tx_ring
->count
)
652 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
653 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count
++ == E1000_TX_WEIGHT
)
660 tx_ring
->next_to_clean
= i
;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned
&& netif_carrier_ok(netdev
) &&
664 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
670 if (netif_queue_stopped(netdev
) &&
671 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
672 netif_wake_queue(netdev
);
673 ++adapter
->restart_queue
;
677 if (adapter
->detect_tx_hung
) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter
->detect_tx_hung
= 0;
683 if (tx_ring
->buffer_info
[eop
].dma
&&
684 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
685 + (adapter
->tx_timeout_factor
* HZ
))
686 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
687 e1000_print_tx_hang(adapter
);
688 netif_stop_queue(netdev
);
691 adapter
->total_tx_bytes
+= total_tx_bytes
;
692 adapter
->total_tx_packets
+= total_tx_packets
;
693 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
694 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
706 int *work_done
, int work_to_do
)
708 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
709 struct net_device
*netdev
= adapter
->netdev
;
710 struct pci_dev
*pdev
= adapter
->pdev
;
711 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
712 struct e1000_buffer
*buffer_info
, *next_buffer
;
713 struct e1000_ps_page
*ps_page
;
717 int cleaned_count
= 0;
719 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
721 i
= rx_ring
->next_to_clean
;
722 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
723 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
724 buffer_info
= &rx_ring
->buffer_info
[i
];
726 while (staterr
& E1000_RXD_STAT_DD
) {
727 if (*work_done
>= work_to_do
)
730 skb
= buffer_info
->skb
;
732 /* in the packet split case this is header only */
733 prefetch(skb
->data
- NET_IP_ALIGN
);
736 if (i
== rx_ring
->count
)
738 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
741 next_buffer
= &rx_ring
->buffer_info
[i
];
745 pci_unmap_single(pdev
, buffer_info
->dma
,
746 adapter
->rx_ps_bsize0
,
748 buffer_info
->dma
= 0;
750 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev
->name
);
753 dev_kfree_skb_irq(skb
);
757 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
758 dev_kfree_skb_irq(skb
);
762 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev
->name
);
767 dev_kfree_skb_irq(skb
);
772 skb_put(skb
, length
);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1
&& (l1
<= copybreak
) &&
787 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
790 ps_page
= &buffer_info
->ps_pages
[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
797 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
798 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
799 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
800 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
801 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
802 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
803 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
810 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
811 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
815 ps_page
= &buffer_info
->ps_pages
[j
];
816 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
819 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
820 ps_page
->page
= NULL
;
822 skb
->data_len
+= length
;
823 skb
->truesize
+= length
;
827 total_rx_bytes
+= skb
->len
;
830 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
831 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
833 if (rx_desc
->wb
.upper
.header_status
&
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
835 adapter
->rx_hdr_split
++;
837 e1000_receive_skb(adapter
, netdev
, skb
,
838 staterr
, rx_desc
->wb
.middle
.vlan
);
841 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
842 buffer_info
->skb
= NULL
;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
846 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
850 /* use prefetched values */
852 buffer_info
= next_buffer
;
854 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
856 rx_ring
->next_to_clean
= i
;
858 cleaned_count
= e1000_desc_unused(rx_ring
);
860 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
862 adapter
->total_rx_bytes
+= total_rx_bytes
;
863 adapter
->total_rx_packets
+= total_rx_packets
;
864 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
865 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
877 skb
->data_len
+= length
;
878 skb
->truesize
+= length
;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
890 int *work_done
, int work_to_do
)
892 struct net_device
*netdev
= adapter
->netdev
;
893 struct pci_dev
*pdev
= adapter
->pdev
;
894 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
895 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
896 struct e1000_buffer
*buffer_info
, *next_buffer
;
899 int cleaned_count
= 0;
900 bool cleaned
= false;
901 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
903 i
= rx_ring
->next_to_clean
;
904 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
905 buffer_info
= &rx_ring
->buffer_info
[i
];
907 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
911 if (*work_done
>= work_to_do
)
915 status
= rx_desc
->status
;
916 skb
= buffer_info
->skb
;
917 buffer_info
->skb
= NULL
;
920 if (i
== rx_ring
->count
)
922 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
925 next_buffer
= &rx_ring
->buffer_info
[i
];
929 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
931 buffer_info
->dma
= 0;
933 length
= le16_to_cpu(rx_desc
->length
);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
937 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
938 /* recycle both page and skb */
939 buffer_info
->skb
= skb
;
940 /* an error means any chain goes out the window
942 if (rx_ring
->rx_skb_top
)
943 dev_kfree_skb(rx_ring
->rx_skb_top
);
944 rx_ring
->rx_skb_top
= NULL
;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status
& E1000_RXD_STAT_EOP
)) {
950 /* this descriptor is only the beginning (or middle) */
952 /* this is the beginning of a chain */
954 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop
,
959 skb_shinfo(rxtop
)->nr_frags
,
960 buffer_info
->page
, 0, length
);
961 /* re-use the skb, only consumed the page */
962 buffer_info
->skb
= skb
;
964 e1000_consume_page(buffer_info
, rxtop
, length
);
968 /* end of the chain */
969 skb_fill_page_desc(rxtop
,
970 skb_shinfo(rxtop
)->nr_frags
,
971 buffer_info
->page
, 0, length
);
972 /* re-use the current skb, we only consumed the
974 buffer_info
->skb
= skb
;
977 e1000_consume_page(buffer_info
, skb
, length
);
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length
<= copybreak
&&
982 skb_tailroom(skb
) >= length
) {
984 vaddr
= kmap_atomic(buffer_info
->page
,
985 KM_SKB_DATA_SOFTIRQ
);
986 memcpy(skb_tail_pointer(skb
), vaddr
,
989 KM_SKB_DATA_SOFTIRQ
);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb
, length
);
994 skb_fill_page_desc(skb
, 0,
995 buffer_info
->page
, 0,
997 e1000_consume_page(buffer_info
, skb
,
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter
,
1006 ((u32
)(rx_desc
->errors
) << 24),
1007 le16_to_cpu(rx_desc
->csum
), skb
);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes
+= skb
->len
;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1015 e_err("pskb_may_pull failed.\n");
1020 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1024 rx_desc
->status
= 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1028 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1032 /* use prefetched values */
1034 buffer_info
= next_buffer
;
1036 rx_ring
->next_to_clean
= i
;
1038 cleaned_count
= e1000_desc_unused(rx_ring
);
1040 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1042 adapter
->total_rx_bytes
+= total_rx_bytes
;
1043 adapter
->total_rx_packets
+= total_rx_packets
;
1044 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
1045 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1055 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1056 struct e1000_buffer
*buffer_info
;
1057 struct e1000_ps_page
*ps_page
;
1058 struct pci_dev
*pdev
= adapter
->pdev
;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i
= 0; i
< rx_ring
->count
; i
++) {
1063 buffer_info
= &rx_ring
->buffer_info
[i
];
1064 if (buffer_info
->dma
) {
1065 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1066 pci_unmap_single(pdev
, buffer_info
->dma
,
1067 adapter
->rx_buffer_len
,
1068 PCI_DMA_FROMDEVICE
);
1069 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1070 pci_unmap_page(pdev
, buffer_info
->dma
,
1072 PCI_DMA_FROMDEVICE
);
1073 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1074 pci_unmap_single(pdev
, buffer_info
->dma
,
1075 adapter
->rx_ps_bsize0
,
1076 PCI_DMA_FROMDEVICE
);
1077 buffer_info
->dma
= 0;
1080 if (buffer_info
->page
) {
1081 put_page(buffer_info
->page
);
1082 buffer_info
->page
= NULL
;
1085 if (buffer_info
->skb
) {
1086 dev_kfree_skb(buffer_info
->skb
);
1087 buffer_info
->skb
= NULL
;
1090 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1091 ps_page
= &buffer_info
->ps_pages
[j
];
1094 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1095 PCI_DMA_FROMDEVICE
);
1097 put_page(ps_page
->page
);
1098 ps_page
->page
= NULL
;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring
->rx_skb_top
) {
1104 dev_kfree_skb(rx_ring
->rx_skb_top
);
1105 rx_ring
->rx_skb_top
= NULL
;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1111 rx_ring
->next_to_clean
= 0;
1112 rx_ring
->next_to_use
= 0;
1114 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1115 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1118 static void e1000e_downshift_workaround(struct work_struct
*work
)
1120 struct e1000_adapter
*adapter
= container_of(work
,
1121 struct e1000_adapter
, downshift_task
);
1123 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1127 * e1000_intr_msi - Interrupt Handler
1128 * @irq: interrupt number
1129 * @data: pointer to a network interface device structure
1131 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1133 struct net_device
*netdev
= data
;
1134 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1135 struct e1000_hw
*hw
= &adapter
->hw
;
1136 u32 icr
= er32(ICR
);
1139 * read ICR disables interrupts using IAM
1142 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1143 hw
->mac
.get_link_status
= 1;
1145 * ICH8 workaround-- Call gig speed drop workaround on cable
1146 * disconnect (LSC) before accessing any PHY registers
1148 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1149 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1150 schedule_work(&adapter
->downshift_task
);
1153 * 80003ES2LAN workaround-- For packet buffer work-around on
1154 * link down event; disable receives here in the ISR and reset
1155 * adapter in watchdog
1157 if (netif_carrier_ok(netdev
) &&
1158 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1159 /* disable receives */
1160 u32 rctl
= er32(RCTL
);
1161 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1162 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1164 /* guard against interrupt when we're going down */
1165 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1166 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1169 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1170 adapter
->total_tx_bytes
= 0;
1171 adapter
->total_tx_packets
= 0;
1172 adapter
->total_rx_bytes
= 0;
1173 adapter
->total_rx_packets
= 0;
1174 __netif_rx_schedule(netdev
, &adapter
->napi
);
1181 * e1000_intr - Interrupt Handler
1182 * @irq: interrupt number
1183 * @data: pointer to a network interface device structure
1185 static irqreturn_t
e1000_intr(int irq
, void *data
)
1187 struct net_device
*netdev
= data
;
1188 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1189 struct e1000_hw
*hw
= &adapter
->hw
;
1191 u32 rctl
, icr
= er32(ICR
);
1193 return IRQ_NONE
; /* Not our interrupt */
1196 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1197 * not set, then the adapter didn't send an interrupt
1199 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1203 * Interrupt Auto-Mask...upon reading ICR,
1204 * interrupts are masked. No need for the
1208 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
1209 hw
->mac
.get_link_status
= 1;
1211 * ICH8 workaround-- Call gig speed drop workaround on cable
1212 * disconnect (LSC) before accessing any PHY registers
1214 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1215 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1216 schedule_work(&adapter
->downshift_task
);
1219 * 80003ES2LAN workaround--
1220 * For packet buffer work-around on link down event;
1221 * disable receives here in the ISR and
1222 * reset adapter in watchdog
1224 if (netif_carrier_ok(netdev
) &&
1225 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1226 /* disable receives */
1228 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1229 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1231 /* guard against interrupt when we're going down */
1232 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1233 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1236 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
1237 adapter
->total_tx_bytes
= 0;
1238 adapter
->total_tx_packets
= 0;
1239 adapter
->total_rx_bytes
= 0;
1240 adapter
->total_rx_packets
= 0;
1241 __netif_rx_schedule(netdev
, &adapter
->napi
);
1248 * e1000_request_irq - initialize interrupts
1250 * Attempts to configure interrupts using the best available
1251 * capabilities of the hardware and kernel.
1253 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1255 struct net_device
*netdev
= adapter
->netdev
;
1256 int irq_flags
= IRQF_SHARED
;
1259 if (!(adapter
->flags
& FLAG_MSI_TEST_FAILED
)) {
1260 err
= pci_enable_msi(adapter
->pdev
);
1262 adapter
->flags
|= FLAG_MSI_ENABLED
;
1267 err
= request_irq(adapter
->pdev
->irq
,
1268 ((adapter
->flags
& FLAG_MSI_ENABLED
) ?
1269 &e1000_intr_msi
: &e1000_intr
),
1270 irq_flags
, netdev
->name
, netdev
);
1272 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1273 pci_disable_msi(adapter
->pdev
);
1274 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1276 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1282 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1284 struct net_device
*netdev
= adapter
->netdev
;
1286 free_irq(adapter
->pdev
->irq
, netdev
);
1287 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1288 pci_disable_msi(adapter
->pdev
);
1289 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1294 * e1000_irq_disable - Mask off interrupt generation on the NIC
1296 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1298 struct e1000_hw
*hw
= &adapter
->hw
;
1302 synchronize_irq(adapter
->pdev
->irq
);
1306 * e1000_irq_enable - Enable default interrupt generation settings
1308 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1310 struct e1000_hw
*hw
= &adapter
->hw
;
1312 ew32(IMS
, IMS_ENABLE_MASK
);
1317 * e1000_get_hw_control - get control of the h/w from f/w
1318 * @adapter: address of board private structure
1320 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1321 * For ASF and Pass Through versions of f/w this means that
1322 * the driver is loaded. For AMT version (only with 82573)
1323 * of the f/w this means that the network i/f is open.
1325 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1327 struct e1000_hw
*hw
= &adapter
->hw
;
1331 /* Let firmware know the driver has taken over */
1332 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1334 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1335 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1336 ctrl_ext
= er32(CTRL_EXT
);
1337 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1342 * e1000_release_hw_control - release control of the h/w to f/w
1343 * @adapter: address of board private structure
1345 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1346 * For ASF and Pass Through versions of f/w this means that the
1347 * driver is no longer loaded. For AMT version (only with 82573) i
1348 * of the f/w this means that the network i/f is closed.
1351 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1353 struct e1000_hw
*hw
= &adapter
->hw
;
1357 /* Let firmware taken over control of h/w */
1358 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1360 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1361 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1362 ctrl_ext
= er32(CTRL_EXT
);
1363 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1368 * @e1000_alloc_ring - allocate memory for a ring structure
1370 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1371 struct e1000_ring
*ring
)
1373 struct pci_dev
*pdev
= adapter
->pdev
;
1375 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1384 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1385 * @adapter: board private structure
1387 * Return 0 on success, negative on failure
1389 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1391 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1392 int err
= -ENOMEM
, size
;
1394 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1395 tx_ring
->buffer_info
= vmalloc(size
);
1396 if (!tx_ring
->buffer_info
)
1398 memset(tx_ring
->buffer_info
, 0, size
);
1400 /* round up to nearest 4K */
1401 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1402 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1404 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1408 tx_ring
->next_to_use
= 0;
1409 tx_ring
->next_to_clean
= 0;
1410 spin_lock_init(&adapter
->tx_queue_lock
);
1414 vfree(tx_ring
->buffer_info
);
1415 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1420 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1421 * @adapter: board private structure
1423 * Returns 0 on success, negative on failure
1425 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1427 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1428 struct e1000_buffer
*buffer_info
;
1429 int i
, size
, desc_len
, err
= -ENOMEM
;
1431 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1432 rx_ring
->buffer_info
= vmalloc(size
);
1433 if (!rx_ring
->buffer_info
)
1435 memset(rx_ring
->buffer_info
, 0, size
);
1437 for (i
= 0; i
< rx_ring
->count
; i
++) {
1438 buffer_info
= &rx_ring
->buffer_info
[i
];
1439 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1440 sizeof(struct e1000_ps_page
),
1442 if (!buffer_info
->ps_pages
)
1446 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1448 /* Round up to nearest 4K */
1449 rx_ring
->size
= rx_ring
->count
* desc_len
;
1450 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1452 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1456 rx_ring
->next_to_clean
= 0;
1457 rx_ring
->next_to_use
= 0;
1458 rx_ring
->rx_skb_top
= NULL
;
1463 for (i
= 0; i
< rx_ring
->count
; i
++) {
1464 buffer_info
= &rx_ring
->buffer_info
[i
];
1465 kfree(buffer_info
->ps_pages
);
1468 vfree(rx_ring
->buffer_info
);
1469 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1474 * e1000_clean_tx_ring - Free Tx Buffers
1475 * @adapter: board private structure
1477 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1479 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1480 struct e1000_buffer
*buffer_info
;
1484 for (i
= 0; i
< tx_ring
->count
; i
++) {
1485 buffer_info
= &tx_ring
->buffer_info
[i
];
1486 e1000_put_txbuf(adapter
, buffer_info
);
1489 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1490 memset(tx_ring
->buffer_info
, 0, size
);
1492 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1494 tx_ring
->next_to_use
= 0;
1495 tx_ring
->next_to_clean
= 0;
1497 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1498 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1502 * e1000e_free_tx_resources - Free Tx Resources per Queue
1503 * @adapter: board private structure
1505 * Free all transmit software resources
1507 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1509 struct pci_dev
*pdev
= adapter
->pdev
;
1510 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1512 e1000_clean_tx_ring(adapter
);
1514 vfree(tx_ring
->buffer_info
);
1515 tx_ring
->buffer_info
= NULL
;
1517 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1519 tx_ring
->desc
= NULL
;
1523 * e1000e_free_rx_resources - Free Rx Resources
1524 * @adapter: board private structure
1526 * Free all receive software resources
1529 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1531 struct pci_dev
*pdev
= adapter
->pdev
;
1532 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1535 e1000_clean_rx_ring(adapter
);
1537 for (i
= 0; i
< rx_ring
->count
; i
++) {
1538 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1541 vfree(rx_ring
->buffer_info
);
1542 rx_ring
->buffer_info
= NULL
;
1544 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1546 rx_ring
->desc
= NULL
;
1550 * e1000_update_itr - update the dynamic ITR value based on statistics
1551 * @adapter: pointer to adapter
1552 * @itr_setting: current adapter->itr
1553 * @packets: the number of packets during this measurement interval
1554 * @bytes: the number of bytes during this measurement interval
1556 * Stores a new ITR value based on packets and byte
1557 * counts during the last interrupt. The advantage of per interrupt
1558 * computation is faster updates and more accurate ITR for the current
1559 * traffic pattern. Constants in this function were computed
1560 * based on theoretical maximum wire speed and thresholds were set based
1561 * on testing data as well as attempting to minimize response time
1562 * while increasing bulk throughput.
1563 * this functionality is controlled by the InterruptThrottleRate module
1564 * parameter (see e1000_param.c)
1566 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1567 u16 itr_setting
, int packets
,
1570 unsigned int retval
= itr_setting
;
1573 goto update_itr_done
;
1575 switch (itr_setting
) {
1576 case lowest_latency
:
1577 /* handle TSO and jumbo frames */
1578 if (bytes
/packets
> 8000)
1579 retval
= bulk_latency
;
1580 else if ((packets
< 5) && (bytes
> 512)) {
1581 retval
= low_latency
;
1584 case low_latency
: /* 50 usec aka 20000 ints/s */
1585 if (bytes
> 10000) {
1586 /* this if handles the TSO accounting */
1587 if (bytes
/packets
> 8000) {
1588 retval
= bulk_latency
;
1589 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1590 retval
= bulk_latency
;
1591 } else if ((packets
> 35)) {
1592 retval
= lowest_latency
;
1594 } else if (bytes
/packets
> 2000) {
1595 retval
= bulk_latency
;
1596 } else if (packets
<= 2 && bytes
< 512) {
1597 retval
= lowest_latency
;
1600 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1601 if (bytes
> 25000) {
1603 retval
= low_latency
;
1605 } else if (bytes
< 6000) {
1606 retval
= low_latency
;
1615 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1617 struct e1000_hw
*hw
= &adapter
->hw
;
1619 u32 new_itr
= adapter
->itr
;
1621 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1622 if (adapter
->link_speed
!= SPEED_1000
) {
1628 adapter
->tx_itr
= e1000_update_itr(adapter
,
1630 adapter
->total_tx_packets
,
1631 adapter
->total_tx_bytes
);
1632 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1633 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1634 adapter
->tx_itr
= low_latency
;
1636 adapter
->rx_itr
= e1000_update_itr(adapter
,
1638 adapter
->total_rx_packets
,
1639 adapter
->total_rx_bytes
);
1640 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1641 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1642 adapter
->rx_itr
= low_latency
;
1644 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1646 switch (current_itr
) {
1647 /* counts and packets in update_itr are dependent on these numbers */
1648 case lowest_latency
:
1652 new_itr
= 20000; /* aka hwitr = ~200 */
1662 if (new_itr
!= adapter
->itr
) {
1664 * this attempts to bias the interrupt rate towards Bulk
1665 * by adding intermediate steps when interrupt rate is
1668 new_itr
= new_itr
> adapter
->itr
?
1669 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1671 adapter
->itr
= new_itr
;
1672 ew32(ITR
, 1000000000 / (new_itr
* 256));
1677 * e1000_clean - NAPI Rx polling callback
1678 * @napi: struct associated with this polling callback
1679 * @budget: amount of packets driver is allowed to process this poll
1681 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1683 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1684 struct net_device
*poll_dev
= adapter
->netdev
;
1685 int tx_cleaned
= 0, work_done
= 0;
1687 /* Must NOT use netdev_priv macro here. */
1688 adapter
= poll_dev
->priv
;
1691 * e1000_clean is called per-cpu. This lock protects
1692 * tx_ring from being cleaned by multiple cpus
1693 * simultaneously. A failure obtaining the lock means
1694 * tx_ring is currently being cleaned anyway.
1696 if (spin_trylock(&adapter
->tx_queue_lock
)) {
1697 tx_cleaned
= e1000_clean_tx_irq(adapter
);
1698 spin_unlock(&adapter
->tx_queue_lock
);
1701 adapter
->clean_rx(adapter
, &work_done
, budget
);
1706 /* If budget not fully consumed, exit the polling mode */
1707 if (work_done
< budget
) {
1708 if (adapter
->itr_setting
& 3)
1709 e1000_set_itr(adapter
);
1710 netif_rx_complete(poll_dev
, napi
);
1711 e1000_irq_enable(adapter
);
1717 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1719 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1720 struct e1000_hw
*hw
= &adapter
->hw
;
1723 /* don't update vlan cookie if already programmed */
1724 if ((adapter
->hw
.mng_cookie
.status
&
1725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1726 (vid
== adapter
->mng_vlan_id
))
1728 /* add VID to filter table */
1729 index
= (vid
>> 5) & 0x7F;
1730 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1731 vfta
|= (1 << (vid
& 0x1F));
1732 e1000e_write_vfta(hw
, index
, vfta
);
1735 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1737 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1741 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1742 e1000_irq_disable(adapter
);
1743 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1745 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1746 e1000_irq_enable(adapter
);
1748 if ((adapter
->hw
.mng_cookie
.status
&
1749 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1750 (vid
== adapter
->mng_vlan_id
)) {
1751 /* release control to f/w */
1752 e1000_release_hw_control(adapter
);
1756 /* remove VID from filter table */
1757 index
= (vid
>> 5) & 0x7F;
1758 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1759 vfta
&= ~(1 << (vid
& 0x1F));
1760 e1000e_write_vfta(hw
, index
, vfta
);
1763 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
1765 struct net_device
*netdev
= adapter
->netdev
;
1766 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1767 u16 old_vid
= adapter
->mng_vlan_id
;
1769 if (!adapter
->vlgrp
)
1772 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
1773 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1774 if (adapter
->hw
.mng_cookie
.status
&
1775 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1776 e1000_vlan_rx_add_vid(netdev
, vid
);
1777 adapter
->mng_vlan_id
= vid
;
1780 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
1782 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
1783 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
1785 adapter
->mng_vlan_id
= vid
;
1790 static void e1000_vlan_rx_register(struct net_device
*netdev
,
1791 struct vlan_group
*grp
)
1793 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1794 struct e1000_hw
*hw
= &adapter
->hw
;
1797 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1798 e1000_irq_disable(adapter
);
1799 adapter
->vlgrp
= grp
;
1802 /* enable VLAN tag insert/strip */
1804 ctrl
|= E1000_CTRL_VME
;
1807 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1808 /* enable VLAN receive filtering */
1810 rctl
&= ~E1000_RCTL_CFIEN
;
1812 e1000_update_mng_vlan(adapter
);
1815 /* disable VLAN tag insert/strip */
1817 ctrl
&= ~E1000_CTRL_VME
;
1820 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1821 if (adapter
->mng_vlan_id
!=
1822 (u16
)E1000_MNG_VLAN_NONE
) {
1823 e1000_vlan_rx_kill_vid(netdev
,
1824 adapter
->mng_vlan_id
);
1825 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1830 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1831 e1000_irq_enable(adapter
);
1834 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
1838 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
1840 if (!adapter
->vlgrp
)
1843 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1844 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1846 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
1850 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
1852 struct e1000_hw
*hw
= &adapter
->hw
;
1855 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
1861 * enable receiving management packets to the host. this will probably
1862 * generate destination unreachable messages from the host OS, but
1863 * the packets will be handled on SMBUS
1865 manc
|= E1000_MANC_EN_MNG2HOST
;
1866 manc2h
= er32(MANC2H
);
1867 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1868 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1869 manc2h
|= E1000_MNG2HOST_PORT_623
;
1870 manc2h
|= E1000_MNG2HOST_PORT_664
;
1871 ew32(MANC2H
, manc2h
);
1876 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1877 * @adapter: board private structure
1879 * Configure the Tx unit of the MAC after a reset.
1881 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1883 struct e1000_hw
*hw
= &adapter
->hw
;
1884 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1886 u32 tdlen
, tctl
, tipg
, tarc
;
1889 /* Setup the HW Tx Head and Tail descriptor pointers */
1890 tdba
= tx_ring
->dma
;
1891 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1892 ew32(TDBAL
, (tdba
& DMA_32BIT_MASK
));
1893 ew32(TDBAH
, (tdba
>> 32));
1897 tx_ring
->head
= E1000_TDH
;
1898 tx_ring
->tail
= E1000_TDT
;
1900 /* Set the default values for the Tx Inter Packet Gap timer */
1901 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
1902 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
1903 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
1905 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
1906 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
1908 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1909 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1912 /* Set the Tx Interrupt Delay register */
1913 ew32(TIDV
, adapter
->tx_int_delay
);
1914 /* Tx irq moderation */
1915 ew32(TADV
, adapter
->tx_abs_int_delay
);
1917 /* Program the Transmit Control Register */
1919 tctl
&= ~E1000_TCTL_CT
;
1920 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1921 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1923 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
1924 tarc
= er32(TARC(0));
1926 * set the speed mode bit, we'll clear it if we're not at
1927 * gigabit link later
1929 #define SPEED_MODE_BIT (1 << 21)
1930 tarc
|= SPEED_MODE_BIT
;
1931 ew32(TARC(0), tarc
);
1934 /* errata: program both queues to unweighted RR */
1935 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
1936 tarc
= er32(TARC(0));
1938 ew32(TARC(0), tarc
);
1939 tarc
= er32(TARC(1));
1941 ew32(TARC(1), tarc
);
1944 e1000e_config_collision_dist(hw
);
1946 /* Setup Transmit Descriptor Settings for eop descriptor */
1947 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1949 /* only set IDE if we are delaying interrupts using the timers */
1950 if (adapter
->tx_int_delay
)
1951 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1953 /* enable Report Status bit */
1954 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1958 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1962 * e1000_setup_rctl - configure the receive control registers
1963 * @adapter: Board private structure
1965 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1966 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1967 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1969 struct e1000_hw
*hw
= &adapter
->hw
;
1974 /* Program MC offset vector base */
1976 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1977 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1978 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1979 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1981 /* Do not Store bad packets */
1982 rctl
&= ~E1000_RCTL_SBP
;
1984 /* Enable Long Packet receive */
1985 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1986 rctl
&= ~E1000_RCTL_LPE
;
1988 rctl
|= E1000_RCTL_LPE
;
1990 /* Enable hardware CRC frame stripping */
1991 rctl
|= E1000_RCTL_SECRC
;
1993 /* Setup buffer sizes */
1994 rctl
&= ~E1000_RCTL_SZ_4096
;
1995 rctl
|= E1000_RCTL_BSEX
;
1996 switch (adapter
->rx_buffer_len
) {
1998 rctl
|= E1000_RCTL_SZ_256
;
1999 rctl
&= ~E1000_RCTL_BSEX
;
2002 rctl
|= E1000_RCTL_SZ_512
;
2003 rctl
&= ~E1000_RCTL_BSEX
;
2006 rctl
|= E1000_RCTL_SZ_1024
;
2007 rctl
&= ~E1000_RCTL_BSEX
;
2011 rctl
|= E1000_RCTL_SZ_2048
;
2012 rctl
&= ~E1000_RCTL_BSEX
;
2015 rctl
|= E1000_RCTL_SZ_4096
;
2018 rctl
|= E1000_RCTL_SZ_8192
;
2021 rctl
|= E1000_RCTL_SZ_16384
;
2026 * 82571 and greater support packet-split where the protocol
2027 * header is placed in skb->data and the packet data is
2028 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2029 * In the case of a non-split, skb->data is linearly filled,
2030 * followed by the page buffers. Therefore, skb->data is
2031 * sized to hold the largest protocol header.
2033 * allocations using alloc_page take too long for regular MTU
2034 * so only enable packet split for jumbo frames
2036 * Using pages when the page size is greater than 16k wastes
2037 * a lot of memory, since we allocate 3 pages at all times
2040 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2041 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2042 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2043 adapter
->rx_ps_pages
= pages
;
2045 adapter
->rx_ps_pages
= 0;
2047 if (adapter
->rx_ps_pages
) {
2048 /* Configure extra packet-split registers */
2049 rfctl
= er32(RFCTL
);
2050 rfctl
|= E1000_RFCTL_EXTEN
;
2052 * disable packet split support for IPv6 extension headers,
2053 * because some malformed IPv6 headers can hang the Rx
2055 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2056 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2060 /* Enable Packet split descriptors */
2061 rctl
|= E1000_RCTL_DTYP_PS
;
2063 psrctl
|= adapter
->rx_ps_bsize0
>>
2064 E1000_PSRCTL_BSIZE0_SHIFT
;
2066 switch (adapter
->rx_ps_pages
) {
2068 psrctl
|= PAGE_SIZE
<<
2069 E1000_PSRCTL_BSIZE3_SHIFT
;
2071 psrctl
|= PAGE_SIZE
<<
2072 E1000_PSRCTL_BSIZE2_SHIFT
;
2074 psrctl
|= PAGE_SIZE
>>
2075 E1000_PSRCTL_BSIZE1_SHIFT
;
2079 ew32(PSRCTL
, psrctl
);
2083 /* just started the receive unit, no need to restart */
2084 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2088 * e1000_configure_rx - Configure Receive Unit after Reset
2089 * @adapter: board private structure
2091 * Configure the Rx unit of the MAC after a reset.
2093 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2095 struct e1000_hw
*hw
= &adapter
->hw
;
2096 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2098 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2100 if (adapter
->rx_ps_pages
) {
2101 /* this is a 32 byte descriptor */
2102 rdlen
= rx_ring
->count
*
2103 sizeof(union e1000_rx_desc_packet_split
);
2104 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2105 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2106 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2107 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2108 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2109 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2111 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2112 adapter
->clean_rx
= e1000_clean_rx_irq
;
2113 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2116 /* disable receives while setting up the descriptors */
2118 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2122 /* set the Receive Delay Timer Register */
2123 ew32(RDTR
, adapter
->rx_int_delay
);
2125 /* irq moderation */
2126 ew32(RADV
, adapter
->rx_abs_int_delay
);
2127 if (adapter
->itr_setting
!= 0)
2128 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2130 ctrl_ext
= er32(CTRL_EXT
);
2131 /* Reset delay timers after every interrupt */
2132 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2133 /* Auto-Mask interrupts upon ICR access */
2134 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2135 ew32(IAM
, 0xffffffff);
2136 ew32(CTRL_EXT
, ctrl_ext
);
2140 * Setup the HW Rx Head and Tail Descriptor Pointers and
2141 * the Base and Length of the Rx Descriptor Ring
2143 rdba
= rx_ring
->dma
;
2144 ew32(RDBAL
, (rdba
& DMA_32BIT_MASK
));
2145 ew32(RDBAH
, (rdba
>> 32));
2149 rx_ring
->head
= E1000_RDH
;
2150 rx_ring
->tail
= E1000_RDT
;
2152 /* Enable Receive Checksum Offload for TCP and UDP */
2153 rxcsum
= er32(RXCSUM
);
2154 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2155 rxcsum
|= E1000_RXCSUM_TUOFL
;
2158 * IPv4 payload checksum for UDP fragments must be
2159 * used in conjunction with packet-split.
2161 if (adapter
->rx_ps_pages
)
2162 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2164 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2165 /* no need to clear IPPCSE as it defaults to 0 */
2167 ew32(RXCSUM
, rxcsum
);
2170 * Enable early receives on supported devices, only takes effect when
2171 * packet size is equal or larger than the specified value (in 8 byte
2172 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2174 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2175 (adapter
->netdev
->mtu
> ETH_DATA_LEN
)) {
2176 u32 rxdctl
= er32(RXDCTL(0));
2177 ew32(RXDCTL(0), rxdctl
| 0x3);
2178 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2180 * With jumbo frames and early-receive enabled, excessive
2181 * C4->C2 latencies result in dropped transactions.
2183 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2184 e1000e_driver_name
, 55);
2186 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2188 PM_QOS_DEFAULT_VALUE
);
2191 /* Enable Receives */
2196 * e1000_update_mc_addr_list - Update Multicast addresses
2197 * @hw: pointer to the HW structure
2198 * @mc_addr_list: array of multicast addresses to program
2199 * @mc_addr_count: number of multicast addresses to program
2200 * @rar_used_count: the first RAR register free to program
2201 * @rar_count: total number of supported Receive Address Registers
2203 * Updates the Receive Address Registers and Multicast Table Array.
2204 * The caller must have a packed mc_addr_list of multicast addresses.
2205 * The parameter rar_count will usually be hw->mac.rar_entry_count
2206 * unless there are workarounds that change this. Currently no func pointer
2207 * exists and all implementations are handled in the generic version of this
2210 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2211 u32 mc_addr_count
, u32 rar_used_count
,
2214 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
,
2215 rar_used_count
, rar_count
);
2219 * e1000_set_multi - Multicast and Promiscuous mode set
2220 * @netdev: network interface device structure
2222 * The set_multi entry point is called whenever the multicast address
2223 * list or the network interface flags are updated. This routine is
2224 * responsible for configuring the hardware for proper multicast,
2225 * promiscuous mode, and all-multi behavior.
2227 static void e1000_set_multi(struct net_device
*netdev
)
2229 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2230 struct e1000_hw
*hw
= &adapter
->hw
;
2231 struct e1000_mac_info
*mac
= &hw
->mac
;
2232 struct dev_mc_list
*mc_ptr
;
2237 /* Check for Promiscuous and All Multicast modes */
2241 if (netdev
->flags
& IFF_PROMISC
) {
2242 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2243 rctl
&= ~E1000_RCTL_VFE
;
2245 if (netdev
->flags
& IFF_ALLMULTI
) {
2246 rctl
|= E1000_RCTL_MPE
;
2247 rctl
&= ~E1000_RCTL_UPE
;
2249 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2251 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2252 rctl
|= E1000_RCTL_VFE
;
2257 if (netdev
->mc_count
) {
2258 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2262 /* prepare a packed array of only addresses. */
2263 mc_ptr
= netdev
->mc_list
;
2265 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2268 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2270 mc_ptr
= mc_ptr
->next
;
2273 e1000_update_mc_addr_list(hw
, mta_list
, i
, 1,
2274 mac
->rar_entry_count
);
2278 * if we're called from probe, we might not have
2279 * anything to do here, so clear out the list
2281 e1000_update_mc_addr_list(hw
, NULL
, 0, 1, mac
->rar_entry_count
);
2286 * e1000_configure - configure the hardware for Rx and Tx
2287 * @adapter: private board structure
2289 static void e1000_configure(struct e1000_adapter
*adapter
)
2291 e1000_set_multi(adapter
->netdev
);
2293 e1000_restore_vlan(adapter
);
2294 e1000_init_manageability(adapter
);
2296 e1000_configure_tx(adapter
);
2297 e1000_setup_rctl(adapter
);
2298 e1000_configure_rx(adapter
);
2299 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2303 * e1000e_power_up_phy - restore link in case the phy was powered down
2304 * @adapter: address of board private structure
2306 * The phy may be powered down to save power and turn off link when the
2307 * driver is unloaded and wake on lan is not enabled (among others)
2308 * *** this routine MUST be followed by a call to e1000e_reset ***
2310 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2314 /* Just clear the power down bit to wake the phy back up */
2315 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
2317 * According to the manual, the phy will retain its
2318 * settings across a power-down/up cycle
2320 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
2321 mii_reg
&= ~MII_CR_POWER_DOWN
;
2322 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
2325 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2329 * e1000_power_down_phy - Power down the PHY
2331 * Power down the PHY so no link is implied when interface is down
2332 * The PHY cannot be powered down is management or WoL is active
2334 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2336 struct e1000_hw
*hw
= &adapter
->hw
;
2339 /* WoL is enabled */
2343 /* non-copper PHY? */
2344 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
2347 /* reset is blocked because of a SoL/IDER session */
2348 if (e1000e_check_mng_mode(hw
) || e1000_check_reset_block(hw
))
2351 /* manageability (AMT) is enabled */
2352 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2355 /* power down the PHY */
2356 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2357 mii_reg
|= MII_CR_POWER_DOWN
;
2358 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2363 * e1000e_reset - bring the hardware into a known good state
2365 * This function boots the hardware and enables some settings that
2366 * require a configuration cycle of the hardware - those cannot be
2367 * set/changed during runtime. After reset the device needs to be
2368 * properly configured for Rx, Tx etc.
2370 void e1000e_reset(struct e1000_adapter
*adapter
)
2372 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2373 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2374 struct e1000_hw
*hw
= &adapter
->hw
;
2375 u32 tx_space
, min_tx_space
, min_rx_space
;
2376 u32 pba
= adapter
->pba
;
2379 /* reset Packet Buffer Allocation to default */
2382 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2384 * To maintain wire speed transmits, the Tx FIFO should be
2385 * large enough to accommodate two full transmit packets,
2386 * rounded up to the next 1KB and expressed in KB. Likewise,
2387 * the Rx FIFO should be large enough to accommodate at least
2388 * one full receive packet and is similarly rounded up and
2392 /* upper 16 bits has Tx packet buffer allocation size in KB */
2393 tx_space
= pba
>> 16;
2394 /* lower 16 bits has Rx packet buffer allocation size in KB */
2397 * the Tx fifo also stores 16 bytes of information about the tx
2398 * but don't include ethernet FCS because hardware appends it
2400 min_tx_space
= (adapter
->max_frame_size
+
2401 sizeof(struct e1000_tx_desc
) -
2403 min_tx_space
= ALIGN(min_tx_space
, 1024);
2404 min_tx_space
>>= 10;
2405 /* software strips receive CRC, so leave room for it */
2406 min_rx_space
= adapter
->max_frame_size
;
2407 min_rx_space
= ALIGN(min_rx_space
, 1024);
2408 min_rx_space
>>= 10;
2411 * If current Tx allocation is less than the min Tx FIFO size,
2412 * and the min Tx FIFO size is less than the current Rx FIFO
2413 * allocation, take space away from current Rx allocation
2415 if ((tx_space
< min_tx_space
) &&
2416 ((min_tx_space
- tx_space
) < pba
)) {
2417 pba
-= min_tx_space
- tx_space
;
2420 * if short on Rx space, Rx wins and must trump tx
2421 * adjustment or use Early Receive if available
2423 if ((pba
< min_rx_space
) &&
2424 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2425 /* ERT enabled in e1000_configure_rx */
2434 * flow control settings
2436 * The high water mark must be low enough to fit one full frame
2437 * (or the size used for early receive) above it in the Rx FIFO.
2438 * Set it to the lower of:
2439 * - 90% of the Rx FIFO size, and
2440 * - the full Rx FIFO size minus the early receive size (for parts
2441 * with ERT support assuming ERT set to E1000_ERT_2048), or
2442 * - the full Rx FIFO size minus one full frame
2444 if (adapter
->flags
& FLAG_HAS_ERT
)
2445 hwm
= min(((pba
<< 10) * 9 / 10),
2446 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2448 hwm
= min(((pba
<< 10) * 9 / 10),
2449 ((pba
<< 10) - adapter
->max_frame_size
));
2451 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
2452 fc
->low_water
= fc
->high_water
- 8;
2454 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2455 fc
->pause_time
= 0xFFFF;
2457 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2459 fc
->type
= fc
->original_type
;
2461 /* Allow time for pending master requests to run */
2462 mac
->ops
.reset_hw(hw
);
2465 * For parts with AMT enabled, let the firmware know
2466 * that the network interface is in control
2468 if (adapter
->flags
& FLAG_HAS_AMT
)
2469 e1000_get_hw_control(adapter
);
2473 if (mac
->ops
.init_hw(hw
))
2474 e_err("Hardware Error\n");
2476 e1000_update_mng_vlan(adapter
);
2478 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2479 ew32(VET
, ETH_P_8021Q
);
2481 e1000e_reset_adaptive(hw
);
2482 e1000_get_phy_info(hw
);
2484 if (!(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2487 * speed up time to link by disabling smart power down, ignore
2488 * the return value of this function because there is nothing
2489 * different we would do if it failed
2491 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2492 phy_data
&= ~IGP02E1000_PM_SPD
;
2493 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2497 int e1000e_up(struct e1000_adapter
*adapter
)
2499 struct e1000_hw
*hw
= &adapter
->hw
;
2501 /* hardware has been reset, we need to reload some things */
2502 e1000_configure(adapter
);
2504 clear_bit(__E1000_DOWN
, &adapter
->state
);
2506 napi_enable(&adapter
->napi
);
2507 e1000_irq_enable(adapter
);
2509 /* fire a link change interrupt to start the watchdog */
2510 ew32(ICS
, E1000_ICS_LSC
);
2514 void e1000e_down(struct e1000_adapter
*adapter
)
2516 struct net_device
*netdev
= adapter
->netdev
;
2517 struct e1000_hw
*hw
= &adapter
->hw
;
2521 * signal that we're down so the interrupt handler does not
2522 * reschedule our watchdog timer
2524 set_bit(__E1000_DOWN
, &adapter
->state
);
2526 /* disable receives in the hardware */
2528 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2529 /* flush and sleep below */
2531 netif_tx_stop_all_queues(netdev
);
2533 /* disable transmits in the hardware */
2535 tctl
&= ~E1000_TCTL_EN
;
2537 /* flush both disables and wait for them to finish */
2541 napi_disable(&adapter
->napi
);
2542 e1000_irq_disable(adapter
);
2544 del_timer_sync(&adapter
->watchdog_timer
);
2545 del_timer_sync(&adapter
->phy_info_timer
);
2547 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2548 netif_carrier_off(netdev
);
2549 adapter
->link_speed
= 0;
2550 adapter
->link_duplex
= 0;
2552 if (!pci_channel_offline(adapter
->pdev
))
2553 e1000e_reset(adapter
);
2554 e1000_clean_tx_ring(adapter
);
2555 e1000_clean_rx_ring(adapter
);
2558 * TODO: for power management, we could drop the link and
2559 * pci_disable_device here.
2563 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2566 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2568 e1000e_down(adapter
);
2570 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2574 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2575 * @adapter: board private structure to initialize
2577 * e1000_sw_init initializes the Adapter private data structure.
2578 * Fields are initialized based on PCI device information and
2579 * OS network device settings (MTU size).
2581 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2583 struct net_device
*netdev
= adapter
->netdev
;
2585 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2586 adapter
->rx_ps_bsize0
= 128;
2587 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2588 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2590 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2591 if (!adapter
->tx_ring
)
2594 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2595 if (!adapter
->rx_ring
)
2598 spin_lock_init(&adapter
->tx_queue_lock
);
2600 /* Explicitly disable IRQ since the NIC can be in any state. */
2601 e1000_irq_disable(adapter
);
2603 set_bit(__E1000_DOWN
, &adapter
->state
);
2607 e_err("Unable to allocate memory for queues\n");
2608 kfree(adapter
->rx_ring
);
2609 kfree(adapter
->tx_ring
);
2614 * e1000_intr_msi_test - Interrupt Handler
2615 * @irq: interrupt number
2616 * @data: pointer to a network interface device structure
2618 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
2620 struct net_device
*netdev
= data
;
2621 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2622 struct e1000_hw
*hw
= &adapter
->hw
;
2623 u32 icr
= er32(ICR
);
2625 e_dbg("%s: icr is %08X\n", netdev
->name
, icr
);
2626 if (icr
& E1000_ICR_RXSEQ
) {
2627 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
2635 * e1000_test_msi_interrupt - Returns 0 for successful test
2636 * @adapter: board private struct
2638 * code flow taken from tg3.c
2640 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
2642 struct net_device
*netdev
= adapter
->netdev
;
2643 struct e1000_hw
*hw
= &adapter
->hw
;
2646 /* poll_enable hasn't been called yet, so don't need disable */
2647 /* clear any pending events */
2650 /* free the real vector and request a test handler */
2651 e1000_free_irq(adapter
);
2653 /* Assume that the test fails, if it succeeds then the test
2654 * MSI irq handler will unset this flag */
2655 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
2657 err
= pci_enable_msi(adapter
->pdev
);
2659 goto msi_test_failed
;
2661 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi_test
, 0,
2662 netdev
->name
, netdev
);
2664 pci_disable_msi(adapter
->pdev
);
2665 goto msi_test_failed
;
2670 e1000_irq_enable(adapter
);
2672 /* fire an unusual interrupt on the test handler */
2673 ew32(ICS
, E1000_ICS_RXSEQ
);
2677 e1000_irq_disable(adapter
);
2681 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
2683 e_info("MSI interrupt test failed!\n");
2686 free_irq(adapter
->pdev
->irq
, netdev
);
2687 pci_disable_msi(adapter
->pdev
);
2690 goto msi_test_failed
;
2692 /* okay so the test worked, restore settings */
2693 e_dbg("%s: MSI interrupt test succeeded!\n", netdev
->name
);
2695 /* restore the original vector, even if it failed */
2696 e1000_request_irq(adapter
);
2701 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
2702 * @adapter: board private struct
2704 * code flow taken from tg3.c, called with e1000 interrupts disabled.
2706 static int e1000_test_msi(struct e1000_adapter
*adapter
)
2711 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
2714 /* disable SERR in case the MSI write causes a master abort */
2715 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
2716 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
2717 pci_cmd
& ~PCI_COMMAND_SERR
);
2719 err
= e1000_test_msi_interrupt(adapter
);
2721 /* restore previous setting of command word */
2722 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
2728 /* EIO means MSI test failed */
2732 /* back to INTx mode */
2733 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
2735 e1000_free_irq(adapter
);
2737 err
= e1000_request_irq(adapter
);
2743 * e1000_open - Called when a network interface is made active
2744 * @netdev: network interface device structure
2746 * Returns 0 on success, negative value on failure
2748 * The open entry point is called when a network interface is made
2749 * active by the system (IFF_UP). At this point all resources needed
2750 * for transmit and receive operations are allocated, the interrupt
2751 * handler is registered with the OS, the watchdog timer is started,
2752 * and the stack is notified that the interface is ready.
2754 static int e1000_open(struct net_device
*netdev
)
2756 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2757 struct e1000_hw
*hw
= &adapter
->hw
;
2760 /* disallow open during test */
2761 if (test_bit(__E1000_TESTING
, &adapter
->state
))
2764 /* allocate transmit descriptors */
2765 err
= e1000e_setup_tx_resources(adapter
);
2769 /* allocate receive descriptors */
2770 err
= e1000e_setup_rx_resources(adapter
);
2774 e1000e_power_up_phy(adapter
);
2776 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2777 if ((adapter
->hw
.mng_cookie
.status
&
2778 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
2779 e1000_update_mng_vlan(adapter
);
2782 * If AMT is enabled, let the firmware know that the network
2783 * interface is now open
2785 if (adapter
->flags
& FLAG_HAS_AMT
)
2786 e1000_get_hw_control(adapter
);
2789 * before we allocate an interrupt, we must be ready to handle it.
2790 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2791 * as soon as we call pci_request_irq, so we have to setup our
2792 * clean_rx handler before we do so.
2794 e1000_configure(adapter
);
2796 err
= e1000_request_irq(adapter
);
2801 * Work around PCIe errata with MSI interrupts causing some chipsets to
2802 * ignore e1000e MSI messages, which means we need to test our MSI
2806 err
= e1000_test_msi(adapter
);
2808 e_err("Interrupt allocation failed\n");
2813 /* From here on the code is the same as e1000e_up() */
2814 clear_bit(__E1000_DOWN
, &adapter
->state
);
2816 napi_enable(&adapter
->napi
);
2818 e1000_irq_enable(adapter
);
2820 netif_tx_start_all_queues(netdev
);
2822 /* fire a link status change interrupt to start the watchdog */
2823 ew32(ICS
, E1000_ICS_LSC
);
2828 e1000_release_hw_control(adapter
);
2829 e1000_power_down_phy(adapter
);
2830 e1000e_free_rx_resources(adapter
);
2832 e1000e_free_tx_resources(adapter
);
2834 e1000e_reset(adapter
);
2840 * e1000_close - Disables a network interface
2841 * @netdev: network interface device structure
2843 * Returns 0, this is not allowed to fail
2845 * The close entry point is called when an interface is de-activated
2846 * by the OS. The hardware is still under the drivers control, but
2847 * needs to be disabled. A global MAC reset is issued to stop the
2848 * hardware, and all transmit and receive resources are freed.
2850 static int e1000_close(struct net_device
*netdev
)
2852 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2854 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
2855 e1000e_down(adapter
);
2856 e1000_power_down_phy(adapter
);
2857 e1000_free_irq(adapter
);
2859 e1000e_free_tx_resources(adapter
);
2860 e1000e_free_rx_resources(adapter
);
2863 * kill manageability vlan ID if supported, but not if a vlan with
2864 * the same ID is registered on the host OS (let 8021q kill it)
2866 if ((adapter
->hw
.mng_cookie
.status
&
2867 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2869 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
2870 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2873 * If AMT is enabled, let the firmware know that the network
2874 * interface is now closed
2876 if (adapter
->flags
& FLAG_HAS_AMT
)
2877 e1000_release_hw_control(adapter
);
2882 * e1000_set_mac - Change the Ethernet Address of the NIC
2883 * @netdev: network interface device structure
2884 * @p: pointer to an address structure
2886 * Returns 0 on success, negative on failure
2888 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2890 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2891 struct sockaddr
*addr
= p
;
2893 if (!is_valid_ether_addr(addr
->sa_data
))
2894 return -EADDRNOTAVAIL
;
2896 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2897 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2899 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2901 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
2902 /* activate the work around */
2903 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
2906 * Hold a copy of the LAA in RAR[14] This is done so that
2907 * between the time RAR[0] gets clobbered and the time it
2908 * gets fixed (in e1000_watchdog), the actual LAA is in one
2909 * of the RARs and no incoming packets directed to this port
2910 * are dropped. Eventually the LAA will be in RAR[0] and
2913 e1000e_rar_set(&adapter
->hw
,
2914 adapter
->hw
.mac
.addr
,
2915 adapter
->hw
.mac
.rar_entry_count
- 1);
2922 * e1000e_update_phy_task - work thread to update phy
2923 * @work: pointer to our work struct
2925 * this worker thread exists because we must acquire a
2926 * semaphore to read the phy, which we could msleep while
2927 * waiting for it, and we can't msleep in a timer.
2929 static void e1000e_update_phy_task(struct work_struct
*work
)
2931 struct e1000_adapter
*adapter
= container_of(work
,
2932 struct e1000_adapter
, update_phy_task
);
2933 e1000_get_phy_info(&adapter
->hw
);
2937 * Need to wait a few seconds after link up to get diagnostic information from
2940 static void e1000_update_phy_info(unsigned long data
)
2942 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2943 schedule_work(&adapter
->update_phy_task
);
2947 * e1000e_update_stats - Update the board statistics counters
2948 * @adapter: board private structure
2950 void e1000e_update_stats(struct e1000_adapter
*adapter
)
2952 struct e1000_hw
*hw
= &adapter
->hw
;
2953 struct pci_dev
*pdev
= adapter
->pdev
;
2956 * Prevent stats update while adapter is being reset, or if the pci
2957 * connection is down.
2959 if (adapter
->link_speed
== 0)
2961 if (pci_channel_offline(pdev
))
2964 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
2965 adapter
->stats
.gprc
+= er32(GPRC
);
2966 adapter
->stats
.gorc
+= er32(GORCL
);
2967 er32(GORCH
); /* Clear gorc */
2968 adapter
->stats
.bprc
+= er32(BPRC
);
2969 adapter
->stats
.mprc
+= er32(MPRC
);
2970 adapter
->stats
.roc
+= er32(ROC
);
2972 adapter
->stats
.mpc
+= er32(MPC
);
2973 adapter
->stats
.scc
+= er32(SCC
);
2974 adapter
->stats
.ecol
+= er32(ECOL
);
2975 adapter
->stats
.mcc
+= er32(MCC
);
2976 adapter
->stats
.latecol
+= er32(LATECOL
);
2977 adapter
->stats
.dc
+= er32(DC
);
2978 adapter
->stats
.xonrxc
+= er32(XONRXC
);
2979 adapter
->stats
.xontxc
+= er32(XONTXC
);
2980 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
2981 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
2982 adapter
->stats
.gptc
+= er32(GPTC
);
2983 adapter
->stats
.gotc
+= er32(GOTCL
);
2984 er32(GOTCH
); /* Clear gotc */
2985 adapter
->stats
.rnbc
+= er32(RNBC
);
2986 adapter
->stats
.ruc
+= er32(RUC
);
2988 adapter
->stats
.mptc
+= er32(MPTC
);
2989 adapter
->stats
.bptc
+= er32(BPTC
);
2991 /* used for adaptive IFS */
2993 hw
->mac
.tx_packet_delta
= er32(TPT
);
2994 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2995 hw
->mac
.collision_delta
= er32(COLC
);
2996 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2998 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
2999 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3000 adapter
->stats
.tncrs
+= er32(TNCRS
);
3001 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3002 adapter
->stats
.tsctc
+= er32(TSCTC
);
3003 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3005 /* Fill out the OS statistics structure */
3006 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3007 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3012 * RLEC on some newer hardware can be incorrect so build
3013 * our own version based on RUC and ROC
3015 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3016 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3017 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3018 adapter
->stats
.cexterr
;
3019 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3021 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3022 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3023 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3026 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3027 adapter
->stats
.latecol
;
3028 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3029 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3030 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3032 /* Tx Dropped needs to be maintained elsewhere */
3034 /* Management Stats */
3035 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3036 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3037 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3041 * e1000_phy_read_status - Update the PHY register status snapshot
3042 * @adapter: board private structure
3044 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3046 struct e1000_hw
*hw
= &adapter
->hw
;
3047 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3050 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3051 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3052 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3053 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3054 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3055 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3056 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3057 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3058 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3059 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3061 e_warn("Error reading PHY register\n");
3064 * Do not read PHY registers if link is not up
3065 * Set values to typical power-on defaults
3067 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3068 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3069 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3071 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3072 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3074 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3075 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3077 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3081 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3083 struct e1000_hw
*hw
= &adapter
->hw
;
3084 u32 ctrl
= er32(CTRL
);
3086 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3087 adapter
->link_speed
,
3088 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3089 "Full Duplex" : "Half Duplex",
3090 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3092 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3093 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3096 static bool e1000_has_link(struct e1000_adapter
*adapter
)
3098 struct e1000_hw
*hw
= &adapter
->hw
;
3099 bool link_active
= 0;
3103 * get_link_status is set on LSC (link status) interrupt or
3104 * Rx sequence error interrupt. get_link_status will stay
3105 * false until the check_for_link establishes link
3106 * for copper adapters ONLY
3108 switch (hw
->phy
.media_type
) {
3109 case e1000_media_type_copper
:
3110 if (hw
->mac
.get_link_status
) {
3111 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3112 link_active
= !hw
->mac
.get_link_status
;
3117 case e1000_media_type_fiber
:
3118 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3119 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3121 case e1000_media_type_internal_serdes
:
3122 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3123 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3126 case e1000_media_type_unknown
:
3130 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3131 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3132 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3133 e_info("Gigabit has been disabled, downgrading speed\n");
3139 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3141 /* make sure the receive unit is started */
3142 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3143 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3144 struct e1000_hw
*hw
= &adapter
->hw
;
3145 u32 rctl
= er32(RCTL
);
3146 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3147 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3152 * e1000_watchdog - Timer Call-back
3153 * @data: pointer to adapter cast into an unsigned long
3155 static void e1000_watchdog(unsigned long data
)
3157 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3159 /* Do the rest outside of interrupt context */
3160 schedule_work(&adapter
->watchdog_task
);
3162 /* TODO: make this use queue_delayed_work() */
3165 static void e1000_watchdog_task(struct work_struct
*work
)
3167 struct e1000_adapter
*adapter
= container_of(work
,
3168 struct e1000_adapter
, watchdog_task
);
3169 struct net_device
*netdev
= adapter
->netdev
;
3170 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3171 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3172 struct e1000_hw
*hw
= &adapter
->hw
;
3176 link
= e1000_has_link(adapter
);
3177 if ((netif_carrier_ok(netdev
)) && link
) {
3178 e1000e_enable_receives(adapter
);
3182 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3183 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3184 e1000_update_mng_vlan(adapter
);
3187 if (!netif_carrier_ok(netdev
)) {
3189 /* update snapshot of PHY registers on LSC */
3190 e1000_phy_read_status(adapter
);
3191 mac
->ops
.get_link_up_info(&adapter
->hw
,
3192 &adapter
->link_speed
,
3193 &adapter
->link_duplex
);
3194 e1000_print_link_info(adapter
);
3196 * tweak tx_queue_len according to speed/duplex
3197 * and adjust the timeout factor
3199 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
3200 adapter
->tx_timeout_factor
= 1;
3201 switch (adapter
->link_speed
) {
3204 netdev
->tx_queue_len
= 10;
3205 adapter
->tx_timeout_factor
= 16;
3209 netdev
->tx_queue_len
= 100;
3210 /* maybe add some timeout factor ? */
3215 * workaround: re-program speed mode bit after
3218 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3221 tarc0
= er32(TARC(0));
3222 tarc0
&= ~SPEED_MODE_BIT
;
3223 ew32(TARC(0), tarc0
);
3227 * disable TSO for pcie and 10/100 speeds, to avoid
3228 * some hardware issues
3230 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3231 switch (adapter
->link_speed
) {
3234 e_info("10/100 speed: disabling TSO\n");
3235 netdev
->features
&= ~NETIF_F_TSO
;
3236 netdev
->features
&= ~NETIF_F_TSO6
;
3239 netdev
->features
|= NETIF_F_TSO
;
3240 netdev
->features
|= NETIF_F_TSO6
;
3249 * enable transmits in the hardware, need to do this
3250 * after setting TARC(0)
3253 tctl
|= E1000_TCTL_EN
;
3256 netif_carrier_on(netdev
);
3257 netif_tx_wake_all_queues(netdev
);
3259 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3260 mod_timer(&adapter
->phy_info_timer
,
3261 round_jiffies(jiffies
+ 2 * HZ
));
3264 if (netif_carrier_ok(netdev
)) {
3265 adapter
->link_speed
= 0;
3266 adapter
->link_duplex
= 0;
3267 e_info("Link is Down\n");
3268 netif_carrier_off(netdev
);
3269 netif_tx_stop_all_queues(netdev
);
3270 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3271 mod_timer(&adapter
->phy_info_timer
,
3272 round_jiffies(jiffies
+ 2 * HZ
));
3274 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3275 schedule_work(&adapter
->reset_task
);
3280 e1000e_update_stats(adapter
);
3282 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3283 adapter
->tpt_old
= adapter
->stats
.tpt
;
3284 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3285 adapter
->colc_old
= adapter
->stats
.colc
;
3287 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3288 adapter
->gorc_old
= adapter
->stats
.gorc
;
3289 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3290 adapter
->gotc_old
= adapter
->stats
.gotc
;
3292 e1000e_update_adaptive(&adapter
->hw
);
3294 if (!netif_carrier_ok(netdev
)) {
3295 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3299 * We've lost link, so the controller stops DMA,
3300 * but we've got queued Tx work that's never going
3301 * to get done, so reset controller to flush Tx.
3302 * (Do the reset outside of interrupt context).
3304 adapter
->tx_timeout_count
++;
3305 schedule_work(&adapter
->reset_task
);
3309 /* Cause software interrupt to ensure Rx ring is cleaned */
3310 ew32(ICS
, E1000_ICS_RXDMT0
);
3312 /* Force detection of hung controller every watchdog period */
3313 adapter
->detect_tx_hung
= 1;
3316 * With 82571 controllers, LAA may be overwritten due to controller
3317 * reset from the other port. Set the appropriate LAA in RAR[0]
3319 if (e1000e_get_laa_state_82571(hw
))
3320 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3322 /* Reset the timer */
3323 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3324 mod_timer(&adapter
->watchdog_timer
,
3325 round_jiffies(jiffies
+ 2 * HZ
));
3328 #define E1000_TX_FLAGS_CSUM 0x00000001
3329 #define E1000_TX_FLAGS_VLAN 0x00000002
3330 #define E1000_TX_FLAGS_TSO 0x00000004
3331 #define E1000_TX_FLAGS_IPV4 0x00000008
3332 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3333 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3335 static int e1000_tso(struct e1000_adapter
*adapter
,
3336 struct sk_buff
*skb
)
3338 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3339 struct e1000_context_desc
*context_desc
;
3340 struct e1000_buffer
*buffer_info
;
3343 u16 ipcse
= 0, tucse
, mss
;
3344 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3347 if (skb_is_gso(skb
)) {
3348 if (skb_header_cloned(skb
)) {
3349 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3354 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3355 mss
= skb_shinfo(skb
)->gso_size
;
3356 if (skb
->protocol
== htons(ETH_P_IP
)) {
3357 struct iphdr
*iph
= ip_hdr(skb
);
3360 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3364 cmd_length
= E1000_TXD_CMD_IP
;
3365 ipcse
= skb_transport_offset(skb
) - 1;
3366 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3367 ipv6_hdr(skb
)->payload_len
= 0;
3368 tcp_hdr(skb
)->check
=
3369 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3370 &ipv6_hdr(skb
)->daddr
,
3374 ipcss
= skb_network_offset(skb
);
3375 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3376 tucss
= skb_transport_offset(skb
);
3377 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3380 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3381 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3383 i
= tx_ring
->next_to_use
;
3384 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3385 buffer_info
= &tx_ring
->buffer_info
[i
];
3387 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3388 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3389 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3390 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3391 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3392 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3393 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3394 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3395 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3397 buffer_info
->time_stamp
= jiffies
;
3398 buffer_info
->next_to_watch
= i
;
3401 if (i
== tx_ring
->count
)
3403 tx_ring
->next_to_use
= i
;
3411 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3413 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3414 struct e1000_context_desc
*context_desc
;
3415 struct e1000_buffer
*buffer_info
;
3419 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3420 css
= skb_transport_offset(skb
);
3422 i
= tx_ring
->next_to_use
;
3423 buffer_info
= &tx_ring
->buffer_info
[i
];
3424 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3426 context_desc
->lower_setup
.ip_config
= 0;
3427 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3428 context_desc
->upper_setup
.tcp_fields
.tucso
=
3429 css
+ skb
->csum_offset
;
3430 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3431 context_desc
->tcp_seg_setup
.data
= 0;
3432 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
3434 buffer_info
->time_stamp
= jiffies
;
3435 buffer_info
->next_to_watch
= i
;
3438 if (i
== tx_ring
->count
)
3440 tx_ring
->next_to_use
= i
;
3448 #define E1000_MAX_PER_TXD 8192
3449 #define E1000_MAX_TXD_PWR 12
3451 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3452 struct sk_buff
*skb
, unsigned int first
,
3453 unsigned int max_per_txd
, unsigned int nr_frags
,
3456 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3457 struct e1000_buffer
*buffer_info
;
3458 unsigned int len
= skb
->len
- skb
->data_len
;
3459 unsigned int offset
= 0, size
, count
= 0, i
;
3462 i
= tx_ring
->next_to_use
;
3465 buffer_info
= &tx_ring
->buffer_info
[i
];
3466 size
= min(len
, max_per_txd
);
3468 /* Workaround for premature desc write-backs
3469 * in TSO mode. Append 4-byte sentinel desc */
3470 if (mss
&& !nr_frags
&& size
== len
&& size
> 8)
3473 buffer_info
->length
= size
;
3474 /* set time_stamp *before* dma to help avoid a possible race */
3475 buffer_info
->time_stamp
= jiffies
;
3477 pci_map_single(adapter
->pdev
,
3481 if (pci_dma_mapping_error(adapter
->pdev
, buffer_info
->dma
)) {
3482 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3483 adapter
->tx_dma_failed
++;
3486 buffer_info
->next_to_watch
= i
;
3492 if (i
== tx_ring
->count
)
3496 for (f
= 0; f
< nr_frags
; f
++) {
3497 struct skb_frag_struct
*frag
;
3499 frag
= &skb_shinfo(skb
)->frags
[f
];
3501 offset
= frag
->page_offset
;
3504 buffer_info
= &tx_ring
->buffer_info
[i
];
3505 size
= min(len
, max_per_txd
);
3506 /* Workaround for premature desc write-backs
3507 * in TSO mode. Append 4-byte sentinel desc */
3508 if (mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8)
3511 buffer_info
->length
= size
;
3512 buffer_info
->time_stamp
= jiffies
;
3514 pci_map_page(adapter
->pdev
,
3519 if (pci_dma_mapping_error(adapter
->pdev
,
3520 buffer_info
->dma
)) {
3521 dev_err(&adapter
->pdev
->dev
,
3522 "TX DMA page map failed\n");
3523 adapter
->tx_dma_failed
++;
3527 buffer_info
->next_to_watch
= i
;
3534 if (i
== tx_ring
->count
)
3540 i
= tx_ring
->count
- 1;
3544 tx_ring
->buffer_info
[i
].skb
= skb
;
3545 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3550 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3551 int tx_flags
, int count
)
3553 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3554 struct e1000_tx_desc
*tx_desc
= NULL
;
3555 struct e1000_buffer
*buffer_info
;
3556 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3559 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3560 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3562 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3564 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3565 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3568 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3569 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3570 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3573 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3574 txd_lower
|= E1000_TXD_CMD_VLE
;
3575 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3578 i
= tx_ring
->next_to_use
;
3581 buffer_info
= &tx_ring
->buffer_info
[i
];
3582 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3583 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3584 tx_desc
->lower
.data
=
3585 cpu_to_le32(txd_lower
| buffer_info
->length
);
3586 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3589 if (i
== tx_ring
->count
)
3593 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3596 * Force memory writes to complete before letting h/w
3597 * know there are new descriptors to fetch. (Only
3598 * applicable for weak-ordered memory model archs,
3603 tx_ring
->next_to_use
= i
;
3604 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3606 * we need this if more than one processor can write to our tail
3607 * at a time, it synchronizes IO on IA64/Altix systems
3612 #define MINIMUM_DHCP_PACKET_SIZE 282
3613 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3614 struct sk_buff
*skb
)
3616 struct e1000_hw
*hw
= &adapter
->hw
;
3619 if (vlan_tx_tag_present(skb
)) {
3620 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
3621 && (adapter
->hw
.mng_cookie
.status
&
3622 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
3626 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
3629 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
3633 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
3636 if (ip
->protocol
!= IPPROTO_UDP
)
3639 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
3640 if (ntohs(udp
->dest
) != 67)
3643 offset
= (u8
*)udp
+ 8 - skb
->data
;
3644 length
= skb
->len
- offset
;
3645 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
3651 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3653 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3655 netif_stop_queue(netdev
);
3657 * Herbert's original patch had:
3658 * smp_mb__after_netif_stop_queue();
3659 * but since that doesn't exist yet, just open code it.
3664 * We need to check again in a case another CPU has just
3665 * made room available.
3667 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
3671 netif_start_queue(netdev
);
3672 ++adapter
->restart_queue
;
3676 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3678 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3680 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
3682 return __e1000_maybe_stop_tx(netdev
, size
);
3685 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3686 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3688 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3689 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3691 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
3692 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3693 unsigned int tx_flags
= 0;
3694 unsigned int len
= skb
->len
- skb
->data_len
;
3695 unsigned long irq_flags
;
3696 unsigned int nr_frags
;
3702 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
3703 dev_kfree_skb_any(skb
);
3704 return NETDEV_TX_OK
;
3707 if (skb
->len
<= 0) {
3708 dev_kfree_skb_any(skb
);
3709 return NETDEV_TX_OK
;
3712 mss
= skb_shinfo(skb
)->gso_size
;
3714 * The controller does a simple calculation to
3715 * make sure there is enough room in the FIFO before
3716 * initiating the DMA for each buffer. The calc is:
3717 * 4 = ceil(buffer len/mss). To make sure we don't
3718 * overrun the FIFO, adjust the max buffer len if mss
3723 max_per_txd
= min(mss
<< 2, max_per_txd
);
3724 max_txd_pwr
= fls(max_per_txd
) - 1;
3727 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3728 * points to just header, pull a few bytes of payload from
3729 * frags into skb->data
3731 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3733 * we do this workaround for ES2LAN, but it is un-necessary,
3734 * avoiding it could save a lot of cycles
3736 if (skb
->data_len
&& (hdr_len
== len
)) {
3737 unsigned int pull_size
;
3739 pull_size
= min((unsigned int)4, skb
->data_len
);
3740 if (!__pskb_pull_tail(skb
, pull_size
)) {
3741 e_err("__pskb_pull_tail failed.\n");
3742 dev_kfree_skb_any(skb
);
3743 return NETDEV_TX_OK
;
3745 len
= skb
->len
- skb
->data_len
;
3749 /* reserve a descriptor for the offload context */
3750 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3754 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3756 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3757 for (f
= 0; f
< nr_frags
; f
++)
3758 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3761 if (adapter
->hw
.mac
.tx_pkt_filtering
)
3762 e1000_transfer_dhcp_info(adapter
, skb
);
3764 if (!spin_trylock_irqsave(&adapter
->tx_queue_lock
, irq_flags
))
3765 /* Collision - tell upper layer to requeue */
3766 return NETDEV_TX_LOCKED
;
3769 * need: count + 2 desc gap to keep tail from touching
3770 * head, otherwise try next time
3772 if (e1000_maybe_stop_tx(netdev
, count
+ 2)) {
3773 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3774 return NETDEV_TX_BUSY
;
3777 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3778 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3779 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3782 first
= tx_ring
->next_to_use
;
3784 tso
= e1000_tso(adapter
, skb
);
3786 dev_kfree_skb_any(skb
);
3787 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3788 return NETDEV_TX_OK
;
3792 tx_flags
|= E1000_TX_FLAGS_TSO
;
3793 else if (e1000_tx_csum(adapter
, skb
))
3794 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3797 * Old method was to assume IPv4 packet by default if TSO was enabled.
3798 * 82571 hardware supports TSO capabilities for IPv6 as well...
3799 * no longer assume, we must.
3801 if (skb
->protocol
== htons(ETH_P_IP
))
3802 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3804 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
3806 /* handle pci_map_single() error in e1000_tx_map */
3807 dev_kfree_skb_any(skb
);
3808 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3809 return NETDEV_TX_OK
;
3812 e1000_tx_queue(adapter
, tx_flags
, count
);
3814 netdev
->trans_start
= jiffies
;
3816 /* Make sure there is space in the ring for the next send. */
3817 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
3819 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3820 return NETDEV_TX_OK
;
3824 * e1000_tx_timeout - Respond to a Tx Hang
3825 * @netdev: network interface device structure
3827 static void e1000_tx_timeout(struct net_device
*netdev
)
3829 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3831 /* Do the reset outside of interrupt context */
3832 adapter
->tx_timeout_count
++;
3833 schedule_work(&adapter
->reset_task
);
3836 static void e1000_reset_task(struct work_struct
*work
)
3838 struct e1000_adapter
*adapter
;
3839 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
3841 e1000e_reinit_locked(adapter
);
3845 * e1000_get_stats - Get System Network Statistics
3846 * @netdev: network interface device structure
3848 * Returns the address of the device statistics structure.
3849 * The statistics are actually updated from the timer callback.
3851 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3853 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3855 /* only return the current stats */
3856 return &adapter
->net_stats
;
3860 * e1000_change_mtu - Change the Maximum Transfer Unit
3861 * @netdev: network interface device structure
3862 * @new_mtu: new value for maximum frame size
3864 * Returns 0 on success, negative on failure
3866 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3868 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3869 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3871 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
3872 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3873 e_err("Invalid MTU setting\n");
3877 /* Jumbo frame size limits */
3878 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3879 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
3880 e_err("Jumbo Frames not supported.\n");
3883 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
3884 e_err("Jumbo Frames not supported.\n");
3889 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3890 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3891 e_err("MTU > 9216 not supported.\n");
3895 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3897 /* e1000e_down has a dependency on max_frame_size */
3898 adapter
->max_frame_size
= max_frame
;
3899 if (netif_running(netdev
))
3900 e1000e_down(adapter
);
3903 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3904 * means we reserve 2 more, this pushes us to allocate from the next
3906 * i.e. RXBUFFER_2048 --> size-4096 slab
3907 * However with the new *_jumbo_rx* routines, jumbo receives will use
3911 if (max_frame
<= 256)
3912 adapter
->rx_buffer_len
= 256;
3913 else if (max_frame
<= 512)
3914 adapter
->rx_buffer_len
= 512;
3915 else if (max_frame
<= 1024)
3916 adapter
->rx_buffer_len
= 1024;
3917 else if (max_frame
<= 2048)
3918 adapter
->rx_buffer_len
= 2048;
3920 adapter
->rx_buffer_len
= 4096;
3922 /* adjust allocation if LPE protects us, and we aren't using SBP */
3923 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3924 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
3925 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
3928 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
3929 netdev
->mtu
= new_mtu
;
3931 if (netif_running(netdev
))
3934 e1000e_reset(adapter
);
3936 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3941 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
3944 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3945 struct mii_ioctl_data
*data
= if_mii(ifr
);
3947 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3952 data
->phy_id
= adapter
->hw
.phy
.addr
;
3955 if (!capable(CAP_NET_ADMIN
))
3957 switch (data
->reg_num
& 0x1F) {
3959 data
->val_out
= adapter
->phy_regs
.bmcr
;
3962 data
->val_out
= adapter
->phy_regs
.bmsr
;
3965 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
3968 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
3971 data
->val_out
= adapter
->phy_regs
.advertise
;
3974 data
->val_out
= adapter
->phy_regs
.lpa
;
3977 data
->val_out
= adapter
->phy_regs
.expansion
;
3980 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
3983 data
->val_out
= adapter
->phy_regs
.stat1000
;
3986 data
->val_out
= adapter
->phy_regs
.estatus
;
3999 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4005 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4011 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4013 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4014 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4015 struct e1000_hw
*hw
= &adapter
->hw
;
4016 u32 ctrl
, ctrl_ext
, rctl
, status
;
4017 u32 wufc
= adapter
->wol
;
4020 netif_device_detach(netdev
);
4022 if (netif_running(netdev
)) {
4023 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4024 e1000e_down(adapter
);
4025 e1000_free_irq(adapter
);
4028 retval
= pci_save_state(pdev
);
4032 status
= er32(STATUS
);
4033 if (status
& E1000_STATUS_LU
)
4034 wufc
&= ~E1000_WUFC_LNKC
;
4037 e1000_setup_rctl(adapter
);
4038 e1000_set_multi(netdev
);
4040 /* turn on all-multi mode if wake on multicast is enabled */
4041 if (wufc
& E1000_WUFC_MC
) {
4043 rctl
|= E1000_RCTL_MPE
;
4048 /* advertise wake from D3Cold */
4049 #define E1000_CTRL_ADVD3WUC 0x00100000
4050 /* phy power management enable */
4051 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4052 ctrl
|= E1000_CTRL_ADVD3WUC
|
4053 E1000_CTRL_EN_PHY_PWR_MGMT
;
4056 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4057 adapter
->hw
.phy
.media_type
==
4058 e1000_media_type_internal_serdes
) {
4059 /* keep the laser running in D3 */
4060 ctrl_ext
= er32(CTRL_EXT
);
4061 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4062 ew32(CTRL_EXT
, ctrl_ext
);
4065 if (adapter
->flags
& FLAG_IS_ICH
)
4066 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4068 /* Allow time for pending master requests to run */
4069 e1000e_disable_pcie_master(&adapter
->hw
);
4071 ew32(WUC
, E1000_WUC_PME_EN
);
4073 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4074 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4078 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4079 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4082 /* make sure adapter isn't asleep if manageability is enabled */
4083 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
4084 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4085 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4088 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4089 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
4092 * Release control of h/w to f/w. If f/w is AMT enabled, this
4093 * would have already happened in close and is redundant.
4095 e1000_release_hw_control(adapter
);
4097 pci_disable_device(pdev
);
4099 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4104 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
4110 * 82573 workaround - disable L1 ASPM on mobile chipsets
4112 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4113 * resulting in lost data or garbage information on the pci-e link
4114 * level. This could result in (false) bad EEPROM checksum errors,
4115 * long ping times (up to 2s) or even a system freeze/hang.
4117 * Unfortunately this feature saves about 1W power consumption when
4120 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
4121 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
4123 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
4125 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
4130 static int e1000_resume(struct pci_dev
*pdev
)
4132 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4133 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4134 struct e1000_hw
*hw
= &adapter
->hw
;
4137 pci_set_power_state(pdev
, PCI_D0
);
4138 pci_restore_state(pdev
);
4139 e1000e_disable_l1aspm(pdev
);
4141 err
= pci_enable_device_mem(pdev
);
4144 "Cannot enable PCI device from suspend\n");
4148 pci_set_master(pdev
);
4150 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4151 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4153 if (netif_running(netdev
)) {
4154 err
= e1000_request_irq(adapter
);
4159 e1000e_power_up_phy(adapter
);
4160 e1000e_reset(adapter
);
4163 e1000_init_manageability(adapter
);
4165 if (netif_running(netdev
))
4168 netif_device_attach(netdev
);
4171 * If the controller has AMT, do not set DRV_LOAD until the interface
4172 * is up. For all other cases, let the f/w know that the h/w is now
4173 * under the control of the driver.
4175 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4176 e1000_get_hw_control(adapter
);
4182 static void e1000_shutdown(struct pci_dev
*pdev
)
4184 e1000_suspend(pdev
, PMSG_SUSPEND
);
4187 #ifdef CONFIG_NET_POLL_CONTROLLER
4189 * Polling 'interrupt' - used by things like netconsole to send skbs
4190 * without having to re-enable interrupts. It's not called while
4191 * the interrupt routine is executing.
4193 static void e1000_netpoll(struct net_device
*netdev
)
4195 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4197 disable_irq(adapter
->pdev
->irq
);
4198 e1000_intr(adapter
->pdev
->irq
, netdev
);
4200 enable_irq(adapter
->pdev
->irq
);
4205 * e1000_io_error_detected - called when PCI error is detected
4206 * @pdev: Pointer to PCI device
4207 * @state: The current pci connection state
4209 * This function is called after a PCI bus error affecting
4210 * this device has been detected.
4212 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4213 pci_channel_state_t state
)
4215 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4216 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4218 netif_device_detach(netdev
);
4220 if (netif_running(netdev
))
4221 e1000e_down(adapter
);
4222 pci_disable_device(pdev
);
4224 /* Request a slot slot reset. */
4225 return PCI_ERS_RESULT_NEED_RESET
;
4229 * e1000_io_slot_reset - called after the pci bus has been reset.
4230 * @pdev: Pointer to PCI device
4232 * Restart the card from scratch, as if from a cold-boot. Implementation
4233 * resembles the first-half of the e1000_resume routine.
4235 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4237 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4238 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4239 struct e1000_hw
*hw
= &adapter
->hw
;
4242 e1000e_disable_l1aspm(pdev
);
4243 err
= pci_enable_device_mem(pdev
);
4246 "Cannot re-enable PCI device after reset.\n");
4247 return PCI_ERS_RESULT_DISCONNECT
;
4249 pci_set_master(pdev
);
4250 pci_restore_state(pdev
);
4252 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4253 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4255 e1000e_reset(adapter
);
4258 return PCI_ERS_RESULT_RECOVERED
;
4262 * e1000_io_resume - called when traffic can start flowing again.
4263 * @pdev: Pointer to PCI device
4265 * This callback is called when the error recovery driver tells us that
4266 * its OK to resume normal operation. Implementation resembles the
4267 * second-half of the e1000_resume routine.
4269 static void e1000_io_resume(struct pci_dev
*pdev
)
4271 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4272 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4274 e1000_init_manageability(adapter
);
4276 if (netif_running(netdev
)) {
4277 if (e1000e_up(adapter
)) {
4279 "can't bring device back up after reset\n");
4284 netif_device_attach(netdev
);
4287 * If the controller has AMT, do not set DRV_LOAD until the interface
4288 * is up. For all other cases, let the f/w know that the h/w is now
4289 * under the control of the driver.
4291 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4292 e1000_get_hw_control(adapter
);
4296 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4298 struct e1000_hw
*hw
= &adapter
->hw
;
4299 struct net_device
*netdev
= adapter
->netdev
;
4302 /* print bus type/speed/width info */
4303 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4305 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4308 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
4309 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
4310 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
4311 e_info("Intel(R) PRO/%s Network Connection\n",
4312 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
4313 e1000e_read_pba_num(hw
, &pba_num
);
4314 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4315 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
4318 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
4320 struct e1000_hw
*hw
= &adapter
->hw
;
4324 if (hw
->mac
.type
!= e1000_82573
)
4327 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
4328 if (!(le16_to_cpu(buf
) & (1 << 0))) {
4329 /* Deep Smart Power Down (DSPD) */
4330 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4333 ret_val
= e1000_read_nvm(hw
, NVM_INIT_3GIO_3
, 1, &buf
);
4334 if (le16_to_cpu(buf
) & (3 << 2)) {
4336 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4341 * e1000_probe - Device Initialization Routine
4342 * @pdev: PCI device information struct
4343 * @ent: entry in e1000_pci_tbl
4345 * Returns 0 on success, negative on failure
4347 * e1000_probe initializes an adapter identified by a pci_dev structure.
4348 * The OS initialization, configuring of the adapter private structure,
4349 * and a hardware reset occur.
4351 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4352 const struct pci_device_id
*ent
)
4354 struct net_device
*netdev
;
4355 struct e1000_adapter
*adapter
;
4356 struct e1000_hw
*hw
;
4357 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4358 resource_size_t mmio_start
, mmio_len
;
4359 resource_size_t flash_start
, flash_len
;
4361 static int cards_found
;
4362 int i
, err
, pci_using_dac
;
4363 u16 eeprom_data
= 0;
4364 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4366 e1000e_disable_l1aspm(pdev
);
4368 err
= pci_enable_device_mem(pdev
);
4373 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
4375 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
4379 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
4381 err
= pci_set_consistent_dma_mask(pdev
,
4384 dev_err(&pdev
->dev
, "No usable DMA "
4385 "configuration, aborting\n");
4391 err
= pci_request_selected_regions(pdev
,
4392 pci_select_bars(pdev
, IORESOURCE_MEM
),
4393 e1000e_driver_name
);
4397 pci_set_master(pdev
);
4398 pci_save_state(pdev
);
4401 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
4403 goto err_alloc_etherdev
;
4405 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
4407 pci_set_drvdata(pdev
, netdev
);
4408 adapter
= netdev_priv(netdev
);
4410 adapter
->netdev
= netdev
;
4411 adapter
->pdev
= pdev
;
4413 adapter
->pba
= ei
->pba
;
4414 adapter
->flags
= ei
->flags
;
4415 adapter
->hw
.adapter
= adapter
;
4416 adapter
->hw
.mac
.type
= ei
->mac
;
4417 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
4419 mmio_start
= pci_resource_start(pdev
, 0);
4420 mmio_len
= pci_resource_len(pdev
, 0);
4423 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
4424 if (!adapter
->hw
.hw_addr
)
4427 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
4428 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
4429 flash_start
= pci_resource_start(pdev
, 1);
4430 flash_len
= pci_resource_len(pdev
, 1);
4431 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
4432 if (!adapter
->hw
.flash_address
)
4436 /* construct the net_device struct */
4437 netdev
->open
= &e1000_open
;
4438 netdev
->stop
= &e1000_close
;
4439 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
4440 netdev
->get_stats
= &e1000_get_stats
;
4441 netdev
->set_multicast_list
= &e1000_set_multi
;
4442 netdev
->set_mac_address
= &e1000_set_mac
;
4443 netdev
->change_mtu
= &e1000_change_mtu
;
4444 netdev
->do_ioctl
= &e1000_ioctl
;
4445 e1000e_set_ethtool_ops(netdev
);
4446 netdev
->tx_timeout
= &e1000_tx_timeout
;
4447 netdev
->watchdog_timeo
= 5 * HZ
;
4448 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
4449 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
4450 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
4451 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
4452 #ifdef CONFIG_NET_POLL_CONTROLLER
4453 netdev
->poll_controller
= e1000_netpoll
;
4455 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
4457 netdev
->mem_start
= mmio_start
;
4458 netdev
->mem_end
= mmio_start
+ mmio_len
;
4460 adapter
->bd_number
= cards_found
++;
4462 e1000e_check_options(adapter
);
4464 /* setup adapter struct */
4465 err
= e1000_sw_init(adapter
);
4471 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
4472 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
4473 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
4475 err
= ei
->get_variants(adapter
);
4479 if ((adapter
->flags
& FLAG_IS_ICH
) &&
4480 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
4481 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
4483 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
4485 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
4487 /* Copper options */
4488 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
4489 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
4490 adapter
->hw
.phy
.disable_polarity_correction
= 0;
4491 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
4494 if (e1000_check_reset_block(&adapter
->hw
))
4495 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4497 netdev
->features
= NETIF_F_SG
|
4499 NETIF_F_HW_VLAN_TX
|
4502 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
4503 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
4505 netdev
->features
|= NETIF_F_TSO
;
4506 netdev
->features
|= NETIF_F_TSO6
;
4508 netdev
->vlan_features
|= NETIF_F_TSO
;
4509 netdev
->vlan_features
|= NETIF_F_TSO6
;
4510 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
4511 netdev
->vlan_features
|= NETIF_F_SG
;
4514 netdev
->features
|= NETIF_F_HIGHDMA
;
4517 * We should not be using LLTX anymore, but we are still Tx faster with
4520 netdev
->features
|= NETIF_F_LLTX
;
4522 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
4523 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
4526 * before reading the NVM, reset the controller to
4527 * put the device in a known good starting state
4529 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
4532 * systems with ASPM and others may see the checksum fail on the first
4533 * attempt. Let's give it a few tries
4536 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
4539 e_err("The NVM Checksum Is Not Valid\n");
4545 e1000_eeprom_checks(adapter
);
4547 /* copy the MAC address out of the NVM */
4548 if (e1000e_read_mac_addr(&adapter
->hw
))
4549 e_err("NVM Read Error while reading MAC address\n");
4551 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4552 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
4554 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
4555 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4556 netdev
->perm_addr
[0], netdev
->perm_addr
[1],
4557 netdev
->perm_addr
[2], netdev
->perm_addr
[3],
4558 netdev
->perm_addr
[4], netdev
->perm_addr
[5]);
4563 init_timer(&adapter
->watchdog_timer
);
4564 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
4565 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
4567 init_timer(&adapter
->phy_info_timer
);
4568 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
4569 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
4571 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
4572 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
4573 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
4574 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
4576 /* Initialize link parameters. User can change them with ethtool */
4577 adapter
->hw
.mac
.autoneg
= 1;
4578 adapter
->fc_autoneg
= 1;
4579 adapter
->hw
.fc
.original_type
= e1000_fc_default
;
4580 adapter
->hw
.fc
.type
= e1000_fc_default
;
4581 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
4583 /* ring size defaults */
4584 adapter
->rx_ring
->count
= 256;
4585 adapter
->tx_ring
->count
= 256;
4588 * Initial Wake on LAN setting - If APM wake is enabled in
4589 * the EEPROM, enable the ACPI Magic Packet filter
4591 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
4592 /* APME bit in EEPROM is mapped to WUC.APME */
4593 eeprom_data
= er32(WUC
);
4594 eeprom_apme_mask
= E1000_WUC_APME
;
4595 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
4596 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
4597 (adapter
->hw
.bus
.func
== 1))
4598 e1000_read_nvm(&adapter
->hw
,
4599 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
4601 e1000_read_nvm(&adapter
->hw
,
4602 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
4605 /* fetch WoL from EEPROM */
4606 if (eeprom_data
& eeprom_apme_mask
)
4607 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
4610 * now that we have the eeprom settings, apply the special cases
4611 * where the eeprom may be wrong or the board simply won't support
4612 * wake on lan on a particular port
4614 if (!(adapter
->flags
& FLAG_HAS_WOL
))
4615 adapter
->eeprom_wol
= 0;
4617 /* initialize the wol settings based on the eeprom settings */
4618 adapter
->wol
= adapter
->eeprom_wol
;
4620 /* reset the hardware with the new settings */
4621 e1000e_reset(adapter
);
4624 * If the controller has AMT, do not set DRV_LOAD until the interface
4625 * is up. For all other cases, let the f/w know that the h/w is now
4626 * under the control of the driver.
4628 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4629 e1000_get_hw_control(adapter
);
4631 /* tell the stack to leave us alone until e1000_open() is called */
4632 netif_carrier_off(netdev
);
4633 netif_tx_stop_all_queues(netdev
);
4635 strcpy(netdev
->name
, "eth%d");
4636 err
= register_netdev(netdev
);
4640 e1000_print_device_info(adapter
);
4645 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4646 e1000_release_hw_control(adapter
);
4648 if (!e1000_check_reset_block(&adapter
->hw
))
4649 e1000_phy_hw_reset(&adapter
->hw
);
4652 kfree(adapter
->tx_ring
);
4653 kfree(adapter
->rx_ring
);
4655 if (adapter
->hw
.flash_address
)
4656 iounmap(adapter
->hw
.flash_address
);
4658 iounmap(adapter
->hw
.hw_addr
);
4660 free_netdev(netdev
);
4662 pci_release_selected_regions(pdev
,
4663 pci_select_bars(pdev
, IORESOURCE_MEM
));
4666 pci_disable_device(pdev
);
4671 * e1000_remove - Device Removal Routine
4672 * @pdev: PCI device information struct
4674 * e1000_remove is called by the PCI subsystem to alert the driver
4675 * that it should release a PCI device. The could be caused by a
4676 * Hot-Plug event, or because the driver is going to be removed from
4679 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
4681 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4682 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4685 * flush_scheduled work may reschedule our watchdog task, so
4686 * explicitly disable watchdog tasks from being rescheduled
4688 set_bit(__E1000_DOWN
, &adapter
->state
);
4689 del_timer_sync(&adapter
->watchdog_timer
);
4690 del_timer_sync(&adapter
->phy_info_timer
);
4692 flush_scheduled_work();
4695 * Release control of h/w to f/w. If f/w is AMT enabled, this
4696 * would have already happened in close and is redundant.
4698 e1000_release_hw_control(adapter
);
4700 unregister_netdev(netdev
);
4702 if (!e1000_check_reset_block(&adapter
->hw
))
4703 e1000_phy_hw_reset(&adapter
->hw
);
4705 kfree(adapter
->tx_ring
);
4706 kfree(adapter
->rx_ring
);
4708 iounmap(adapter
->hw
.hw_addr
);
4709 if (adapter
->hw
.flash_address
)
4710 iounmap(adapter
->hw
.flash_address
);
4711 pci_release_selected_regions(pdev
,
4712 pci_select_bars(pdev
, IORESOURCE_MEM
));
4714 free_netdev(netdev
);
4716 pci_disable_device(pdev
);
4719 /* PCI Error Recovery (ERS) */
4720 static struct pci_error_handlers e1000_err_handler
= {
4721 .error_detected
= e1000_io_error_detected
,
4722 .slot_reset
= e1000_io_slot_reset
,
4723 .resume
= e1000_io_resume
,
4726 static struct pci_device_id e1000_pci_tbl
[] = {
4727 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
4728 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
4729 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
4730 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
4731 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
4732 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
4733 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
4734 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
4735 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
4737 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
4738 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
4739 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
4740 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
4742 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
4743 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
4744 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
4746 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
4747 board_80003es2lan
},
4748 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
4749 board_80003es2lan
},
4750 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
4751 board_80003es2lan
},
4752 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
4753 board_80003es2lan
},
4755 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
4756 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
4757 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
4758 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
4759 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
4760 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
4761 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
4763 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
4764 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
4765 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
4766 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
4767 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
4768 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
4769 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
4770 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
4772 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
4773 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
4774 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
4776 { } /* terminate list */
4778 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
4780 /* PCI Device API Driver */
4781 static struct pci_driver e1000_driver
= {
4782 .name
= e1000e_driver_name
,
4783 .id_table
= e1000_pci_tbl
,
4784 .probe
= e1000_probe
,
4785 .remove
= __devexit_p(e1000_remove
),
4787 /* Power Management Hooks */
4788 .suspend
= e1000_suspend
,
4789 .resume
= e1000_resume
,
4791 .shutdown
= e1000_shutdown
,
4792 .err_handler
= &e1000_err_handler
4796 * e1000_init_module - Driver Registration Routine
4798 * e1000_init_module is the first routine called when the driver is
4799 * loaded. All it does is register with the PCI subsystem.
4801 static int __init
e1000_init_module(void)
4804 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
4805 e1000e_driver_name
, e1000e_driver_version
);
4806 printk(KERN_INFO
"%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4807 e1000e_driver_name
);
4808 ret
= pci_register_driver(&e1000_driver
);
4809 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
,
4810 PM_QOS_DEFAULT_VALUE
);
4814 module_init(e1000_init_module
);
4817 * e1000_exit_module - Driver Exit Cleanup Routine
4819 * e1000_exit_module is called just before the driver is removed
4822 static void __exit
e1000_exit_module(void)
4824 pci_unregister_driver(&e1000_driver
);
4825 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
);
4827 module_exit(e1000_exit_module
);
4830 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4831 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4832 MODULE_LICENSE("GPL");
4833 MODULE_VERSION(DRV_VERSION
);