x86: improve UP kernel when CPU-hotplug and SMP is enabled
[linux/fpc-iii.git] / drivers / net / e1000e / netdev.c
blobb81c4237b5d30a11dc7f6e3dcefdbbc3ae202fb2
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
48 #include "e1000.h"
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
63 #ifdef DEBUG
64 /**
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
67 **/
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 return hw->adapter->netdev->name;
72 #endif
74 /**
75 * e1000_desc_unused - calculate if we have unused descriptors
76 **/
77 static int e1000_desc_unused(struct e1000_ring *ring)
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85 /**
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
91 **/
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
94 struct sk_buff *skb,
95 u8 status, __le16 vlan)
97 skb->protocol = eth_type_trans(skb, netdev);
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
101 le16_to_cpu(vlan));
102 else
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
194 map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
222 * such as IA-64).
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256 continue;
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
320 no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
324 if (!(i--))
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
331 * such as IA-64).
333 wmb();
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
351 int cleaned_count)
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
358 struct sk_buff *skb;
359 unsigned int i;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
362 NET_IP_ALIGN;
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
369 if (skb) {
370 skb_trim(skb, 0);
371 goto check_page;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
378 break;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
388 check_page:
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
394 break;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
401 PAGE_SIZE,
402 PCI_DMA_FROMDEVICE);
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
408 i = 0;
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
420 * such as IA-64). */
421 wmb();
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
441 u32 length;
442 unsigned int i;
443 int cleaned_count = 0;
444 bool cleaned = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
452 struct sk_buff *skb;
453 u8 status;
455 if (*work_done >= work_to_do)
456 break;
457 (*work_done)++;
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
465 i++;
466 if (i == rx_ring->count)
467 i = 0;
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
469 prefetch(next_rxd);
471 next_buffer = &rx_ring->buffer_info[i];
473 cleaned = 1;
474 cleaned_count++;
475 pci_unmap_single(pdev,
476 buffer_info->dma,
477 adapter->rx_buffer_len,
478 PCI_DMA_FROMDEVICE);
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
488 netdev->name);
489 /* recycle */
490 buffer_info->skb = skb;
491 goto next_desc;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495 /* recycle */
496 buffer_info->skb = skb;
497 goto next_desc;
500 total_rx_bytes += length;
501 total_rx_packets++;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
511 if (new_skb) {
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 skb_copy_to_linear_data_offset(new_skb,
514 -NET_IP_ALIGN,
515 (skb->data -
516 NET_IP_ALIGN),
517 (length +
518 NET_IP_ALIGN));
519 /* save the skb in buffer_info as good */
520 buffer_info->skb = skb;
521 skb = new_skb;
523 /* else just continue with the old one */
525 /* end copybreak code */
526 skb_put(skb, length);
528 /* Receive Checksum Offload */
529 e1000_rx_checksum(adapter,
530 (u32)(status) |
531 ((u32)(rx_desc->errors) << 24),
532 le16_to_cpu(rx_desc->csum), skb);
534 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
536 next_desc:
537 rx_desc->status = 0;
539 /* return some buffers to hardware, one at a time is too slow */
540 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
541 adapter->alloc_rx_buf(adapter, cleaned_count);
542 cleaned_count = 0;
545 /* use prefetched values */
546 rx_desc = next_rxd;
547 buffer_info = next_buffer;
549 rx_ring->next_to_clean = i;
551 cleaned_count = e1000_desc_unused(rx_ring);
552 if (cleaned_count)
553 adapter->alloc_rx_buf(adapter, cleaned_count);
555 adapter->total_rx_bytes += total_rx_bytes;
556 adapter->total_rx_packets += total_rx_packets;
557 adapter->net_stats.rx_bytes += total_rx_bytes;
558 adapter->net_stats.rx_packets += total_rx_packets;
559 return cleaned;
562 static void e1000_put_txbuf(struct e1000_adapter *adapter,
563 struct e1000_buffer *buffer_info)
565 if (buffer_info->dma) {
566 pci_unmap_page(adapter->pdev, buffer_info->dma,
567 buffer_info->length, PCI_DMA_TODEVICE);
568 buffer_info->dma = 0;
570 if (buffer_info->skb) {
571 dev_kfree_skb_any(buffer_info->skb);
572 buffer_info->skb = NULL;
576 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
578 struct e1000_ring *tx_ring = adapter->tx_ring;
579 unsigned int i = tx_ring->next_to_clean;
580 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
581 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
583 /* detected Tx unit hang */
584 e_err("Detected Tx Unit Hang:\n"
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
599 eop,
600 jiffies,
601 eop_desc->upper.fields.status);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
618 unsigned int i, eop;
619 unsigned int count = 0;
620 bool cleaned = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
633 if (cleaned) {
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
639 skb->len;
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
647 i++;
648 if (i == tx_ring->count)
649 i = 0;
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
657 break;
660 tx_ring->next_to_clean = i;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
668 smp_mb();
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
677 if (adapter->detect_tx_hung) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
695 return cleaned;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
714 struct sk_buff *skb;
715 unsigned int i, j;
716 u32 length, staterr;
717 int cleaned_count = 0;
718 bool cleaned = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
728 break;
729 (*work_done)++;
730 skb = buffer_info->skb;
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
735 i++;
736 if (i == rx_ring->count)
737 i = 0;
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
739 prefetch(next_rxd);
741 next_buffer = &rx_ring->buffer_info[i];
743 cleaned = 1;
744 cleaned_count++;
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
747 PCI_DMA_FROMDEVICE);
748 buffer_info->dma = 0;
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
754 goto next_desc;
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
759 goto next_desc;
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
764 if (!length) {
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
768 goto next_desc;
771 /* Good Receive */
772 skb_put(skb, length);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
788 u8 *vaddr;
790 ps_page = &buffer_info->ps_pages[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
795 * very long
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
805 skb_put(skb, l1);
806 goto copydone;
807 } /* if */
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
812 if (!length)
813 break;
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
817 PCI_DMA_FROMDEVICE);
818 ps_page->dma = 0;
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
821 skb->len += length;
822 skb->data_len += length;
823 skb->truesize += length;
826 copydone:
827 total_rx_bytes += skb->len;
828 total_rx_packets++;
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
840 next_desc:
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
847 cleaned_count = 0;
850 /* use prefetched values */
851 rx_desc = next_rxd;
852 buffer_info = next_buffer;
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856 rx_ring->next_to_clean = i;
858 cleaned_count = e1000_desc_unused(rx_ring);
859 if (cleaned_count)
860 adapter->alloc_rx_buf(adapter, cleaned_count);
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
866 return cleaned;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
873 u16 length)
875 bi->page = NULL;
876 skb->len += length;
877 skb->data_len += length;
878 skb->truesize += length;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
897 u32 length;
898 unsigned int i;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 struct sk_buff *skb;
909 u8 status;
911 if (*work_done >= work_to_do)
912 break;
913 (*work_done)++;
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
919 ++i;
920 if (i == rx_ring->count)
921 i = 0;
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
923 prefetch(next_rxd);
925 next_buffer = &rx_ring->buffer_info[i];
927 cleaned = true;
928 cleaned_count++;
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
930 PCI_DMA_FROMDEVICE);
931 buffer_info->dma = 0;
933 length = le16_to_cpu(rx_desc->length);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
941 * too */
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
945 goto next_desc;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
951 if (!rxtop) {
952 /* this is the beginning of a chain */
953 rxtop = skb;
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
955 0, length);
956 } else {
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
964 e1000_consume_page(buffer_info, rxtop, length);
965 goto next_desc;
966 } else {
967 if (rxtop) {
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
973 * page */
974 buffer_info->skb = skb;
975 skb = rxtop;
976 rxtop = NULL;
977 e1000_consume_page(buffer_info, skb, length);
978 } else {
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
983 u8 *vaddr;
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
987 length);
988 kunmap_atomic(vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
993 } else {
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
996 length);
997 e1000_consume_page(buffer_info, skb,
998 length);
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1005 (u32)(status) |
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1011 total_rx_packets++;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 e_err("pskb_may_pull failed.\n");
1016 dev_kfree_skb(skb);
1017 goto next_desc;
1020 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->special);
1023 next_desc:
1024 rx_desc->status = 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 cleaned_count = 0;
1032 /* use prefetched values */
1033 rx_desc = next_rxd;
1034 buffer_info = next_buffer;
1036 rx_ring->next_to_clean = i;
1038 cleaned_count = e1000_desc_unused(rx_ring);
1039 if (cleaned_count)
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1046 return cleaned;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1059 unsigned int i, j;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1071 PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1092 if (!ps_page->page)
1093 break;
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1096 ps_page->dma = 0;
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1118 static void e1000e_downshift_workaround(struct work_struct *work)
1120 struct e1000_adapter *adapter = container_of(work,
1121 struct e1000_adapter, downshift_task);
1123 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1127 * e1000_intr_msi - Interrupt Handler
1128 * @irq: interrupt number
1129 * @data: pointer to a network interface device structure
1131 static irqreturn_t e1000_intr_msi(int irq, void *data)
1133 struct net_device *netdev = data;
1134 struct e1000_adapter *adapter = netdev_priv(netdev);
1135 struct e1000_hw *hw = &adapter->hw;
1136 u32 icr = er32(ICR);
1139 * read ICR disables interrupts using IAM
1142 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1143 hw->mac.get_link_status = 1;
1145 * ICH8 workaround-- Call gig speed drop workaround on cable
1146 * disconnect (LSC) before accessing any PHY registers
1148 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1149 (!(er32(STATUS) & E1000_STATUS_LU)))
1150 schedule_work(&adapter->downshift_task);
1153 * 80003ES2LAN workaround-- For packet buffer work-around on
1154 * link down event; disable receives here in the ISR and reset
1155 * adapter in watchdog
1157 if (netif_carrier_ok(netdev) &&
1158 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1159 /* disable receives */
1160 u32 rctl = er32(RCTL);
1161 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1162 adapter->flags |= FLAG_RX_RESTART_NOW;
1164 /* guard against interrupt when we're going down */
1165 if (!test_bit(__E1000_DOWN, &adapter->state))
1166 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1169 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1170 adapter->total_tx_bytes = 0;
1171 adapter->total_tx_packets = 0;
1172 adapter->total_rx_bytes = 0;
1173 adapter->total_rx_packets = 0;
1174 __netif_rx_schedule(netdev, &adapter->napi);
1177 return IRQ_HANDLED;
1181 * e1000_intr - Interrupt Handler
1182 * @irq: interrupt number
1183 * @data: pointer to a network interface device structure
1185 static irqreturn_t e1000_intr(int irq, void *data)
1187 struct net_device *netdev = data;
1188 struct e1000_adapter *adapter = netdev_priv(netdev);
1189 struct e1000_hw *hw = &adapter->hw;
1191 u32 rctl, icr = er32(ICR);
1192 if (!icr)
1193 return IRQ_NONE; /* Not our interrupt */
1196 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1197 * not set, then the adapter didn't send an interrupt
1199 if (!(icr & E1000_ICR_INT_ASSERTED))
1200 return IRQ_NONE;
1203 * Interrupt Auto-Mask...upon reading ICR,
1204 * interrupts are masked. No need for the
1205 * IMC write
1208 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1209 hw->mac.get_link_status = 1;
1211 * ICH8 workaround-- Call gig speed drop workaround on cable
1212 * disconnect (LSC) before accessing any PHY registers
1214 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1215 (!(er32(STATUS) & E1000_STATUS_LU)))
1216 schedule_work(&adapter->downshift_task);
1219 * 80003ES2LAN workaround--
1220 * For packet buffer work-around on link down event;
1221 * disable receives here in the ISR and
1222 * reset adapter in watchdog
1224 if (netif_carrier_ok(netdev) &&
1225 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1226 /* disable receives */
1227 rctl = er32(RCTL);
1228 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1229 adapter->flags |= FLAG_RX_RESTART_NOW;
1231 /* guard against interrupt when we're going down */
1232 if (!test_bit(__E1000_DOWN, &adapter->state))
1233 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1236 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1237 adapter->total_tx_bytes = 0;
1238 adapter->total_tx_packets = 0;
1239 adapter->total_rx_bytes = 0;
1240 adapter->total_rx_packets = 0;
1241 __netif_rx_schedule(netdev, &adapter->napi);
1244 return IRQ_HANDLED;
1248 * e1000_request_irq - initialize interrupts
1250 * Attempts to configure interrupts using the best available
1251 * capabilities of the hardware and kernel.
1253 static int e1000_request_irq(struct e1000_adapter *adapter)
1255 struct net_device *netdev = adapter->netdev;
1256 int irq_flags = IRQF_SHARED;
1257 int err;
1259 if (!(adapter->flags & FLAG_MSI_TEST_FAILED)) {
1260 err = pci_enable_msi(adapter->pdev);
1261 if (!err) {
1262 adapter->flags |= FLAG_MSI_ENABLED;
1263 irq_flags = 0;
1267 err = request_irq(adapter->pdev->irq,
1268 ((adapter->flags & FLAG_MSI_ENABLED) ?
1269 &e1000_intr_msi : &e1000_intr),
1270 irq_flags, netdev->name, netdev);
1271 if (err) {
1272 if (adapter->flags & FLAG_MSI_ENABLED) {
1273 pci_disable_msi(adapter->pdev);
1274 adapter->flags &= ~FLAG_MSI_ENABLED;
1276 e_err("Unable to allocate interrupt, Error: %d\n", err);
1279 return err;
1282 static void e1000_free_irq(struct e1000_adapter *adapter)
1284 struct net_device *netdev = adapter->netdev;
1286 free_irq(adapter->pdev->irq, netdev);
1287 if (adapter->flags & FLAG_MSI_ENABLED) {
1288 pci_disable_msi(adapter->pdev);
1289 adapter->flags &= ~FLAG_MSI_ENABLED;
1294 * e1000_irq_disable - Mask off interrupt generation on the NIC
1296 static void e1000_irq_disable(struct e1000_adapter *adapter)
1298 struct e1000_hw *hw = &adapter->hw;
1300 ew32(IMC, ~0);
1301 e1e_flush();
1302 synchronize_irq(adapter->pdev->irq);
1306 * e1000_irq_enable - Enable default interrupt generation settings
1308 static void e1000_irq_enable(struct e1000_adapter *adapter)
1310 struct e1000_hw *hw = &adapter->hw;
1312 ew32(IMS, IMS_ENABLE_MASK);
1313 e1e_flush();
1317 * e1000_get_hw_control - get control of the h/w from f/w
1318 * @adapter: address of board private structure
1320 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1321 * For ASF and Pass Through versions of f/w this means that
1322 * the driver is loaded. For AMT version (only with 82573)
1323 * of the f/w this means that the network i/f is open.
1325 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1327 struct e1000_hw *hw = &adapter->hw;
1328 u32 ctrl_ext;
1329 u32 swsm;
1331 /* Let firmware know the driver has taken over */
1332 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1333 swsm = er32(SWSM);
1334 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1335 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1336 ctrl_ext = er32(CTRL_EXT);
1337 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1342 * e1000_release_hw_control - release control of the h/w to f/w
1343 * @adapter: address of board private structure
1345 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1346 * For ASF and Pass Through versions of f/w this means that the
1347 * driver is no longer loaded. For AMT version (only with 82573) i
1348 * of the f/w this means that the network i/f is closed.
1351 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1353 struct e1000_hw *hw = &adapter->hw;
1354 u32 ctrl_ext;
1355 u32 swsm;
1357 /* Let firmware taken over control of h/w */
1358 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1359 swsm = er32(SWSM);
1360 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1361 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1362 ctrl_ext = er32(CTRL_EXT);
1363 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1368 * @e1000_alloc_ring - allocate memory for a ring structure
1370 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1371 struct e1000_ring *ring)
1373 struct pci_dev *pdev = adapter->pdev;
1375 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1376 GFP_KERNEL);
1377 if (!ring->desc)
1378 return -ENOMEM;
1380 return 0;
1384 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1385 * @adapter: board private structure
1387 * Return 0 on success, negative on failure
1389 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1391 struct e1000_ring *tx_ring = adapter->tx_ring;
1392 int err = -ENOMEM, size;
1394 size = sizeof(struct e1000_buffer) * tx_ring->count;
1395 tx_ring->buffer_info = vmalloc(size);
1396 if (!tx_ring->buffer_info)
1397 goto err;
1398 memset(tx_ring->buffer_info, 0, size);
1400 /* round up to nearest 4K */
1401 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1402 tx_ring->size = ALIGN(tx_ring->size, 4096);
1404 err = e1000_alloc_ring_dma(adapter, tx_ring);
1405 if (err)
1406 goto err;
1408 tx_ring->next_to_use = 0;
1409 tx_ring->next_to_clean = 0;
1410 spin_lock_init(&adapter->tx_queue_lock);
1412 return 0;
1413 err:
1414 vfree(tx_ring->buffer_info);
1415 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1416 return err;
1420 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1421 * @adapter: board private structure
1423 * Returns 0 on success, negative on failure
1425 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1427 struct e1000_ring *rx_ring = adapter->rx_ring;
1428 struct e1000_buffer *buffer_info;
1429 int i, size, desc_len, err = -ENOMEM;
1431 size = sizeof(struct e1000_buffer) * rx_ring->count;
1432 rx_ring->buffer_info = vmalloc(size);
1433 if (!rx_ring->buffer_info)
1434 goto err;
1435 memset(rx_ring->buffer_info, 0, size);
1437 for (i = 0; i < rx_ring->count; i++) {
1438 buffer_info = &rx_ring->buffer_info[i];
1439 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1440 sizeof(struct e1000_ps_page),
1441 GFP_KERNEL);
1442 if (!buffer_info->ps_pages)
1443 goto err_pages;
1446 desc_len = sizeof(union e1000_rx_desc_packet_split);
1448 /* Round up to nearest 4K */
1449 rx_ring->size = rx_ring->count * desc_len;
1450 rx_ring->size = ALIGN(rx_ring->size, 4096);
1452 err = e1000_alloc_ring_dma(adapter, rx_ring);
1453 if (err)
1454 goto err_pages;
1456 rx_ring->next_to_clean = 0;
1457 rx_ring->next_to_use = 0;
1458 rx_ring->rx_skb_top = NULL;
1460 return 0;
1462 err_pages:
1463 for (i = 0; i < rx_ring->count; i++) {
1464 buffer_info = &rx_ring->buffer_info[i];
1465 kfree(buffer_info->ps_pages);
1467 err:
1468 vfree(rx_ring->buffer_info);
1469 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1470 return err;
1474 * e1000_clean_tx_ring - Free Tx Buffers
1475 * @adapter: board private structure
1477 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1479 struct e1000_ring *tx_ring = adapter->tx_ring;
1480 struct e1000_buffer *buffer_info;
1481 unsigned long size;
1482 unsigned int i;
1484 for (i = 0; i < tx_ring->count; i++) {
1485 buffer_info = &tx_ring->buffer_info[i];
1486 e1000_put_txbuf(adapter, buffer_info);
1489 size = sizeof(struct e1000_buffer) * tx_ring->count;
1490 memset(tx_ring->buffer_info, 0, size);
1492 memset(tx_ring->desc, 0, tx_ring->size);
1494 tx_ring->next_to_use = 0;
1495 tx_ring->next_to_clean = 0;
1497 writel(0, adapter->hw.hw_addr + tx_ring->head);
1498 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1502 * e1000e_free_tx_resources - Free Tx Resources per Queue
1503 * @adapter: board private structure
1505 * Free all transmit software resources
1507 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1509 struct pci_dev *pdev = adapter->pdev;
1510 struct e1000_ring *tx_ring = adapter->tx_ring;
1512 e1000_clean_tx_ring(adapter);
1514 vfree(tx_ring->buffer_info);
1515 tx_ring->buffer_info = NULL;
1517 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1518 tx_ring->dma);
1519 tx_ring->desc = NULL;
1523 * e1000e_free_rx_resources - Free Rx Resources
1524 * @adapter: board private structure
1526 * Free all receive software resources
1529 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1531 struct pci_dev *pdev = adapter->pdev;
1532 struct e1000_ring *rx_ring = adapter->rx_ring;
1533 int i;
1535 e1000_clean_rx_ring(adapter);
1537 for (i = 0; i < rx_ring->count; i++) {
1538 kfree(rx_ring->buffer_info[i].ps_pages);
1541 vfree(rx_ring->buffer_info);
1542 rx_ring->buffer_info = NULL;
1544 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1545 rx_ring->dma);
1546 rx_ring->desc = NULL;
1550 * e1000_update_itr - update the dynamic ITR value based on statistics
1551 * @adapter: pointer to adapter
1552 * @itr_setting: current adapter->itr
1553 * @packets: the number of packets during this measurement interval
1554 * @bytes: the number of bytes during this measurement interval
1556 * Stores a new ITR value based on packets and byte
1557 * counts during the last interrupt. The advantage of per interrupt
1558 * computation is faster updates and more accurate ITR for the current
1559 * traffic pattern. Constants in this function were computed
1560 * based on theoretical maximum wire speed and thresholds were set based
1561 * on testing data as well as attempting to minimize response time
1562 * while increasing bulk throughput.
1563 * this functionality is controlled by the InterruptThrottleRate module
1564 * parameter (see e1000_param.c)
1566 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1567 u16 itr_setting, int packets,
1568 int bytes)
1570 unsigned int retval = itr_setting;
1572 if (packets == 0)
1573 goto update_itr_done;
1575 switch (itr_setting) {
1576 case lowest_latency:
1577 /* handle TSO and jumbo frames */
1578 if (bytes/packets > 8000)
1579 retval = bulk_latency;
1580 else if ((packets < 5) && (bytes > 512)) {
1581 retval = low_latency;
1583 break;
1584 case low_latency: /* 50 usec aka 20000 ints/s */
1585 if (bytes > 10000) {
1586 /* this if handles the TSO accounting */
1587 if (bytes/packets > 8000) {
1588 retval = bulk_latency;
1589 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1590 retval = bulk_latency;
1591 } else if ((packets > 35)) {
1592 retval = lowest_latency;
1594 } else if (bytes/packets > 2000) {
1595 retval = bulk_latency;
1596 } else if (packets <= 2 && bytes < 512) {
1597 retval = lowest_latency;
1599 break;
1600 case bulk_latency: /* 250 usec aka 4000 ints/s */
1601 if (bytes > 25000) {
1602 if (packets > 35) {
1603 retval = low_latency;
1605 } else if (bytes < 6000) {
1606 retval = low_latency;
1608 break;
1611 update_itr_done:
1612 return retval;
1615 static void e1000_set_itr(struct e1000_adapter *adapter)
1617 struct e1000_hw *hw = &adapter->hw;
1618 u16 current_itr;
1619 u32 new_itr = adapter->itr;
1621 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1622 if (adapter->link_speed != SPEED_1000) {
1623 current_itr = 0;
1624 new_itr = 4000;
1625 goto set_itr_now;
1628 adapter->tx_itr = e1000_update_itr(adapter,
1629 adapter->tx_itr,
1630 adapter->total_tx_packets,
1631 adapter->total_tx_bytes);
1632 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1633 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1634 adapter->tx_itr = low_latency;
1636 adapter->rx_itr = e1000_update_itr(adapter,
1637 adapter->rx_itr,
1638 adapter->total_rx_packets,
1639 adapter->total_rx_bytes);
1640 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1641 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1642 adapter->rx_itr = low_latency;
1644 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1646 switch (current_itr) {
1647 /* counts and packets in update_itr are dependent on these numbers */
1648 case lowest_latency:
1649 new_itr = 70000;
1650 break;
1651 case low_latency:
1652 new_itr = 20000; /* aka hwitr = ~200 */
1653 break;
1654 case bulk_latency:
1655 new_itr = 4000;
1656 break;
1657 default:
1658 break;
1661 set_itr_now:
1662 if (new_itr != adapter->itr) {
1664 * this attempts to bias the interrupt rate towards Bulk
1665 * by adding intermediate steps when interrupt rate is
1666 * increasing
1668 new_itr = new_itr > adapter->itr ?
1669 min(adapter->itr + (new_itr >> 2), new_itr) :
1670 new_itr;
1671 adapter->itr = new_itr;
1672 ew32(ITR, 1000000000 / (new_itr * 256));
1677 * e1000_clean - NAPI Rx polling callback
1678 * @napi: struct associated with this polling callback
1679 * @budget: amount of packets driver is allowed to process this poll
1681 static int e1000_clean(struct napi_struct *napi, int budget)
1683 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1684 struct net_device *poll_dev = adapter->netdev;
1685 int tx_cleaned = 0, work_done = 0;
1687 /* Must NOT use netdev_priv macro here. */
1688 adapter = poll_dev->priv;
1691 * e1000_clean is called per-cpu. This lock protects
1692 * tx_ring from being cleaned by multiple cpus
1693 * simultaneously. A failure obtaining the lock means
1694 * tx_ring is currently being cleaned anyway.
1696 if (spin_trylock(&adapter->tx_queue_lock)) {
1697 tx_cleaned = e1000_clean_tx_irq(adapter);
1698 spin_unlock(&adapter->tx_queue_lock);
1701 adapter->clean_rx(adapter, &work_done, budget);
1703 if (tx_cleaned)
1704 work_done = budget;
1706 /* If budget not fully consumed, exit the polling mode */
1707 if (work_done < budget) {
1708 if (adapter->itr_setting & 3)
1709 e1000_set_itr(adapter);
1710 netif_rx_complete(poll_dev, napi);
1711 e1000_irq_enable(adapter);
1714 return work_done;
1717 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1719 struct e1000_adapter *adapter = netdev_priv(netdev);
1720 struct e1000_hw *hw = &adapter->hw;
1721 u32 vfta, index;
1723 /* don't update vlan cookie if already programmed */
1724 if ((adapter->hw.mng_cookie.status &
1725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1726 (vid == adapter->mng_vlan_id))
1727 return;
1728 /* add VID to filter table */
1729 index = (vid >> 5) & 0x7F;
1730 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1731 vfta |= (1 << (vid & 0x1F));
1732 e1000e_write_vfta(hw, index, vfta);
1735 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1737 struct e1000_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 u32 vfta, index;
1741 if (!test_bit(__E1000_DOWN, &adapter->state))
1742 e1000_irq_disable(adapter);
1743 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1745 if (!test_bit(__E1000_DOWN, &adapter->state))
1746 e1000_irq_enable(adapter);
1748 if ((adapter->hw.mng_cookie.status &
1749 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1750 (vid == adapter->mng_vlan_id)) {
1751 /* release control to f/w */
1752 e1000_release_hw_control(adapter);
1753 return;
1756 /* remove VID from filter table */
1757 index = (vid >> 5) & 0x7F;
1758 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1759 vfta &= ~(1 << (vid & 0x1F));
1760 e1000e_write_vfta(hw, index, vfta);
1763 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1765 struct net_device *netdev = adapter->netdev;
1766 u16 vid = adapter->hw.mng_cookie.vlan_id;
1767 u16 old_vid = adapter->mng_vlan_id;
1769 if (!adapter->vlgrp)
1770 return;
1772 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1773 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1774 if (adapter->hw.mng_cookie.status &
1775 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1776 e1000_vlan_rx_add_vid(netdev, vid);
1777 adapter->mng_vlan_id = vid;
1780 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1781 (vid != old_vid) &&
1782 !vlan_group_get_device(adapter->vlgrp, old_vid))
1783 e1000_vlan_rx_kill_vid(netdev, old_vid);
1784 } else {
1785 adapter->mng_vlan_id = vid;
1790 static void e1000_vlan_rx_register(struct net_device *netdev,
1791 struct vlan_group *grp)
1793 struct e1000_adapter *adapter = netdev_priv(netdev);
1794 struct e1000_hw *hw = &adapter->hw;
1795 u32 ctrl, rctl;
1797 if (!test_bit(__E1000_DOWN, &adapter->state))
1798 e1000_irq_disable(adapter);
1799 adapter->vlgrp = grp;
1801 if (grp) {
1802 /* enable VLAN tag insert/strip */
1803 ctrl = er32(CTRL);
1804 ctrl |= E1000_CTRL_VME;
1805 ew32(CTRL, ctrl);
1807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1808 /* enable VLAN receive filtering */
1809 rctl = er32(RCTL);
1810 rctl &= ~E1000_RCTL_CFIEN;
1811 ew32(RCTL, rctl);
1812 e1000_update_mng_vlan(adapter);
1814 } else {
1815 /* disable VLAN tag insert/strip */
1816 ctrl = er32(CTRL);
1817 ctrl &= ~E1000_CTRL_VME;
1818 ew32(CTRL, ctrl);
1820 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1821 if (adapter->mng_vlan_id !=
1822 (u16)E1000_MNG_VLAN_NONE) {
1823 e1000_vlan_rx_kill_vid(netdev,
1824 adapter->mng_vlan_id);
1825 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1830 if (!test_bit(__E1000_DOWN, &adapter->state))
1831 e1000_irq_enable(adapter);
1834 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1836 u16 vid;
1838 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1840 if (!adapter->vlgrp)
1841 return;
1843 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1844 if (!vlan_group_get_device(adapter->vlgrp, vid))
1845 continue;
1846 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1850 static void e1000_init_manageability(struct e1000_adapter *adapter)
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 manc, manc2h;
1855 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1856 return;
1858 manc = er32(MANC);
1861 * enable receiving management packets to the host. this will probably
1862 * generate destination unreachable messages from the host OS, but
1863 * the packets will be handled on SMBUS
1865 manc |= E1000_MANC_EN_MNG2HOST;
1866 manc2h = er32(MANC2H);
1867 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1868 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1869 manc2h |= E1000_MNG2HOST_PORT_623;
1870 manc2h |= E1000_MNG2HOST_PORT_664;
1871 ew32(MANC2H, manc2h);
1872 ew32(MANC, manc);
1876 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1877 * @adapter: board private structure
1879 * Configure the Tx unit of the MAC after a reset.
1881 static void e1000_configure_tx(struct e1000_adapter *adapter)
1883 struct e1000_hw *hw = &adapter->hw;
1884 struct e1000_ring *tx_ring = adapter->tx_ring;
1885 u64 tdba;
1886 u32 tdlen, tctl, tipg, tarc;
1887 u32 ipgr1, ipgr2;
1889 /* Setup the HW Tx Head and Tail descriptor pointers */
1890 tdba = tx_ring->dma;
1891 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1892 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1893 ew32(TDBAH, (tdba >> 32));
1894 ew32(TDLEN, tdlen);
1895 ew32(TDH, 0);
1896 ew32(TDT, 0);
1897 tx_ring->head = E1000_TDH;
1898 tx_ring->tail = E1000_TDT;
1900 /* Set the default values for the Tx Inter Packet Gap timer */
1901 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1902 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1903 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1905 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1906 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1908 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1909 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1910 ew32(TIPG, tipg);
1912 /* Set the Tx Interrupt Delay register */
1913 ew32(TIDV, adapter->tx_int_delay);
1914 /* Tx irq moderation */
1915 ew32(TADV, adapter->tx_abs_int_delay);
1917 /* Program the Transmit Control Register */
1918 tctl = er32(TCTL);
1919 tctl &= ~E1000_TCTL_CT;
1920 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1921 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1923 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1924 tarc = er32(TARC(0));
1926 * set the speed mode bit, we'll clear it if we're not at
1927 * gigabit link later
1929 #define SPEED_MODE_BIT (1 << 21)
1930 tarc |= SPEED_MODE_BIT;
1931 ew32(TARC(0), tarc);
1934 /* errata: program both queues to unweighted RR */
1935 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1936 tarc = er32(TARC(0));
1937 tarc |= 1;
1938 ew32(TARC(0), tarc);
1939 tarc = er32(TARC(1));
1940 tarc |= 1;
1941 ew32(TARC(1), tarc);
1944 e1000e_config_collision_dist(hw);
1946 /* Setup Transmit Descriptor Settings for eop descriptor */
1947 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1949 /* only set IDE if we are delaying interrupts using the timers */
1950 if (adapter->tx_int_delay)
1951 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1953 /* enable Report Status bit */
1954 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1956 ew32(TCTL, tctl);
1958 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1962 * e1000_setup_rctl - configure the receive control registers
1963 * @adapter: Board private structure
1965 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1966 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1967 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1969 struct e1000_hw *hw = &adapter->hw;
1970 u32 rctl, rfctl;
1971 u32 psrctl = 0;
1972 u32 pages = 0;
1974 /* Program MC offset vector base */
1975 rctl = er32(RCTL);
1976 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1977 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1978 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1979 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1981 /* Do not Store bad packets */
1982 rctl &= ~E1000_RCTL_SBP;
1984 /* Enable Long Packet receive */
1985 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1986 rctl &= ~E1000_RCTL_LPE;
1987 else
1988 rctl |= E1000_RCTL_LPE;
1990 /* Enable hardware CRC frame stripping */
1991 rctl |= E1000_RCTL_SECRC;
1993 /* Setup buffer sizes */
1994 rctl &= ~E1000_RCTL_SZ_4096;
1995 rctl |= E1000_RCTL_BSEX;
1996 switch (adapter->rx_buffer_len) {
1997 case 256:
1998 rctl |= E1000_RCTL_SZ_256;
1999 rctl &= ~E1000_RCTL_BSEX;
2000 break;
2001 case 512:
2002 rctl |= E1000_RCTL_SZ_512;
2003 rctl &= ~E1000_RCTL_BSEX;
2004 break;
2005 case 1024:
2006 rctl |= E1000_RCTL_SZ_1024;
2007 rctl &= ~E1000_RCTL_BSEX;
2008 break;
2009 case 2048:
2010 default:
2011 rctl |= E1000_RCTL_SZ_2048;
2012 rctl &= ~E1000_RCTL_BSEX;
2013 break;
2014 case 4096:
2015 rctl |= E1000_RCTL_SZ_4096;
2016 break;
2017 case 8192:
2018 rctl |= E1000_RCTL_SZ_8192;
2019 break;
2020 case 16384:
2021 rctl |= E1000_RCTL_SZ_16384;
2022 break;
2026 * 82571 and greater support packet-split where the protocol
2027 * header is placed in skb->data and the packet data is
2028 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2029 * In the case of a non-split, skb->data is linearly filled,
2030 * followed by the page buffers. Therefore, skb->data is
2031 * sized to hold the largest protocol header.
2033 * allocations using alloc_page take too long for regular MTU
2034 * so only enable packet split for jumbo frames
2036 * Using pages when the page size is greater than 16k wastes
2037 * a lot of memory, since we allocate 3 pages at all times
2038 * per packet.
2040 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2041 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2042 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2043 adapter->rx_ps_pages = pages;
2044 else
2045 adapter->rx_ps_pages = 0;
2047 if (adapter->rx_ps_pages) {
2048 /* Configure extra packet-split registers */
2049 rfctl = er32(RFCTL);
2050 rfctl |= E1000_RFCTL_EXTEN;
2052 * disable packet split support for IPv6 extension headers,
2053 * because some malformed IPv6 headers can hang the Rx
2055 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2056 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2058 ew32(RFCTL, rfctl);
2060 /* Enable Packet split descriptors */
2061 rctl |= E1000_RCTL_DTYP_PS;
2063 psrctl |= adapter->rx_ps_bsize0 >>
2064 E1000_PSRCTL_BSIZE0_SHIFT;
2066 switch (adapter->rx_ps_pages) {
2067 case 3:
2068 psrctl |= PAGE_SIZE <<
2069 E1000_PSRCTL_BSIZE3_SHIFT;
2070 case 2:
2071 psrctl |= PAGE_SIZE <<
2072 E1000_PSRCTL_BSIZE2_SHIFT;
2073 case 1:
2074 psrctl |= PAGE_SIZE >>
2075 E1000_PSRCTL_BSIZE1_SHIFT;
2076 break;
2079 ew32(PSRCTL, psrctl);
2082 ew32(RCTL, rctl);
2083 /* just started the receive unit, no need to restart */
2084 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2088 * e1000_configure_rx - Configure Receive Unit after Reset
2089 * @adapter: board private structure
2091 * Configure the Rx unit of the MAC after a reset.
2093 static void e1000_configure_rx(struct e1000_adapter *adapter)
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_ring *rx_ring = adapter->rx_ring;
2097 u64 rdba;
2098 u32 rdlen, rctl, rxcsum, ctrl_ext;
2100 if (adapter->rx_ps_pages) {
2101 /* this is a 32 byte descriptor */
2102 rdlen = rx_ring->count *
2103 sizeof(union e1000_rx_desc_packet_split);
2104 adapter->clean_rx = e1000_clean_rx_irq_ps;
2105 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2106 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2107 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2108 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2109 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2110 } else {
2111 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2112 adapter->clean_rx = e1000_clean_rx_irq;
2113 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2116 /* disable receives while setting up the descriptors */
2117 rctl = er32(RCTL);
2118 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2119 e1e_flush();
2120 msleep(10);
2122 /* set the Receive Delay Timer Register */
2123 ew32(RDTR, adapter->rx_int_delay);
2125 /* irq moderation */
2126 ew32(RADV, adapter->rx_abs_int_delay);
2127 if (adapter->itr_setting != 0)
2128 ew32(ITR, 1000000000 / (adapter->itr * 256));
2130 ctrl_ext = er32(CTRL_EXT);
2131 /* Reset delay timers after every interrupt */
2132 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2133 /* Auto-Mask interrupts upon ICR access */
2134 ctrl_ext |= E1000_CTRL_EXT_IAME;
2135 ew32(IAM, 0xffffffff);
2136 ew32(CTRL_EXT, ctrl_ext);
2137 e1e_flush();
2140 * Setup the HW Rx Head and Tail Descriptor Pointers and
2141 * the Base and Length of the Rx Descriptor Ring
2143 rdba = rx_ring->dma;
2144 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2145 ew32(RDBAH, (rdba >> 32));
2146 ew32(RDLEN, rdlen);
2147 ew32(RDH, 0);
2148 ew32(RDT, 0);
2149 rx_ring->head = E1000_RDH;
2150 rx_ring->tail = E1000_RDT;
2152 /* Enable Receive Checksum Offload for TCP and UDP */
2153 rxcsum = er32(RXCSUM);
2154 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2155 rxcsum |= E1000_RXCSUM_TUOFL;
2158 * IPv4 payload checksum for UDP fragments must be
2159 * used in conjunction with packet-split.
2161 if (adapter->rx_ps_pages)
2162 rxcsum |= E1000_RXCSUM_IPPCSE;
2163 } else {
2164 rxcsum &= ~E1000_RXCSUM_TUOFL;
2165 /* no need to clear IPPCSE as it defaults to 0 */
2167 ew32(RXCSUM, rxcsum);
2170 * Enable early receives on supported devices, only takes effect when
2171 * packet size is equal or larger than the specified value (in 8 byte
2172 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2174 if ((adapter->flags & FLAG_HAS_ERT) &&
2175 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2176 u32 rxdctl = er32(RXDCTL(0));
2177 ew32(RXDCTL(0), rxdctl | 0x3);
2178 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2180 * With jumbo frames and early-receive enabled, excessive
2181 * C4->C2 latencies result in dropped transactions.
2183 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2184 e1000e_driver_name, 55);
2185 } else {
2186 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2187 e1000e_driver_name,
2188 PM_QOS_DEFAULT_VALUE);
2191 /* Enable Receives */
2192 ew32(RCTL, rctl);
2196 * e1000_update_mc_addr_list - Update Multicast addresses
2197 * @hw: pointer to the HW structure
2198 * @mc_addr_list: array of multicast addresses to program
2199 * @mc_addr_count: number of multicast addresses to program
2200 * @rar_used_count: the first RAR register free to program
2201 * @rar_count: total number of supported Receive Address Registers
2203 * Updates the Receive Address Registers and Multicast Table Array.
2204 * The caller must have a packed mc_addr_list of multicast addresses.
2205 * The parameter rar_count will usually be hw->mac.rar_entry_count
2206 * unless there are workarounds that change this. Currently no func pointer
2207 * exists and all implementations are handled in the generic version of this
2208 * function.
2210 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2211 u32 mc_addr_count, u32 rar_used_count,
2212 u32 rar_count)
2214 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2215 rar_used_count, rar_count);
2219 * e1000_set_multi - Multicast and Promiscuous mode set
2220 * @netdev: network interface device structure
2222 * The set_multi entry point is called whenever the multicast address
2223 * list or the network interface flags are updated. This routine is
2224 * responsible for configuring the hardware for proper multicast,
2225 * promiscuous mode, and all-multi behavior.
2227 static void e1000_set_multi(struct net_device *netdev)
2229 struct e1000_adapter *adapter = netdev_priv(netdev);
2230 struct e1000_hw *hw = &adapter->hw;
2231 struct e1000_mac_info *mac = &hw->mac;
2232 struct dev_mc_list *mc_ptr;
2233 u8 *mta_list;
2234 u32 rctl;
2235 int i;
2237 /* Check for Promiscuous and All Multicast modes */
2239 rctl = er32(RCTL);
2241 if (netdev->flags & IFF_PROMISC) {
2242 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2243 rctl &= ~E1000_RCTL_VFE;
2244 } else {
2245 if (netdev->flags & IFF_ALLMULTI) {
2246 rctl |= E1000_RCTL_MPE;
2247 rctl &= ~E1000_RCTL_UPE;
2248 } else {
2249 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2251 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2252 rctl |= E1000_RCTL_VFE;
2255 ew32(RCTL, rctl);
2257 if (netdev->mc_count) {
2258 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2259 if (!mta_list)
2260 return;
2262 /* prepare a packed array of only addresses. */
2263 mc_ptr = netdev->mc_list;
2265 for (i = 0; i < netdev->mc_count; i++) {
2266 if (!mc_ptr)
2267 break;
2268 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2269 ETH_ALEN);
2270 mc_ptr = mc_ptr->next;
2273 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2274 mac->rar_entry_count);
2275 kfree(mta_list);
2276 } else {
2278 * if we're called from probe, we might not have
2279 * anything to do here, so clear out the list
2281 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2286 * e1000_configure - configure the hardware for Rx and Tx
2287 * @adapter: private board structure
2289 static void e1000_configure(struct e1000_adapter *adapter)
2291 e1000_set_multi(adapter->netdev);
2293 e1000_restore_vlan(adapter);
2294 e1000_init_manageability(adapter);
2296 e1000_configure_tx(adapter);
2297 e1000_setup_rctl(adapter);
2298 e1000_configure_rx(adapter);
2299 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2303 * e1000e_power_up_phy - restore link in case the phy was powered down
2304 * @adapter: address of board private structure
2306 * The phy may be powered down to save power and turn off link when the
2307 * driver is unloaded and wake on lan is not enabled (among others)
2308 * *** this routine MUST be followed by a call to e1000e_reset ***
2310 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2312 u16 mii_reg = 0;
2314 /* Just clear the power down bit to wake the phy back up */
2315 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2317 * According to the manual, the phy will retain its
2318 * settings across a power-down/up cycle
2320 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2321 mii_reg &= ~MII_CR_POWER_DOWN;
2322 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2325 adapter->hw.mac.ops.setup_link(&adapter->hw);
2329 * e1000_power_down_phy - Power down the PHY
2331 * Power down the PHY so no link is implied when interface is down
2332 * The PHY cannot be powered down is management or WoL is active
2334 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2336 struct e1000_hw *hw = &adapter->hw;
2337 u16 mii_reg;
2339 /* WoL is enabled */
2340 if (adapter->wol)
2341 return;
2343 /* non-copper PHY? */
2344 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2345 return;
2347 /* reset is blocked because of a SoL/IDER session */
2348 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2349 return;
2351 /* manageability (AMT) is enabled */
2352 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2353 return;
2355 /* power down the PHY */
2356 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2357 mii_reg |= MII_CR_POWER_DOWN;
2358 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2359 mdelay(1);
2363 * e1000e_reset - bring the hardware into a known good state
2365 * This function boots the hardware and enables some settings that
2366 * require a configuration cycle of the hardware - those cannot be
2367 * set/changed during runtime. After reset the device needs to be
2368 * properly configured for Rx, Tx etc.
2370 void e1000e_reset(struct e1000_adapter *adapter)
2372 struct e1000_mac_info *mac = &adapter->hw.mac;
2373 struct e1000_fc_info *fc = &adapter->hw.fc;
2374 struct e1000_hw *hw = &adapter->hw;
2375 u32 tx_space, min_tx_space, min_rx_space;
2376 u32 pba = adapter->pba;
2377 u16 hwm;
2379 /* reset Packet Buffer Allocation to default */
2380 ew32(PBA, pba);
2382 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2384 * To maintain wire speed transmits, the Tx FIFO should be
2385 * large enough to accommodate two full transmit packets,
2386 * rounded up to the next 1KB and expressed in KB. Likewise,
2387 * the Rx FIFO should be large enough to accommodate at least
2388 * one full receive packet and is similarly rounded up and
2389 * expressed in KB.
2391 pba = er32(PBA);
2392 /* upper 16 bits has Tx packet buffer allocation size in KB */
2393 tx_space = pba >> 16;
2394 /* lower 16 bits has Rx packet buffer allocation size in KB */
2395 pba &= 0xffff;
2397 * the Tx fifo also stores 16 bytes of information about the tx
2398 * but don't include ethernet FCS because hardware appends it
2400 min_tx_space = (adapter->max_frame_size +
2401 sizeof(struct e1000_tx_desc) -
2402 ETH_FCS_LEN) * 2;
2403 min_tx_space = ALIGN(min_tx_space, 1024);
2404 min_tx_space >>= 10;
2405 /* software strips receive CRC, so leave room for it */
2406 min_rx_space = adapter->max_frame_size;
2407 min_rx_space = ALIGN(min_rx_space, 1024);
2408 min_rx_space >>= 10;
2411 * If current Tx allocation is less than the min Tx FIFO size,
2412 * and the min Tx FIFO size is less than the current Rx FIFO
2413 * allocation, take space away from current Rx allocation
2415 if ((tx_space < min_tx_space) &&
2416 ((min_tx_space - tx_space) < pba)) {
2417 pba -= min_tx_space - tx_space;
2420 * if short on Rx space, Rx wins and must trump tx
2421 * adjustment or use Early Receive if available
2423 if ((pba < min_rx_space) &&
2424 (!(adapter->flags & FLAG_HAS_ERT)))
2425 /* ERT enabled in e1000_configure_rx */
2426 pba = min_rx_space;
2429 ew32(PBA, pba);
2434 * flow control settings
2436 * The high water mark must be low enough to fit one full frame
2437 * (or the size used for early receive) above it in the Rx FIFO.
2438 * Set it to the lower of:
2439 * - 90% of the Rx FIFO size, and
2440 * - the full Rx FIFO size minus the early receive size (for parts
2441 * with ERT support assuming ERT set to E1000_ERT_2048), or
2442 * - the full Rx FIFO size minus one full frame
2444 if (adapter->flags & FLAG_HAS_ERT)
2445 hwm = min(((pba << 10) * 9 / 10),
2446 ((pba << 10) - (E1000_ERT_2048 << 3)));
2447 else
2448 hwm = min(((pba << 10) * 9 / 10),
2449 ((pba << 10) - adapter->max_frame_size));
2451 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2452 fc->low_water = fc->high_water - 8;
2454 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2455 fc->pause_time = 0xFFFF;
2456 else
2457 fc->pause_time = E1000_FC_PAUSE_TIME;
2458 fc->send_xon = 1;
2459 fc->type = fc->original_type;
2461 /* Allow time for pending master requests to run */
2462 mac->ops.reset_hw(hw);
2465 * For parts with AMT enabled, let the firmware know
2466 * that the network interface is in control
2468 if (adapter->flags & FLAG_HAS_AMT)
2469 e1000_get_hw_control(adapter);
2471 ew32(WUC, 0);
2473 if (mac->ops.init_hw(hw))
2474 e_err("Hardware Error\n");
2476 e1000_update_mng_vlan(adapter);
2478 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2479 ew32(VET, ETH_P_8021Q);
2481 e1000e_reset_adaptive(hw);
2482 e1000_get_phy_info(hw);
2484 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2485 u16 phy_data = 0;
2487 * speed up time to link by disabling smart power down, ignore
2488 * the return value of this function because there is nothing
2489 * different we would do if it failed
2491 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2492 phy_data &= ~IGP02E1000_PM_SPD;
2493 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2497 int e1000e_up(struct e1000_adapter *adapter)
2499 struct e1000_hw *hw = &adapter->hw;
2501 /* hardware has been reset, we need to reload some things */
2502 e1000_configure(adapter);
2504 clear_bit(__E1000_DOWN, &adapter->state);
2506 napi_enable(&adapter->napi);
2507 e1000_irq_enable(adapter);
2509 /* fire a link change interrupt to start the watchdog */
2510 ew32(ICS, E1000_ICS_LSC);
2511 return 0;
2514 void e1000e_down(struct e1000_adapter *adapter)
2516 struct net_device *netdev = adapter->netdev;
2517 struct e1000_hw *hw = &adapter->hw;
2518 u32 tctl, rctl;
2521 * signal that we're down so the interrupt handler does not
2522 * reschedule our watchdog timer
2524 set_bit(__E1000_DOWN, &adapter->state);
2526 /* disable receives in the hardware */
2527 rctl = er32(RCTL);
2528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2529 /* flush and sleep below */
2531 netif_tx_stop_all_queues(netdev);
2533 /* disable transmits in the hardware */
2534 tctl = er32(TCTL);
2535 tctl &= ~E1000_TCTL_EN;
2536 ew32(TCTL, tctl);
2537 /* flush both disables and wait for them to finish */
2538 e1e_flush();
2539 msleep(10);
2541 napi_disable(&adapter->napi);
2542 e1000_irq_disable(adapter);
2544 del_timer_sync(&adapter->watchdog_timer);
2545 del_timer_sync(&adapter->phy_info_timer);
2547 netdev->tx_queue_len = adapter->tx_queue_len;
2548 netif_carrier_off(netdev);
2549 adapter->link_speed = 0;
2550 adapter->link_duplex = 0;
2552 if (!pci_channel_offline(adapter->pdev))
2553 e1000e_reset(adapter);
2554 e1000_clean_tx_ring(adapter);
2555 e1000_clean_rx_ring(adapter);
2558 * TODO: for power management, we could drop the link and
2559 * pci_disable_device here.
2563 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2565 might_sleep();
2566 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2567 msleep(1);
2568 e1000e_down(adapter);
2569 e1000e_up(adapter);
2570 clear_bit(__E1000_RESETTING, &adapter->state);
2574 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2575 * @adapter: board private structure to initialize
2577 * e1000_sw_init initializes the Adapter private data structure.
2578 * Fields are initialized based on PCI device information and
2579 * OS network device settings (MTU size).
2581 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2583 struct net_device *netdev = adapter->netdev;
2585 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2586 adapter->rx_ps_bsize0 = 128;
2587 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2588 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2590 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2591 if (!adapter->tx_ring)
2592 goto err;
2594 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2595 if (!adapter->rx_ring)
2596 goto err;
2598 spin_lock_init(&adapter->tx_queue_lock);
2600 /* Explicitly disable IRQ since the NIC can be in any state. */
2601 e1000_irq_disable(adapter);
2603 set_bit(__E1000_DOWN, &adapter->state);
2604 return 0;
2606 err:
2607 e_err("Unable to allocate memory for queues\n");
2608 kfree(adapter->rx_ring);
2609 kfree(adapter->tx_ring);
2610 return -ENOMEM;
2614 * e1000_intr_msi_test - Interrupt Handler
2615 * @irq: interrupt number
2616 * @data: pointer to a network interface device structure
2618 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2620 struct net_device *netdev = data;
2621 struct e1000_adapter *adapter = netdev_priv(netdev);
2622 struct e1000_hw *hw = &adapter->hw;
2623 u32 icr = er32(ICR);
2625 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2626 if (icr & E1000_ICR_RXSEQ) {
2627 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2628 wmb();
2631 return IRQ_HANDLED;
2635 * e1000_test_msi_interrupt - Returns 0 for successful test
2636 * @adapter: board private struct
2638 * code flow taken from tg3.c
2640 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2642 struct net_device *netdev = adapter->netdev;
2643 struct e1000_hw *hw = &adapter->hw;
2644 int err;
2646 /* poll_enable hasn't been called yet, so don't need disable */
2647 /* clear any pending events */
2648 er32(ICR);
2650 /* free the real vector and request a test handler */
2651 e1000_free_irq(adapter);
2653 /* Assume that the test fails, if it succeeds then the test
2654 * MSI irq handler will unset this flag */
2655 adapter->flags |= FLAG_MSI_TEST_FAILED;
2657 err = pci_enable_msi(adapter->pdev);
2658 if (err)
2659 goto msi_test_failed;
2661 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2662 netdev->name, netdev);
2663 if (err) {
2664 pci_disable_msi(adapter->pdev);
2665 goto msi_test_failed;
2668 wmb();
2670 e1000_irq_enable(adapter);
2672 /* fire an unusual interrupt on the test handler */
2673 ew32(ICS, E1000_ICS_RXSEQ);
2674 e1e_flush();
2675 msleep(50);
2677 e1000_irq_disable(adapter);
2679 rmb();
2681 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2682 err = -EIO;
2683 e_info("MSI interrupt test failed!\n");
2686 free_irq(adapter->pdev->irq, netdev);
2687 pci_disable_msi(adapter->pdev);
2689 if (err == -EIO)
2690 goto msi_test_failed;
2692 /* okay so the test worked, restore settings */
2693 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
2694 msi_test_failed:
2695 /* restore the original vector, even if it failed */
2696 e1000_request_irq(adapter);
2697 return err;
2701 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
2702 * @adapter: board private struct
2704 * code flow taken from tg3.c, called with e1000 interrupts disabled.
2706 static int e1000_test_msi(struct e1000_adapter *adapter)
2708 int err;
2709 u16 pci_cmd;
2711 if (!(adapter->flags & FLAG_MSI_ENABLED))
2712 return 0;
2714 /* disable SERR in case the MSI write causes a master abort */
2715 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
2716 pci_write_config_word(adapter->pdev, PCI_COMMAND,
2717 pci_cmd & ~PCI_COMMAND_SERR);
2719 err = e1000_test_msi_interrupt(adapter);
2721 /* restore previous setting of command word */
2722 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
2724 /* success ! */
2725 if (!err)
2726 return 0;
2728 /* EIO means MSI test failed */
2729 if (err != -EIO)
2730 return err;
2732 /* back to INTx mode */
2733 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
2735 e1000_free_irq(adapter);
2737 err = e1000_request_irq(adapter);
2739 return err;
2743 * e1000_open - Called when a network interface is made active
2744 * @netdev: network interface device structure
2746 * Returns 0 on success, negative value on failure
2748 * The open entry point is called when a network interface is made
2749 * active by the system (IFF_UP). At this point all resources needed
2750 * for transmit and receive operations are allocated, the interrupt
2751 * handler is registered with the OS, the watchdog timer is started,
2752 * and the stack is notified that the interface is ready.
2754 static int e1000_open(struct net_device *netdev)
2756 struct e1000_adapter *adapter = netdev_priv(netdev);
2757 struct e1000_hw *hw = &adapter->hw;
2758 int err;
2760 /* disallow open during test */
2761 if (test_bit(__E1000_TESTING, &adapter->state))
2762 return -EBUSY;
2764 /* allocate transmit descriptors */
2765 err = e1000e_setup_tx_resources(adapter);
2766 if (err)
2767 goto err_setup_tx;
2769 /* allocate receive descriptors */
2770 err = e1000e_setup_rx_resources(adapter);
2771 if (err)
2772 goto err_setup_rx;
2774 e1000e_power_up_phy(adapter);
2776 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2777 if ((adapter->hw.mng_cookie.status &
2778 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2779 e1000_update_mng_vlan(adapter);
2782 * If AMT is enabled, let the firmware know that the network
2783 * interface is now open
2785 if (adapter->flags & FLAG_HAS_AMT)
2786 e1000_get_hw_control(adapter);
2789 * before we allocate an interrupt, we must be ready to handle it.
2790 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2791 * as soon as we call pci_request_irq, so we have to setup our
2792 * clean_rx handler before we do so.
2794 e1000_configure(adapter);
2796 err = e1000_request_irq(adapter);
2797 if (err)
2798 goto err_req_irq;
2801 * Work around PCIe errata with MSI interrupts causing some chipsets to
2802 * ignore e1000e MSI messages, which means we need to test our MSI
2803 * interrupt now
2806 err = e1000_test_msi(adapter);
2807 if (err) {
2808 e_err("Interrupt allocation failed\n");
2809 goto err_req_irq;
2813 /* From here on the code is the same as e1000e_up() */
2814 clear_bit(__E1000_DOWN, &adapter->state);
2816 napi_enable(&adapter->napi);
2818 e1000_irq_enable(adapter);
2820 netif_tx_start_all_queues(netdev);
2822 /* fire a link status change interrupt to start the watchdog */
2823 ew32(ICS, E1000_ICS_LSC);
2825 return 0;
2827 err_req_irq:
2828 e1000_release_hw_control(adapter);
2829 e1000_power_down_phy(adapter);
2830 e1000e_free_rx_resources(adapter);
2831 err_setup_rx:
2832 e1000e_free_tx_resources(adapter);
2833 err_setup_tx:
2834 e1000e_reset(adapter);
2836 return err;
2840 * e1000_close - Disables a network interface
2841 * @netdev: network interface device structure
2843 * Returns 0, this is not allowed to fail
2845 * The close entry point is called when an interface is de-activated
2846 * by the OS. The hardware is still under the drivers control, but
2847 * needs to be disabled. A global MAC reset is issued to stop the
2848 * hardware, and all transmit and receive resources are freed.
2850 static int e1000_close(struct net_device *netdev)
2852 struct e1000_adapter *adapter = netdev_priv(netdev);
2854 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2855 e1000e_down(adapter);
2856 e1000_power_down_phy(adapter);
2857 e1000_free_irq(adapter);
2859 e1000e_free_tx_resources(adapter);
2860 e1000e_free_rx_resources(adapter);
2863 * kill manageability vlan ID if supported, but not if a vlan with
2864 * the same ID is registered on the host OS (let 8021q kill it)
2866 if ((adapter->hw.mng_cookie.status &
2867 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2868 !(adapter->vlgrp &&
2869 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2870 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2873 * If AMT is enabled, let the firmware know that the network
2874 * interface is now closed
2876 if (adapter->flags & FLAG_HAS_AMT)
2877 e1000_release_hw_control(adapter);
2879 return 0;
2882 * e1000_set_mac - Change the Ethernet Address of the NIC
2883 * @netdev: network interface device structure
2884 * @p: pointer to an address structure
2886 * Returns 0 on success, negative on failure
2888 static int e1000_set_mac(struct net_device *netdev, void *p)
2890 struct e1000_adapter *adapter = netdev_priv(netdev);
2891 struct sockaddr *addr = p;
2893 if (!is_valid_ether_addr(addr->sa_data))
2894 return -EADDRNOTAVAIL;
2896 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2897 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2899 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2901 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2902 /* activate the work around */
2903 e1000e_set_laa_state_82571(&adapter->hw, 1);
2906 * Hold a copy of the LAA in RAR[14] This is done so that
2907 * between the time RAR[0] gets clobbered and the time it
2908 * gets fixed (in e1000_watchdog), the actual LAA is in one
2909 * of the RARs and no incoming packets directed to this port
2910 * are dropped. Eventually the LAA will be in RAR[0] and
2911 * RAR[14]
2913 e1000e_rar_set(&adapter->hw,
2914 adapter->hw.mac.addr,
2915 adapter->hw.mac.rar_entry_count - 1);
2918 return 0;
2922 * e1000e_update_phy_task - work thread to update phy
2923 * @work: pointer to our work struct
2925 * this worker thread exists because we must acquire a
2926 * semaphore to read the phy, which we could msleep while
2927 * waiting for it, and we can't msleep in a timer.
2929 static void e1000e_update_phy_task(struct work_struct *work)
2931 struct e1000_adapter *adapter = container_of(work,
2932 struct e1000_adapter, update_phy_task);
2933 e1000_get_phy_info(&adapter->hw);
2937 * Need to wait a few seconds after link up to get diagnostic information from
2938 * the phy
2940 static void e1000_update_phy_info(unsigned long data)
2942 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2943 schedule_work(&adapter->update_phy_task);
2947 * e1000e_update_stats - Update the board statistics counters
2948 * @adapter: board private structure
2950 void e1000e_update_stats(struct e1000_adapter *adapter)
2952 struct e1000_hw *hw = &adapter->hw;
2953 struct pci_dev *pdev = adapter->pdev;
2956 * Prevent stats update while adapter is being reset, or if the pci
2957 * connection is down.
2959 if (adapter->link_speed == 0)
2960 return;
2961 if (pci_channel_offline(pdev))
2962 return;
2964 adapter->stats.crcerrs += er32(CRCERRS);
2965 adapter->stats.gprc += er32(GPRC);
2966 adapter->stats.gorc += er32(GORCL);
2967 er32(GORCH); /* Clear gorc */
2968 adapter->stats.bprc += er32(BPRC);
2969 adapter->stats.mprc += er32(MPRC);
2970 adapter->stats.roc += er32(ROC);
2972 adapter->stats.mpc += er32(MPC);
2973 adapter->stats.scc += er32(SCC);
2974 adapter->stats.ecol += er32(ECOL);
2975 adapter->stats.mcc += er32(MCC);
2976 adapter->stats.latecol += er32(LATECOL);
2977 adapter->stats.dc += er32(DC);
2978 adapter->stats.xonrxc += er32(XONRXC);
2979 adapter->stats.xontxc += er32(XONTXC);
2980 adapter->stats.xoffrxc += er32(XOFFRXC);
2981 adapter->stats.xofftxc += er32(XOFFTXC);
2982 adapter->stats.gptc += er32(GPTC);
2983 adapter->stats.gotc += er32(GOTCL);
2984 er32(GOTCH); /* Clear gotc */
2985 adapter->stats.rnbc += er32(RNBC);
2986 adapter->stats.ruc += er32(RUC);
2988 adapter->stats.mptc += er32(MPTC);
2989 adapter->stats.bptc += er32(BPTC);
2991 /* used for adaptive IFS */
2993 hw->mac.tx_packet_delta = er32(TPT);
2994 adapter->stats.tpt += hw->mac.tx_packet_delta;
2995 hw->mac.collision_delta = er32(COLC);
2996 adapter->stats.colc += hw->mac.collision_delta;
2998 adapter->stats.algnerrc += er32(ALGNERRC);
2999 adapter->stats.rxerrc += er32(RXERRC);
3000 adapter->stats.tncrs += er32(TNCRS);
3001 adapter->stats.cexterr += er32(CEXTERR);
3002 adapter->stats.tsctc += er32(TSCTC);
3003 adapter->stats.tsctfc += er32(TSCTFC);
3005 /* Fill out the OS statistics structure */
3006 adapter->net_stats.multicast = adapter->stats.mprc;
3007 adapter->net_stats.collisions = adapter->stats.colc;
3009 /* Rx Errors */
3012 * RLEC on some newer hardware can be incorrect so build
3013 * our own version based on RUC and ROC
3015 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3016 adapter->stats.crcerrs + adapter->stats.algnerrc +
3017 adapter->stats.ruc + adapter->stats.roc +
3018 adapter->stats.cexterr;
3019 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3020 adapter->stats.roc;
3021 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3022 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3023 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3025 /* Tx Errors */
3026 adapter->net_stats.tx_errors = adapter->stats.ecol +
3027 adapter->stats.latecol;
3028 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3029 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3030 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3032 /* Tx Dropped needs to be maintained elsewhere */
3034 /* Management Stats */
3035 adapter->stats.mgptc += er32(MGTPTC);
3036 adapter->stats.mgprc += er32(MGTPRC);
3037 adapter->stats.mgpdc += er32(MGTPDC);
3041 * e1000_phy_read_status - Update the PHY register status snapshot
3042 * @adapter: board private structure
3044 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3046 struct e1000_hw *hw = &adapter->hw;
3047 struct e1000_phy_regs *phy = &adapter->phy_regs;
3048 int ret_val;
3050 if ((er32(STATUS) & E1000_STATUS_LU) &&
3051 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3052 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3053 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3054 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3055 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3056 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3057 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3058 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3059 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3060 if (ret_val)
3061 e_warn("Error reading PHY register\n");
3062 } else {
3064 * Do not read PHY registers if link is not up
3065 * Set values to typical power-on defaults
3067 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3068 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3069 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3070 BMSR_ERCAP);
3071 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3072 ADVERTISE_ALL | ADVERTISE_CSMA);
3073 phy->lpa = 0;
3074 phy->expansion = EXPANSION_ENABLENPAGE;
3075 phy->ctrl1000 = ADVERTISE_1000FULL;
3076 phy->stat1000 = 0;
3077 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3081 static void e1000_print_link_info(struct e1000_adapter *adapter)
3083 struct e1000_hw *hw = &adapter->hw;
3084 u32 ctrl = er32(CTRL);
3086 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3087 adapter->link_speed,
3088 (adapter->link_duplex == FULL_DUPLEX) ?
3089 "Full Duplex" : "Half Duplex",
3090 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3091 "RX/TX" :
3092 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3093 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3096 static bool e1000_has_link(struct e1000_adapter *adapter)
3098 struct e1000_hw *hw = &adapter->hw;
3099 bool link_active = 0;
3100 s32 ret_val = 0;
3103 * get_link_status is set on LSC (link status) interrupt or
3104 * Rx sequence error interrupt. get_link_status will stay
3105 * false until the check_for_link establishes link
3106 * for copper adapters ONLY
3108 switch (hw->phy.media_type) {
3109 case e1000_media_type_copper:
3110 if (hw->mac.get_link_status) {
3111 ret_val = hw->mac.ops.check_for_link(hw);
3112 link_active = !hw->mac.get_link_status;
3113 } else {
3114 link_active = 1;
3116 break;
3117 case e1000_media_type_fiber:
3118 ret_val = hw->mac.ops.check_for_link(hw);
3119 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3120 break;
3121 case e1000_media_type_internal_serdes:
3122 ret_val = hw->mac.ops.check_for_link(hw);
3123 link_active = adapter->hw.mac.serdes_has_link;
3124 break;
3125 default:
3126 case e1000_media_type_unknown:
3127 break;
3130 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3131 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3132 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3133 e_info("Gigabit has been disabled, downgrading speed\n");
3136 return link_active;
3139 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3141 /* make sure the receive unit is started */
3142 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3143 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3144 struct e1000_hw *hw = &adapter->hw;
3145 u32 rctl = er32(RCTL);
3146 ew32(RCTL, rctl | E1000_RCTL_EN);
3147 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3152 * e1000_watchdog - Timer Call-back
3153 * @data: pointer to adapter cast into an unsigned long
3155 static void e1000_watchdog(unsigned long data)
3157 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3159 /* Do the rest outside of interrupt context */
3160 schedule_work(&adapter->watchdog_task);
3162 /* TODO: make this use queue_delayed_work() */
3165 static void e1000_watchdog_task(struct work_struct *work)
3167 struct e1000_adapter *adapter = container_of(work,
3168 struct e1000_adapter, watchdog_task);
3169 struct net_device *netdev = adapter->netdev;
3170 struct e1000_mac_info *mac = &adapter->hw.mac;
3171 struct e1000_ring *tx_ring = adapter->tx_ring;
3172 struct e1000_hw *hw = &adapter->hw;
3173 u32 link, tctl;
3174 int tx_pending = 0;
3176 link = e1000_has_link(adapter);
3177 if ((netif_carrier_ok(netdev)) && link) {
3178 e1000e_enable_receives(adapter);
3179 goto link_up;
3182 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3183 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3184 e1000_update_mng_vlan(adapter);
3186 if (link) {
3187 if (!netif_carrier_ok(netdev)) {
3188 bool txb2b = 1;
3189 /* update snapshot of PHY registers on LSC */
3190 e1000_phy_read_status(adapter);
3191 mac->ops.get_link_up_info(&adapter->hw,
3192 &adapter->link_speed,
3193 &adapter->link_duplex);
3194 e1000_print_link_info(adapter);
3196 * tweak tx_queue_len according to speed/duplex
3197 * and adjust the timeout factor
3199 netdev->tx_queue_len = adapter->tx_queue_len;
3200 adapter->tx_timeout_factor = 1;
3201 switch (adapter->link_speed) {
3202 case SPEED_10:
3203 txb2b = 0;
3204 netdev->tx_queue_len = 10;
3205 adapter->tx_timeout_factor = 16;
3206 break;
3207 case SPEED_100:
3208 txb2b = 0;
3209 netdev->tx_queue_len = 100;
3210 /* maybe add some timeout factor ? */
3211 break;
3215 * workaround: re-program speed mode bit after
3216 * link-up event
3218 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3219 !txb2b) {
3220 u32 tarc0;
3221 tarc0 = er32(TARC(0));
3222 tarc0 &= ~SPEED_MODE_BIT;
3223 ew32(TARC(0), tarc0);
3227 * disable TSO for pcie and 10/100 speeds, to avoid
3228 * some hardware issues
3230 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3231 switch (adapter->link_speed) {
3232 case SPEED_10:
3233 case SPEED_100:
3234 e_info("10/100 speed: disabling TSO\n");
3235 netdev->features &= ~NETIF_F_TSO;
3236 netdev->features &= ~NETIF_F_TSO6;
3237 break;
3238 case SPEED_1000:
3239 netdev->features |= NETIF_F_TSO;
3240 netdev->features |= NETIF_F_TSO6;
3241 break;
3242 default:
3243 /* oops */
3244 break;
3249 * enable transmits in the hardware, need to do this
3250 * after setting TARC(0)
3252 tctl = er32(TCTL);
3253 tctl |= E1000_TCTL_EN;
3254 ew32(TCTL, tctl);
3256 netif_carrier_on(netdev);
3257 netif_tx_wake_all_queues(netdev);
3259 if (!test_bit(__E1000_DOWN, &adapter->state))
3260 mod_timer(&adapter->phy_info_timer,
3261 round_jiffies(jiffies + 2 * HZ));
3263 } else {
3264 if (netif_carrier_ok(netdev)) {
3265 adapter->link_speed = 0;
3266 adapter->link_duplex = 0;
3267 e_info("Link is Down\n");
3268 netif_carrier_off(netdev);
3269 netif_tx_stop_all_queues(netdev);
3270 if (!test_bit(__E1000_DOWN, &adapter->state))
3271 mod_timer(&adapter->phy_info_timer,
3272 round_jiffies(jiffies + 2 * HZ));
3274 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3275 schedule_work(&adapter->reset_task);
3279 link_up:
3280 e1000e_update_stats(adapter);
3282 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3283 adapter->tpt_old = adapter->stats.tpt;
3284 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3285 adapter->colc_old = adapter->stats.colc;
3287 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3288 adapter->gorc_old = adapter->stats.gorc;
3289 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3290 adapter->gotc_old = adapter->stats.gotc;
3292 e1000e_update_adaptive(&adapter->hw);
3294 if (!netif_carrier_ok(netdev)) {
3295 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3296 tx_ring->count);
3297 if (tx_pending) {
3299 * We've lost link, so the controller stops DMA,
3300 * but we've got queued Tx work that's never going
3301 * to get done, so reset controller to flush Tx.
3302 * (Do the reset outside of interrupt context).
3304 adapter->tx_timeout_count++;
3305 schedule_work(&adapter->reset_task);
3309 /* Cause software interrupt to ensure Rx ring is cleaned */
3310 ew32(ICS, E1000_ICS_RXDMT0);
3312 /* Force detection of hung controller every watchdog period */
3313 adapter->detect_tx_hung = 1;
3316 * With 82571 controllers, LAA may be overwritten due to controller
3317 * reset from the other port. Set the appropriate LAA in RAR[0]
3319 if (e1000e_get_laa_state_82571(hw))
3320 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3322 /* Reset the timer */
3323 if (!test_bit(__E1000_DOWN, &adapter->state))
3324 mod_timer(&adapter->watchdog_timer,
3325 round_jiffies(jiffies + 2 * HZ));
3328 #define E1000_TX_FLAGS_CSUM 0x00000001
3329 #define E1000_TX_FLAGS_VLAN 0x00000002
3330 #define E1000_TX_FLAGS_TSO 0x00000004
3331 #define E1000_TX_FLAGS_IPV4 0x00000008
3332 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3333 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3335 static int e1000_tso(struct e1000_adapter *adapter,
3336 struct sk_buff *skb)
3338 struct e1000_ring *tx_ring = adapter->tx_ring;
3339 struct e1000_context_desc *context_desc;
3340 struct e1000_buffer *buffer_info;
3341 unsigned int i;
3342 u32 cmd_length = 0;
3343 u16 ipcse = 0, tucse, mss;
3344 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3345 int err;
3347 if (skb_is_gso(skb)) {
3348 if (skb_header_cloned(skb)) {
3349 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3350 if (err)
3351 return err;
3354 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3355 mss = skb_shinfo(skb)->gso_size;
3356 if (skb->protocol == htons(ETH_P_IP)) {
3357 struct iphdr *iph = ip_hdr(skb);
3358 iph->tot_len = 0;
3359 iph->check = 0;
3360 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3361 iph->daddr, 0,
3362 IPPROTO_TCP,
3364 cmd_length = E1000_TXD_CMD_IP;
3365 ipcse = skb_transport_offset(skb) - 1;
3366 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3367 ipv6_hdr(skb)->payload_len = 0;
3368 tcp_hdr(skb)->check =
3369 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3370 &ipv6_hdr(skb)->daddr,
3371 0, IPPROTO_TCP, 0);
3372 ipcse = 0;
3374 ipcss = skb_network_offset(skb);
3375 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3376 tucss = skb_transport_offset(skb);
3377 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3378 tucse = 0;
3380 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3381 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3383 i = tx_ring->next_to_use;
3384 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3385 buffer_info = &tx_ring->buffer_info[i];
3387 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3388 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3389 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3390 context_desc->upper_setup.tcp_fields.tucss = tucss;
3391 context_desc->upper_setup.tcp_fields.tucso = tucso;
3392 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3393 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3394 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3395 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3397 buffer_info->time_stamp = jiffies;
3398 buffer_info->next_to_watch = i;
3400 i++;
3401 if (i == tx_ring->count)
3402 i = 0;
3403 tx_ring->next_to_use = i;
3405 return 1;
3408 return 0;
3411 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3413 struct e1000_ring *tx_ring = adapter->tx_ring;
3414 struct e1000_context_desc *context_desc;
3415 struct e1000_buffer *buffer_info;
3416 unsigned int i;
3417 u8 css;
3419 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3420 css = skb_transport_offset(skb);
3422 i = tx_ring->next_to_use;
3423 buffer_info = &tx_ring->buffer_info[i];
3424 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3426 context_desc->lower_setup.ip_config = 0;
3427 context_desc->upper_setup.tcp_fields.tucss = css;
3428 context_desc->upper_setup.tcp_fields.tucso =
3429 css + skb->csum_offset;
3430 context_desc->upper_setup.tcp_fields.tucse = 0;
3431 context_desc->tcp_seg_setup.data = 0;
3432 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3434 buffer_info->time_stamp = jiffies;
3435 buffer_info->next_to_watch = i;
3437 i++;
3438 if (i == tx_ring->count)
3439 i = 0;
3440 tx_ring->next_to_use = i;
3442 return 1;
3445 return 0;
3448 #define E1000_MAX_PER_TXD 8192
3449 #define E1000_MAX_TXD_PWR 12
3451 static int e1000_tx_map(struct e1000_adapter *adapter,
3452 struct sk_buff *skb, unsigned int first,
3453 unsigned int max_per_txd, unsigned int nr_frags,
3454 unsigned int mss)
3456 struct e1000_ring *tx_ring = adapter->tx_ring;
3457 struct e1000_buffer *buffer_info;
3458 unsigned int len = skb->len - skb->data_len;
3459 unsigned int offset = 0, size, count = 0, i;
3460 unsigned int f;
3462 i = tx_ring->next_to_use;
3464 while (len) {
3465 buffer_info = &tx_ring->buffer_info[i];
3466 size = min(len, max_per_txd);
3468 /* Workaround for premature desc write-backs
3469 * in TSO mode. Append 4-byte sentinel desc */
3470 if (mss && !nr_frags && size == len && size > 8)
3471 size -= 4;
3473 buffer_info->length = size;
3474 /* set time_stamp *before* dma to help avoid a possible race */
3475 buffer_info->time_stamp = jiffies;
3476 buffer_info->dma =
3477 pci_map_single(adapter->pdev,
3478 skb->data + offset,
3479 size,
3480 PCI_DMA_TODEVICE);
3481 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3482 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3483 adapter->tx_dma_failed++;
3484 return -1;
3486 buffer_info->next_to_watch = i;
3488 len -= size;
3489 offset += size;
3490 count++;
3491 i++;
3492 if (i == tx_ring->count)
3493 i = 0;
3496 for (f = 0; f < nr_frags; f++) {
3497 struct skb_frag_struct *frag;
3499 frag = &skb_shinfo(skb)->frags[f];
3500 len = frag->size;
3501 offset = frag->page_offset;
3503 while (len) {
3504 buffer_info = &tx_ring->buffer_info[i];
3505 size = min(len, max_per_txd);
3506 /* Workaround for premature desc write-backs
3507 * in TSO mode. Append 4-byte sentinel desc */
3508 if (mss && f == (nr_frags-1) && size == len && size > 8)
3509 size -= 4;
3511 buffer_info->length = size;
3512 buffer_info->time_stamp = jiffies;
3513 buffer_info->dma =
3514 pci_map_page(adapter->pdev,
3515 frag->page,
3516 offset,
3517 size,
3518 PCI_DMA_TODEVICE);
3519 if (pci_dma_mapping_error(adapter->pdev,
3520 buffer_info->dma)) {
3521 dev_err(&adapter->pdev->dev,
3522 "TX DMA page map failed\n");
3523 adapter->tx_dma_failed++;
3524 return -1;
3527 buffer_info->next_to_watch = i;
3529 len -= size;
3530 offset += size;
3531 count++;
3533 i++;
3534 if (i == tx_ring->count)
3535 i = 0;
3539 if (i == 0)
3540 i = tx_ring->count - 1;
3541 else
3542 i--;
3544 tx_ring->buffer_info[i].skb = skb;
3545 tx_ring->buffer_info[first].next_to_watch = i;
3547 return count;
3550 static void e1000_tx_queue(struct e1000_adapter *adapter,
3551 int tx_flags, int count)
3553 struct e1000_ring *tx_ring = adapter->tx_ring;
3554 struct e1000_tx_desc *tx_desc = NULL;
3555 struct e1000_buffer *buffer_info;
3556 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3557 unsigned int i;
3559 if (tx_flags & E1000_TX_FLAGS_TSO) {
3560 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3561 E1000_TXD_CMD_TSE;
3562 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3564 if (tx_flags & E1000_TX_FLAGS_IPV4)
3565 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3568 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3569 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3570 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3573 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3574 txd_lower |= E1000_TXD_CMD_VLE;
3575 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3578 i = tx_ring->next_to_use;
3580 while (count--) {
3581 buffer_info = &tx_ring->buffer_info[i];
3582 tx_desc = E1000_TX_DESC(*tx_ring, i);
3583 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3584 tx_desc->lower.data =
3585 cpu_to_le32(txd_lower | buffer_info->length);
3586 tx_desc->upper.data = cpu_to_le32(txd_upper);
3588 i++;
3589 if (i == tx_ring->count)
3590 i = 0;
3593 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3596 * Force memory writes to complete before letting h/w
3597 * know there are new descriptors to fetch. (Only
3598 * applicable for weak-ordered memory model archs,
3599 * such as IA-64).
3601 wmb();
3603 tx_ring->next_to_use = i;
3604 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3606 * we need this if more than one processor can write to our tail
3607 * at a time, it synchronizes IO on IA64/Altix systems
3609 mmiowb();
3612 #define MINIMUM_DHCP_PACKET_SIZE 282
3613 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3614 struct sk_buff *skb)
3616 struct e1000_hw *hw = &adapter->hw;
3617 u16 length, offset;
3619 if (vlan_tx_tag_present(skb)) {
3620 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3621 && (adapter->hw.mng_cookie.status &
3622 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3623 return 0;
3626 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3627 return 0;
3629 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3630 return 0;
3633 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3634 struct udphdr *udp;
3636 if (ip->protocol != IPPROTO_UDP)
3637 return 0;
3639 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3640 if (ntohs(udp->dest) != 67)
3641 return 0;
3643 offset = (u8 *)udp + 8 - skb->data;
3644 length = skb->len - offset;
3645 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3648 return 0;
3651 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3653 struct e1000_adapter *adapter = netdev_priv(netdev);
3655 netif_stop_queue(netdev);
3657 * Herbert's original patch had:
3658 * smp_mb__after_netif_stop_queue();
3659 * but since that doesn't exist yet, just open code it.
3661 smp_mb();
3664 * We need to check again in a case another CPU has just
3665 * made room available.
3667 if (e1000_desc_unused(adapter->tx_ring) < size)
3668 return -EBUSY;
3670 /* A reprieve! */
3671 netif_start_queue(netdev);
3672 ++adapter->restart_queue;
3673 return 0;
3676 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3678 struct e1000_adapter *adapter = netdev_priv(netdev);
3680 if (e1000_desc_unused(adapter->tx_ring) >= size)
3681 return 0;
3682 return __e1000_maybe_stop_tx(netdev, size);
3685 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3686 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3688 struct e1000_adapter *adapter = netdev_priv(netdev);
3689 struct e1000_ring *tx_ring = adapter->tx_ring;
3690 unsigned int first;
3691 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3692 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3693 unsigned int tx_flags = 0;
3694 unsigned int len = skb->len - skb->data_len;
3695 unsigned long irq_flags;
3696 unsigned int nr_frags;
3697 unsigned int mss;
3698 int count = 0;
3699 int tso;
3700 unsigned int f;
3702 if (test_bit(__E1000_DOWN, &adapter->state)) {
3703 dev_kfree_skb_any(skb);
3704 return NETDEV_TX_OK;
3707 if (skb->len <= 0) {
3708 dev_kfree_skb_any(skb);
3709 return NETDEV_TX_OK;
3712 mss = skb_shinfo(skb)->gso_size;
3714 * The controller does a simple calculation to
3715 * make sure there is enough room in the FIFO before
3716 * initiating the DMA for each buffer. The calc is:
3717 * 4 = ceil(buffer len/mss). To make sure we don't
3718 * overrun the FIFO, adjust the max buffer len if mss
3719 * drops.
3721 if (mss) {
3722 u8 hdr_len;
3723 max_per_txd = min(mss << 2, max_per_txd);
3724 max_txd_pwr = fls(max_per_txd) - 1;
3727 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3728 * points to just header, pull a few bytes of payload from
3729 * frags into skb->data
3731 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3733 * we do this workaround for ES2LAN, but it is un-necessary,
3734 * avoiding it could save a lot of cycles
3736 if (skb->data_len && (hdr_len == len)) {
3737 unsigned int pull_size;
3739 pull_size = min((unsigned int)4, skb->data_len);
3740 if (!__pskb_pull_tail(skb, pull_size)) {
3741 e_err("__pskb_pull_tail failed.\n");
3742 dev_kfree_skb_any(skb);
3743 return NETDEV_TX_OK;
3745 len = skb->len - skb->data_len;
3749 /* reserve a descriptor for the offload context */
3750 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3751 count++;
3752 count++;
3754 count += TXD_USE_COUNT(len, max_txd_pwr);
3756 nr_frags = skb_shinfo(skb)->nr_frags;
3757 for (f = 0; f < nr_frags; f++)
3758 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3759 max_txd_pwr);
3761 if (adapter->hw.mac.tx_pkt_filtering)
3762 e1000_transfer_dhcp_info(adapter, skb);
3764 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3765 /* Collision - tell upper layer to requeue */
3766 return NETDEV_TX_LOCKED;
3769 * need: count + 2 desc gap to keep tail from touching
3770 * head, otherwise try next time
3772 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3773 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3774 return NETDEV_TX_BUSY;
3777 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3778 tx_flags |= E1000_TX_FLAGS_VLAN;
3779 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3782 first = tx_ring->next_to_use;
3784 tso = e1000_tso(adapter, skb);
3785 if (tso < 0) {
3786 dev_kfree_skb_any(skb);
3787 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3788 return NETDEV_TX_OK;
3791 if (tso)
3792 tx_flags |= E1000_TX_FLAGS_TSO;
3793 else if (e1000_tx_csum(adapter, skb))
3794 tx_flags |= E1000_TX_FLAGS_CSUM;
3797 * Old method was to assume IPv4 packet by default if TSO was enabled.
3798 * 82571 hardware supports TSO capabilities for IPv6 as well...
3799 * no longer assume, we must.
3801 if (skb->protocol == htons(ETH_P_IP))
3802 tx_flags |= E1000_TX_FLAGS_IPV4;
3804 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3805 if (count < 0) {
3806 /* handle pci_map_single() error in e1000_tx_map */
3807 dev_kfree_skb_any(skb);
3808 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3809 return NETDEV_TX_OK;
3812 e1000_tx_queue(adapter, tx_flags, count);
3814 netdev->trans_start = jiffies;
3816 /* Make sure there is space in the ring for the next send. */
3817 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3819 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3820 return NETDEV_TX_OK;
3824 * e1000_tx_timeout - Respond to a Tx Hang
3825 * @netdev: network interface device structure
3827 static void e1000_tx_timeout(struct net_device *netdev)
3829 struct e1000_adapter *adapter = netdev_priv(netdev);
3831 /* Do the reset outside of interrupt context */
3832 adapter->tx_timeout_count++;
3833 schedule_work(&adapter->reset_task);
3836 static void e1000_reset_task(struct work_struct *work)
3838 struct e1000_adapter *adapter;
3839 adapter = container_of(work, struct e1000_adapter, reset_task);
3841 e1000e_reinit_locked(adapter);
3845 * e1000_get_stats - Get System Network Statistics
3846 * @netdev: network interface device structure
3848 * Returns the address of the device statistics structure.
3849 * The statistics are actually updated from the timer callback.
3851 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3853 struct e1000_adapter *adapter = netdev_priv(netdev);
3855 /* only return the current stats */
3856 return &adapter->net_stats;
3860 * e1000_change_mtu - Change the Maximum Transfer Unit
3861 * @netdev: network interface device structure
3862 * @new_mtu: new value for maximum frame size
3864 * Returns 0 on success, negative on failure
3866 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3868 struct e1000_adapter *adapter = netdev_priv(netdev);
3869 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3871 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
3872 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3873 e_err("Invalid MTU setting\n");
3874 return -EINVAL;
3877 /* Jumbo frame size limits */
3878 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3879 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3880 e_err("Jumbo Frames not supported.\n");
3881 return -EINVAL;
3883 if (adapter->hw.phy.type == e1000_phy_ife) {
3884 e_err("Jumbo Frames not supported.\n");
3885 return -EINVAL;
3889 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3890 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3891 e_err("MTU > 9216 not supported.\n");
3892 return -EINVAL;
3895 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3896 msleep(1);
3897 /* e1000e_down has a dependency on max_frame_size */
3898 adapter->max_frame_size = max_frame;
3899 if (netif_running(netdev))
3900 e1000e_down(adapter);
3903 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3904 * means we reserve 2 more, this pushes us to allocate from the next
3905 * larger slab size.
3906 * i.e. RXBUFFER_2048 --> size-4096 slab
3907 * However with the new *_jumbo_rx* routines, jumbo receives will use
3908 * fragmented skbs
3911 if (max_frame <= 256)
3912 adapter->rx_buffer_len = 256;
3913 else if (max_frame <= 512)
3914 adapter->rx_buffer_len = 512;
3915 else if (max_frame <= 1024)
3916 adapter->rx_buffer_len = 1024;
3917 else if (max_frame <= 2048)
3918 adapter->rx_buffer_len = 2048;
3919 else
3920 adapter->rx_buffer_len = 4096;
3922 /* adjust allocation if LPE protects us, and we aren't using SBP */
3923 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3924 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3925 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3926 + ETH_FCS_LEN;
3928 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3929 netdev->mtu = new_mtu;
3931 if (netif_running(netdev))
3932 e1000e_up(adapter);
3933 else
3934 e1000e_reset(adapter);
3936 clear_bit(__E1000_RESETTING, &adapter->state);
3938 return 0;
3941 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3942 int cmd)
3944 struct e1000_adapter *adapter = netdev_priv(netdev);
3945 struct mii_ioctl_data *data = if_mii(ifr);
3947 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3948 return -EOPNOTSUPP;
3950 switch (cmd) {
3951 case SIOCGMIIPHY:
3952 data->phy_id = adapter->hw.phy.addr;
3953 break;
3954 case SIOCGMIIREG:
3955 if (!capable(CAP_NET_ADMIN))
3956 return -EPERM;
3957 switch (data->reg_num & 0x1F) {
3958 case MII_BMCR:
3959 data->val_out = adapter->phy_regs.bmcr;
3960 break;
3961 case MII_BMSR:
3962 data->val_out = adapter->phy_regs.bmsr;
3963 break;
3964 case MII_PHYSID1:
3965 data->val_out = (adapter->hw.phy.id >> 16);
3966 break;
3967 case MII_PHYSID2:
3968 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3969 break;
3970 case MII_ADVERTISE:
3971 data->val_out = adapter->phy_regs.advertise;
3972 break;
3973 case MII_LPA:
3974 data->val_out = adapter->phy_regs.lpa;
3975 break;
3976 case MII_EXPANSION:
3977 data->val_out = adapter->phy_regs.expansion;
3978 break;
3979 case MII_CTRL1000:
3980 data->val_out = adapter->phy_regs.ctrl1000;
3981 break;
3982 case MII_STAT1000:
3983 data->val_out = adapter->phy_regs.stat1000;
3984 break;
3985 case MII_ESTATUS:
3986 data->val_out = adapter->phy_regs.estatus;
3987 break;
3988 default:
3989 return -EIO;
3991 break;
3992 case SIOCSMIIREG:
3993 default:
3994 return -EOPNOTSUPP;
3996 return 0;
3999 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4001 switch (cmd) {
4002 case SIOCGMIIPHY:
4003 case SIOCGMIIREG:
4004 case SIOCSMIIREG:
4005 return e1000_mii_ioctl(netdev, ifr, cmd);
4006 default:
4007 return -EOPNOTSUPP;
4011 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4013 struct net_device *netdev = pci_get_drvdata(pdev);
4014 struct e1000_adapter *adapter = netdev_priv(netdev);
4015 struct e1000_hw *hw = &adapter->hw;
4016 u32 ctrl, ctrl_ext, rctl, status;
4017 u32 wufc = adapter->wol;
4018 int retval = 0;
4020 netif_device_detach(netdev);
4022 if (netif_running(netdev)) {
4023 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4024 e1000e_down(adapter);
4025 e1000_free_irq(adapter);
4028 retval = pci_save_state(pdev);
4029 if (retval)
4030 return retval;
4032 status = er32(STATUS);
4033 if (status & E1000_STATUS_LU)
4034 wufc &= ~E1000_WUFC_LNKC;
4036 if (wufc) {
4037 e1000_setup_rctl(adapter);
4038 e1000_set_multi(netdev);
4040 /* turn on all-multi mode if wake on multicast is enabled */
4041 if (wufc & E1000_WUFC_MC) {
4042 rctl = er32(RCTL);
4043 rctl |= E1000_RCTL_MPE;
4044 ew32(RCTL, rctl);
4047 ctrl = er32(CTRL);
4048 /* advertise wake from D3Cold */
4049 #define E1000_CTRL_ADVD3WUC 0x00100000
4050 /* phy power management enable */
4051 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4052 ctrl |= E1000_CTRL_ADVD3WUC |
4053 E1000_CTRL_EN_PHY_PWR_MGMT;
4054 ew32(CTRL, ctrl);
4056 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4057 adapter->hw.phy.media_type ==
4058 e1000_media_type_internal_serdes) {
4059 /* keep the laser running in D3 */
4060 ctrl_ext = er32(CTRL_EXT);
4061 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4062 ew32(CTRL_EXT, ctrl_ext);
4065 if (adapter->flags & FLAG_IS_ICH)
4066 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4068 /* Allow time for pending master requests to run */
4069 e1000e_disable_pcie_master(&adapter->hw);
4071 ew32(WUC, E1000_WUC_PME_EN);
4072 ew32(WUFC, wufc);
4073 pci_enable_wake(pdev, PCI_D3hot, 1);
4074 pci_enable_wake(pdev, PCI_D3cold, 1);
4075 } else {
4076 ew32(WUC, 0);
4077 ew32(WUFC, 0);
4078 pci_enable_wake(pdev, PCI_D3hot, 0);
4079 pci_enable_wake(pdev, PCI_D3cold, 0);
4082 /* make sure adapter isn't asleep if manageability is enabled */
4083 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4084 pci_enable_wake(pdev, PCI_D3hot, 1);
4085 pci_enable_wake(pdev, PCI_D3cold, 1);
4088 if (adapter->hw.phy.type == e1000_phy_igp_3)
4089 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4092 * Release control of h/w to f/w. If f/w is AMT enabled, this
4093 * would have already happened in close and is redundant.
4095 e1000_release_hw_control(adapter);
4097 pci_disable_device(pdev);
4099 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4101 return 0;
4104 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4106 int pos;
4107 u16 val;
4110 * 82573 workaround - disable L1 ASPM on mobile chipsets
4112 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4113 * resulting in lost data or garbage information on the pci-e link
4114 * level. This could result in (false) bad EEPROM checksum errors,
4115 * long ping times (up to 2s) or even a system freeze/hang.
4117 * Unfortunately this feature saves about 1W power consumption when
4118 * active.
4120 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4121 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4122 if (val & 0x2) {
4123 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4124 val &= ~0x2;
4125 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4129 #ifdef CONFIG_PM
4130 static int e1000_resume(struct pci_dev *pdev)
4132 struct net_device *netdev = pci_get_drvdata(pdev);
4133 struct e1000_adapter *adapter = netdev_priv(netdev);
4134 struct e1000_hw *hw = &adapter->hw;
4135 u32 err;
4137 pci_set_power_state(pdev, PCI_D0);
4138 pci_restore_state(pdev);
4139 e1000e_disable_l1aspm(pdev);
4141 err = pci_enable_device_mem(pdev);
4142 if (err) {
4143 dev_err(&pdev->dev,
4144 "Cannot enable PCI device from suspend\n");
4145 return err;
4148 pci_set_master(pdev);
4150 pci_enable_wake(pdev, PCI_D3hot, 0);
4151 pci_enable_wake(pdev, PCI_D3cold, 0);
4153 if (netif_running(netdev)) {
4154 err = e1000_request_irq(adapter);
4155 if (err)
4156 return err;
4159 e1000e_power_up_phy(adapter);
4160 e1000e_reset(adapter);
4161 ew32(WUS, ~0);
4163 e1000_init_manageability(adapter);
4165 if (netif_running(netdev))
4166 e1000e_up(adapter);
4168 netif_device_attach(netdev);
4171 * If the controller has AMT, do not set DRV_LOAD until the interface
4172 * is up. For all other cases, let the f/w know that the h/w is now
4173 * under the control of the driver.
4175 if (!(adapter->flags & FLAG_HAS_AMT))
4176 e1000_get_hw_control(adapter);
4178 return 0;
4180 #endif
4182 static void e1000_shutdown(struct pci_dev *pdev)
4184 e1000_suspend(pdev, PMSG_SUSPEND);
4187 #ifdef CONFIG_NET_POLL_CONTROLLER
4189 * Polling 'interrupt' - used by things like netconsole to send skbs
4190 * without having to re-enable interrupts. It's not called while
4191 * the interrupt routine is executing.
4193 static void e1000_netpoll(struct net_device *netdev)
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4197 disable_irq(adapter->pdev->irq);
4198 e1000_intr(adapter->pdev->irq, netdev);
4200 enable_irq(adapter->pdev->irq);
4202 #endif
4205 * e1000_io_error_detected - called when PCI error is detected
4206 * @pdev: Pointer to PCI device
4207 * @state: The current pci connection state
4209 * This function is called after a PCI bus error affecting
4210 * this device has been detected.
4212 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4213 pci_channel_state_t state)
4215 struct net_device *netdev = pci_get_drvdata(pdev);
4216 struct e1000_adapter *adapter = netdev_priv(netdev);
4218 netif_device_detach(netdev);
4220 if (netif_running(netdev))
4221 e1000e_down(adapter);
4222 pci_disable_device(pdev);
4224 /* Request a slot slot reset. */
4225 return PCI_ERS_RESULT_NEED_RESET;
4229 * e1000_io_slot_reset - called after the pci bus has been reset.
4230 * @pdev: Pointer to PCI device
4232 * Restart the card from scratch, as if from a cold-boot. Implementation
4233 * resembles the first-half of the e1000_resume routine.
4235 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4237 struct net_device *netdev = pci_get_drvdata(pdev);
4238 struct e1000_adapter *adapter = netdev_priv(netdev);
4239 struct e1000_hw *hw = &adapter->hw;
4240 int err;
4242 e1000e_disable_l1aspm(pdev);
4243 err = pci_enable_device_mem(pdev);
4244 if (err) {
4245 dev_err(&pdev->dev,
4246 "Cannot re-enable PCI device after reset.\n");
4247 return PCI_ERS_RESULT_DISCONNECT;
4249 pci_set_master(pdev);
4250 pci_restore_state(pdev);
4252 pci_enable_wake(pdev, PCI_D3hot, 0);
4253 pci_enable_wake(pdev, PCI_D3cold, 0);
4255 e1000e_reset(adapter);
4256 ew32(WUS, ~0);
4258 return PCI_ERS_RESULT_RECOVERED;
4262 * e1000_io_resume - called when traffic can start flowing again.
4263 * @pdev: Pointer to PCI device
4265 * This callback is called when the error recovery driver tells us that
4266 * its OK to resume normal operation. Implementation resembles the
4267 * second-half of the e1000_resume routine.
4269 static void e1000_io_resume(struct pci_dev *pdev)
4271 struct net_device *netdev = pci_get_drvdata(pdev);
4272 struct e1000_adapter *adapter = netdev_priv(netdev);
4274 e1000_init_manageability(adapter);
4276 if (netif_running(netdev)) {
4277 if (e1000e_up(adapter)) {
4278 dev_err(&pdev->dev,
4279 "can't bring device back up after reset\n");
4280 return;
4284 netif_device_attach(netdev);
4287 * If the controller has AMT, do not set DRV_LOAD until the interface
4288 * is up. For all other cases, let the f/w know that the h/w is now
4289 * under the control of the driver.
4291 if (!(adapter->flags & FLAG_HAS_AMT))
4292 e1000_get_hw_control(adapter);
4296 static void e1000_print_device_info(struct e1000_adapter *adapter)
4298 struct e1000_hw *hw = &adapter->hw;
4299 struct net_device *netdev = adapter->netdev;
4300 u32 pba_num;
4302 /* print bus type/speed/width info */
4303 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4304 /* bus width */
4305 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4306 "Width x1"),
4307 /* MAC address */
4308 netdev->dev_addr[0], netdev->dev_addr[1],
4309 netdev->dev_addr[2], netdev->dev_addr[3],
4310 netdev->dev_addr[4], netdev->dev_addr[5]);
4311 e_info("Intel(R) PRO/%s Network Connection\n",
4312 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4313 e1000e_read_pba_num(hw, &pba_num);
4314 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4315 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4318 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4320 struct e1000_hw *hw = &adapter->hw;
4321 int ret_val;
4322 u16 buf = 0;
4324 if (hw->mac.type != e1000_82573)
4325 return;
4327 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4328 if (!(le16_to_cpu(buf) & (1 << 0))) {
4329 /* Deep Smart Power Down (DSPD) */
4330 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4333 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4334 if (le16_to_cpu(buf) & (3 << 2)) {
4335 /* ASPM enable */
4336 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4341 * e1000_probe - Device Initialization Routine
4342 * @pdev: PCI device information struct
4343 * @ent: entry in e1000_pci_tbl
4345 * Returns 0 on success, negative on failure
4347 * e1000_probe initializes an adapter identified by a pci_dev structure.
4348 * The OS initialization, configuring of the adapter private structure,
4349 * and a hardware reset occur.
4351 static int __devinit e1000_probe(struct pci_dev *pdev,
4352 const struct pci_device_id *ent)
4354 struct net_device *netdev;
4355 struct e1000_adapter *adapter;
4356 struct e1000_hw *hw;
4357 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4358 resource_size_t mmio_start, mmio_len;
4359 resource_size_t flash_start, flash_len;
4361 static int cards_found;
4362 int i, err, pci_using_dac;
4363 u16 eeprom_data = 0;
4364 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4366 e1000e_disable_l1aspm(pdev);
4368 err = pci_enable_device_mem(pdev);
4369 if (err)
4370 return err;
4372 pci_using_dac = 0;
4373 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4374 if (!err) {
4375 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4376 if (!err)
4377 pci_using_dac = 1;
4378 } else {
4379 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4380 if (err) {
4381 err = pci_set_consistent_dma_mask(pdev,
4382 DMA_32BIT_MASK);
4383 if (err) {
4384 dev_err(&pdev->dev, "No usable DMA "
4385 "configuration, aborting\n");
4386 goto err_dma;
4391 err = pci_request_selected_regions(pdev,
4392 pci_select_bars(pdev, IORESOURCE_MEM),
4393 e1000e_driver_name);
4394 if (err)
4395 goto err_pci_reg;
4397 pci_set_master(pdev);
4398 pci_save_state(pdev);
4400 err = -ENOMEM;
4401 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4402 if (!netdev)
4403 goto err_alloc_etherdev;
4405 SET_NETDEV_DEV(netdev, &pdev->dev);
4407 pci_set_drvdata(pdev, netdev);
4408 adapter = netdev_priv(netdev);
4409 hw = &adapter->hw;
4410 adapter->netdev = netdev;
4411 adapter->pdev = pdev;
4412 adapter->ei = ei;
4413 adapter->pba = ei->pba;
4414 adapter->flags = ei->flags;
4415 adapter->hw.adapter = adapter;
4416 adapter->hw.mac.type = ei->mac;
4417 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4419 mmio_start = pci_resource_start(pdev, 0);
4420 mmio_len = pci_resource_len(pdev, 0);
4422 err = -EIO;
4423 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4424 if (!adapter->hw.hw_addr)
4425 goto err_ioremap;
4427 if ((adapter->flags & FLAG_HAS_FLASH) &&
4428 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4429 flash_start = pci_resource_start(pdev, 1);
4430 flash_len = pci_resource_len(pdev, 1);
4431 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4432 if (!adapter->hw.flash_address)
4433 goto err_flashmap;
4436 /* construct the net_device struct */
4437 netdev->open = &e1000_open;
4438 netdev->stop = &e1000_close;
4439 netdev->hard_start_xmit = &e1000_xmit_frame;
4440 netdev->get_stats = &e1000_get_stats;
4441 netdev->set_multicast_list = &e1000_set_multi;
4442 netdev->set_mac_address = &e1000_set_mac;
4443 netdev->change_mtu = &e1000_change_mtu;
4444 netdev->do_ioctl = &e1000_ioctl;
4445 e1000e_set_ethtool_ops(netdev);
4446 netdev->tx_timeout = &e1000_tx_timeout;
4447 netdev->watchdog_timeo = 5 * HZ;
4448 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4449 netdev->vlan_rx_register = e1000_vlan_rx_register;
4450 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4451 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4452 #ifdef CONFIG_NET_POLL_CONTROLLER
4453 netdev->poll_controller = e1000_netpoll;
4454 #endif
4455 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4457 netdev->mem_start = mmio_start;
4458 netdev->mem_end = mmio_start + mmio_len;
4460 adapter->bd_number = cards_found++;
4462 e1000e_check_options(adapter);
4464 /* setup adapter struct */
4465 err = e1000_sw_init(adapter);
4466 if (err)
4467 goto err_sw_init;
4469 err = -EIO;
4471 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4472 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4473 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4475 err = ei->get_variants(adapter);
4476 if (err)
4477 goto err_hw_init;
4479 if ((adapter->flags & FLAG_IS_ICH) &&
4480 (adapter->flags & FLAG_READ_ONLY_NVM))
4481 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4483 hw->mac.ops.get_bus_info(&adapter->hw);
4485 adapter->hw.phy.autoneg_wait_to_complete = 0;
4487 /* Copper options */
4488 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4489 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4490 adapter->hw.phy.disable_polarity_correction = 0;
4491 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4494 if (e1000_check_reset_block(&adapter->hw))
4495 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4497 netdev->features = NETIF_F_SG |
4498 NETIF_F_HW_CSUM |
4499 NETIF_F_HW_VLAN_TX |
4500 NETIF_F_HW_VLAN_RX;
4502 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4503 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4505 netdev->features |= NETIF_F_TSO;
4506 netdev->features |= NETIF_F_TSO6;
4508 netdev->vlan_features |= NETIF_F_TSO;
4509 netdev->vlan_features |= NETIF_F_TSO6;
4510 netdev->vlan_features |= NETIF_F_HW_CSUM;
4511 netdev->vlan_features |= NETIF_F_SG;
4513 if (pci_using_dac)
4514 netdev->features |= NETIF_F_HIGHDMA;
4517 * We should not be using LLTX anymore, but we are still Tx faster with
4518 * it.
4520 netdev->features |= NETIF_F_LLTX;
4522 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4523 adapter->flags |= FLAG_MNG_PT_ENABLED;
4526 * before reading the NVM, reset the controller to
4527 * put the device in a known good starting state
4529 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4532 * systems with ASPM and others may see the checksum fail on the first
4533 * attempt. Let's give it a few tries
4535 for (i = 0;; i++) {
4536 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4537 break;
4538 if (i == 2) {
4539 e_err("The NVM Checksum Is Not Valid\n");
4540 err = -EIO;
4541 goto err_eeprom;
4545 e1000_eeprom_checks(adapter);
4547 /* copy the MAC address out of the NVM */
4548 if (e1000e_read_mac_addr(&adapter->hw))
4549 e_err("NVM Read Error while reading MAC address\n");
4551 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4552 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4554 if (!is_valid_ether_addr(netdev->perm_addr)) {
4555 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4556 netdev->perm_addr[0], netdev->perm_addr[1],
4557 netdev->perm_addr[2], netdev->perm_addr[3],
4558 netdev->perm_addr[4], netdev->perm_addr[5]);
4559 err = -EIO;
4560 goto err_eeprom;
4563 init_timer(&adapter->watchdog_timer);
4564 adapter->watchdog_timer.function = &e1000_watchdog;
4565 adapter->watchdog_timer.data = (unsigned long) adapter;
4567 init_timer(&adapter->phy_info_timer);
4568 adapter->phy_info_timer.function = &e1000_update_phy_info;
4569 adapter->phy_info_timer.data = (unsigned long) adapter;
4571 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4572 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4573 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4574 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4576 /* Initialize link parameters. User can change them with ethtool */
4577 adapter->hw.mac.autoneg = 1;
4578 adapter->fc_autoneg = 1;
4579 adapter->hw.fc.original_type = e1000_fc_default;
4580 adapter->hw.fc.type = e1000_fc_default;
4581 adapter->hw.phy.autoneg_advertised = 0x2f;
4583 /* ring size defaults */
4584 adapter->rx_ring->count = 256;
4585 adapter->tx_ring->count = 256;
4588 * Initial Wake on LAN setting - If APM wake is enabled in
4589 * the EEPROM, enable the ACPI Magic Packet filter
4591 if (adapter->flags & FLAG_APME_IN_WUC) {
4592 /* APME bit in EEPROM is mapped to WUC.APME */
4593 eeprom_data = er32(WUC);
4594 eeprom_apme_mask = E1000_WUC_APME;
4595 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4596 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4597 (adapter->hw.bus.func == 1))
4598 e1000_read_nvm(&adapter->hw,
4599 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4600 else
4601 e1000_read_nvm(&adapter->hw,
4602 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4605 /* fetch WoL from EEPROM */
4606 if (eeprom_data & eeprom_apme_mask)
4607 adapter->eeprom_wol |= E1000_WUFC_MAG;
4610 * now that we have the eeprom settings, apply the special cases
4611 * where the eeprom may be wrong or the board simply won't support
4612 * wake on lan on a particular port
4614 if (!(adapter->flags & FLAG_HAS_WOL))
4615 adapter->eeprom_wol = 0;
4617 /* initialize the wol settings based on the eeprom settings */
4618 adapter->wol = adapter->eeprom_wol;
4620 /* reset the hardware with the new settings */
4621 e1000e_reset(adapter);
4624 * If the controller has AMT, do not set DRV_LOAD until the interface
4625 * is up. For all other cases, let the f/w know that the h/w is now
4626 * under the control of the driver.
4628 if (!(adapter->flags & FLAG_HAS_AMT))
4629 e1000_get_hw_control(adapter);
4631 /* tell the stack to leave us alone until e1000_open() is called */
4632 netif_carrier_off(netdev);
4633 netif_tx_stop_all_queues(netdev);
4635 strcpy(netdev->name, "eth%d");
4636 err = register_netdev(netdev);
4637 if (err)
4638 goto err_register;
4640 e1000_print_device_info(adapter);
4642 return 0;
4644 err_register:
4645 if (!(adapter->flags & FLAG_HAS_AMT))
4646 e1000_release_hw_control(adapter);
4647 err_eeprom:
4648 if (!e1000_check_reset_block(&adapter->hw))
4649 e1000_phy_hw_reset(&adapter->hw);
4650 err_hw_init:
4652 kfree(adapter->tx_ring);
4653 kfree(adapter->rx_ring);
4654 err_sw_init:
4655 if (adapter->hw.flash_address)
4656 iounmap(adapter->hw.flash_address);
4657 err_flashmap:
4658 iounmap(adapter->hw.hw_addr);
4659 err_ioremap:
4660 free_netdev(netdev);
4661 err_alloc_etherdev:
4662 pci_release_selected_regions(pdev,
4663 pci_select_bars(pdev, IORESOURCE_MEM));
4664 err_pci_reg:
4665 err_dma:
4666 pci_disable_device(pdev);
4667 return err;
4671 * e1000_remove - Device Removal Routine
4672 * @pdev: PCI device information struct
4674 * e1000_remove is called by the PCI subsystem to alert the driver
4675 * that it should release a PCI device. The could be caused by a
4676 * Hot-Plug event, or because the driver is going to be removed from
4677 * memory.
4679 static void __devexit e1000_remove(struct pci_dev *pdev)
4681 struct net_device *netdev = pci_get_drvdata(pdev);
4682 struct e1000_adapter *adapter = netdev_priv(netdev);
4685 * flush_scheduled work may reschedule our watchdog task, so
4686 * explicitly disable watchdog tasks from being rescheduled
4688 set_bit(__E1000_DOWN, &adapter->state);
4689 del_timer_sync(&adapter->watchdog_timer);
4690 del_timer_sync(&adapter->phy_info_timer);
4692 flush_scheduled_work();
4695 * Release control of h/w to f/w. If f/w is AMT enabled, this
4696 * would have already happened in close and is redundant.
4698 e1000_release_hw_control(adapter);
4700 unregister_netdev(netdev);
4702 if (!e1000_check_reset_block(&adapter->hw))
4703 e1000_phy_hw_reset(&adapter->hw);
4705 kfree(adapter->tx_ring);
4706 kfree(adapter->rx_ring);
4708 iounmap(adapter->hw.hw_addr);
4709 if (adapter->hw.flash_address)
4710 iounmap(adapter->hw.flash_address);
4711 pci_release_selected_regions(pdev,
4712 pci_select_bars(pdev, IORESOURCE_MEM));
4714 free_netdev(netdev);
4716 pci_disable_device(pdev);
4719 /* PCI Error Recovery (ERS) */
4720 static struct pci_error_handlers e1000_err_handler = {
4721 .error_detected = e1000_io_error_detected,
4722 .slot_reset = e1000_io_slot_reset,
4723 .resume = e1000_io_resume,
4726 static struct pci_device_id e1000_pci_tbl[] = {
4727 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4728 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4729 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4730 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4731 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4732 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4733 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4734 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4735 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4737 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4738 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4739 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4740 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4742 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4743 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4744 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4746 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4747 board_80003es2lan },
4748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4749 board_80003es2lan },
4750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4751 board_80003es2lan },
4752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4753 board_80003es2lan },
4755 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4756 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4757 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4759 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4761 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4763 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4764 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4765 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4766 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4767 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4768 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4769 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4770 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4772 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4773 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4774 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4776 { } /* terminate list */
4778 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4780 /* PCI Device API Driver */
4781 static struct pci_driver e1000_driver = {
4782 .name = e1000e_driver_name,
4783 .id_table = e1000_pci_tbl,
4784 .probe = e1000_probe,
4785 .remove = __devexit_p(e1000_remove),
4786 #ifdef CONFIG_PM
4787 /* Power Management Hooks */
4788 .suspend = e1000_suspend,
4789 .resume = e1000_resume,
4790 #endif
4791 .shutdown = e1000_shutdown,
4792 .err_handler = &e1000_err_handler
4796 * e1000_init_module - Driver Registration Routine
4798 * e1000_init_module is the first routine called when the driver is
4799 * loaded. All it does is register with the PCI subsystem.
4801 static int __init e1000_init_module(void)
4803 int ret;
4804 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4805 e1000e_driver_name, e1000e_driver_version);
4806 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4807 e1000e_driver_name);
4808 ret = pci_register_driver(&e1000_driver);
4809 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4810 PM_QOS_DEFAULT_VALUE);
4812 return ret;
4814 module_init(e1000_init_module);
4817 * e1000_exit_module - Driver Exit Cleanup Routine
4819 * e1000_exit_module is called just before the driver is removed
4820 * from memory.
4822 static void __exit e1000_exit_module(void)
4824 pci_unregister_driver(&e1000_driver);
4825 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4827 module_exit(e1000_exit_module);
4830 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4831 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4832 MODULE_LICENSE("GPL");
4833 MODULE_VERSION(DRV_VERSION);
4835 /* e1000_main.c */