x86: improve UP kernel when CPU-hotplug and SMP is enabled
[linux/fpc-iii.git] / drivers / net / qla3xxx.c
blob3cdd07c45b6dea4961a8a12422d90643a76d0c37
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
37 #include "qla3xxx.h"
39 #define DRV_NAME "qla3xxx"
40 #define DRV_STRING "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION "v2.03.00-k5"
42 #define PFX DRV_NAME " "
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
52 static const u32 default_msg
53 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
56 static int debug = -1; /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
64 static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
65 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67 /* required last entry */
68 {0,}
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
74 * These are the known PHY's which are used
76 typedef enum {
77 PHY_TYPE_UNKNOWN = 0,
78 PHY_VITESSE_VSC8211,
79 PHY_AGERE_ET1011C,
80 MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
83 typedef struct {
84 PHY_DEVICE_et phyDevice;
85 u32 phyIdOUI;
86 u16 phyIdModel;
87 char *name;
88 } PHY_DEVICE_INFO_t;
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91 {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 * Caller must take hw_lock.
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101 u32 sem_mask, u32 sem_bits)
103 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104 u32 value;
105 unsigned int seconds = 3;
107 do {
108 writel((sem_mask | sem_bits),
109 &port_regs->CommonRegs.semaphoreReg);
110 value = readl(&port_regs->CommonRegs.semaphoreReg);
111 if ((value & (sem_mask >> 16)) == sem_bits)
112 return 0;
113 ssleep(1);
114 } while(--seconds);
115 return -1;
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
120 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122 readl(&port_regs->CommonRegs.semaphoreReg);
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
127 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128 u32 value;
130 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131 value = readl(&port_regs->CommonRegs.semaphoreReg);
132 return ((value & (sem_mask >> 16)) == sem_bits);
136 * Caller holds hw_lock.
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
140 int i = 0;
142 while (1) {
143 if (!ql_sem_lock(qdev,
144 QL_DRVR_SEM_MASK,
145 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146 * 2) << 1)) {
147 if (i < 10) {
148 ssleep(1);
149 i++;
150 } else {
151 printk(KERN_ERR PFX "%s: Timed out waiting for "
152 "driver lock...\n",
153 qdev->ndev->name);
154 return 0;
156 } else {
157 printk(KERN_DEBUG PFX
158 "%s: driver lock acquired.\n",
159 qdev->ndev->name);
160 return 1;
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
167 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176 u32 __iomem * reg)
178 u32 value;
179 unsigned long hw_flags;
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
185 return value;
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189 u32 __iomem * reg)
191 return readl(reg);
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
196 u32 value;
197 unsigned long hw_flags;
199 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
201 if (qdev->current_page != 0)
202 ql_set_register_page(qdev,0);
203 value = readl(reg);
205 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206 return value;
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
211 if (qdev->current_page != 0)
212 ql_set_register_page(qdev,0);
213 return readl(reg);
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217 u32 __iomem *reg, u32 value)
219 unsigned long hw_flags;
221 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222 writel(value, reg);
223 readl(reg);
224 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
225 return;
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 u32 __iomem *reg, u32 value)
231 writel(value, reg);
232 readl(reg);
233 return;
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237 u32 __iomem *reg, u32 value)
239 writel(value, reg);
240 readl(reg);
241 udelay(1);
242 return;
245 static void ql_write_page0_reg(struct ql3_adapter *qdev,
246 u32 __iomem *reg, u32 value)
248 if (qdev->current_page != 0)
249 ql_set_register_page(qdev,0);
250 writel(value, reg);
251 readl(reg);
252 return;
256 * Caller holds hw_lock. Only called during init.
258 static void ql_write_page1_reg(struct ql3_adapter *qdev,
259 u32 __iomem *reg, u32 value)
261 if (qdev->current_page != 1)
262 ql_set_register_page(qdev,1);
263 writel(value, reg);
264 readl(reg);
265 return;
269 * Caller holds hw_lock. Only called during init.
271 static void ql_write_page2_reg(struct ql3_adapter *qdev,
272 u32 __iomem *reg, u32 value)
274 if (qdev->current_page != 2)
275 ql_set_register_page(qdev,2);
276 writel(value, reg);
277 readl(reg);
278 return;
281 static void ql_disable_interrupts(struct ql3_adapter *qdev)
283 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
285 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
286 (ISP_IMR_ENABLE_INT << 16));
290 static void ql_enable_interrupts(struct ql3_adapter *qdev)
292 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
294 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
295 ((0xff << 16) | ISP_IMR_ENABLE_INT));
299 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
300 struct ql_rcv_buf_cb *lrg_buf_cb)
302 dma_addr_t map;
303 int err;
304 lrg_buf_cb->next = NULL;
306 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
307 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
308 } else {
309 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
310 qdev->lrg_buf_free_tail = lrg_buf_cb;
313 if (!lrg_buf_cb->skb) {
314 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
315 qdev->lrg_buffer_len);
316 if (unlikely(!lrg_buf_cb->skb)) {
317 printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
318 qdev->ndev->name);
319 qdev->lrg_buf_skb_check++;
320 } else {
322 * We save some space to copy the ethhdr from first
323 * buffer
325 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
326 map = pci_map_single(qdev->pdev,
327 lrg_buf_cb->skb->data,
328 qdev->lrg_buffer_len -
329 QL_HEADER_SPACE,
330 PCI_DMA_FROMDEVICE);
331 err = pci_dma_mapping_error(qdev->pdev, map);
332 if(err) {
333 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
334 qdev->ndev->name, err);
335 dev_kfree_skb(lrg_buf_cb->skb);
336 lrg_buf_cb->skb = NULL;
338 qdev->lrg_buf_skb_check++;
339 return;
342 lrg_buf_cb->buf_phy_addr_low =
343 cpu_to_le32(LS_64BITS(map));
344 lrg_buf_cb->buf_phy_addr_high =
345 cpu_to_le32(MS_64BITS(map));
346 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
347 pci_unmap_len_set(lrg_buf_cb, maplen,
348 qdev->lrg_buffer_len -
349 QL_HEADER_SPACE);
353 qdev->lrg_buf_free_count++;
356 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
357 *qdev)
359 struct ql_rcv_buf_cb *lrg_buf_cb;
361 if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
362 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
363 qdev->lrg_buf_free_tail = NULL;
364 qdev->lrg_buf_free_count--;
367 return lrg_buf_cb;
370 static u32 addrBits = EEPROM_NO_ADDR_BITS;
371 static u32 dataBits = EEPROM_NO_DATA_BITS;
373 static void fm93c56a_deselect(struct ql3_adapter *qdev);
374 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
375 unsigned short *value);
378 * Caller holds hw_lock.
380 static void fm93c56a_select(struct ql3_adapter *qdev)
382 struct ql3xxx_port_registers __iomem *port_regs =
383 qdev->mem_map_registers;
385 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
387 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
388 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
389 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
393 * Caller holds hw_lock.
395 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
397 int i;
398 u32 mask;
399 u32 dataBit;
400 u32 previousBit;
401 struct ql3xxx_port_registers __iomem *port_regs =
402 qdev->mem_map_registers;
404 /* Clock in a zero, then do the start bit */
405 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
406 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 AUBURN_EEPROM_DO_1);
408 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
409 ISP_NVRAM_MASK | qdev->
410 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
411 AUBURN_EEPROM_CLK_RISE);
412 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
413 ISP_NVRAM_MASK | qdev->
414 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
415 AUBURN_EEPROM_CLK_FALL);
417 mask = 1 << (FM93C56A_CMD_BITS - 1);
418 /* Force the previous data bit to be different */
419 previousBit = 0xffff;
420 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
421 dataBit =
422 (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
423 if (previousBit != dataBit) {
425 * If the bit changed, then change the DO state to
426 * match
428 ql_write_nvram_reg(qdev,
429 &port_regs->CommonRegs.
430 serialPortInterfaceReg,
431 ISP_NVRAM_MASK | qdev->
432 eeprom_cmd_data | dataBit);
433 previousBit = dataBit;
435 ql_write_nvram_reg(qdev,
436 &port_regs->CommonRegs.
437 serialPortInterfaceReg,
438 ISP_NVRAM_MASK | qdev->
439 eeprom_cmd_data | dataBit |
440 AUBURN_EEPROM_CLK_RISE);
441 ql_write_nvram_reg(qdev,
442 &port_regs->CommonRegs.
443 serialPortInterfaceReg,
444 ISP_NVRAM_MASK | qdev->
445 eeprom_cmd_data | dataBit |
446 AUBURN_EEPROM_CLK_FALL);
447 cmd = cmd << 1;
450 mask = 1 << (addrBits - 1);
451 /* Force the previous data bit to be different */
452 previousBit = 0xffff;
453 for (i = 0; i < addrBits; i++) {
454 dataBit =
455 (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
456 AUBURN_EEPROM_DO_0;
457 if (previousBit != dataBit) {
459 * If the bit changed, then change the DO state to
460 * match
462 ql_write_nvram_reg(qdev,
463 &port_regs->CommonRegs.
464 serialPortInterfaceReg,
465 ISP_NVRAM_MASK | qdev->
466 eeprom_cmd_data | dataBit);
467 previousBit = dataBit;
469 ql_write_nvram_reg(qdev,
470 &port_regs->CommonRegs.
471 serialPortInterfaceReg,
472 ISP_NVRAM_MASK | qdev->
473 eeprom_cmd_data | dataBit |
474 AUBURN_EEPROM_CLK_RISE);
475 ql_write_nvram_reg(qdev,
476 &port_regs->CommonRegs.
477 serialPortInterfaceReg,
478 ISP_NVRAM_MASK | qdev->
479 eeprom_cmd_data | dataBit |
480 AUBURN_EEPROM_CLK_FALL);
481 eepromAddr = eepromAddr << 1;
486 * Caller holds hw_lock.
488 static void fm93c56a_deselect(struct ql3_adapter *qdev)
490 struct ql3xxx_port_registers __iomem *port_regs =
491 qdev->mem_map_registers;
492 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
493 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
494 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
498 * Caller holds hw_lock.
500 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
502 int i;
503 u32 data = 0;
504 u32 dataBit;
505 struct ql3xxx_port_registers __iomem *port_regs =
506 qdev->mem_map_registers;
508 /* Read the data bits */
509 /* The first bit is a dummy. Clock right over it. */
510 for (i = 0; i < dataBits; i++) {
511 ql_write_nvram_reg(qdev,
512 &port_regs->CommonRegs.
513 serialPortInterfaceReg,
514 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
515 AUBURN_EEPROM_CLK_RISE);
516 ql_write_nvram_reg(qdev,
517 &port_regs->CommonRegs.
518 serialPortInterfaceReg,
519 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
520 AUBURN_EEPROM_CLK_FALL);
521 dataBit =
522 (ql_read_common_reg
523 (qdev,
524 &port_regs->CommonRegs.
525 serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
526 data = (data << 1) | dataBit;
528 *value = (u16) data;
532 * Caller holds hw_lock.
534 static void eeprom_readword(struct ql3_adapter *qdev,
535 u32 eepromAddr, unsigned short *value)
537 fm93c56a_select(qdev);
538 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
539 fm93c56a_datain(qdev, value);
540 fm93c56a_deselect(qdev);
543 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
545 __le16 *p = (__le16 *)ndev->dev_addr;
546 p[0] = cpu_to_le16(addr[0]);
547 p[1] = cpu_to_le16(addr[1]);
548 p[2] = cpu_to_le16(addr[2]);
551 static int ql_get_nvram_params(struct ql3_adapter *qdev)
553 u16 *pEEPROMData;
554 u16 checksum = 0;
555 u32 index;
556 unsigned long hw_flags;
558 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
560 pEEPROMData = (u16 *) & qdev->nvram_data;
561 qdev->eeprom_cmd_data = 0;
562 if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
563 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
564 2) << 10)) {
565 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
566 __func__);
567 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
568 return -1;
571 for (index = 0; index < EEPROM_SIZE; index++) {
572 eeprom_readword(qdev, index, pEEPROMData);
573 checksum += *pEEPROMData;
574 pEEPROMData++;
576 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
578 if (checksum != 0) {
579 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
580 qdev->ndev->name, checksum);
581 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
582 return -1;
585 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
586 return checksum;
589 static const u32 PHYAddr[2] = {
590 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
593 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
595 struct ql3xxx_port_registers __iomem *port_regs =
596 qdev->mem_map_registers;
597 u32 temp;
598 int count = 1000;
600 while (count) {
601 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
602 if (!(temp & MAC_MII_STATUS_BSY))
603 return 0;
604 udelay(10);
605 count--;
607 return -1;
610 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
612 struct ql3xxx_port_registers __iomem *port_regs =
613 qdev->mem_map_registers;
614 u32 scanControl;
616 if (qdev->numPorts > 1) {
617 /* Auto scan will cycle through multiple ports */
618 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
619 } else {
620 scanControl = MAC_MII_CONTROL_SC;
624 * Scan register 1 of PHY/PETBI,
625 * Set up to scan both devices
626 * The autoscan starts from the first register, completes
627 * the last one before rolling over to the first
629 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
630 PHYAddr[0] | MII_SCAN_REGISTER);
632 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
633 (scanControl) |
634 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
637 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
639 u8 ret;
640 struct ql3xxx_port_registers __iomem *port_regs =
641 qdev->mem_map_registers;
643 /* See if scan mode is enabled before we turn it off */
644 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
645 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
646 /* Scan is enabled */
647 ret = 1;
648 } else {
649 /* Scan is disabled */
650 ret = 0;
654 * When disabling scan mode you must first change the MII register
655 * address
657 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
658 PHYAddr[0] | MII_SCAN_REGISTER);
660 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
661 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
662 MAC_MII_CONTROL_RC) << 16));
664 return ret;
667 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
668 u16 regAddr, u16 value, u32 phyAddr)
670 struct ql3xxx_port_registers __iomem *port_regs =
671 qdev->mem_map_registers;
672 u8 scanWasEnabled;
674 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
676 if (ql_wait_for_mii_ready(qdev)) {
677 if (netif_msg_link(qdev))
678 printk(KERN_WARNING PFX
679 "%s Timed out waiting for management port to "
680 "get free before issuing command.\n",
681 qdev->ndev->name);
682 return -1;
685 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
686 phyAddr | regAddr);
688 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
690 /* Wait for write to complete 9/10/04 SJP */
691 if (ql_wait_for_mii_ready(qdev)) {
692 if (netif_msg_link(qdev))
693 printk(KERN_WARNING PFX
694 "%s: Timed out waiting for management port to "
695 "get free before issuing command.\n",
696 qdev->ndev->name);
697 return -1;
700 if (scanWasEnabled)
701 ql_mii_enable_scan_mode(qdev);
703 return 0;
706 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
707 u16 * value, u32 phyAddr)
709 struct ql3xxx_port_registers __iomem *port_regs =
710 qdev->mem_map_registers;
711 u8 scanWasEnabled;
712 u32 temp;
714 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
716 if (ql_wait_for_mii_ready(qdev)) {
717 if (netif_msg_link(qdev))
718 printk(KERN_WARNING PFX
719 "%s: Timed out waiting for management port to "
720 "get free before issuing command.\n",
721 qdev->ndev->name);
722 return -1;
725 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
726 phyAddr | regAddr);
728 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
729 (MAC_MII_CONTROL_RC << 16));
731 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
732 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
734 /* Wait for the read to complete */
735 if (ql_wait_for_mii_ready(qdev)) {
736 if (netif_msg_link(qdev))
737 printk(KERN_WARNING PFX
738 "%s: Timed out waiting for management port to "
739 "get free after issuing command.\n",
740 qdev->ndev->name);
741 return -1;
744 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
745 *value = (u16) temp;
747 if (scanWasEnabled)
748 ql_mii_enable_scan_mode(qdev);
750 return 0;
753 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
755 struct ql3xxx_port_registers __iomem *port_regs =
756 qdev->mem_map_registers;
758 ql_mii_disable_scan_mode(qdev);
760 if (ql_wait_for_mii_ready(qdev)) {
761 if (netif_msg_link(qdev))
762 printk(KERN_WARNING PFX
763 "%s: Timed out waiting for management port to "
764 "get free before issuing command.\n",
765 qdev->ndev->name);
766 return -1;
769 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
770 qdev->PHYAddr | regAddr);
772 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
774 /* Wait for write to complete. */
775 if (ql_wait_for_mii_ready(qdev)) {
776 if (netif_msg_link(qdev))
777 printk(KERN_WARNING PFX
778 "%s: Timed out waiting for management port to "
779 "get free before issuing command.\n",
780 qdev->ndev->name);
781 return -1;
784 ql_mii_enable_scan_mode(qdev);
786 return 0;
789 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
791 u32 temp;
792 struct ql3xxx_port_registers __iomem *port_regs =
793 qdev->mem_map_registers;
795 ql_mii_disable_scan_mode(qdev);
797 if (ql_wait_for_mii_ready(qdev)) {
798 if (netif_msg_link(qdev))
799 printk(KERN_WARNING PFX
800 "%s: Timed out waiting for management port to "
801 "get free before issuing command.\n",
802 qdev->ndev->name);
803 return -1;
806 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
807 qdev->PHYAddr | regAddr);
809 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
810 (MAC_MII_CONTROL_RC << 16));
812 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
813 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
815 /* Wait for the read to complete */
816 if (ql_wait_for_mii_ready(qdev)) {
817 if (netif_msg_link(qdev))
818 printk(KERN_WARNING PFX
819 "%s: Timed out waiting for management port to "
820 "get free before issuing command.\n",
821 qdev->ndev->name);
822 return -1;
825 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
826 *value = (u16) temp;
828 ql_mii_enable_scan_mode(qdev);
830 return 0;
833 static void ql_petbi_reset(struct ql3_adapter *qdev)
835 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
838 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
840 u16 reg;
842 /* Enable Auto-negotiation sense */
843 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
844 reg |= PETBI_TBI_AUTO_SENSE;
845 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
847 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
848 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
850 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
851 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
852 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
856 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
858 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
859 PHYAddr[qdev->mac_index]);
862 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
864 u16 reg;
866 /* Enable Auto-negotiation sense */
867 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
868 PHYAddr[qdev->mac_index]);
869 reg |= PETBI_TBI_AUTO_SENSE;
870 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
871 PHYAddr[qdev->mac_index]);
873 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
874 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
875 PHYAddr[qdev->mac_index]);
877 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
878 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
879 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
880 PHYAddr[qdev->mac_index]);
883 static void ql_petbi_init(struct ql3_adapter *qdev)
885 ql_petbi_reset(qdev);
886 ql_petbi_start_neg(qdev);
889 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
891 ql_petbi_reset_ex(qdev);
892 ql_petbi_start_neg_ex(qdev);
895 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
897 u16 reg;
899 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
900 return 0;
902 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
905 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
907 printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
908 /* power down device bit 11 = 1 */
909 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
910 /* enable diagnostic mode bit 2 = 1 */
911 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
912 /* 1000MB amplitude adjust (see Agere errata) */
913 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
914 /* 1000MB amplitude adjust (see Agere errata) */
915 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
916 /* 100MB amplitude adjust (see Agere errata) */
917 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
918 /* 100MB amplitude adjust (see Agere errata) */
919 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
920 /* 10MB amplitude adjust (see Agere errata) */
921 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
922 /* 10MB amplitude adjust (see Agere errata) */
923 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
924 /* point to hidden reg 0x2806 */
925 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
926 /* Write new PHYAD w/bit 5 set */
927 ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
929 * Disable diagnostic mode bit 2 = 0
930 * Power up device bit 11 = 0
931 * Link up (on) and activity (blink)
933 ql_mii_write_reg(qdev, 0x12, 0x840a);
934 ql_mii_write_reg(qdev, 0x00, 0x1140);
935 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
938 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
939 u16 phyIdReg0, u16 phyIdReg1)
941 PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
942 u32 oui;
943 u16 model;
944 int i;
946 if (phyIdReg0 == 0xffff) {
947 return result;
950 if (phyIdReg1 == 0xffff) {
951 return result;
954 /* oui is split between two registers */
955 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
957 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
959 /* Scan table for this PHY */
960 for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
961 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
963 result = PHY_DEVICES[i].phyDevice;
965 printk(KERN_INFO "%s: Phy: %s\n",
966 qdev->ndev->name, PHY_DEVICES[i].name);
968 break;
972 return result;
975 static int ql_phy_get_speed(struct ql3_adapter *qdev)
977 u16 reg;
979 switch(qdev->phyType) {
980 case PHY_AGERE_ET1011C:
982 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
983 return 0;
985 reg = (reg >> 8) & 3;
986 break;
988 default:
989 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
990 return 0;
992 reg = (((reg & 0x18) >> 3) & 3);
995 switch(reg) {
996 case 2:
997 return SPEED_1000;
998 case 1:
999 return SPEED_100;
1000 case 0:
1001 return SPEED_10;
1002 default:
1003 return -1;
1007 static int ql_is_full_dup(struct ql3_adapter *qdev)
1009 u16 reg;
1011 switch(qdev->phyType) {
1012 case PHY_AGERE_ET1011C:
1014 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1015 return 0;
1017 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1019 case PHY_VITESSE_VSC8211:
1020 default:
1022 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1023 return 0;
1024 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1029 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1031 u16 reg;
1033 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1034 return 0;
1036 return (reg & PHY_NEG_PAUSE) != 0;
1039 static int PHY_Setup(struct ql3_adapter *qdev)
1041 u16 reg1;
1042 u16 reg2;
1043 bool agereAddrChangeNeeded = false;
1044 u32 miiAddr = 0;
1045 int err;
1047 /* Determine the PHY we are using by reading the ID's */
1048 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1049 if(err != 0) {
1050 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1051 qdev->ndev->name);
1052 return err;
1055 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1056 if(err != 0) {
1057 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1058 qdev->ndev->name);
1059 return err;
1062 /* Check if we have a Agere PHY */
1063 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1065 /* Determine which MII address we should be using
1066 determined by the index of the card */
1067 if (qdev->mac_index == 0) {
1068 miiAddr = MII_AGERE_ADDR_1;
1069 } else {
1070 miiAddr = MII_AGERE_ADDR_2;
1073 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1074 if(err != 0) {
1075 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1076 qdev->ndev->name);
1077 return err;
1080 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1081 if(err != 0) {
1082 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1083 qdev->ndev->name);
1084 return err;
1087 /* We need to remember to initialize the Agere PHY */
1088 agereAddrChangeNeeded = true;
1091 /* Determine the particular PHY we have on board to apply
1092 PHY specific initializations */
1093 qdev->phyType = getPhyType(qdev, reg1, reg2);
1095 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1096 /* need this here so address gets changed */
1097 phyAgereSpecificInit(qdev, miiAddr);
1098 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1099 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1100 return -EIO;
1103 return 0;
1107 * Caller holds hw_lock.
1109 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1111 struct ql3xxx_port_registers __iomem *port_regs =
1112 qdev->mem_map_registers;
1113 u32 value;
1115 if (enable)
1116 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1117 else
1118 value = (MAC_CONFIG_REG_PE << 16);
1120 if (qdev->mac_index)
1121 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1122 else
1123 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1127 * Caller holds hw_lock.
1129 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1131 struct ql3xxx_port_registers __iomem *port_regs =
1132 qdev->mem_map_registers;
1133 u32 value;
1135 if (enable)
1136 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1137 else
1138 value = (MAC_CONFIG_REG_SR << 16);
1140 if (qdev->mac_index)
1141 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1142 else
1143 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1147 * Caller holds hw_lock.
1149 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1151 struct ql3xxx_port_registers __iomem *port_regs =
1152 qdev->mem_map_registers;
1153 u32 value;
1155 if (enable)
1156 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1157 else
1158 value = (MAC_CONFIG_REG_GM << 16);
1160 if (qdev->mac_index)
1161 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1162 else
1163 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1167 * Caller holds hw_lock.
1169 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1171 struct ql3xxx_port_registers __iomem *port_regs =
1172 qdev->mem_map_registers;
1173 u32 value;
1175 if (enable)
1176 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1177 else
1178 value = (MAC_CONFIG_REG_FD << 16);
1180 if (qdev->mac_index)
1181 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1182 else
1183 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1187 * Caller holds hw_lock.
1189 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1191 struct ql3xxx_port_registers __iomem *port_regs =
1192 qdev->mem_map_registers;
1193 u32 value;
1195 if (enable)
1196 value =
1197 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1198 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1199 else
1200 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1202 if (qdev->mac_index)
1203 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1204 else
1205 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1209 * Caller holds hw_lock.
1211 static int ql_is_fiber(struct ql3_adapter *qdev)
1213 struct ql3xxx_port_registers __iomem *port_regs =
1214 qdev->mem_map_registers;
1215 u32 bitToCheck = 0;
1216 u32 temp;
1218 switch (qdev->mac_index) {
1219 case 0:
1220 bitToCheck = PORT_STATUS_SM0;
1221 break;
1222 case 1:
1223 bitToCheck = PORT_STATUS_SM1;
1224 break;
1227 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1228 return (temp & bitToCheck) != 0;
1231 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1233 u16 reg;
1234 ql_mii_read_reg(qdev, 0x00, &reg);
1235 return (reg & 0x1000) != 0;
1239 * Caller holds hw_lock.
1241 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1243 struct ql3xxx_port_registers __iomem *port_regs =
1244 qdev->mem_map_registers;
1245 u32 bitToCheck = 0;
1246 u32 temp;
1248 switch (qdev->mac_index) {
1249 case 0:
1250 bitToCheck = PORT_STATUS_AC0;
1251 break;
1252 case 1:
1253 bitToCheck = PORT_STATUS_AC1;
1254 break;
1257 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1258 if (temp & bitToCheck) {
1259 if (netif_msg_link(qdev))
1260 printk(KERN_INFO PFX
1261 "%s: Auto-Negotiate complete.\n",
1262 qdev->ndev->name);
1263 return 1;
1264 } else {
1265 if (netif_msg_link(qdev))
1266 printk(KERN_WARNING PFX
1267 "%s: Auto-Negotiate incomplete.\n",
1268 qdev->ndev->name);
1269 return 0;
1274 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1276 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1278 if (ql_is_fiber(qdev))
1279 return ql_is_petbi_neg_pause(qdev);
1280 else
1281 return ql_is_phy_neg_pause(qdev);
1284 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1286 struct ql3xxx_port_registers __iomem *port_regs =
1287 qdev->mem_map_registers;
1288 u32 bitToCheck = 0;
1289 u32 temp;
1291 switch (qdev->mac_index) {
1292 case 0:
1293 bitToCheck = PORT_STATUS_AE0;
1294 break;
1295 case 1:
1296 bitToCheck = PORT_STATUS_AE1;
1297 break;
1299 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1300 return (temp & bitToCheck) != 0;
1303 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1305 if (ql_is_fiber(qdev))
1306 return SPEED_1000;
1307 else
1308 return ql_phy_get_speed(qdev);
1311 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1313 if (ql_is_fiber(qdev))
1314 return 1;
1315 else
1316 return ql_is_full_dup(qdev);
1320 * Caller holds hw_lock.
1322 static int ql_link_down_detect(struct ql3_adapter *qdev)
1324 struct ql3xxx_port_registers __iomem *port_regs =
1325 qdev->mem_map_registers;
1326 u32 bitToCheck = 0;
1327 u32 temp;
1329 switch (qdev->mac_index) {
1330 case 0:
1331 bitToCheck = ISP_CONTROL_LINK_DN_0;
1332 break;
1333 case 1:
1334 bitToCheck = ISP_CONTROL_LINK_DN_1;
1335 break;
1338 temp =
1339 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1340 return (temp & bitToCheck) != 0;
1344 * Caller holds hw_lock.
1346 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1348 struct ql3xxx_port_registers __iomem *port_regs =
1349 qdev->mem_map_registers;
1351 switch (qdev->mac_index) {
1352 case 0:
1353 ql_write_common_reg(qdev,
1354 &port_regs->CommonRegs.ispControlStatus,
1355 (ISP_CONTROL_LINK_DN_0) |
1356 (ISP_CONTROL_LINK_DN_0 << 16));
1357 break;
1359 case 1:
1360 ql_write_common_reg(qdev,
1361 &port_regs->CommonRegs.ispControlStatus,
1362 (ISP_CONTROL_LINK_DN_1) |
1363 (ISP_CONTROL_LINK_DN_1 << 16));
1364 break;
1366 default:
1367 return 1;
1370 return 0;
1374 * Caller holds hw_lock.
1376 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1378 struct ql3xxx_port_registers __iomem *port_regs =
1379 qdev->mem_map_registers;
1380 u32 bitToCheck = 0;
1381 u32 temp;
1383 switch (qdev->mac_index) {
1384 case 0:
1385 bitToCheck = PORT_STATUS_F1_ENABLED;
1386 break;
1387 case 1:
1388 bitToCheck = PORT_STATUS_F3_ENABLED;
1389 break;
1390 default:
1391 break;
1394 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1395 if (temp & bitToCheck) {
1396 if (netif_msg_link(qdev))
1397 printk(KERN_DEBUG PFX
1398 "%s: is not link master.\n", qdev->ndev->name);
1399 return 0;
1400 } else {
1401 if (netif_msg_link(qdev))
1402 printk(KERN_DEBUG PFX
1403 "%s: is link master.\n", qdev->ndev->name);
1404 return 1;
1408 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1410 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1411 PHYAddr[qdev->mac_index]);
1414 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1416 u16 reg;
1417 u16 portConfiguration;
1419 if(qdev->phyType == PHY_AGERE_ET1011C) {
1420 /* turn off external loopback */
1421 ql_mii_write_reg(qdev, 0x13, 0x0000);
1424 if(qdev->mac_index == 0)
1425 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1426 else
1427 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1429 /* Some HBA's in the field are set to 0 and they need to
1430 be reinterpreted with a default value */
1431 if(portConfiguration == 0)
1432 portConfiguration = PORT_CONFIG_DEFAULT;
1434 /* Set the 1000 advertisements */
1435 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1436 PHYAddr[qdev->mac_index]);
1437 reg &= ~PHY_GIG_ALL_PARAMS;
1439 if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1440 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1441 reg |= PHY_GIG_ADV_1000F;
1442 else
1443 reg |= PHY_GIG_ADV_1000H;
1446 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1447 PHYAddr[qdev->mac_index]);
1449 /* Set the 10/100 & pause negotiation advertisements */
1450 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1451 PHYAddr[qdev->mac_index]);
1452 reg &= ~PHY_NEG_ALL_PARAMS;
1454 if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1455 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1457 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1458 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1459 reg |= PHY_NEG_ADV_100F;
1461 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1462 reg |= PHY_NEG_ADV_10F;
1465 if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1466 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1467 reg |= PHY_NEG_ADV_100H;
1469 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1470 reg |= PHY_NEG_ADV_10H;
1473 if(portConfiguration &
1474 PORT_CONFIG_1000MB_SPEED) {
1475 reg |= 1;
1478 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1479 PHYAddr[qdev->mac_index]);
1481 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1483 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1484 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1485 PHYAddr[qdev->mac_index]);
1488 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1490 ql_phy_reset_ex(qdev);
1491 PHY_Setup(qdev);
1492 ql_phy_start_neg_ex(qdev);
1496 * Caller holds hw_lock.
1498 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1500 struct ql3xxx_port_registers __iomem *port_regs =
1501 qdev->mem_map_registers;
1502 u32 bitToCheck = 0;
1503 u32 temp, linkState;
1505 switch (qdev->mac_index) {
1506 case 0:
1507 bitToCheck = PORT_STATUS_UP0;
1508 break;
1509 case 1:
1510 bitToCheck = PORT_STATUS_UP1;
1511 break;
1513 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1514 if (temp & bitToCheck) {
1515 linkState = LS_UP;
1516 } else {
1517 linkState = LS_DOWN;
1518 if (netif_msg_link(qdev))
1519 printk(KERN_WARNING PFX
1520 "%s: Link is down.\n", qdev->ndev->name);
1522 return linkState;
1525 static int ql_port_start(struct ql3_adapter *qdev)
1527 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1528 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1529 2) << 7)) {
1530 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1531 qdev->ndev->name);
1532 return -1;
1535 if (ql_is_fiber(qdev)) {
1536 ql_petbi_init(qdev);
1537 } else {
1538 /* Copper port */
1539 ql_phy_init_ex(qdev);
1542 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1543 return 0;
1546 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1549 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1550 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1551 2) << 7))
1552 return -1;
1554 if (!ql_auto_neg_error(qdev)) {
1555 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1556 /* configure the MAC */
1557 if (netif_msg_link(qdev))
1558 printk(KERN_DEBUG PFX
1559 "%s: Configuring link.\n",
1560 qdev->ndev->
1561 name);
1562 ql_mac_cfg_soft_reset(qdev, 1);
1563 ql_mac_cfg_gig(qdev,
1564 (ql_get_link_speed
1565 (qdev) ==
1566 SPEED_1000));
1567 ql_mac_cfg_full_dup(qdev,
1568 ql_is_link_full_dup
1569 (qdev));
1570 ql_mac_cfg_pause(qdev,
1571 ql_is_neg_pause
1572 (qdev));
1573 ql_mac_cfg_soft_reset(qdev, 0);
1575 /* enable the MAC */
1576 if (netif_msg_link(qdev))
1577 printk(KERN_DEBUG PFX
1578 "%s: Enabling mac.\n",
1579 qdev->ndev->
1580 name);
1581 ql_mac_enable(qdev, 1);
1584 if (netif_msg_link(qdev))
1585 printk(KERN_DEBUG PFX
1586 "%s: Change port_link_state LS_DOWN to LS_UP.\n",
1587 qdev->ndev->name);
1588 qdev->port_link_state = LS_UP;
1589 netif_start_queue(qdev->ndev);
1590 netif_carrier_on(qdev->ndev);
1591 if (netif_msg_link(qdev))
1592 printk(KERN_INFO PFX
1593 "%s: Link is up at %d Mbps, %s duplex.\n",
1594 qdev->ndev->name,
1595 ql_get_link_speed(qdev),
1596 ql_is_link_full_dup(qdev)
1597 ? "full" : "half");
1599 } else { /* Remote error detected */
1601 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1602 if (netif_msg_link(qdev))
1603 printk(KERN_DEBUG PFX
1604 "%s: Remote error detected. "
1605 "Calling ql_port_start().\n",
1606 qdev->ndev->
1607 name);
1609 * ql_port_start() is shared code and needs
1610 * to lock the PHY on it's own.
1612 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1613 if(ql_port_start(qdev)) {/* Restart port */
1614 return -1;
1615 } else
1616 return 0;
1619 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1620 return 0;
1623 static void ql_link_state_machine_work(struct work_struct *work)
1625 struct ql3_adapter *qdev =
1626 container_of(work, struct ql3_adapter, link_state_work.work);
1628 u32 curr_link_state;
1629 unsigned long hw_flags;
1631 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1633 curr_link_state = ql_get_link_state(qdev);
1635 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1636 if (netif_msg_link(qdev))
1637 printk(KERN_INFO PFX
1638 "%s: Reset in progress, skip processing link "
1639 "state.\n", qdev->ndev->name);
1641 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1643 /* Restart timer on 2 second interval. */
1644 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
1646 return;
1649 switch (qdev->port_link_state) {
1650 default:
1651 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1652 ql_port_start(qdev);
1654 qdev->port_link_state = LS_DOWN;
1655 /* Fall Through */
1657 case LS_DOWN:
1658 if (netif_msg_link(qdev))
1659 printk(KERN_DEBUG PFX
1660 "%s: port_link_state = LS_DOWN.\n",
1661 qdev->ndev->name);
1662 if (curr_link_state == LS_UP) {
1663 if (netif_msg_link(qdev))
1664 printk(KERN_DEBUG PFX
1665 "%s: curr_link_state = LS_UP.\n",
1666 qdev->ndev->name);
1667 if (ql_is_auto_neg_complete(qdev))
1668 ql_finish_auto_neg(qdev);
1670 if (qdev->port_link_state == LS_UP)
1671 ql_link_down_detect_clear(qdev);
1674 break;
1676 case LS_UP:
1678 * See if the link is currently down or went down and came
1679 * back up
1681 if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
1682 if (netif_msg_link(qdev))
1683 printk(KERN_INFO PFX "%s: Link is down.\n",
1684 qdev->ndev->name);
1685 qdev->port_link_state = LS_DOWN;
1687 break;
1689 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1691 /* Restart timer on 2 second interval. */
1692 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1696 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1698 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1700 if (ql_this_adapter_controls_port(qdev))
1701 set_bit(QL_LINK_MASTER,&qdev->flags);
1702 else
1703 clear_bit(QL_LINK_MASTER,&qdev->flags);
1707 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1709 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1711 ql_mii_enable_scan_mode(qdev);
1713 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1714 if (ql_this_adapter_controls_port(qdev))
1715 ql_petbi_init_ex(qdev);
1716 } else {
1717 if (ql_this_adapter_controls_port(qdev))
1718 ql_phy_init_ex(qdev);
1723 * MII_Setup needs to be called before taking the PHY out of reset so that the
1724 * management interface clock speed can be set properly. It would be better if
1725 * we had a way to disable MDC until after the PHY is out of reset, but we
1726 * don't have that capability.
1728 static int ql_mii_setup(struct ql3_adapter *qdev)
1730 u32 reg;
1731 struct ql3xxx_port_registers __iomem *port_regs =
1732 qdev->mem_map_registers;
1734 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1735 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1736 2) << 7))
1737 return -1;
1739 if (qdev->device_id == QL3032_DEVICE_ID)
1740 ql_write_page0_reg(qdev,
1741 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1743 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1744 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1746 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1747 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1749 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1750 return 0;
1753 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1755 u32 supported;
1757 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1758 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1759 | SUPPORTED_Autoneg;
1760 } else {
1761 supported = SUPPORTED_10baseT_Half
1762 | SUPPORTED_10baseT_Full
1763 | SUPPORTED_100baseT_Half
1764 | SUPPORTED_100baseT_Full
1765 | SUPPORTED_1000baseT_Half
1766 | SUPPORTED_1000baseT_Full
1767 | SUPPORTED_Autoneg | SUPPORTED_TP;
1770 return supported;
1773 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1775 int status;
1776 unsigned long hw_flags;
1777 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1778 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1779 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1780 2) << 7)) {
1781 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1782 return 0;
1784 status = ql_is_auto_cfg(qdev);
1785 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1786 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1787 return status;
1790 static u32 ql_get_speed(struct ql3_adapter *qdev)
1792 u32 status;
1793 unsigned long hw_flags;
1794 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1795 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1796 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1797 2) << 7)) {
1798 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1799 return 0;
1801 status = ql_get_link_speed(qdev);
1802 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1803 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1804 return status;
1807 static int ql_get_full_dup(struct ql3_adapter *qdev)
1809 int status;
1810 unsigned long hw_flags;
1811 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1812 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1813 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1814 2) << 7)) {
1815 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1816 return 0;
1818 status = ql_is_link_full_dup(qdev);
1819 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1820 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1821 return status;
1825 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1827 struct ql3_adapter *qdev = netdev_priv(ndev);
1829 ecmd->transceiver = XCVR_INTERNAL;
1830 ecmd->supported = ql_supported_modes(qdev);
1832 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1833 ecmd->port = PORT_FIBRE;
1834 } else {
1835 ecmd->port = PORT_TP;
1836 ecmd->phy_address = qdev->PHYAddr;
1838 ecmd->advertising = ql_supported_modes(qdev);
1839 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1840 ecmd->speed = ql_get_speed(qdev);
1841 ecmd->duplex = ql_get_full_dup(qdev);
1842 return 0;
1845 static void ql_get_drvinfo(struct net_device *ndev,
1846 struct ethtool_drvinfo *drvinfo)
1848 struct ql3_adapter *qdev = netdev_priv(ndev);
1849 strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1850 strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1851 strncpy(drvinfo->fw_version, "N/A", 32);
1852 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1853 drvinfo->regdump_len = 0;
1854 drvinfo->eedump_len = 0;
1857 static u32 ql_get_msglevel(struct net_device *ndev)
1859 struct ql3_adapter *qdev = netdev_priv(ndev);
1860 return qdev->msg_enable;
1863 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1865 struct ql3_adapter *qdev = netdev_priv(ndev);
1866 qdev->msg_enable = value;
1869 static void ql_get_pauseparam(struct net_device *ndev,
1870 struct ethtool_pauseparam *pause)
1872 struct ql3_adapter *qdev = netdev_priv(ndev);
1873 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1875 u32 reg;
1876 if(qdev->mac_index == 0)
1877 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1878 else
1879 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1881 pause->autoneg = ql_get_auto_cfg_status(qdev);
1882 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1883 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1886 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1887 .get_settings = ql_get_settings,
1888 .get_drvinfo = ql_get_drvinfo,
1889 .get_link = ethtool_op_get_link,
1890 .get_msglevel = ql_get_msglevel,
1891 .set_msglevel = ql_set_msglevel,
1892 .get_pauseparam = ql_get_pauseparam,
1895 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1897 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1898 dma_addr_t map;
1899 int err;
1901 while (lrg_buf_cb) {
1902 if (!lrg_buf_cb->skb) {
1903 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1904 qdev->lrg_buffer_len);
1905 if (unlikely(!lrg_buf_cb->skb)) {
1906 printk(KERN_DEBUG PFX
1907 "%s: Failed netdev_alloc_skb().\n",
1908 qdev->ndev->name);
1909 break;
1910 } else {
1912 * We save some space to copy the ethhdr from
1913 * first buffer
1915 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1916 map = pci_map_single(qdev->pdev,
1917 lrg_buf_cb->skb->data,
1918 qdev->lrg_buffer_len -
1919 QL_HEADER_SPACE,
1920 PCI_DMA_FROMDEVICE);
1922 err = pci_dma_mapping_error(qdev->pdev, map);
1923 if(err) {
1924 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1925 qdev->ndev->name, err);
1926 dev_kfree_skb(lrg_buf_cb->skb);
1927 lrg_buf_cb->skb = NULL;
1928 break;
1932 lrg_buf_cb->buf_phy_addr_low =
1933 cpu_to_le32(LS_64BITS(map));
1934 lrg_buf_cb->buf_phy_addr_high =
1935 cpu_to_le32(MS_64BITS(map));
1936 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1937 pci_unmap_len_set(lrg_buf_cb, maplen,
1938 qdev->lrg_buffer_len -
1939 QL_HEADER_SPACE);
1940 --qdev->lrg_buf_skb_check;
1941 if (!qdev->lrg_buf_skb_check)
1942 return 1;
1945 lrg_buf_cb = lrg_buf_cb->next;
1947 return 0;
1951 * Caller holds hw_lock.
1953 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1955 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1956 if (qdev->small_buf_release_cnt >= 16) {
1957 while (qdev->small_buf_release_cnt >= 16) {
1958 qdev->small_buf_q_producer_index++;
1960 if (qdev->small_buf_q_producer_index ==
1961 NUM_SBUFQ_ENTRIES)
1962 qdev->small_buf_q_producer_index = 0;
1963 qdev->small_buf_release_cnt -= 8;
1965 wmb();
1966 writel(qdev->small_buf_q_producer_index,
1967 &port_regs->CommonRegs.rxSmallQProducerIndex);
1972 * Caller holds hw_lock.
1974 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1976 struct bufq_addr_element *lrg_buf_q_ele;
1977 int i;
1978 struct ql_rcv_buf_cb *lrg_buf_cb;
1979 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1981 if ((qdev->lrg_buf_free_count >= 8)
1982 && (qdev->lrg_buf_release_cnt >= 16)) {
1984 if (qdev->lrg_buf_skb_check)
1985 if (!ql_populate_free_queue(qdev))
1986 return;
1988 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1990 while ((qdev->lrg_buf_release_cnt >= 16)
1991 && (qdev->lrg_buf_free_count >= 8)) {
1993 for (i = 0; i < 8; i++) {
1994 lrg_buf_cb =
1995 ql_get_from_lrg_buf_free_list(qdev);
1996 lrg_buf_q_ele->addr_high =
1997 lrg_buf_cb->buf_phy_addr_high;
1998 lrg_buf_q_ele->addr_low =
1999 lrg_buf_cb->buf_phy_addr_low;
2000 lrg_buf_q_ele++;
2002 qdev->lrg_buf_release_cnt--;
2005 qdev->lrg_buf_q_producer_index++;
2007 if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
2008 qdev->lrg_buf_q_producer_index = 0;
2010 if (qdev->lrg_buf_q_producer_index ==
2011 (qdev->num_lbufq_entries - 1)) {
2012 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2015 wmb();
2016 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2017 writel(qdev->lrg_buf_q_producer_index,
2018 &port_regs->CommonRegs.rxLargeQProducerIndex);
2022 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2023 struct ob_mac_iocb_rsp *mac_rsp)
2025 struct ql_tx_buf_cb *tx_cb;
2026 int i;
2027 int retval = 0;
2029 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2030 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2033 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2035 /* Check the transmit response flags for any errors */
2036 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2037 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2039 qdev->ndev->stats.tx_errors++;
2040 retval = -EIO;
2041 goto frame_not_sent;
2044 if(tx_cb->seg_count == 0) {
2045 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2047 qdev->ndev->stats.tx_errors++;
2048 retval = -EIO;
2049 goto invalid_seg_count;
2052 pci_unmap_single(qdev->pdev,
2053 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2054 pci_unmap_len(&tx_cb->map[0], maplen),
2055 PCI_DMA_TODEVICE);
2056 tx_cb->seg_count--;
2057 if (tx_cb->seg_count) {
2058 for (i = 1; i < tx_cb->seg_count; i++) {
2059 pci_unmap_page(qdev->pdev,
2060 pci_unmap_addr(&tx_cb->map[i],
2061 mapaddr),
2062 pci_unmap_len(&tx_cb->map[i], maplen),
2063 PCI_DMA_TODEVICE);
2066 qdev->ndev->stats.tx_packets++;
2067 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2069 frame_not_sent:
2070 dev_kfree_skb_irq(tx_cb->skb);
2071 tx_cb->skb = NULL;
2073 invalid_seg_count:
2074 atomic_inc(&qdev->tx_count);
2077 static void ql_get_sbuf(struct ql3_adapter *qdev)
2079 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2080 qdev->small_buf_index = 0;
2081 qdev->small_buf_release_cnt++;
2084 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2086 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2087 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2088 qdev->lrg_buf_release_cnt++;
2089 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2090 qdev->lrg_buf_index = 0;
2091 return(lrg_buf_cb);
2095 * The difference between 3022 and 3032 for inbound completions:
2096 * 3022 uses two buffers per completion. The first buffer contains
2097 * (some) header info, the second the remainder of the headers plus
2098 * the data. For this chip we reserve some space at the top of the
2099 * receive buffer so that the header info in buffer one can be
2100 * prepended to the buffer two. Buffer two is the sent up while
2101 * buffer one is returned to the hardware to be reused.
2102 * 3032 receives all of it's data and headers in one buffer for a
2103 * simpler process. 3032 also supports checksum verification as
2104 * can be seen in ql_process_macip_rx_intr().
2106 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2107 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2109 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2110 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2111 struct sk_buff *skb;
2112 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2115 * Get the inbound address list (small buffer).
2117 ql_get_sbuf(qdev);
2119 if (qdev->device_id == QL3022_DEVICE_ID)
2120 lrg_buf_cb1 = ql_get_lbuf(qdev);
2122 /* start of second buffer */
2123 lrg_buf_cb2 = ql_get_lbuf(qdev);
2124 skb = lrg_buf_cb2->skb;
2126 qdev->ndev->stats.rx_packets++;
2127 qdev->ndev->stats.rx_bytes += length;
2129 skb_put(skb, length);
2130 pci_unmap_single(qdev->pdev,
2131 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2132 pci_unmap_len(lrg_buf_cb2, maplen),
2133 PCI_DMA_FROMDEVICE);
2134 prefetch(skb->data);
2135 skb->ip_summed = CHECKSUM_NONE;
2136 skb->protocol = eth_type_trans(skb, qdev->ndev);
2138 netif_receive_skb(skb);
2139 qdev->ndev->last_rx = jiffies;
2140 lrg_buf_cb2->skb = NULL;
2142 if (qdev->device_id == QL3022_DEVICE_ID)
2143 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2144 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2147 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2148 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2150 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2151 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2152 struct sk_buff *skb1 = NULL, *skb2;
2153 struct net_device *ndev = qdev->ndev;
2154 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2155 u16 size = 0;
2158 * Get the inbound address list (small buffer).
2161 ql_get_sbuf(qdev);
2163 if (qdev->device_id == QL3022_DEVICE_ID) {
2164 /* start of first buffer on 3022 */
2165 lrg_buf_cb1 = ql_get_lbuf(qdev);
2166 skb1 = lrg_buf_cb1->skb;
2167 size = ETH_HLEN;
2168 if (*((u16 *) skb1->data) != 0xFFFF)
2169 size += VLAN_ETH_HLEN - ETH_HLEN;
2172 /* start of second buffer */
2173 lrg_buf_cb2 = ql_get_lbuf(qdev);
2174 skb2 = lrg_buf_cb2->skb;
2176 skb_put(skb2, length); /* Just the second buffer length here. */
2177 pci_unmap_single(qdev->pdev,
2178 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2179 pci_unmap_len(lrg_buf_cb2, maplen),
2180 PCI_DMA_FROMDEVICE);
2181 prefetch(skb2->data);
2183 skb2->ip_summed = CHECKSUM_NONE;
2184 if (qdev->device_id == QL3022_DEVICE_ID) {
2186 * Copy the ethhdr from first buffer to second. This
2187 * is necessary for 3022 IP completions.
2189 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2190 skb_push(skb2, size), size);
2191 } else {
2192 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2193 if (checksum &
2194 (IB_IP_IOCB_RSP_3032_ICE |
2195 IB_IP_IOCB_RSP_3032_CE)) {
2196 printk(KERN_ERR
2197 "%s: Bad checksum for this %s packet, checksum = %x.\n",
2198 __func__,
2199 ((checksum &
2200 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2201 "UDP"),checksum);
2202 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2203 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2204 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2205 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2208 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2210 netif_receive_skb(skb2);
2211 ndev->stats.rx_packets++;
2212 ndev->stats.rx_bytes += length;
2213 ndev->last_rx = jiffies;
2214 lrg_buf_cb2->skb = NULL;
2216 if (qdev->device_id == QL3022_DEVICE_ID)
2217 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2218 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2221 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2222 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2224 struct net_rsp_iocb *net_rsp;
2225 struct net_device *ndev = qdev->ndev;
2226 int work_done = 0;
2228 /* While there are entries in the completion queue. */
2229 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2230 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2232 net_rsp = qdev->rsp_current;
2233 rmb();
2235 * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2236 * inbound completion is for a VLAN.
2238 if (qdev->device_id == QL3032_DEVICE_ID)
2239 net_rsp->opcode &= 0x7f;
2240 switch (net_rsp->opcode) {
2242 case OPCODE_OB_MAC_IOCB_FN0:
2243 case OPCODE_OB_MAC_IOCB_FN2:
2244 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2245 net_rsp);
2246 (*tx_cleaned)++;
2247 break;
2249 case OPCODE_IB_MAC_IOCB:
2250 case OPCODE_IB_3032_MAC_IOCB:
2251 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2252 net_rsp);
2253 (*rx_cleaned)++;
2254 break;
2256 case OPCODE_IB_IP_IOCB:
2257 case OPCODE_IB_3032_IP_IOCB:
2258 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2259 net_rsp);
2260 (*rx_cleaned)++;
2261 break;
2262 default:
2264 u32 *tmp = (u32 *) net_rsp;
2265 printk(KERN_ERR PFX
2266 "%s: Hit default case, not "
2267 "handled!\n"
2268 " dropping the packet, opcode = "
2269 "%x.\n",
2270 ndev->name, net_rsp->opcode);
2271 printk(KERN_ERR PFX
2272 "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
2273 (unsigned long int)tmp[0],
2274 (unsigned long int)tmp[1],
2275 (unsigned long int)tmp[2],
2276 (unsigned long int)tmp[3]);
2280 qdev->rsp_consumer_index++;
2282 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2283 qdev->rsp_consumer_index = 0;
2284 qdev->rsp_current = qdev->rsp_q_virt_addr;
2285 } else {
2286 qdev->rsp_current++;
2289 work_done = *tx_cleaned + *rx_cleaned;
2292 return work_done;
2295 static int ql_poll(struct napi_struct *napi, int budget)
2297 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2298 struct net_device *ndev = qdev->ndev;
2299 int rx_cleaned = 0, tx_cleaned = 0;
2300 unsigned long hw_flags;
2301 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2303 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2305 if (tx_cleaned + rx_cleaned != budget) {
2306 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2307 __netif_rx_complete(ndev, napi);
2308 ql_update_small_bufq_prod_index(qdev);
2309 ql_update_lrg_bufq_prod_index(qdev);
2310 writel(qdev->rsp_consumer_index,
2311 &port_regs->CommonRegs.rspQConsumerIndex);
2312 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2314 ql_enable_interrupts(qdev);
2316 return tx_cleaned + rx_cleaned;
2319 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2322 struct net_device *ndev = dev_id;
2323 struct ql3_adapter *qdev = netdev_priv(ndev);
2324 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2325 u32 value;
2326 int handled = 1;
2327 u32 var;
2329 port_regs = qdev->mem_map_registers;
2331 value =
2332 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2334 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2335 spin_lock(&qdev->adapter_lock);
2336 netif_stop_queue(qdev->ndev);
2337 netif_carrier_off(qdev->ndev);
2338 ql_disable_interrupts(qdev);
2339 qdev->port_link_state = LS_DOWN;
2340 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2342 if (value & ISP_CONTROL_FE) {
2344 * Chip Fatal Error.
2346 var =
2347 ql_read_page0_reg_l(qdev,
2348 &port_regs->PortFatalErrStatus);
2349 printk(KERN_WARNING PFX
2350 "%s: Resetting chip. PortFatalErrStatus "
2351 "register = 0x%x\n", ndev->name, var);
2352 set_bit(QL_RESET_START,&qdev->flags) ;
2353 } else {
2355 * Soft Reset Requested.
2357 set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2358 printk(KERN_ERR PFX
2359 "%s: Another function issued a reset to the "
2360 "chip. ISR value = %x.\n", ndev->name, value);
2362 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2363 spin_unlock(&qdev->adapter_lock);
2364 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2365 ql_disable_interrupts(qdev);
2366 if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
2367 __netif_rx_schedule(ndev, &qdev->napi);
2369 } else {
2370 return IRQ_NONE;
2373 return IRQ_RETVAL(handled);
2377 * Get the total number of segments needed for the
2378 * given number of fragments. This is necessary because
2379 * outbound address lists (OAL) will be used when more than
2380 * two frags are given. Each address list has 5 addr/len
2381 * pairs. The 5th pair in each AOL is used to point to
2382 * the next AOL if more frags are coming.
2383 * That is why the frags:segment count ratio is not linear.
2385 static int ql_get_seg_count(struct ql3_adapter *qdev,
2386 unsigned short frags)
2388 if (qdev->device_id == QL3022_DEVICE_ID)
2389 return 1;
2391 switch(frags) {
2392 case 0: return 1; /* just the skb->data seg */
2393 case 1: return 2; /* skb->data + 1 frag */
2394 case 2: return 3; /* skb->data + 2 frags */
2395 case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
2396 case 4: return 6;
2397 case 5: return 7;
2398 case 6: return 8;
2399 case 7: return 10;
2400 case 8: return 11;
2401 case 9: return 12;
2402 case 10: return 13;
2403 case 11: return 15;
2404 case 12: return 16;
2405 case 13: return 17;
2406 case 14: return 18;
2407 case 15: return 20;
2408 case 16: return 21;
2409 case 17: return 22;
2410 case 18: return 23;
2412 return -1;
2415 static void ql_hw_csum_setup(const struct sk_buff *skb,
2416 struct ob_mac_iocb_req *mac_iocb_ptr)
2418 const struct iphdr *ip = ip_hdr(skb);
2420 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2421 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2423 if (ip->protocol == IPPROTO_TCP) {
2424 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2425 OB_3032MAC_IOCB_REQ_IC;
2426 } else {
2427 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2428 OB_3032MAC_IOCB_REQ_IC;
2434 * Map the buffers for this transmit. This will return
2435 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2437 static int ql_send_map(struct ql3_adapter *qdev,
2438 struct ob_mac_iocb_req *mac_iocb_ptr,
2439 struct ql_tx_buf_cb *tx_cb,
2440 struct sk_buff *skb)
2442 struct oal *oal;
2443 struct oal_entry *oal_entry;
2444 int len = skb_headlen(skb);
2445 dma_addr_t map;
2446 int err;
2447 int completed_segs, i;
2448 int seg_cnt, seg = 0;
2449 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2451 seg_cnt = tx_cb->seg_count;
2453 * Map the skb buffer first.
2455 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2457 err = pci_dma_mapping_error(qdev->pdev, map);
2458 if(err) {
2459 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2460 qdev->ndev->name, err);
2462 return NETDEV_TX_BUSY;
2465 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2466 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2467 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2468 oal_entry->len = cpu_to_le32(len);
2469 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2470 pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
2471 seg++;
2473 if (seg_cnt == 1) {
2474 /* Terminate the last segment. */
2475 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2476 } else {
2477 oal = tx_cb->oal;
2478 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2479 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2480 oal_entry++;
2481 if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2482 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2483 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2484 (seg == 17 && seg_cnt > 18)) {
2485 /* Continuation entry points to outbound address list. */
2486 map = pci_map_single(qdev->pdev, oal,
2487 sizeof(struct oal),
2488 PCI_DMA_TODEVICE);
2490 err = pci_dma_mapping_error(qdev->pdev, map);
2491 if(err) {
2493 printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2494 qdev->ndev->name, err);
2495 goto map_error;
2498 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2499 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2500 oal_entry->len =
2501 cpu_to_le32(sizeof(struct oal) |
2502 OAL_CONT_ENTRY);
2503 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2504 map);
2505 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2506 sizeof(struct oal));
2507 oal_entry = (struct oal_entry *)oal;
2508 oal++;
2509 seg++;
2512 map =
2513 pci_map_page(qdev->pdev, frag->page,
2514 frag->page_offset, frag->size,
2515 PCI_DMA_TODEVICE);
2517 err = pci_dma_mapping_error(qdev->pdev, map);
2518 if(err) {
2519 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2520 qdev->ndev->name, err);
2521 goto map_error;
2524 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2525 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2526 oal_entry->len = cpu_to_le32(frag->size);
2527 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2528 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2529 frag->size);
2531 /* Terminate the last segment. */
2532 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2535 return NETDEV_TX_OK;
2537 map_error:
2538 /* A PCI mapping failed and now we will need to back out
2539 * We need to traverse through the oal's and associated pages which
2540 * have been mapped and now we must unmap them to clean up properly
2543 seg = 1;
2544 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2545 oal = tx_cb->oal;
2546 for (i=0; i<completed_segs; i++,seg++) {
2547 oal_entry++;
2549 if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2550 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2551 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2552 (seg == 17 && seg_cnt > 18)) {
2553 pci_unmap_single(qdev->pdev,
2554 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2555 pci_unmap_len(&tx_cb->map[seg], maplen),
2556 PCI_DMA_TODEVICE);
2557 oal++;
2558 seg++;
2561 pci_unmap_page(qdev->pdev,
2562 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2563 pci_unmap_len(&tx_cb->map[seg], maplen),
2564 PCI_DMA_TODEVICE);
2567 pci_unmap_single(qdev->pdev,
2568 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2569 pci_unmap_addr(&tx_cb->map[0], maplen),
2570 PCI_DMA_TODEVICE);
2572 return NETDEV_TX_BUSY;
2577 * The difference between 3022 and 3032 sends:
2578 * 3022 only supports a simple single segment transmission.
2579 * 3032 supports checksumming and scatter/gather lists (fragments).
2580 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2581 * in the IOCB plus a chain of outbound address lists (OAL) that
2582 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2583 * will used to point to an OAL when more ALP entries are required.
2584 * The IOCB is always the top of the chain followed by one or more
2585 * OALs (when necessary).
2587 static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
2589 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2590 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2591 struct ql_tx_buf_cb *tx_cb;
2592 u32 tot_len = skb->len;
2593 struct ob_mac_iocb_req *mac_iocb_ptr;
2595 if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2596 return NETDEV_TX_BUSY;
2599 tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2600 if((tx_cb->seg_count = ql_get_seg_count(qdev,
2601 (skb_shinfo(skb)->nr_frags))) == -1) {
2602 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2603 return NETDEV_TX_OK;
2606 mac_iocb_ptr = tx_cb->queue_entry;
2607 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2608 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2609 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2610 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2611 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2612 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2613 tx_cb->skb = skb;
2614 if (qdev->device_id == QL3032_DEVICE_ID &&
2615 skb->ip_summed == CHECKSUM_PARTIAL)
2616 ql_hw_csum_setup(skb, mac_iocb_ptr);
2618 if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2619 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2620 return NETDEV_TX_BUSY;
2623 wmb();
2624 qdev->req_producer_index++;
2625 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2626 qdev->req_producer_index = 0;
2627 wmb();
2628 ql_write_common_reg_l(qdev,
2629 &port_regs->CommonRegs.reqQProducerIndex,
2630 qdev->req_producer_index);
2632 ndev->trans_start = jiffies;
2633 if (netif_msg_tx_queued(qdev))
2634 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2635 ndev->name, qdev->req_producer_index, skb->len);
2637 atomic_dec(&qdev->tx_count);
2638 return NETDEV_TX_OK;
2641 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2643 qdev->req_q_size =
2644 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2646 qdev->req_q_virt_addr =
2647 pci_alloc_consistent(qdev->pdev,
2648 (size_t) qdev->req_q_size,
2649 &qdev->req_q_phy_addr);
2651 if ((qdev->req_q_virt_addr == NULL) ||
2652 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2653 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2654 qdev->ndev->name);
2655 return -ENOMEM;
2658 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2660 qdev->rsp_q_virt_addr =
2661 pci_alloc_consistent(qdev->pdev,
2662 (size_t) qdev->rsp_q_size,
2663 &qdev->rsp_q_phy_addr);
2665 if ((qdev->rsp_q_virt_addr == NULL) ||
2666 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2667 printk(KERN_ERR PFX
2668 "%s: rspQ allocation failed\n",
2669 qdev->ndev->name);
2670 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2671 qdev->req_q_virt_addr,
2672 qdev->req_q_phy_addr);
2673 return -ENOMEM;
2676 set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2678 return 0;
2681 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2683 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2684 printk(KERN_INFO PFX
2685 "%s: Already done.\n", qdev->ndev->name);
2686 return;
2689 pci_free_consistent(qdev->pdev,
2690 qdev->req_q_size,
2691 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2693 qdev->req_q_virt_addr = NULL;
2695 pci_free_consistent(qdev->pdev,
2696 qdev->rsp_q_size,
2697 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2699 qdev->rsp_q_virt_addr = NULL;
2701 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2704 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2706 /* Create Large Buffer Queue */
2707 qdev->lrg_buf_q_size =
2708 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2709 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2710 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2711 else
2712 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2714 qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2715 if (qdev->lrg_buf == NULL) {
2716 printk(KERN_ERR PFX
2717 "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2718 return -ENOMEM;
2721 qdev->lrg_buf_q_alloc_virt_addr =
2722 pci_alloc_consistent(qdev->pdev,
2723 qdev->lrg_buf_q_alloc_size,
2724 &qdev->lrg_buf_q_alloc_phy_addr);
2726 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2727 printk(KERN_ERR PFX
2728 "%s: lBufQ failed\n", qdev->ndev->name);
2729 return -ENOMEM;
2731 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2732 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2734 /* Create Small Buffer Queue */
2735 qdev->small_buf_q_size =
2736 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2737 if (qdev->small_buf_q_size < PAGE_SIZE)
2738 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2739 else
2740 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2742 qdev->small_buf_q_alloc_virt_addr =
2743 pci_alloc_consistent(qdev->pdev,
2744 qdev->small_buf_q_alloc_size,
2745 &qdev->small_buf_q_alloc_phy_addr);
2747 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2748 printk(KERN_ERR PFX
2749 "%s: Small Buffer Queue allocation failed.\n",
2750 qdev->ndev->name);
2751 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2752 qdev->lrg_buf_q_alloc_virt_addr,
2753 qdev->lrg_buf_q_alloc_phy_addr);
2754 return -ENOMEM;
2757 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2758 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2759 set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2760 return 0;
2763 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2765 if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2766 printk(KERN_INFO PFX
2767 "%s: Already done.\n", qdev->ndev->name);
2768 return;
2770 if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2771 pci_free_consistent(qdev->pdev,
2772 qdev->lrg_buf_q_alloc_size,
2773 qdev->lrg_buf_q_alloc_virt_addr,
2774 qdev->lrg_buf_q_alloc_phy_addr);
2776 qdev->lrg_buf_q_virt_addr = NULL;
2778 pci_free_consistent(qdev->pdev,
2779 qdev->small_buf_q_alloc_size,
2780 qdev->small_buf_q_alloc_virt_addr,
2781 qdev->small_buf_q_alloc_phy_addr);
2783 qdev->small_buf_q_virt_addr = NULL;
2785 clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2788 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2790 int i;
2791 struct bufq_addr_element *small_buf_q_entry;
2793 /* Currently we allocate on one of memory and use it for smallbuffers */
2794 qdev->small_buf_total_size =
2795 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2796 QL_SMALL_BUFFER_SIZE);
2798 qdev->small_buf_virt_addr =
2799 pci_alloc_consistent(qdev->pdev,
2800 qdev->small_buf_total_size,
2801 &qdev->small_buf_phy_addr);
2803 if (qdev->small_buf_virt_addr == NULL) {
2804 printk(KERN_ERR PFX
2805 "%s: Failed to get small buffer memory.\n",
2806 qdev->ndev->name);
2807 return -ENOMEM;
2810 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2811 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2813 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2815 /* Initialize the small buffer queue. */
2816 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2817 small_buf_q_entry->addr_high =
2818 cpu_to_le32(qdev->small_buf_phy_addr_high);
2819 small_buf_q_entry->addr_low =
2820 cpu_to_le32(qdev->small_buf_phy_addr_low +
2821 (i * QL_SMALL_BUFFER_SIZE));
2822 small_buf_q_entry++;
2824 qdev->small_buf_index = 0;
2825 set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2826 return 0;
2829 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2831 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2832 printk(KERN_INFO PFX
2833 "%s: Already done.\n", qdev->ndev->name);
2834 return;
2836 if (qdev->small_buf_virt_addr != NULL) {
2837 pci_free_consistent(qdev->pdev,
2838 qdev->small_buf_total_size,
2839 qdev->small_buf_virt_addr,
2840 qdev->small_buf_phy_addr);
2842 qdev->small_buf_virt_addr = NULL;
2846 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2848 int i = 0;
2849 struct ql_rcv_buf_cb *lrg_buf_cb;
2851 for (i = 0; i < qdev->num_large_buffers; i++) {
2852 lrg_buf_cb = &qdev->lrg_buf[i];
2853 if (lrg_buf_cb->skb) {
2854 dev_kfree_skb(lrg_buf_cb->skb);
2855 pci_unmap_single(qdev->pdev,
2856 pci_unmap_addr(lrg_buf_cb, mapaddr),
2857 pci_unmap_len(lrg_buf_cb, maplen),
2858 PCI_DMA_FROMDEVICE);
2859 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2860 } else {
2861 break;
2866 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2868 int i;
2869 struct ql_rcv_buf_cb *lrg_buf_cb;
2870 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2872 for (i = 0; i < qdev->num_large_buffers; i++) {
2873 lrg_buf_cb = &qdev->lrg_buf[i];
2874 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2875 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2876 buf_addr_ele++;
2878 qdev->lrg_buf_index = 0;
2879 qdev->lrg_buf_skb_check = 0;
2882 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2884 int i;
2885 struct ql_rcv_buf_cb *lrg_buf_cb;
2886 struct sk_buff *skb;
2887 dma_addr_t map;
2888 int err;
2890 for (i = 0; i < qdev->num_large_buffers; i++) {
2891 skb = netdev_alloc_skb(qdev->ndev,
2892 qdev->lrg_buffer_len);
2893 if (unlikely(!skb)) {
2894 /* Better luck next round */
2895 printk(KERN_ERR PFX
2896 "%s: large buff alloc failed, "
2897 "for %d bytes at index %d.\n",
2898 qdev->ndev->name,
2899 qdev->lrg_buffer_len * 2, i);
2900 ql_free_large_buffers(qdev);
2901 return -ENOMEM;
2902 } else {
2904 lrg_buf_cb = &qdev->lrg_buf[i];
2905 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2906 lrg_buf_cb->index = i;
2907 lrg_buf_cb->skb = skb;
2909 * We save some space to copy the ethhdr from first
2910 * buffer
2912 skb_reserve(skb, QL_HEADER_SPACE);
2913 map = pci_map_single(qdev->pdev,
2914 skb->data,
2915 qdev->lrg_buffer_len -
2916 QL_HEADER_SPACE,
2917 PCI_DMA_FROMDEVICE);
2919 err = pci_dma_mapping_error(qdev->pdev, map);
2920 if(err) {
2921 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2922 qdev->ndev->name, err);
2923 ql_free_large_buffers(qdev);
2924 return -ENOMEM;
2927 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2928 pci_unmap_len_set(lrg_buf_cb, maplen,
2929 qdev->lrg_buffer_len -
2930 QL_HEADER_SPACE);
2931 lrg_buf_cb->buf_phy_addr_low =
2932 cpu_to_le32(LS_64BITS(map));
2933 lrg_buf_cb->buf_phy_addr_high =
2934 cpu_to_le32(MS_64BITS(map));
2937 return 0;
2940 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2942 struct ql_tx_buf_cb *tx_cb;
2943 int i;
2945 tx_cb = &qdev->tx_buf[0];
2946 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2947 if (tx_cb->oal) {
2948 kfree(tx_cb->oal);
2949 tx_cb->oal = NULL;
2951 tx_cb++;
2955 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2957 struct ql_tx_buf_cb *tx_cb;
2958 int i;
2959 struct ob_mac_iocb_req *req_q_curr =
2960 qdev->req_q_virt_addr;
2962 /* Create free list of transmit buffers */
2963 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2965 tx_cb = &qdev->tx_buf[i];
2966 tx_cb->skb = NULL;
2967 tx_cb->queue_entry = req_q_curr;
2968 req_q_curr++;
2969 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2970 if (tx_cb->oal == NULL)
2971 return -1;
2973 return 0;
2976 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2978 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2979 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2980 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2982 else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2984 * Bigger buffers, so less of them.
2986 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2987 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2988 } else {
2989 printk(KERN_ERR PFX
2990 "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
2991 qdev->ndev->name);
2992 return -ENOMEM;
2994 qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2995 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2996 qdev->max_frame_size =
2997 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
3000 * First allocate a page of shared memory and use it for shadow
3001 * locations of Network Request Queue Consumer Address Register and
3002 * Network Completion Queue Producer Index Register
3004 qdev->shadow_reg_virt_addr =
3005 pci_alloc_consistent(qdev->pdev,
3006 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
3008 if (qdev->shadow_reg_virt_addr != NULL) {
3009 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
3010 qdev->req_consumer_index_phy_addr_high =
3011 MS_64BITS(qdev->shadow_reg_phy_addr);
3012 qdev->req_consumer_index_phy_addr_low =
3013 LS_64BITS(qdev->shadow_reg_phy_addr);
3015 qdev->prsp_producer_index =
3016 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
3017 qdev->rsp_producer_index_phy_addr_high =
3018 qdev->req_consumer_index_phy_addr_high;
3019 qdev->rsp_producer_index_phy_addr_low =
3020 qdev->req_consumer_index_phy_addr_low + 8;
3021 } else {
3022 printk(KERN_ERR PFX
3023 "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3024 return -ENOMEM;
3027 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3028 printk(KERN_ERR PFX
3029 "%s: ql_alloc_net_req_rsp_queues failed.\n",
3030 qdev->ndev->name);
3031 goto err_req_rsp;
3034 if (ql_alloc_buffer_queues(qdev) != 0) {
3035 printk(KERN_ERR PFX
3036 "%s: ql_alloc_buffer_queues failed.\n",
3037 qdev->ndev->name);
3038 goto err_buffer_queues;
3041 if (ql_alloc_small_buffers(qdev) != 0) {
3042 printk(KERN_ERR PFX
3043 "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3044 goto err_small_buffers;
3047 if (ql_alloc_large_buffers(qdev) != 0) {
3048 printk(KERN_ERR PFX
3049 "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3050 goto err_small_buffers;
3053 /* Initialize the large buffer queue. */
3054 ql_init_large_buffers(qdev);
3055 if (ql_create_send_free_list(qdev))
3056 goto err_free_list;
3058 qdev->rsp_current = qdev->rsp_q_virt_addr;
3060 return 0;
3061 err_free_list:
3062 ql_free_send_free_list(qdev);
3063 err_small_buffers:
3064 ql_free_buffer_queues(qdev);
3065 err_buffer_queues:
3066 ql_free_net_req_rsp_queues(qdev);
3067 err_req_rsp:
3068 pci_free_consistent(qdev->pdev,
3069 PAGE_SIZE,
3070 qdev->shadow_reg_virt_addr,
3071 qdev->shadow_reg_phy_addr);
3073 return -ENOMEM;
3076 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3078 ql_free_send_free_list(qdev);
3079 ql_free_large_buffers(qdev);
3080 ql_free_small_buffers(qdev);
3081 ql_free_buffer_queues(qdev);
3082 ql_free_net_req_rsp_queues(qdev);
3083 if (qdev->shadow_reg_virt_addr != NULL) {
3084 pci_free_consistent(qdev->pdev,
3085 PAGE_SIZE,
3086 qdev->shadow_reg_virt_addr,
3087 qdev->shadow_reg_phy_addr);
3088 qdev->shadow_reg_virt_addr = NULL;
3092 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3094 struct ql3xxx_local_ram_registers __iomem *local_ram =
3095 (void __iomem *)qdev->mem_map_registers;
3097 if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3098 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3099 2) << 4))
3100 return -1;
3102 ql_write_page2_reg(qdev,
3103 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3105 ql_write_page2_reg(qdev,
3106 &local_ram->maxBufletCount,
3107 qdev->nvram_data.bufletCount);
3109 ql_write_page2_reg(qdev,
3110 &local_ram->freeBufletThresholdLow,
3111 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3112 (qdev->nvram_data.tcpWindowThreshold0));
3114 ql_write_page2_reg(qdev,
3115 &local_ram->freeBufletThresholdHigh,
3116 qdev->nvram_data.tcpWindowThreshold50);
3118 ql_write_page2_reg(qdev,
3119 &local_ram->ipHashTableBase,
3120 (qdev->nvram_data.ipHashTableBaseHi << 16) |
3121 qdev->nvram_data.ipHashTableBaseLo);
3122 ql_write_page2_reg(qdev,
3123 &local_ram->ipHashTableCount,
3124 qdev->nvram_data.ipHashTableSize);
3125 ql_write_page2_reg(qdev,
3126 &local_ram->tcpHashTableBase,
3127 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3128 qdev->nvram_data.tcpHashTableBaseLo);
3129 ql_write_page2_reg(qdev,
3130 &local_ram->tcpHashTableCount,
3131 qdev->nvram_data.tcpHashTableSize);
3132 ql_write_page2_reg(qdev,
3133 &local_ram->ncbBase,
3134 (qdev->nvram_data.ncbTableBaseHi << 16) |
3135 qdev->nvram_data.ncbTableBaseLo);
3136 ql_write_page2_reg(qdev,
3137 &local_ram->maxNcbCount,
3138 qdev->nvram_data.ncbTableSize);
3139 ql_write_page2_reg(qdev,
3140 &local_ram->drbBase,
3141 (qdev->nvram_data.drbTableBaseHi << 16) |
3142 qdev->nvram_data.drbTableBaseLo);
3143 ql_write_page2_reg(qdev,
3144 &local_ram->maxDrbCount,
3145 qdev->nvram_data.drbTableSize);
3146 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3147 return 0;
3150 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3152 u32 value;
3153 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3154 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3155 (void __iomem *)port_regs;
3156 u32 delay = 10;
3157 int status = 0;
3159 if(ql_mii_setup(qdev))
3160 return -1;
3162 /* Bring out PHY out of reset */
3163 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3164 (ISP_SERIAL_PORT_IF_WE |
3165 (ISP_SERIAL_PORT_IF_WE << 16)));
3167 qdev->port_link_state = LS_DOWN;
3168 netif_carrier_off(qdev->ndev);
3170 /* V2 chip fix for ARS-39168. */
3171 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3172 (ISP_SERIAL_PORT_IF_SDE |
3173 (ISP_SERIAL_PORT_IF_SDE << 16)));
3175 /* Request Queue Registers */
3176 *((u32 *) (qdev->preq_consumer_index)) = 0;
3177 atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3178 qdev->req_producer_index = 0;
3180 ql_write_page1_reg(qdev,
3181 &hmem_regs->reqConsumerIndexAddrHigh,
3182 qdev->req_consumer_index_phy_addr_high);
3183 ql_write_page1_reg(qdev,
3184 &hmem_regs->reqConsumerIndexAddrLow,
3185 qdev->req_consumer_index_phy_addr_low);
3187 ql_write_page1_reg(qdev,
3188 &hmem_regs->reqBaseAddrHigh,
3189 MS_64BITS(qdev->req_q_phy_addr));
3190 ql_write_page1_reg(qdev,
3191 &hmem_regs->reqBaseAddrLow,
3192 LS_64BITS(qdev->req_q_phy_addr));
3193 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3195 /* Response Queue Registers */
3196 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3197 qdev->rsp_consumer_index = 0;
3198 qdev->rsp_current = qdev->rsp_q_virt_addr;
3200 ql_write_page1_reg(qdev,
3201 &hmem_regs->rspProducerIndexAddrHigh,
3202 qdev->rsp_producer_index_phy_addr_high);
3204 ql_write_page1_reg(qdev,
3205 &hmem_regs->rspProducerIndexAddrLow,
3206 qdev->rsp_producer_index_phy_addr_low);
3208 ql_write_page1_reg(qdev,
3209 &hmem_regs->rspBaseAddrHigh,
3210 MS_64BITS(qdev->rsp_q_phy_addr));
3212 ql_write_page1_reg(qdev,
3213 &hmem_regs->rspBaseAddrLow,
3214 LS_64BITS(qdev->rsp_q_phy_addr));
3216 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3218 /* Large Buffer Queue */
3219 ql_write_page1_reg(qdev,
3220 &hmem_regs->rxLargeQBaseAddrHigh,
3221 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3223 ql_write_page1_reg(qdev,
3224 &hmem_regs->rxLargeQBaseAddrLow,
3225 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3227 ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3229 ql_write_page1_reg(qdev,
3230 &hmem_regs->rxLargeBufferLength,
3231 qdev->lrg_buffer_len);
3233 /* Small Buffer Queue */
3234 ql_write_page1_reg(qdev,
3235 &hmem_regs->rxSmallQBaseAddrHigh,
3236 MS_64BITS(qdev->small_buf_q_phy_addr));
3238 ql_write_page1_reg(qdev,
3239 &hmem_regs->rxSmallQBaseAddrLow,
3240 LS_64BITS(qdev->small_buf_q_phy_addr));
3242 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3243 ql_write_page1_reg(qdev,
3244 &hmem_regs->rxSmallBufferLength,
3245 QL_SMALL_BUFFER_SIZE);
3247 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3248 qdev->small_buf_release_cnt = 8;
3249 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3250 qdev->lrg_buf_release_cnt = 8;
3251 qdev->lrg_buf_next_free =
3252 (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3253 qdev->small_buf_index = 0;
3254 qdev->lrg_buf_index = 0;
3255 qdev->lrg_buf_free_count = 0;
3256 qdev->lrg_buf_free_head = NULL;
3257 qdev->lrg_buf_free_tail = NULL;
3259 ql_write_common_reg(qdev,
3260 &port_regs->CommonRegs.
3261 rxSmallQProducerIndex,
3262 qdev->small_buf_q_producer_index);
3263 ql_write_common_reg(qdev,
3264 &port_regs->CommonRegs.
3265 rxLargeQProducerIndex,
3266 qdev->lrg_buf_q_producer_index);
3269 * Find out if the chip has already been initialized. If it has, then
3270 * we skip some of the initialization.
3272 clear_bit(QL_LINK_MASTER, &qdev->flags);
3273 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3274 if ((value & PORT_STATUS_IC) == 0) {
3276 /* Chip has not been configured yet, so let it rip. */
3277 if(ql_init_misc_registers(qdev)) {
3278 status = -1;
3279 goto out;
3282 value = qdev->nvram_data.tcpMaxWindowSize;
3283 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3285 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3287 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3288 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3289 * 2) << 13)) {
3290 status = -1;
3291 goto out;
3293 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3294 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3295 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3296 16) | (INTERNAL_CHIP_SD |
3297 INTERNAL_CHIP_WE)));
3298 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3301 if (qdev->mac_index)
3302 ql_write_page0_reg(qdev,
3303 &port_regs->mac1MaxFrameLengthReg,
3304 qdev->max_frame_size);
3305 else
3306 ql_write_page0_reg(qdev,
3307 &port_regs->mac0MaxFrameLengthReg,
3308 qdev->max_frame_size);
3310 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3311 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3312 2) << 7)) {
3313 status = -1;
3314 goto out;
3317 PHY_Setup(qdev);
3318 ql_init_scan_mode(qdev);
3319 ql_get_phy_owner(qdev);
3321 /* Load the MAC Configuration */
3323 /* Program lower 32 bits of the MAC address */
3324 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3325 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3326 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3327 ((qdev->ndev->dev_addr[2] << 24)
3328 | (qdev->ndev->dev_addr[3] << 16)
3329 | (qdev->ndev->dev_addr[4] << 8)
3330 | qdev->ndev->dev_addr[5]));
3332 /* Program top 16 bits of the MAC address */
3333 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3334 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3335 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3336 ((qdev->ndev->dev_addr[0] << 8)
3337 | qdev->ndev->dev_addr[1]));
3339 /* Enable Primary MAC */
3340 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3341 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3342 MAC_ADDR_INDIRECT_PTR_REG_PE));
3344 /* Clear Primary and Secondary IP addresses */
3345 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3346 ((IP_ADDR_INDEX_REG_MASK << 16) |
3347 (qdev->mac_index << 2)));
3348 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3350 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3351 ((IP_ADDR_INDEX_REG_MASK << 16) |
3352 ((qdev->mac_index << 2) + 1)));
3353 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3355 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3357 /* Indicate Configuration Complete */
3358 ql_write_page0_reg(qdev,
3359 &port_regs->portControl,
3360 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3362 do {
3363 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3364 if (value & PORT_STATUS_IC)
3365 break;
3366 msleep(500);
3367 } while (--delay);
3369 if (delay == 0) {
3370 printk(KERN_ERR PFX
3371 "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3372 status = -1;
3373 goto out;
3376 /* Enable Ethernet Function */
3377 if (qdev->device_id == QL3032_DEVICE_ID) {
3378 value =
3379 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3380 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3381 QL3032_PORT_CONTROL_ET);
3382 ql_write_page0_reg(qdev, &port_regs->functionControl,
3383 ((value << 16) | value));
3384 } else {
3385 value =
3386 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3387 PORT_CONTROL_HH);
3388 ql_write_page0_reg(qdev, &port_regs->portControl,
3389 ((value << 16) | value));
3393 out:
3394 return status;
3398 * Caller holds hw_lock.
3400 static int ql_adapter_reset(struct ql3_adapter *qdev)
3402 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3403 int status = 0;
3404 u16 value;
3405 int max_wait_time;
3407 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3408 clear_bit(QL_RESET_DONE, &qdev->flags);
3411 * Issue soft reset to chip.
3413 printk(KERN_DEBUG PFX
3414 "%s: Issue soft reset to chip.\n",
3415 qdev->ndev->name);
3416 ql_write_common_reg(qdev,
3417 &port_regs->CommonRegs.ispControlStatus,
3418 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3420 /* Wait 3 seconds for reset to complete. */
3421 printk(KERN_DEBUG PFX
3422 "%s: Wait 10 milliseconds for reset to complete.\n",
3423 qdev->ndev->name);
3425 /* Wait until the firmware tells us the Soft Reset is done */
3426 max_wait_time = 5;
3427 do {
3428 value =
3429 ql_read_common_reg(qdev,
3430 &port_regs->CommonRegs.ispControlStatus);
3431 if ((value & ISP_CONTROL_SR) == 0)
3432 break;
3434 ssleep(1);
3435 } while ((--max_wait_time));
3438 * Also, make sure that the Network Reset Interrupt bit has been
3439 * cleared after the soft reset has taken place.
3441 value =
3442 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3443 if (value & ISP_CONTROL_RI) {
3444 printk(KERN_DEBUG PFX
3445 "ql_adapter_reset: clearing RI after reset.\n");
3446 ql_write_common_reg(qdev,
3447 &port_regs->CommonRegs.
3448 ispControlStatus,
3449 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3452 if (max_wait_time == 0) {
3453 /* Issue Force Soft Reset */
3454 ql_write_common_reg(qdev,
3455 &port_regs->CommonRegs.
3456 ispControlStatus,
3457 ((ISP_CONTROL_FSR << 16) |
3458 ISP_CONTROL_FSR));
3460 * Wait until the firmware tells us the Force Soft Reset is
3461 * done
3463 max_wait_time = 5;
3464 do {
3465 value =
3466 ql_read_common_reg(qdev,
3467 &port_regs->CommonRegs.
3468 ispControlStatus);
3469 if ((value & ISP_CONTROL_FSR) == 0) {
3470 break;
3472 ssleep(1);
3473 } while ((--max_wait_time));
3475 if (max_wait_time == 0)
3476 status = 1;
3478 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3479 set_bit(QL_RESET_DONE, &qdev->flags);
3480 return status;
3483 static void ql_set_mac_info(struct ql3_adapter *qdev)
3485 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3486 u32 value, port_status;
3487 u8 func_number;
3489 /* Get the function number */
3490 value =
3491 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3492 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3493 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3494 switch (value & ISP_CONTROL_FN_MASK) {
3495 case ISP_CONTROL_FN0_NET:
3496 qdev->mac_index = 0;
3497 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3498 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3499 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3500 if (port_status & PORT_STATUS_SM0)
3501 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3502 else
3503 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3504 break;
3506 case ISP_CONTROL_FN1_NET:
3507 qdev->mac_index = 1;
3508 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3509 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3510 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3511 if (port_status & PORT_STATUS_SM1)
3512 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3513 else
3514 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3515 break;
3517 case ISP_CONTROL_FN0_SCSI:
3518 case ISP_CONTROL_FN1_SCSI:
3519 default:
3520 printk(KERN_DEBUG PFX
3521 "%s: Invalid function number, ispControlStatus = 0x%x\n",
3522 qdev->ndev->name,value);
3523 break;
3525 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3528 static void ql_display_dev_info(struct net_device *ndev)
3530 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3531 struct pci_dev *pdev = qdev->pdev;
3532 DECLARE_MAC_BUF(mac);
3534 printk(KERN_INFO PFX
3535 "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3536 DRV_NAME, qdev->index, qdev->chip_rev_id,
3537 (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3538 qdev->pci_slot);
3539 printk(KERN_INFO PFX
3540 "%s Interface.\n",
3541 test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3544 * Print PCI bus width/type.
3546 printk(KERN_INFO PFX
3547 "Bus interface is %s %s.\n",
3548 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3549 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3551 printk(KERN_INFO PFX
3552 "mem IO base address adjusted = 0x%p\n",
3553 qdev->mem_map_registers);
3554 printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3556 if (netif_msg_probe(qdev))
3557 printk(KERN_INFO PFX
3558 "%s: MAC address %s\n",
3559 ndev->name, print_mac(mac, ndev->dev_addr));
3562 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3564 struct net_device *ndev = qdev->ndev;
3565 int retval = 0;
3567 netif_stop_queue(ndev);
3568 netif_carrier_off(ndev);
3570 clear_bit(QL_ADAPTER_UP,&qdev->flags);
3571 clear_bit(QL_LINK_MASTER,&qdev->flags);
3573 ql_disable_interrupts(qdev);
3575 free_irq(qdev->pdev->irq, ndev);
3577 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3578 printk(KERN_INFO PFX
3579 "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3580 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3581 pci_disable_msi(qdev->pdev);
3584 del_timer_sync(&qdev->adapter_timer);
3586 napi_disable(&qdev->napi);
3588 if (do_reset) {
3589 int soft_reset;
3590 unsigned long hw_flags;
3592 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3593 if (ql_wait_for_drvr_lock(qdev)) {
3594 if ((soft_reset = ql_adapter_reset(qdev))) {
3595 printk(KERN_ERR PFX
3596 "%s: ql_adapter_reset(%d) FAILED!\n",
3597 ndev->name, qdev->index);
3599 printk(KERN_ERR PFX
3600 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3601 } else {
3602 printk(KERN_ERR PFX
3603 "%s: Could not acquire driver lock to do "
3604 "reset!\n", ndev->name);
3605 retval = -1;
3607 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3609 ql_free_mem_resources(qdev);
3610 return retval;
3613 static int ql_adapter_up(struct ql3_adapter *qdev)
3615 struct net_device *ndev = qdev->ndev;
3616 int err;
3617 unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3618 unsigned long hw_flags;
3620 if (ql_alloc_mem_resources(qdev)) {
3621 printk(KERN_ERR PFX
3622 "%s Unable to allocate buffers.\n", ndev->name);
3623 return -ENOMEM;
3626 if (qdev->msi) {
3627 if (pci_enable_msi(qdev->pdev)) {
3628 printk(KERN_ERR PFX
3629 "%s: User requested MSI, but MSI failed to "
3630 "initialize. Continuing without MSI.\n",
3631 qdev->ndev->name);
3632 qdev->msi = 0;
3633 } else {
3634 printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3635 set_bit(QL_MSI_ENABLED,&qdev->flags);
3636 irq_flags &= ~IRQF_SHARED;
3640 if ((err = request_irq(qdev->pdev->irq,
3641 ql3xxx_isr,
3642 irq_flags, ndev->name, ndev))) {
3643 printk(KERN_ERR PFX
3644 "%s: Failed to reserve interrupt %d already in use.\n",
3645 ndev->name, qdev->pdev->irq);
3646 goto err_irq;
3649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3651 if ((err = ql_wait_for_drvr_lock(qdev))) {
3652 if ((err = ql_adapter_initialize(qdev))) {
3653 printk(KERN_ERR PFX
3654 "%s: Unable to initialize adapter.\n",
3655 ndev->name);
3656 goto err_init;
3658 printk(KERN_ERR PFX
3659 "%s: Releaseing driver lock.\n",ndev->name);
3660 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3661 } else {
3662 printk(KERN_ERR PFX
3663 "%s: Could not aquire driver lock.\n",
3664 ndev->name);
3665 goto err_lock;
3668 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3670 set_bit(QL_ADAPTER_UP,&qdev->flags);
3672 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3674 napi_enable(&qdev->napi);
3675 ql_enable_interrupts(qdev);
3676 return 0;
3678 err_init:
3679 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3680 err_lock:
3681 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3682 free_irq(qdev->pdev->irq, ndev);
3683 err_irq:
3684 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3685 printk(KERN_INFO PFX
3686 "%s: calling pci_disable_msi().\n",
3687 qdev->ndev->name);
3688 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3689 pci_disable_msi(qdev->pdev);
3691 return err;
3694 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3696 if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3697 printk(KERN_ERR PFX
3698 "%s: Driver up/down cycle failed, "
3699 "closing device\n",qdev->ndev->name);
3700 rtnl_lock();
3701 dev_close(qdev->ndev);
3702 rtnl_unlock();
3703 return -1;
3705 return 0;
3708 static int ql3xxx_close(struct net_device *ndev)
3710 struct ql3_adapter *qdev = netdev_priv(ndev);
3713 * Wait for device to recover from a reset.
3714 * (Rarely happens, but possible.)
3716 while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3717 msleep(50);
3719 ql_adapter_down(qdev,QL_DO_RESET);
3720 return 0;
3723 static int ql3xxx_open(struct net_device *ndev)
3725 struct ql3_adapter *qdev = netdev_priv(ndev);
3726 return (ql_adapter_up(qdev));
3729 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3731 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3732 struct ql3xxx_port_registers __iomem *port_regs =
3733 qdev->mem_map_registers;
3734 struct sockaddr *addr = p;
3735 unsigned long hw_flags;
3737 if (netif_running(ndev))
3738 return -EBUSY;
3740 if (!is_valid_ether_addr(addr->sa_data))
3741 return -EADDRNOTAVAIL;
3743 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3745 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3746 /* Program lower 32 bits of the MAC address */
3747 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3748 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3749 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3750 ((ndev->dev_addr[2] << 24) | (ndev->
3751 dev_addr[3] << 16) |
3752 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3754 /* Program top 16 bits of the MAC address */
3755 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3756 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3757 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3758 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3759 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3761 return 0;
3764 static void ql3xxx_tx_timeout(struct net_device *ndev)
3766 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3768 printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3770 * Stop the queues, we've got a problem.
3772 netif_stop_queue(ndev);
3775 * Wake up the worker to process this event.
3777 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3780 static void ql_reset_work(struct work_struct *work)
3782 struct ql3_adapter *qdev =
3783 container_of(work, struct ql3_adapter, reset_work.work);
3784 struct net_device *ndev = qdev->ndev;
3785 u32 value;
3786 struct ql_tx_buf_cb *tx_cb;
3787 int max_wait_time, i;
3788 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3789 unsigned long hw_flags;
3791 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3792 clear_bit(QL_LINK_MASTER,&qdev->flags);
3795 * Loop through the active list and return the skb.
3797 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3798 int j;
3799 tx_cb = &qdev->tx_buf[i];
3800 if (tx_cb->skb) {
3801 printk(KERN_DEBUG PFX
3802 "%s: Freeing lost SKB.\n",
3803 qdev->ndev->name);
3804 pci_unmap_single(qdev->pdev,
3805 pci_unmap_addr(&tx_cb->map[0], mapaddr),
3806 pci_unmap_len(&tx_cb->map[0], maplen),
3807 PCI_DMA_TODEVICE);
3808 for(j=1;j<tx_cb->seg_count;j++) {
3809 pci_unmap_page(qdev->pdev,
3810 pci_unmap_addr(&tx_cb->map[j],mapaddr),
3811 pci_unmap_len(&tx_cb->map[j],maplen),
3812 PCI_DMA_TODEVICE);
3814 dev_kfree_skb(tx_cb->skb);
3815 tx_cb->skb = NULL;
3819 printk(KERN_ERR PFX
3820 "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3821 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3822 ql_write_common_reg(qdev,
3823 &port_regs->CommonRegs.
3824 ispControlStatus,
3825 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3827 * Wait the for Soft Reset to Complete.
3829 max_wait_time = 10;
3830 do {
3831 value = ql_read_common_reg(qdev,
3832 &port_regs->CommonRegs.
3834 ispControlStatus);
3835 if ((value & ISP_CONTROL_SR) == 0) {
3836 printk(KERN_DEBUG PFX
3837 "%s: reset completed.\n",
3838 qdev->ndev->name);
3839 break;
3842 if (value & ISP_CONTROL_RI) {
3843 printk(KERN_DEBUG PFX
3844 "%s: clearing NRI after reset.\n",
3845 qdev->ndev->name);
3846 ql_write_common_reg(qdev,
3847 &port_regs->
3848 CommonRegs.
3849 ispControlStatus,
3850 ((ISP_CONTROL_RI <<
3851 16) | ISP_CONTROL_RI));
3854 ssleep(1);
3855 } while (--max_wait_time);
3856 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3858 if (value & ISP_CONTROL_SR) {
3861 * Set the reset flags and clear the board again.
3862 * Nothing else to do...
3864 printk(KERN_ERR PFX
3865 "%s: Timed out waiting for reset to "
3866 "complete.\n", ndev->name);
3867 printk(KERN_ERR PFX
3868 "%s: Do a reset.\n", ndev->name);
3869 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3870 clear_bit(QL_RESET_START,&qdev->flags);
3871 ql_cycle_adapter(qdev,QL_DO_RESET);
3872 return;
3875 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3876 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3877 clear_bit(QL_RESET_START,&qdev->flags);
3878 ql_cycle_adapter(qdev,QL_NO_RESET);
3882 static void ql_tx_timeout_work(struct work_struct *work)
3884 struct ql3_adapter *qdev =
3885 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3887 ql_cycle_adapter(qdev, QL_DO_RESET);
3890 static void ql_get_board_info(struct ql3_adapter *qdev)
3892 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3893 u32 value;
3895 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3897 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3898 if (value & PORT_STATUS_64)
3899 qdev->pci_width = 64;
3900 else
3901 qdev->pci_width = 32;
3902 if (value & PORT_STATUS_X)
3903 qdev->pci_x = 1;
3904 else
3905 qdev->pci_x = 0;
3906 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3909 static void ql3xxx_timer(unsigned long ptr)
3911 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3912 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3915 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3916 const struct pci_device_id *pci_entry)
3918 struct net_device *ndev = NULL;
3919 struct ql3_adapter *qdev = NULL;
3920 static int cards_found = 0;
3921 int pci_using_dac, err;
3923 err = pci_enable_device(pdev);
3924 if (err) {
3925 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3926 pci_name(pdev));
3927 goto err_out;
3930 err = pci_request_regions(pdev, DRV_NAME);
3931 if (err) {
3932 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3933 pci_name(pdev));
3934 goto err_out_disable_pdev;
3937 pci_set_master(pdev);
3939 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3940 pci_using_dac = 1;
3941 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3942 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3943 pci_using_dac = 0;
3944 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3947 if (err) {
3948 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3949 pci_name(pdev));
3950 goto err_out_free_regions;
3953 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3954 if (!ndev) {
3955 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
3956 pci_name(pdev));
3957 err = -ENOMEM;
3958 goto err_out_free_regions;
3961 SET_NETDEV_DEV(ndev, &pdev->dev);
3963 pci_set_drvdata(pdev, ndev);
3965 qdev = netdev_priv(ndev);
3966 qdev->index = cards_found;
3967 qdev->ndev = ndev;
3968 qdev->pdev = pdev;
3969 qdev->device_id = pci_entry->device;
3970 qdev->port_link_state = LS_DOWN;
3971 if (msi)
3972 qdev->msi = 1;
3974 qdev->msg_enable = netif_msg_init(debug, default_msg);
3976 if (pci_using_dac)
3977 ndev->features |= NETIF_F_HIGHDMA;
3978 if (qdev->device_id == QL3032_DEVICE_ID)
3979 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3981 qdev->mem_map_registers =
3982 ioremap_nocache(pci_resource_start(pdev, 1),
3983 pci_resource_len(qdev->pdev, 1));
3984 if (!qdev->mem_map_registers) {
3985 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3986 pci_name(pdev));
3987 err = -EIO;
3988 goto err_out_free_ndev;
3991 spin_lock_init(&qdev->adapter_lock);
3992 spin_lock_init(&qdev->hw_lock);
3994 /* Set driver entry points */
3995 ndev->open = ql3xxx_open;
3996 ndev->hard_start_xmit = ql3xxx_send;
3997 ndev->stop = ql3xxx_close;
3998 /* ndev->set_multicast_list
3999 * This device is one side of a two-function adapter
4000 * (NIC and iSCSI). Promiscuous mode setting/clearing is
4001 * not allowed from the NIC side.
4003 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
4004 ndev->set_mac_address = ql3xxx_set_mac_address;
4005 ndev->tx_timeout = ql3xxx_tx_timeout;
4006 ndev->watchdog_timeo = 5 * HZ;
4008 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
4010 ndev->irq = pdev->irq;
4012 /* make sure the EEPROM is good */
4013 if (ql_get_nvram_params(qdev)) {
4014 printk(KERN_ALERT PFX
4015 "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4016 qdev->index);
4017 err = -EIO;
4018 goto err_out_iounmap;
4021 ql_set_mac_info(qdev);
4023 /* Validate and set parameters */
4024 if (qdev->mac_index) {
4025 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4026 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
4027 } else {
4028 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4029 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
4031 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4033 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4035 /* Record PCI bus information. */
4036 ql_get_board_info(qdev);
4039 * Set the Maximum Memory Read Byte Count value. We do this to handle
4040 * jumbo frames.
4042 if (qdev->pci_x) {
4043 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4046 err = register_netdev(ndev);
4047 if (err) {
4048 printk(KERN_ERR PFX "%s: cannot register net device\n",
4049 pci_name(pdev));
4050 goto err_out_iounmap;
4053 /* we're going to reset, so assume we have no link for now */
4055 netif_carrier_off(ndev);
4056 netif_stop_queue(ndev);
4058 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4059 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4060 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4061 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
4063 init_timer(&qdev->adapter_timer);
4064 qdev->adapter_timer.function = ql3xxx_timer;
4065 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4066 qdev->adapter_timer.data = (unsigned long)qdev;
4068 if(!cards_found) {
4069 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4070 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4071 DRV_NAME, DRV_VERSION);
4073 ql_display_dev_info(ndev);
4075 cards_found++;
4076 return 0;
4078 err_out_iounmap:
4079 iounmap(qdev->mem_map_registers);
4080 err_out_free_ndev:
4081 free_netdev(ndev);
4082 err_out_free_regions:
4083 pci_release_regions(pdev);
4084 err_out_disable_pdev:
4085 pci_disable_device(pdev);
4086 pci_set_drvdata(pdev, NULL);
4087 err_out:
4088 return err;
4091 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4093 struct net_device *ndev = pci_get_drvdata(pdev);
4094 struct ql3_adapter *qdev = netdev_priv(ndev);
4096 unregister_netdev(ndev);
4097 qdev = netdev_priv(ndev);
4099 ql_disable_interrupts(qdev);
4101 if (qdev->workqueue) {
4102 cancel_delayed_work(&qdev->reset_work);
4103 cancel_delayed_work(&qdev->tx_timeout_work);
4104 destroy_workqueue(qdev->workqueue);
4105 qdev->workqueue = NULL;
4108 iounmap(qdev->mem_map_registers);
4109 pci_release_regions(pdev);
4110 pci_set_drvdata(pdev, NULL);
4111 free_netdev(ndev);
4114 static struct pci_driver ql3xxx_driver = {
4116 .name = DRV_NAME,
4117 .id_table = ql3xxx_pci_tbl,
4118 .probe = ql3xxx_probe,
4119 .remove = __devexit_p(ql3xxx_remove),
4122 static int __init ql3xxx_init_module(void)
4124 return pci_register_driver(&ql3xxx_driver);
4127 static void __exit ql3xxx_exit(void)
4129 pci_unregister_driver(&ql3xxx_driver);
4132 module_init(ql3xxx_init_module);
4133 module_exit(ql3xxx_exit);