2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
26 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
27 * X.25 is not unrealistic on all machines. DMA mode can in theory
28 * handle T1/E1 quite nicely. In practice the limit seems to be about
29 * 512Kbit->1Mbit depending on motherboard.
32 * 64K will take DMA, 9600 baud X.25 should be ok.
35 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
38 #include <linux/module.h>
39 #include <linux/kernel.h>
41 #include <linux/net.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if_arp.h>
45 #include <linux/delay.h>
46 #include <linux/hdlc.h>
47 #include <linux/ioport.h>
48 #include <linux/init.h>
53 #include <linux/spinlock.h>
59 * z8530_read_port - Architecture specific interface function
62 * Provided port access methods. The Comtrol SV11 requires no delays
63 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
65 * In the longer term this should become an architecture specific
66 * section so that this can become a generic driver interface for all
67 * platforms. For now we only handle PC I/O ports with or without the
68 * dread 5uS sanity delay.
70 * The caller must hold sufficient locks to avoid violating the horrible
74 static inline int z8530_read_port(unsigned long p
)
76 u8 r
=inb(Z8530_PORT_OF(p
));
77 if(p
&Z8530_PORT_SLEEP
) /* gcc should figure this out efficiently ! */
83 * z8530_write_port - Architecture specific interface function
87 * Write a value to a port with delays if need be. Note that the
88 * caller must hold locks to avoid read/writes from other contexts
89 * violating the 5uS rule
91 * In the longer term this should become an architecture specific
92 * section so that this can become a generic driver interface for all
93 * platforms. For now we only handle PC I/O ports with or without the
94 * dread 5uS sanity delay.
98 static inline void z8530_write_port(unsigned long p
, u8 d
)
100 outb(d
,Z8530_PORT_OF(p
));
101 if(p
&Z8530_PORT_SLEEP
)
107 static void z8530_rx_done(struct z8530_channel
*c
);
108 static void z8530_tx_done(struct z8530_channel
*c
);
112 * read_zsreg - Read a register from a Z85230
113 * @c: Z8530 channel to read from (2 per chip)
114 * @reg: Register to read
115 * FIXME: Use a spinlock.
117 * Most of the Z8530 registers are indexed off the control registers.
118 * A read is done by writing to the control register and reading the
119 * register back. The caller must hold the lock
122 static inline u8
read_zsreg(struct z8530_channel
*c
, u8 reg
)
125 z8530_write_port(c
->ctrlio
, reg
);
126 return z8530_read_port(c
->ctrlio
);
130 * read_zsdata - Read the data port of a Z8530 channel
131 * @c: The Z8530 channel to read the data port from
133 * The data port provides fast access to some things. We still
134 * have all the 5uS delays to worry about.
137 static inline u8
read_zsdata(struct z8530_channel
*c
)
140 r
=z8530_read_port(c
->dataio
);
145 * write_zsreg - Write to a Z8530 channel register
146 * @c: The Z8530 channel
147 * @reg: Register number
148 * @val: Value to write
150 * Write a value to an indexed register. The caller must hold the lock
151 * to honour the irritating delay rules. We know about register 0
152 * being fast to access.
154 * Assumes c->lock is held.
156 static inline void write_zsreg(struct z8530_channel
*c
, u8 reg
, u8 val
)
159 z8530_write_port(c
->ctrlio
, reg
);
160 z8530_write_port(c
->ctrlio
, val
);
165 * write_zsctrl - Write to a Z8530 control register
166 * @c: The Z8530 channel
167 * @val: Value to write
169 * Write directly to the control register on the Z8530
172 static inline void write_zsctrl(struct z8530_channel
*c
, u8 val
)
174 z8530_write_port(c
->ctrlio
, val
);
178 * write_zsdata - Write to a Z8530 control register
179 * @c: The Z8530 channel
180 * @val: Value to write
182 * Write directly to the data register on the Z8530
186 static inline void write_zsdata(struct z8530_channel
*c
, u8 val
)
188 z8530_write_port(c
->dataio
, val
);
192 * Register loading parameters for a dead port
195 u8 z8530_dead_port
[]=
200 EXPORT_SYMBOL(z8530_dead_port
);
203 * Register loading parameters for currently supported circuit types
208 * Data clocked by telco end. This is the correct data for the UK
209 * "kilostream" service, and most other similar services.
212 u8 z8530_hdlc_kilostream
[]=
214 4, SYNC_ENAB
|SDLC
|X1CLK
,
215 2, 0, /* No vector */
217 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
218 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
219 9, 0, /* Disable interrupts */
222 10, ABUNDER
|NRZ
|CRCPS
,/*MARKIDLE ??*/
225 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
226 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
231 EXPORT_SYMBOL(z8530_hdlc_kilostream
);
234 * As above but for enhanced chips.
237 u8 z8530_hdlc_kilostream_85230
[]=
239 4, SYNC_ENAB
|SDLC
|X1CLK
,
240 2, 0, /* No vector */
242 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
243 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
244 9, 0, /* Disable interrupts */
247 10, ABUNDER
|NRZ
|CRCPS
, /* MARKIDLE?? */
250 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
251 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
253 23, 3, /* Extended mode AUTO TX and EOM*/
258 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230
);
261 * z8530_flush_fifo - Flush on chip RX FIFO
262 * @c: Channel to flush
264 * Flush the receive FIFO. There is no specific option for this, we
265 * blindly read bytes and discard them. Reading when there is no data
266 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
268 * All locking is handled for the caller. On return data may still be
269 * present if it arrived during the flush.
272 static void z8530_flush_fifo(struct z8530_channel
*c
)
278 if(c
->dev
->type
==Z85230
)
288 * z8530_rtsdtr - Control the outgoing DTS/RTS line
289 * @c: The Z8530 channel to control;
290 * @set: 1 to set, 0 to clear
292 * Sets or clears DTR/RTS on the requested line. All locking is handled
293 * by the caller. For now we assume all boards use the actual RTS/DTR
294 * on the chip. Apparently one or two don't. We'll scream about them
298 static void z8530_rtsdtr(struct z8530_channel
*c
, int set
)
301 c
->regs
[5] |= (RTS
| DTR
);
303 c
->regs
[5] &= ~(RTS
| DTR
);
304 write_zsreg(c
, R5
, c
->regs
[5]);
308 * z8530_rx - Handle a PIO receive event
309 * @c: Z8530 channel to process
311 * Receive handler for receiving in PIO mode. This is much like the
312 * async one but not quite the same or as complex
314 * Note: Its intended that this handler can easily be separated from
315 * the main code to run realtime. That'll be needed for some machines
316 * (eg to ever clock 64kbits on a sparc ;)).
318 * The RT_LOCK macros don't do anything now. Keep the code covered
319 * by them as short as possible in all circumstances - clocks cost
320 * baud. The interrupt handler is assumed to be atomic w.r.t. to
321 * other code - this is true in the RT case too.
323 * We only cover the sync cases for this. If you want 2Mbit async
324 * do it yourself but consider medical assistance first. This non DMA
325 * synchronous mode is portable code. The DMA mode assumes PCI like
328 * Called with the device lock held
331 static void z8530_rx(struct z8530_channel
*c
)
338 if(!(read_zsreg(c
, R0
)&1))
341 stat
=read_zsreg(c
, R1
);
346 if(c
->count
< c
->max
)
358 if(stat
&(Rx_OVR
|CRC_ERR
))
360 /* Rewind the buffer and return */
362 c
->dptr
=c
->skb
->data
;
366 printk(KERN_WARNING
"%s: overrun\n", c
->dev
->name
);
372 /* printk("crc error\n"); */
374 /* Shove the frame upstream */
379 * Drop the lock for RX processing, or
380 * there are deadlocks
383 write_zsctrl(c
, RES_Rx_CRC
);
390 write_zsctrl(c
, ERR_RES
);
391 write_zsctrl(c
, RES_H_IUS
);
396 * z8530_tx - Handle a PIO transmit event
397 * @c: Z8530 channel to process
399 * Z8530 transmit interrupt handler for the PIO mode. The basic
400 * idea is to attempt to keep the FIFO fed. We fill as many bytes
401 * in as possible, its quite possible that we won't keep up with the
402 * data rate otherwise.
405 static void z8530_tx(struct z8530_channel
*c
)
409 if(!(read_zsreg(c
, R0
)&4))
413 * Shovel out the byte
415 write_zsreg(c
, R8
, *c
->tx_ptr
++);
416 write_zsctrl(c
, RES_H_IUS
);
417 /* We are about to underflow */
420 write_zsctrl(c
, RES_EOM_L
);
421 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
427 * End of frame TX - fire another one
430 write_zsctrl(c
, RES_Tx_P
);
433 write_zsctrl(c
, RES_H_IUS
);
437 * z8530_status - Handle a PIO status exception
438 * @chan: Z8530 channel to process
440 * A status event occurred in PIO synchronous mode. There are several
441 * reasons the chip will bother us here. A transmit underrun means we
442 * failed to feed the chip fast enough and just broke a packet. A DCD
443 * change is a line up or down.
446 static void z8530_status(struct z8530_channel
*chan
)
450 status
= read_zsreg(chan
, R0
);
451 altered
= chan
->status
^ status
;
453 chan
->status
= status
;
455 if (status
& TxEOM
) {
456 /* printk("%s: Tx underrun.\n", chan->dev->name); */
457 chan
->netdevice
->stats
.tx_fifo_errors
++;
458 write_zsctrl(chan
, ERR_RES
);
462 if (altered
& chan
->dcdcheck
)
464 if (status
& chan
->dcdcheck
) {
465 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
466 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
468 netif_carrier_on(chan
->netdevice
);
470 printk(KERN_INFO
"%s: DCD lost\n", chan
->dev
->name
);
471 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
472 z8530_flush_fifo(chan
);
474 netif_carrier_off(chan
->netdevice
);
478 write_zsctrl(chan
, RES_EXT_INT
);
479 write_zsctrl(chan
, RES_H_IUS
);
482 struct z8530_irqhandler z8530_sync
=
489 EXPORT_SYMBOL(z8530_sync
);
492 * z8530_dma_rx - Handle a DMA RX event
493 * @chan: Channel to handle
495 * Non bus mastering DMA interfaces for the Z8x30 devices. This
496 * is really pretty PC specific. The DMA mode means that most receive
497 * events are handled by the DMA hardware. We get a kick here only if
501 static void z8530_dma_rx(struct z8530_channel
*chan
)
505 /* Special condition check only */
508 read_zsreg(chan
, R7
);
509 read_zsreg(chan
, R6
);
511 status
=read_zsreg(chan
, R1
);
515 z8530_rx_done(chan
); /* Fire up the next one */
517 write_zsctrl(chan
, ERR_RES
);
518 write_zsctrl(chan
, RES_H_IUS
);
522 /* DMA is off right now, drain the slow way */
528 * z8530_dma_tx - Handle a DMA TX event
529 * @chan: The Z8530 channel to handle
531 * We have received an interrupt while doing DMA transmissions. It
532 * shouldn't happen. Scream loudly if it does.
535 static void z8530_dma_tx(struct z8530_channel
*chan
)
539 printk(KERN_WARNING
"Hey who turned the DMA off?\n");
543 /* This shouldnt occur in DMA mode */
544 printk(KERN_ERR
"DMA tx - bogus event!\n");
549 * z8530_dma_status - Handle a DMA status exception
550 * @chan: Z8530 channel to process
552 * A status event occurred on the Z8530. We receive these for two reasons
553 * when in DMA mode. Firstly if we finished a packet transfer we get one
554 * and kick the next packet out. Secondly we may see a DCD change.
558 static void z8530_dma_status(struct z8530_channel
*chan
)
562 status
=read_zsreg(chan
, R0
);
563 altered
=chan
->status
^status
;
574 flags
=claim_dma_lock();
575 disable_dma(chan
->txdma
);
576 clear_dma_ff(chan
->txdma
);
578 release_dma_lock(flags
);
583 if (altered
& chan
->dcdcheck
)
585 if (status
& chan
->dcdcheck
) {
586 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
587 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
589 netif_carrier_on(chan
->netdevice
);
591 printk(KERN_INFO
"%s:DCD lost\n", chan
->dev
->name
);
592 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
593 z8530_flush_fifo(chan
);
595 netif_carrier_off(chan
->netdevice
);
599 write_zsctrl(chan
, RES_EXT_INT
);
600 write_zsctrl(chan
, RES_H_IUS
);
603 struct z8530_irqhandler z8530_dma_sync
=
610 EXPORT_SYMBOL(z8530_dma_sync
);
612 struct z8530_irqhandler z8530_txdma_sync
=
619 EXPORT_SYMBOL(z8530_txdma_sync
);
622 * z8530_rx_clear - Handle RX events from a stopped chip
623 * @c: Z8530 channel to shut up
625 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
626 * For machines with PCI Z85x30 cards, or level triggered interrupts
627 * (eg the MacII) we must clear the interrupt cause or die.
631 static void z8530_rx_clear(struct z8530_channel
*c
)
634 * Data and status bytes
639 stat
=read_zsreg(c
, R1
);
642 write_zsctrl(c
, RES_Rx_CRC
);
646 write_zsctrl(c
, ERR_RES
);
647 write_zsctrl(c
, RES_H_IUS
);
651 * z8530_tx_clear - Handle TX events from a stopped chip
652 * @c: Z8530 channel to shut up
654 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
655 * For machines with PCI Z85x30 cards, or level triggered interrupts
656 * (eg the MacII) we must clear the interrupt cause or die.
659 static void z8530_tx_clear(struct z8530_channel
*c
)
661 write_zsctrl(c
, RES_Tx_P
);
662 write_zsctrl(c
, RES_H_IUS
);
666 * z8530_status_clear - Handle status events from a stopped chip
667 * @chan: Z8530 channel to shut up
669 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
670 * For machines with PCI Z85x30 cards, or level triggered interrupts
671 * (eg the MacII) we must clear the interrupt cause or die.
674 static void z8530_status_clear(struct z8530_channel
*chan
)
676 u8 status
=read_zsreg(chan
, R0
);
678 write_zsctrl(chan
, ERR_RES
);
679 write_zsctrl(chan
, RES_EXT_INT
);
680 write_zsctrl(chan
, RES_H_IUS
);
683 struct z8530_irqhandler z8530_nop
=
691 EXPORT_SYMBOL(z8530_nop
);
694 * z8530_interrupt - Handle an interrupt from a Z8530
695 * @irq: Interrupt number
696 * @dev_id: The Z8530 device that is interrupting.
699 * A Z85[2]30 device has stuck its hand in the air for attention.
700 * We scan both the channels on the chip for events and then call
701 * the channel specific call backs for each channel that has events.
702 * We have to use callback functions because the two channels can be
703 * in different modes.
705 * Locking is done for the handlers. Note that locking is done
706 * at the chip level (the 5uS delay issue is per chip not per
707 * channel). c->lock for both channels points to dev->lock
710 irqreturn_t
z8530_interrupt(int irq
, void *dev_id
)
712 struct z8530_dev
*dev
=dev_id
;
714 static volatile int locker
=0;
716 struct z8530_irqhandler
*irqs
;
720 printk(KERN_ERR
"IRQ re-enter\n");
725 spin_lock(&dev
->lock
);
730 intr
= read_zsreg(&dev
->chanA
, R3
);
731 if(!(intr
& (CHARxIP
|CHATxIP
|CHAEXT
|CHBRxIP
|CHBTxIP
|CHBEXT
)))
734 /* This holds the IRQ status. On the 8530 you must read it from chan
735 A even though it applies to the whole chip */
737 /* Now walk the chip and see what it is wanting - it may be
738 an IRQ for someone else remember */
740 irqs
=dev
->chanA
.irqs
;
742 if(intr
& (CHARxIP
|CHATxIP
|CHAEXT
))
745 irqs
->rx(&dev
->chanA
);
747 irqs
->tx(&dev
->chanA
);
749 irqs
->status(&dev
->chanA
);
752 irqs
=dev
->chanB
.irqs
;
754 if(intr
& (CHBRxIP
|CHBTxIP
|CHBEXT
))
757 irqs
->rx(&dev
->chanB
);
759 irqs
->tx(&dev
->chanB
);
761 irqs
->status(&dev
->chanB
);
764 spin_unlock(&dev
->lock
);
766 printk(KERN_ERR
"%s: interrupt jammed - abort(0x%X)!\n", dev
->name
, intr
);
772 EXPORT_SYMBOL(z8530_interrupt
);
774 static char reg_init
[16]=
784 * z8530_sync_open - Open a Z8530 channel for PIO
785 * @dev: The network interface we are using
786 * @c: The Z8530 channel to open in synchronous PIO mode
788 * Switch a Z8530 into synchronous mode without DMA assist. We
789 * raise the RTS/DTR and commence network operation.
792 int z8530_sync_open(struct net_device
*dev
, struct z8530_channel
*c
)
796 spin_lock_irqsave(c
->lock
, flags
);
799 c
->mtu
= dev
->mtu
+64;
803 c
->irqs
= &z8530_sync
;
805 /* This loads the double buffer up */
806 z8530_rx_done(c
); /* Load the frame ring */
807 z8530_rx_done(c
); /* Load the backup frame */
810 c
->regs
[R1
]|=TxINT_ENAB
;
811 write_zsreg(c
, R1
, c
->regs
[R1
]);
812 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
814 spin_unlock_irqrestore(c
->lock
, flags
);
819 EXPORT_SYMBOL(z8530_sync_open
);
822 * z8530_sync_close - Close a PIO Z8530 channel
823 * @dev: Network device to close
824 * @c: Z8530 channel to disassociate and move to idle
826 * Close down a Z8530 interface and switch its interrupt handlers
827 * to discard future events.
830 int z8530_sync_close(struct net_device
*dev
, struct z8530_channel
*c
)
835 spin_lock_irqsave(c
->lock
, flags
);
836 c
->irqs
= &z8530_nop
;
840 chk
=read_zsreg(c
,R0
);
841 write_zsreg(c
, R3
, c
->regs
[R3
]);
844 spin_unlock_irqrestore(c
->lock
, flags
);
848 EXPORT_SYMBOL(z8530_sync_close
);
851 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
852 * @dev: The network device to attach
853 * @c: The Z8530 channel to configure in sync DMA mode.
855 * Set up a Z85x30 device for synchronous DMA in both directions. Two
856 * ISA DMA channels must be available for this to work. We assume ISA
857 * DMA driven I/O and PC limits on access.
860 int z8530_sync_dma_open(struct net_device
*dev
, struct z8530_channel
*c
)
862 unsigned long cflags
, dflags
;
865 c
->mtu
= dev
->mtu
+64;
870 * Load the DMA interfaces up
876 * Allocate the DMA flip buffers. Limit by page size.
877 * Everyone runs 1500 mtu or less on wan links so this
881 if(c
->mtu
> PAGE_SIZE
/2)
884 c
->rx_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
885 if(c
->rx_buf
[0]==NULL
)
887 c
->rx_buf
[1]=c
->rx_buf
[0]+PAGE_SIZE
/2;
889 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
890 if(c
->tx_dma_buf
[0]==NULL
)
892 free_page((unsigned long)c
->rx_buf
[0]);
896 c
->tx_dma_buf
[1]=c
->tx_dma_buf
[0]+PAGE_SIZE
/2;
904 * Enable DMA control mode
907 spin_lock_irqsave(c
->lock
, cflags
);
913 c
->regs
[R14
]|= DTRREQ
;
914 write_zsreg(c
, R14
, c
->regs
[R14
]);
916 c
->regs
[R1
]&= ~TxINT_ENAB
;
917 write_zsreg(c
, R1
, c
->regs
[R1
]);
923 c
->regs
[R1
]|= WT_FN_RDYFN
;
924 c
->regs
[R1
]|= WT_RDY_RT
;
925 c
->regs
[R1
]|= INT_ERR_Rx
;
926 c
->regs
[R1
]&= ~TxINT_ENAB
;
927 write_zsreg(c
, R1
, c
->regs
[R1
]);
928 c
->regs
[R1
]|= WT_RDY_ENAB
;
929 write_zsreg(c
, R1
, c
->regs
[R1
]);
936 * Set up the DMA configuration
939 dflags
=claim_dma_lock();
941 disable_dma(c
->rxdma
);
942 clear_dma_ff(c
->rxdma
);
943 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
944 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[0]));
945 set_dma_count(c
->rxdma
, c
->mtu
);
946 enable_dma(c
->rxdma
);
948 disable_dma(c
->txdma
);
949 clear_dma_ff(c
->txdma
);
950 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
951 disable_dma(c
->txdma
);
953 release_dma_lock(dflags
);
956 * Select the DMA interrupt handlers
963 c
->irqs
= &z8530_dma_sync
;
965 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
967 spin_unlock_irqrestore(c
->lock
, cflags
);
972 EXPORT_SYMBOL(z8530_sync_dma_open
);
975 * z8530_sync_dma_close - Close down DMA I/O
976 * @dev: Network device to detach
977 * @c: Z8530 channel to move into discard mode
979 * Shut down a DMA mode synchronous interface. Halt the DMA, and
983 int z8530_sync_dma_close(struct net_device
*dev
, struct z8530_channel
*c
)
988 c
->irqs
= &z8530_nop
;
993 * Disable the PC DMA channels
996 flags
=claim_dma_lock();
997 disable_dma(c
->rxdma
);
998 clear_dma_ff(c
->rxdma
);
1002 disable_dma(c
->txdma
);
1003 clear_dma_ff(c
->txdma
);
1004 release_dma_lock(flags
);
1009 spin_lock_irqsave(c
->lock
, flags
);
1012 * Disable DMA control mode
1015 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1016 write_zsreg(c
, R1
, c
->regs
[R1
]);
1017 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1018 c
->regs
[R1
]|= INT_ALL_Rx
;
1019 write_zsreg(c
, R1
, c
->regs
[R1
]);
1020 c
->regs
[R14
]&= ~DTRREQ
;
1021 write_zsreg(c
, R14
, c
->regs
[R14
]);
1025 free_page((unsigned long)c
->rx_buf
[0]);
1028 if(c
->tx_dma_buf
[0])
1030 free_page((unsigned long)c
->tx_dma_buf
[0]);
1031 c
->tx_dma_buf
[0]=NULL
;
1033 chk
=read_zsreg(c
,R0
);
1034 write_zsreg(c
, R3
, c
->regs
[R3
]);
1037 spin_unlock_irqrestore(c
->lock
, flags
);
1042 EXPORT_SYMBOL(z8530_sync_dma_close
);
1045 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1046 * @dev: The network device to attach
1047 * @c: The Z8530 channel to configure in sync DMA mode.
1049 * Set up a Z85x30 device for synchronous DMA tranmission. One
1050 * ISA DMA channel must be available for this to work. The receive
1051 * side is run in PIO mode, but then it has the bigger FIFO.
1054 int z8530_sync_txdma_open(struct net_device
*dev
, struct z8530_channel
*c
)
1056 unsigned long cflags
, dflags
;
1058 printk("Opening sync interface for TX-DMA\n");
1060 c
->mtu
= dev
->mtu
+64;
1066 * Allocate the DMA flip buffers. Limit by page size.
1067 * Everyone runs 1500 mtu or less on wan links so this
1071 if(c
->mtu
> PAGE_SIZE
/2)
1074 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
1075 if(c
->tx_dma_buf
[0]==NULL
)
1078 c
->tx_dma_buf
[1] = c
->tx_dma_buf
[0] + PAGE_SIZE
/2;
1081 spin_lock_irqsave(c
->lock
, cflags
);
1084 * Load the PIO receive ring
1091 * Load the DMA interfaces up
1103 * Enable DMA control mode
1107 * TX DMA via DIR/REQ
1109 c
->regs
[R14
]|= DTRREQ
;
1110 write_zsreg(c
, R14
, c
->regs
[R14
]);
1112 c
->regs
[R1
]&= ~TxINT_ENAB
;
1113 write_zsreg(c
, R1
, c
->regs
[R1
]);
1116 * Set up the DMA configuration
1119 dflags
= claim_dma_lock();
1121 disable_dma(c
->txdma
);
1122 clear_dma_ff(c
->txdma
);
1123 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
1124 disable_dma(c
->txdma
);
1126 release_dma_lock(dflags
);
1129 * Select the DMA interrupt handlers
1136 c
->irqs
= &z8530_txdma_sync
;
1138 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1139 spin_unlock_irqrestore(c
->lock
, cflags
);
1144 EXPORT_SYMBOL(z8530_sync_txdma_open
);
1147 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1148 * @dev: Network device to detach
1149 * @c: Z8530 channel to move into discard mode
1151 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1152 * and free the buffers.
1155 int z8530_sync_txdma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1157 unsigned long dflags
, cflags
;
1161 spin_lock_irqsave(c
->lock
, cflags
);
1163 c
->irqs
= &z8530_nop
;
1168 * Disable the PC DMA channels
1171 dflags
= claim_dma_lock();
1173 disable_dma(c
->txdma
);
1174 clear_dma_ff(c
->txdma
);
1178 release_dma_lock(dflags
);
1181 * Disable DMA control mode
1184 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1185 write_zsreg(c
, R1
, c
->regs
[R1
]);
1186 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1187 c
->regs
[R1
]|= INT_ALL_Rx
;
1188 write_zsreg(c
, R1
, c
->regs
[R1
]);
1189 c
->regs
[R14
]&= ~DTRREQ
;
1190 write_zsreg(c
, R14
, c
->regs
[R14
]);
1192 if(c
->tx_dma_buf
[0])
1194 free_page((unsigned long)c
->tx_dma_buf
[0]);
1195 c
->tx_dma_buf
[0]=NULL
;
1197 chk
=read_zsreg(c
,R0
);
1198 write_zsreg(c
, R3
, c
->regs
[R3
]);
1201 spin_unlock_irqrestore(c
->lock
, cflags
);
1206 EXPORT_SYMBOL(z8530_sync_txdma_close
);
1210 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1214 static char *z8530_type_name
[]={
1221 * z8530_describe - Uniformly describe a Z8530 port
1222 * @dev: Z8530 device to describe
1223 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1224 * @io: the port value in question
1226 * Describe a Z8530 in a standard format. We must pass the I/O as
1227 * the port offset isnt predictable. The main reason for this function
1228 * is to try and get a common format of report.
1231 void z8530_describe(struct z8530_dev
*dev
, char *mapping
, unsigned long io
)
1233 printk(KERN_INFO
"%s: %s found at %s 0x%lX, IRQ %d.\n",
1235 z8530_type_name
[dev
->type
],
1241 EXPORT_SYMBOL(z8530_describe
);
1244 * Locked operation part of the z8530 init code
1247 static inline int do_z8530_init(struct z8530_dev
*dev
)
1249 /* NOP the interrupt handlers first - we might get a
1250 floating IRQ transition when we reset the chip */
1251 dev
->chanA
.irqs
=&z8530_nop
;
1252 dev
->chanB
.irqs
=&z8530_nop
;
1253 dev
->chanA
.dcdcheck
=DCD
;
1254 dev
->chanB
.dcdcheck
=DCD
;
1256 /* Reset the chip */
1257 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1259 /* Now check its valid */
1260 write_zsreg(&dev
->chanA
, R12
, 0xAA);
1261 if(read_zsreg(&dev
->chanA
, R12
)!=0xAA)
1263 write_zsreg(&dev
->chanA
, R12
, 0x55);
1264 if(read_zsreg(&dev
->chanA
, R12
)!=0x55)
1270 * See the application note.
1273 write_zsreg(&dev
->chanA
, R15
, 0x01);
1276 * If we can set the low bit of R15 then
1277 * the chip is enhanced.
1280 if(read_zsreg(&dev
->chanA
, R15
)==0x01)
1282 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1283 /* Put a char in the fifo */
1284 write_zsreg(&dev
->chanA
, R8
, 0);
1285 if(read_zsreg(&dev
->chanA
, R0
)&Tx_BUF_EMP
)
1286 dev
->type
= Z85230
; /* Has a FIFO */
1288 dev
->type
= Z85C30
; /* Z85C30, 1 byte FIFO */
1292 * The code assumes R7' and friends are
1293 * off. Use write_zsext() for these and keep
1297 write_zsreg(&dev
->chanA
, R15
, 0);
1300 * At this point it looks like the chip is behaving
1303 memcpy(dev
->chanA
.regs
, reg_init
, 16);
1304 memcpy(dev
->chanB
.regs
, reg_init
,16);
1310 * z8530_init - Initialise a Z8530 device
1311 * @dev: Z8530 device to initialise.
1313 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1314 * is present, identify the type and then program it to hopefully
1315 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1316 * state will sometimes get into stupid modes generating 10Khz
1317 * interrupt streams and the like.
1319 * We set the interrupt handler up to discard any events, in case
1320 * we get them during reset or setp.
1322 * Return 0 for success, or a negative value indicating the problem
1326 int z8530_init(struct z8530_dev
*dev
)
1328 unsigned long flags
;
1331 /* Set up the chip level lock */
1332 spin_lock_init(&dev
->lock
);
1333 dev
->chanA
.lock
= &dev
->lock
;
1334 dev
->chanB
.lock
= &dev
->lock
;
1336 spin_lock_irqsave(&dev
->lock
, flags
);
1337 ret
= do_z8530_init(dev
);
1338 spin_unlock_irqrestore(&dev
->lock
, flags
);
1344 EXPORT_SYMBOL(z8530_init
);
1347 * z8530_shutdown - Shutdown a Z8530 device
1348 * @dev: The Z8530 chip to shutdown
1350 * We set the interrupt handlers to silence any interrupts. We then
1351 * reset the chip and wait 100uS to be sure the reset completed. Just
1352 * in case the caller then tries to do stuff.
1354 * This is called without the lock held
1357 int z8530_shutdown(struct z8530_dev
*dev
)
1359 unsigned long flags
;
1360 /* Reset the chip */
1362 spin_lock_irqsave(&dev
->lock
, flags
);
1363 dev
->chanA
.irqs
=&z8530_nop
;
1364 dev
->chanB
.irqs
=&z8530_nop
;
1365 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1366 /* We must lock the udelay, the chip is offlimits here */
1368 spin_unlock_irqrestore(&dev
->lock
, flags
);
1372 EXPORT_SYMBOL(z8530_shutdown
);
1375 * z8530_channel_load - Load channel data
1376 * @c: Z8530 channel to configure
1377 * @rtable: table of register, value pairs
1378 * FIXME: ioctl to allow user uploaded tables
1380 * Load a Z8530 channel up from the system data. We use +16 to
1381 * indicate the "prime" registers. The value 255 terminates the
1385 int z8530_channel_load(struct z8530_channel
*c
, u8
*rtable
)
1387 unsigned long flags
;
1389 spin_lock_irqsave(c
->lock
, flags
);
1395 write_zsreg(c
, R15
, c
->regs
[15]|1);
1396 write_zsreg(c
, reg
&0x0F, *rtable
);
1398 write_zsreg(c
, R15
, c
->regs
[15]&~1);
1399 c
->regs
[reg
]=*rtable
++;
1401 c
->rx_function
=z8530_null_rx
;
1404 c
->tx_next_skb
=NULL
;
1408 c
->status
=read_zsreg(c
, R0
);
1410 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1412 spin_unlock_irqrestore(c
->lock
, flags
);
1416 EXPORT_SYMBOL(z8530_channel_load
);
1420 * z8530_tx_begin - Begin packet transmission
1421 * @c: The Z8530 channel to kick
1423 * This is the speed sensitive side of transmission. If we are called
1424 * and no buffer is being transmitted we commence the next buffer. If
1425 * nothing is queued we idle the sync.
1427 * Note: We are handling this code path in the interrupt path, keep it
1428 * fast or bad things will happen.
1430 * Called with the lock held.
1433 static void z8530_tx_begin(struct z8530_channel
*c
)
1435 unsigned long flags
;
1439 c
->tx_skb
=c
->tx_next_skb
;
1440 c
->tx_next_skb
=NULL
;
1441 c
->tx_ptr
=c
->tx_next_ptr
;
1448 flags
=claim_dma_lock();
1449 disable_dma(c
->txdma
);
1451 * Check if we crapped out.
1453 if (get_dma_residue(c
->txdma
))
1455 c
->netdevice
->stats
.tx_dropped
++;
1456 c
->netdevice
->stats
.tx_fifo_errors
++;
1458 release_dma_lock(flags
);
1464 c
->txcount
=c
->tx_skb
->len
;
1470 * FIXME. DMA is broken for the original 8530,
1471 * on the older parts we need to set a flag and
1472 * wait for a further TX interrupt to fire this
1476 flags
=claim_dma_lock();
1477 disable_dma(c
->txdma
);
1480 * These two are needed by the 8530/85C30
1481 * and must be issued when idling.
1484 if(c
->dev
->type
!=Z85230
)
1486 write_zsctrl(c
, RES_Tx_CRC
);
1487 write_zsctrl(c
, RES_EOM_L
);
1489 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
1490 clear_dma_ff(c
->txdma
);
1491 set_dma_addr(c
->txdma
, virt_to_bus(c
->tx_ptr
));
1492 set_dma_count(c
->txdma
, c
->txcount
);
1493 enable_dma(c
->txdma
);
1494 release_dma_lock(flags
);
1495 write_zsctrl(c
, RES_EOM_L
);
1496 write_zsreg(c
, R5
, c
->regs
[R5
]|TxENAB
);
1502 write_zsreg(c
, R10
, c
->regs
[10]);
1503 write_zsctrl(c
, RES_Tx_CRC
);
1505 while(c
->txcount
&& (read_zsreg(c
,R0
)&Tx_BUF_EMP
))
1507 write_zsreg(c
, R8
, *c
->tx_ptr
++);
1514 * Since we emptied tx_skb we can ask for more
1516 netif_wake_queue(c
->netdevice
);
1520 * z8530_tx_done - TX complete callback
1521 * @c: The channel that completed a transmit.
1523 * This is called when we complete a packet send. We wake the queue,
1524 * start the next packet going and then free the buffer of the existing
1525 * packet. This code is fairly timing sensitive.
1527 * Called with the register lock held.
1530 static void z8530_tx_done(struct z8530_channel
*c
)
1532 struct sk_buff
*skb
;
1534 /* Actually this can happen.*/
1535 if (c
->tx_skb
== NULL
)
1541 c
->netdevice
->stats
.tx_packets
++;
1542 c
->netdevice
->stats
.tx_bytes
+= skb
->len
;
1543 dev_kfree_skb_irq(skb
);
1547 * z8530_null_rx - Discard a packet
1548 * @c: The channel the packet arrived on
1551 * We point the receive handler at this function when idle. Instead
1552 * of processing the frames we get to throw them away.
1555 void z8530_null_rx(struct z8530_channel
*c
, struct sk_buff
*skb
)
1557 dev_kfree_skb_any(skb
);
1560 EXPORT_SYMBOL(z8530_null_rx
);
1563 * z8530_rx_done - Receive completion callback
1564 * @c: The channel that completed a receive
1566 * A new packet is complete. Our goal here is to get back into receive
1567 * mode as fast as possible. On the Z85230 we could change to using
1568 * ESCC mode, but on the older chips we have no choice. We flip to the
1569 * new buffer immediately in DMA mode so that the DMA of the next
1570 * frame can occur while we are copying the previous buffer to an sk_buff
1572 * Called with the lock held
1575 static void z8530_rx_done(struct z8530_channel
*c
)
1577 struct sk_buff
*skb
;
1581 * Is our receive engine in DMA mode
1587 * Save the ready state and the buffer currently
1588 * being used as the DMA target
1591 int ready
=c
->dma_ready
;
1592 unsigned char *rxb
=c
->rx_buf
[c
->dma_num
];
1593 unsigned long flags
;
1596 * Complete this DMA. Neccessary to find the length
1599 flags
=claim_dma_lock();
1601 disable_dma(c
->rxdma
);
1602 clear_dma_ff(c
->rxdma
);
1604 ct
=c
->mtu
-get_dma_residue(c
->rxdma
);
1606 ct
=2; /* Shit happens.. */
1610 * Normal case: the other slot is free, start the next DMA
1611 * into it immediately.
1617 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
1618 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[c
->dma_num
]));
1619 set_dma_count(c
->rxdma
, c
->mtu
);
1621 enable_dma(c
->rxdma
);
1622 /* Stop any frames that we missed the head of
1624 write_zsreg(c
, R0
, RES_Rx_CRC
);
1627 /* Can't occur as we dont reenable the DMA irq until
1628 after the flip is done */
1629 printk(KERN_WARNING
"%s: DMA flip overrun!\n",
1630 c
->netdevice
->name
);
1632 release_dma_lock(flags
);
1635 * Shove the old buffer into an sk_buff. We can't DMA
1636 * directly into one on a PC - it might be above the 16Mb
1637 * boundary. Optimisation - we could check to see if we
1638 * can avoid the copy. Optimisation 2 - make the memcpy
1642 skb
= dev_alloc_skb(ct
);
1644 c
->netdevice
->stats
.rx_dropped
++;
1645 printk(KERN_WARNING
"%s: Memory squeeze.\n",
1646 c
->netdevice
->name
);
1649 skb_copy_to_linear_data(skb
, rxb
, ct
);
1650 c
->netdevice
->stats
.rx_packets
++;
1651 c
->netdevice
->stats
.rx_bytes
+= ct
;
1659 * The game we play for non DMA is similar. We want to
1660 * get the controller set up for the next packet as fast
1661 * as possible. We potentially only have one byte + the
1662 * fifo length for this. Thus we want to flip to the new
1663 * buffer and then mess around copying and allocating
1664 * things. For the current case it doesn't matter but
1665 * if you build a system where the sync irq isnt blocked
1666 * by the kernel IRQ disable then you need only block the
1667 * sync IRQ for the RT_LOCK area.
1676 c
->dptr
= c
->skb
->data
;
1684 c
->skb2
= dev_alloc_skb(c
->mtu
);
1685 if (c
->skb2
== NULL
)
1686 printk(KERN_WARNING
"%s: memory squeeze.\n",
1687 c
->netdevice
->name
);
1689 skb_put(c
->skb2
, c
->mtu
);
1690 c
->netdevice
->stats
.rx_packets
++;
1691 c
->netdevice
->stats
.rx_bytes
+= ct
;
1694 * If we received a frame we must now process it.
1698 c
->rx_function(c
, skb
);
1700 c
->netdevice
->stats
.rx_dropped
++;
1701 printk(KERN_ERR
"%s: Lost a frame\n", c
->netdevice
->name
);
1706 * spans_boundary - Check a packet can be ISA DMA'd
1707 * @skb: The buffer to check
1709 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1710 * thing can only DMA within a 64K block not across the edges of it.
1713 static inline int spans_boundary(struct sk_buff
*skb
)
1715 unsigned long a
=(unsigned long)skb
->data
;
1717 if(a
&0x00010000) /* If the 64K bit is different.. */
1723 * z8530_queue_xmit - Queue a packet
1724 * @c: The channel to use
1725 * @skb: The packet to kick down the channel
1727 * Queue a packet for transmission. Because we have rather
1728 * hard to hit interrupt latencies for the Z85230 per packet
1729 * even in DMA mode we do the flip to DMA buffer if needed here
1732 * Called from the network code. The lock is not held at this
1736 int z8530_queue_xmit(struct z8530_channel
*c
, struct sk_buff
*skb
)
1738 unsigned long flags
;
1740 netif_stop_queue(c
->netdevice
);
1746 /* PC SPECIFIC - DMA limits */
1749 * If we will DMA the transmit and its gone over the ISA bus
1750 * limit, then copy to the flip buffer
1753 if(c
->dma_tx
&& ((unsigned long)(virt_to_bus(skb
->data
+skb
->len
))>=16*1024*1024 || spans_boundary(skb
)))
1756 * Send the flip buffer, and flip the flippy bit.
1757 * We don't care which is used when just so long as
1758 * we never use the same buffer twice in a row. Since
1759 * only one buffer can be going out at a time the other
1762 c
->tx_next_ptr
=c
->tx_dma_buf
[c
->tx_dma_used
];
1763 c
->tx_dma_used
^=1; /* Flip temp buffer */
1764 skb_copy_from_linear_data(skb
, c
->tx_next_ptr
, skb
->len
);
1767 c
->tx_next_ptr
=skb
->data
;
1772 spin_lock_irqsave(c
->lock
, flags
);
1774 spin_unlock_irqrestore(c
->lock
, flags
);
1779 EXPORT_SYMBOL(z8530_queue_xmit
);
1784 static char banner
[] __initdata
= KERN_INFO
"Generic Z85C30/Z85230 interface driver v0.02\n";
1786 static int __init
z85230_init_driver(void)
1791 module_init(z85230_init_driver
);
1793 static void __exit
z85230_cleanup_driver(void)
1796 module_exit(z85230_cleanup_driver
);
1798 MODULE_AUTHOR("Red Hat Inc.");
1799 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1800 MODULE_LICENSE("GPL");