2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
48 __initdata
LIST_HEAD(huge_boot_pages
);
50 /* for command line parsing */
51 static struct hstate
* __initdata parsed_hstate
;
52 static unsigned long __initdata default_hstate_max_huge_pages
;
53 static unsigned long __initdata default_hstate_size
;
54 static bool __initdata parsed_valid_hugepagesz
= true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 /* minimum size accounting */
149 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
150 if (delta
> spool
->rsv_hpages
) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret
= delta
- spool
->rsv_hpages
;
156 spool
->rsv_hpages
= 0;
158 ret
= 0; /* reserves already accounted for */
159 spool
->rsv_hpages
-= delta
;
164 spin_unlock(&spool
->lock
);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
182 spin_lock(&spool
->lock
);
184 if (spool
->max_hpages
!= -1) /* maximum size accounting */
185 spool
->used_hpages
-= delta
;
187 /* minimum size accounting */
188 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
189 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
192 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
194 spool
->rsv_hpages
+= delta
;
195 if (spool
->rsv_hpages
> spool
->min_hpages
)
196 spool
->rsv_hpages
= spool
->min_hpages
;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool
);
208 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
210 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
213 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
215 return subpool_inode(file_inode(vma
->vm_file
));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link
;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map
*resv
, long f
, long t
)
259 struct list_head
*head
= &resv
->regions
;
260 struct file_region
*rg
, *nrg
, *trg
;
263 spin_lock(&resv
->lock
);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg
, head
, link
)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg
->link
== head
|| t
< rg
->from
) {
276 VM_BUG_ON(resv
->region_cache_count
<= 0);
278 resv
->region_cache_count
--;
279 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
281 list_del(&nrg
->link
);
285 list_add(&nrg
->link
, rg
->link
.prev
);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
298 if (&rg
->link
== head
)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add
-= (rg
->to
- rg
->from
);
319 add
+= (nrg
->from
- f
); /* Added to beginning of region */
321 add
+= t
- nrg
->to
; /* Added to end of region */
325 resv
->adds_in_progress
--;
326 spin_unlock(&resv
->lock
);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map
*resv
, long f
, long t
)
355 struct list_head
*head
= &resv
->regions
;
356 struct file_region
*rg
, *nrg
= NULL
;
360 spin_lock(&resv
->lock
);
362 resv
->adds_in_progress
++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
369 struct file_region
*trg
;
371 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv
->adds_in_progress
--;
374 spin_unlock(&resv
->lock
);
376 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
382 spin_lock(&resv
->lock
);
383 list_add(&trg
->link
, &resv
->region_cache
);
384 resv
->region_cache_count
++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg
, head
, link
)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg
->link
== head
|| t
< rg
->from
) {
398 resv
->adds_in_progress
--;
399 spin_unlock(&resv
->lock
);
400 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
406 INIT_LIST_HEAD(&nrg
->link
);
410 list_add(&nrg
->link
, rg
->link
.prev
);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
422 if (&rg
->link
== head
)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg
-= rg
->to
- rg
->from
;
438 spin_unlock(&resv
->lock
);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv
->lock
);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map
*resv
, long f
, long t
)
460 spin_lock(&resv
->lock
);
461 VM_BUG_ON(!resv
->region_cache_count
);
462 resv
->adds_in_progress
--;
463 spin_unlock(&resv
->lock
);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map
*resv
, long f
, long t
)
482 struct list_head
*head
= &resv
->regions
;
483 struct file_region
*rg
, *trg
;
484 struct file_region
*nrg
= NULL
;
488 spin_lock(&resv
->lock
);
489 list_for_each_entry_safe(rg
, trg
, head
, link
) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
503 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv
->region_cache_count
> resv
->adds_in_progress
) {
510 nrg
= list_first_entry(&resv
->region_cache
,
513 list_del(&nrg
->link
);
514 resv
->region_cache_count
--;
518 spin_unlock(&resv
->lock
);
519 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg
->link
);
532 /* Original entry is trimmed */
535 list_add(&nrg
->link
, &rg
->link
);
540 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
541 del
+= rg
->to
- rg
->from
;
547 if (f
<= rg
->from
) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv
->lock
);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode
*inode
, bool restore_reserve
)
572 struct hugepage_subpool
*spool
= subpool_inode(inode
);
575 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
576 if (restore_reserve
&& rsv_adjust
) {
577 struct hstate
*h
= hstate_inode(inode
);
579 hugetlb_acct_memory(h
, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map
*resv
, long f
, long t
)
589 struct list_head
*head
= &resv
->regions
;
590 struct file_region
*rg
;
593 spin_lock(&resv
->lock
);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg
, head
, link
) {
604 seg_from
= max(rg
->from
, f
);
605 seg_to
= min(rg
->to
, t
);
607 chg
+= seg_to
- seg_from
;
609 spin_unlock(&resv
->lock
);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
619 struct vm_area_struct
*vma
, unsigned long address
)
621 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
622 (vma
->vm_pgoff
>> huge_page_order(h
));
625 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
626 unsigned long address
)
628 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
638 struct hstate
*hstate
;
640 if (!is_vm_hugetlb_page(vma
))
643 hstate
= hstate_vma(vma
);
645 return 1UL << huge_page_shift(hstate
);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
658 return vma_kernel_pagesize(vma
);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
692 return (unsigned long)vma
->vm_private_data
;
695 static void set_vma_private_data(struct vm_area_struct
*vma
,
698 vma
->vm_private_data
= (void *)value
;
701 struct resv_map
*resv_map_alloc(void)
703 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
704 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
706 if (!resv_map
|| !rg
) {
712 kref_init(&resv_map
->refs
);
713 spin_lock_init(&resv_map
->lock
);
714 INIT_LIST_HEAD(&resv_map
->regions
);
716 resv_map
->adds_in_progress
= 0;
718 INIT_LIST_HEAD(&resv_map
->region_cache
);
719 list_add(&rg
->link
, &resv_map
->region_cache
);
720 resv_map
->region_cache_count
= 1;
725 void resv_map_release(struct kref
*ref
)
727 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
728 struct list_head
*head
= &resv_map
->region_cache
;
729 struct file_region
*rg
, *trg
;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map
, 0, LONG_MAX
);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg
, trg
, head
, link
) {
740 VM_BUG_ON(resv_map
->adds_in_progress
);
745 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
747 return inode
->i_mapping
->private_data
;
750 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
753 if (vma
->vm_flags
& VM_MAYSHARE
) {
754 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
755 struct inode
*inode
= mapping
->host
;
757 return inode_resv_map(inode
);
760 return (struct resv_map
*)(get_vma_private_data(vma
) &
765 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
768 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
770 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
771 HPAGE_RESV_MASK
) | (unsigned long)map
);
774 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
777 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
779 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
782 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
786 return (get_vma_private_data(vma
) & flag
) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
793 if (!(vma
->vm_flags
& VM_MAYSHARE
))
794 vma
->vm_private_data
= (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
800 if (vma
->vm_flags
& VM_NORESERVE
) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
816 /* Shared mappings always use reserves */
817 if (vma
->vm_flags
& VM_MAYSHARE
) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
860 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
862 int nid
= page_to_nid(page
);
863 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
864 h
->free_huge_pages
++;
865 h
->free_huge_pages_node
[nid
]++;
868 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
872 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
873 if (!is_migrate_isolate_page(page
))
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
881 list_move(&page
->lru
, &h
->hugepage_activelist
);
882 set_page_refcounted(page
);
883 h
->free_huge_pages
--;
884 h
->free_huge_pages_node
[nid
]--;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
891 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
892 return GFP_HIGHUSER_MOVABLE
;
897 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
898 struct vm_area_struct
*vma
,
899 unsigned long address
, int avoid_reserve
,
902 struct page
*page
= NULL
;
903 struct mempolicy
*mpol
;
904 nodemask_t
*nodemask
;
905 struct zonelist
*zonelist
;
908 unsigned int cpuset_mems_cookie
;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma
, chg
) &&
916 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
924 cpuset_mems_cookie
= read_mems_allowed_begin();
925 zonelist
= huge_zonelist(vma
, address
,
926 htlb_alloc_mask(h
), &mpol
, &nodemask
);
928 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
929 MAX_NR_ZONES
- 1, nodemask
) {
930 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
931 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
935 if (!vma_has_reserves(vma
, chg
))
938 SetPagePrivate(page
);
939 h
->resv_huge_pages
--;
946 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
963 nid
= next_node_in(nid
, *nodes_allowed
);
964 VM_BUG_ON(nid
>= MAX_NUMNODES
);
969 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
971 if (!node_isset(nid
, *nodes_allowed
))
972 nid
= next_node_allowed(nid
, nodes_allowed
);
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
982 static int hstate_next_node_to_alloc(struct hstate
*h
,
983 nodemask_t
*nodes_allowed
)
987 VM_BUG_ON(!nodes_allowed
);
989 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
990 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1005 VM_BUG_ON(!nodes_allowed
);
1007 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1008 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026 static void destroy_compound_gigantic_page(struct page
*page
,
1030 int nr_pages
= 1 << order
;
1031 struct page
*p
= page
+ 1;
1033 atomic_set(compound_mapcount_ptr(page
), 0);
1034 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1035 clear_compound_head(p
);
1036 set_page_refcounted(p
);
1039 set_compound_order(page
, 0);
1040 __ClearPageHead(page
);
1043 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1045 free_contig_range(page_to_pfn(page
), 1 << order
);
1048 static int __alloc_gigantic_page(unsigned long start_pfn
,
1049 unsigned long nr_pages
)
1051 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1052 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1055 static bool pfn_range_valid_gigantic(struct zone
*z
,
1056 unsigned long start_pfn
, unsigned long nr_pages
)
1058 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1061 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1065 page
= pfn_to_page(i
);
1067 if (page_zone(page
) != z
)
1070 if (PageReserved(page
))
1073 if (page_count(page
) > 0)
1083 static bool zone_spans_last_pfn(const struct zone
*zone
,
1084 unsigned long start_pfn
, unsigned long nr_pages
)
1086 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1087 return zone_spans_pfn(zone
, last_pfn
);
1090 static struct page
*alloc_gigantic_page(int nid
, unsigned int order
)
1092 unsigned long nr_pages
= 1 << order
;
1093 unsigned long ret
, pfn
, flags
;
1096 z
= NODE_DATA(nid
)->node_zones
;
1097 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
1098 spin_lock_irqsave(&z
->lock
, flags
);
1100 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
1101 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
1102 if (pfn_range_valid_gigantic(z
, pfn
, nr_pages
)) {
1104 * We release the zone lock here because
1105 * alloc_contig_range() will also lock the zone
1106 * at some point. If there's an allocation
1107 * spinning on this lock, it may win the race
1108 * and cause alloc_contig_range() to fail...
1110 spin_unlock_irqrestore(&z
->lock
, flags
);
1111 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
1113 return pfn_to_page(pfn
);
1114 spin_lock_irqsave(&z
->lock
, flags
);
1119 spin_unlock_irqrestore(&z
->lock
, flags
);
1125 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1126 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1128 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1132 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
1134 prep_compound_gigantic_page(page
, huge_page_order(h
));
1135 prep_new_huge_page(h
, page
, nid
);
1141 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1142 nodemask_t
*nodes_allowed
)
1144 struct page
*page
= NULL
;
1147 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1148 page
= alloc_fresh_gigantic_page_node(h
, node
);
1156 static inline bool gigantic_page_supported(void) { return true; }
1158 static inline bool gigantic_page_supported(void) { return false; }
1159 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1160 static inline void destroy_compound_gigantic_page(struct page
*page
,
1161 unsigned int order
) { }
1162 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1163 nodemask_t
*nodes_allowed
) { return 0; }
1166 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1170 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1174 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1175 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1176 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1177 1 << PG_referenced
| 1 << PG_dirty
|
1178 1 << PG_active
| 1 << PG_private
|
1181 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1182 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1183 set_page_refcounted(page
);
1184 if (hstate_is_gigantic(h
)) {
1185 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1186 free_gigantic_page(page
, huge_page_order(h
));
1188 __free_pages(page
, huge_page_order(h
));
1192 struct hstate
*size_to_hstate(unsigned long size
)
1196 for_each_hstate(h
) {
1197 if (huge_page_size(h
) == size
)
1204 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205 * to hstate->hugepage_activelist.)
1207 * This function can be called for tail pages, but never returns true for them.
1209 bool page_huge_active(struct page
*page
)
1211 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1212 return PageHead(page
) && PagePrivate(&page
[1]);
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page
*page
)
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1219 SetPagePrivate(&page
[1]);
1222 static void clear_page_huge_active(struct page
*page
)
1224 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1225 ClearPagePrivate(&page
[1]);
1228 void free_huge_page(struct page
*page
)
1231 * Can't pass hstate in here because it is called from the
1232 * compound page destructor.
1234 struct hstate
*h
= page_hstate(page
);
1235 int nid
= page_to_nid(page
);
1236 struct hugepage_subpool
*spool
=
1237 (struct hugepage_subpool
*)page_private(page
);
1238 bool restore_reserve
;
1240 set_page_private(page
, 0);
1241 page
->mapping
= NULL
;
1242 VM_BUG_ON_PAGE(page_count(page
), page
);
1243 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1244 restore_reserve
= PagePrivate(page
);
1245 ClearPagePrivate(page
);
1248 * A return code of zero implies that the subpool will be under its
1249 * minimum size if the reservation is not restored after page is free.
1250 * Therefore, force restore_reserve operation.
1252 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1253 restore_reserve
= true;
1255 spin_lock(&hugetlb_lock
);
1256 clear_page_huge_active(page
);
1257 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1258 pages_per_huge_page(h
), page
);
1259 if (restore_reserve
)
1260 h
->resv_huge_pages
++;
1262 if (h
->surplus_huge_pages_node
[nid
]) {
1263 /* remove the page from active list */
1264 list_del(&page
->lru
);
1265 update_and_free_page(h
, page
);
1266 h
->surplus_huge_pages
--;
1267 h
->surplus_huge_pages_node
[nid
]--;
1269 arch_clear_hugepage_flags(page
);
1270 enqueue_huge_page(h
, page
);
1272 spin_unlock(&hugetlb_lock
);
1275 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1277 INIT_LIST_HEAD(&page
->lru
);
1278 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1279 spin_lock(&hugetlb_lock
);
1280 set_hugetlb_cgroup(page
, NULL
);
1282 h
->nr_huge_pages_node
[nid
]++;
1283 spin_unlock(&hugetlb_lock
);
1284 put_page(page
); /* free it into the hugepage allocator */
1287 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1290 int nr_pages
= 1 << order
;
1291 struct page
*p
= page
+ 1;
1293 /* we rely on prep_new_huge_page to set the destructor */
1294 set_compound_order(page
, order
);
1295 __ClearPageReserved(page
);
1296 __SetPageHead(page
);
1297 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1299 * For gigantic hugepages allocated through bootmem at
1300 * boot, it's safer to be consistent with the not-gigantic
1301 * hugepages and clear the PG_reserved bit from all tail pages
1302 * too. Otherwse drivers using get_user_pages() to access tail
1303 * pages may get the reference counting wrong if they see
1304 * PG_reserved set on a tail page (despite the head page not
1305 * having PG_reserved set). Enforcing this consistency between
1306 * head and tail pages allows drivers to optimize away a check
1307 * on the head page when they need know if put_page() is needed
1308 * after get_user_pages().
1310 __ClearPageReserved(p
);
1311 set_page_count(p
, 0);
1312 set_compound_head(p
, page
);
1314 atomic_set(compound_mapcount_ptr(page
), -1);
1318 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1319 * transparent huge pages. See the PageTransHuge() documentation for more
1322 int PageHuge(struct page
*page
)
1324 if (!PageCompound(page
))
1327 page
= compound_head(page
);
1328 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1330 EXPORT_SYMBOL_GPL(PageHuge
);
1333 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1334 * normal or transparent huge pages.
1336 int PageHeadHuge(struct page
*page_head
)
1338 if (!PageHead(page_head
))
1341 return get_compound_page_dtor(page_head
) == free_huge_page
;
1344 pgoff_t
__basepage_index(struct page
*page
)
1346 struct page
*page_head
= compound_head(page
);
1347 pgoff_t index
= page_index(page_head
);
1348 unsigned long compound_idx
;
1350 if (!PageHuge(page_head
))
1351 return page_index(page
);
1353 if (compound_order(page_head
) >= MAX_ORDER
)
1354 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1356 compound_idx
= page
- page_head
;
1358 return (index
<< compound_order(page_head
)) + compound_idx
;
1361 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1365 page
= __alloc_pages_node(nid
,
1366 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1367 __GFP_REPEAT
|__GFP_NOWARN
,
1368 huge_page_order(h
));
1370 prep_new_huge_page(h
, page
, nid
);
1376 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1382 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1383 page
= alloc_fresh_huge_page_node(h
, node
);
1391 count_vm_event(HTLB_BUDDY_PGALLOC
);
1393 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1399 * Free huge page from pool from next node to free.
1400 * Attempt to keep persistent huge pages more or less
1401 * balanced over allowed nodes.
1402 * Called with hugetlb_lock locked.
1404 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1410 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1412 * If we're returning unused surplus pages, only examine
1413 * nodes with surplus pages.
1415 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1416 !list_empty(&h
->hugepage_freelists
[node
])) {
1418 list_entry(h
->hugepage_freelists
[node
].next
,
1420 list_del(&page
->lru
);
1421 h
->free_huge_pages
--;
1422 h
->free_huge_pages_node
[node
]--;
1424 h
->surplus_huge_pages
--;
1425 h
->surplus_huge_pages_node
[node
]--;
1427 update_and_free_page(h
, page
);
1437 * Dissolve a given free hugepage into free buddy pages. This function does
1438 * nothing for in-use (including surplus) hugepages.
1440 static void dissolve_free_huge_page(struct page
*page
)
1442 spin_lock(&hugetlb_lock
);
1443 if (PageHuge(page
) && !page_count(page
)) {
1444 struct hstate
*h
= page_hstate(page
);
1445 int nid
= page_to_nid(page
);
1446 list_del(&page
->lru
);
1447 h
->free_huge_pages
--;
1448 h
->free_huge_pages_node
[nid
]--;
1449 update_and_free_page(h
, page
);
1451 spin_unlock(&hugetlb_lock
);
1455 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1456 * make specified memory blocks removable from the system.
1457 * Note that start_pfn should aligned with (minimum) hugepage size.
1459 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1463 if (!hugepages_supported())
1466 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << minimum_order
));
1467 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
)
1468 dissolve_free_huge_page(pfn_to_page(pfn
));
1472 * There are 3 ways this can get called:
1473 * 1. With vma+addr: we use the VMA's memory policy
1474 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1475 * page from any node, and let the buddy allocator itself figure
1477 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1478 * strictly from 'nid'
1480 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1481 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1483 int order
= huge_page_order(h
);
1484 gfp_t gfp
= htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_REPEAT
|__GFP_NOWARN
;
1485 unsigned int cpuset_mems_cookie
;
1488 * We need a VMA to get a memory policy. If we do not
1489 * have one, we use the 'nid' argument.
1491 * The mempolicy stuff below has some non-inlined bits
1492 * and calls ->vm_ops. That makes it hard to optimize at
1493 * compile-time, even when NUMA is off and it does
1494 * nothing. This helps the compiler optimize it out.
1496 if (!IS_ENABLED(CONFIG_NUMA
) || !vma
) {
1498 * If a specific node is requested, make sure to
1499 * get memory from there, but only when a node
1500 * is explicitly specified.
1502 if (nid
!= NUMA_NO_NODE
)
1503 gfp
|= __GFP_THISNODE
;
1505 * Make sure to call something that can handle
1508 return alloc_pages_node(nid
, gfp
, order
);
1512 * OK, so we have a VMA. Fetch the mempolicy and try to
1513 * allocate a huge page with it. We will only reach this
1514 * when CONFIG_NUMA=y.
1518 struct mempolicy
*mpol
;
1519 struct zonelist
*zl
;
1520 nodemask_t
*nodemask
;
1522 cpuset_mems_cookie
= read_mems_allowed_begin();
1523 zl
= huge_zonelist(vma
, addr
, gfp
, &mpol
, &nodemask
);
1524 mpol_cond_put(mpol
);
1525 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nodemask
);
1528 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1534 * There are two ways to allocate a huge page:
1535 * 1. When you have a VMA and an address (like a fault)
1536 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1538 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1539 * this case which signifies that the allocation should be done with
1540 * respect for the VMA's memory policy.
1542 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1543 * implies that memory policies will not be taken in to account.
1545 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
,
1546 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1551 if (hstate_is_gigantic(h
))
1555 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1556 * This makes sure the caller is picking _one_ of the modes with which
1557 * we can call this function, not both.
1559 if (vma
|| (addr
!= -1)) {
1560 VM_WARN_ON_ONCE(addr
== -1);
1561 VM_WARN_ON_ONCE(nid
!= NUMA_NO_NODE
);
1564 * Assume we will successfully allocate the surplus page to
1565 * prevent racing processes from causing the surplus to exceed
1568 * This however introduces a different race, where a process B
1569 * tries to grow the static hugepage pool while alloc_pages() is
1570 * called by process A. B will only examine the per-node
1571 * counters in determining if surplus huge pages can be
1572 * converted to normal huge pages in adjust_pool_surplus(). A
1573 * won't be able to increment the per-node counter, until the
1574 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1575 * no more huge pages can be converted from surplus to normal
1576 * state (and doesn't try to convert again). Thus, we have a
1577 * case where a surplus huge page exists, the pool is grown, and
1578 * the surplus huge page still exists after, even though it
1579 * should just have been converted to a normal huge page. This
1580 * does not leak memory, though, as the hugepage will be freed
1581 * once it is out of use. It also does not allow the counters to
1582 * go out of whack in adjust_pool_surplus() as we don't modify
1583 * the node values until we've gotten the hugepage and only the
1584 * per-node value is checked there.
1586 spin_lock(&hugetlb_lock
);
1587 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1588 spin_unlock(&hugetlb_lock
);
1592 h
->surplus_huge_pages
++;
1594 spin_unlock(&hugetlb_lock
);
1596 page
= __hugetlb_alloc_buddy_huge_page(h
, vma
, addr
, nid
);
1598 spin_lock(&hugetlb_lock
);
1600 INIT_LIST_HEAD(&page
->lru
);
1601 r_nid
= page_to_nid(page
);
1602 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1603 set_hugetlb_cgroup(page
, NULL
);
1605 * We incremented the global counters already
1607 h
->nr_huge_pages_node
[r_nid
]++;
1608 h
->surplus_huge_pages_node
[r_nid
]++;
1609 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1612 h
->surplus_huge_pages
--;
1613 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1615 spin_unlock(&hugetlb_lock
);
1621 * Allocate a huge page from 'nid'. Note, 'nid' may be
1622 * NUMA_NO_NODE, which means that it may be allocated
1626 struct page
*__alloc_buddy_huge_page_no_mpol(struct hstate
*h
, int nid
)
1628 unsigned long addr
= -1;
1630 return __alloc_buddy_huge_page(h
, NULL
, addr
, nid
);
1634 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1637 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1638 struct vm_area_struct
*vma
, unsigned long addr
)
1640 return __alloc_buddy_huge_page(h
, vma
, addr
, NUMA_NO_NODE
);
1644 * This allocation function is useful in the context where vma is irrelevant.
1645 * E.g. soft-offlining uses this function because it only cares physical
1646 * address of error page.
1648 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1650 struct page
*page
= NULL
;
1652 spin_lock(&hugetlb_lock
);
1653 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1654 page
= dequeue_huge_page_node(h
, nid
);
1655 spin_unlock(&hugetlb_lock
);
1658 page
= __alloc_buddy_huge_page_no_mpol(h
, nid
);
1664 * Increase the hugetlb pool such that it can accommodate a reservation
1667 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1669 struct list_head surplus_list
;
1670 struct page
*page
, *tmp
;
1672 int needed
, allocated
;
1673 bool alloc_ok
= true;
1675 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1677 h
->resv_huge_pages
+= delta
;
1682 INIT_LIST_HEAD(&surplus_list
);
1686 spin_unlock(&hugetlb_lock
);
1687 for (i
= 0; i
< needed
; i
++) {
1688 page
= __alloc_buddy_huge_page_no_mpol(h
, NUMA_NO_NODE
);
1693 list_add(&page
->lru
, &surplus_list
);
1698 * After retaking hugetlb_lock, we need to recalculate 'needed'
1699 * because either resv_huge_pages or free_huge_pages may have changed.
1701 spin_lock(&hugetlb_lock
);
1702 needed
= (h
->resv_huge_pages
+ delta
) -
1703 (h
->free_huge_pages
+ allocated
);
1708 * We were not able to allocate enough pages to
1709 * satisfy the entire reservation so we free what
1710 * we've allocated so far.
1715 * The surplus_list now contains _at_least_ the number of extra pages
1716 * needed to accommodate the reservation. Add the appropriate number
1717 * of pages to the hugetlb pool and free the extras back to the buddy
1718 * allocator. Commit the entire reservation here to prevent another
1719 * process from stealing the pages as they are added to the pool but
1720 * before they are reserved.
1722 needed
+= allocated
;
1723 h
->resv_huge_pages
+= delta
;
1726 /* Free the needed pages to the hugetlb pool */
1727 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1731 * This page is now managed by the hugetlb allocator and has
1732 * no users -- drop the buddy allocator's reference.
1734 put_page_testzero(page
);
1735 VM_BUG_ON_PAGE(page_count(page
), page
);
1736 enqueue_huge_page(h
, page
);
1739 spin_unlock(&hugetlb_lock
);
1741 /* Free unnecessary surplus pages to the buddy allocator */
1742 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1744 spin_lock(&hugetlb_lock
);
1750 * When releasing a hugetlb pool reservation, any surplus pages that were
1751 * allocated to satisfy the reservation must be explicitly freed if they were
1753 * Called with hugetlb_lock held.
1755 static void return_unused_surplus_pages(struct hstate
*h
,
1756 unsigned long unused_resv_pages
)
1758 unsigned long nr_pages
;
1760 /* Uncommit the reservation */
1761 h
->resv_huge_pages
-= unused_resv_pages
;
1763 /* Cannot return gigantic pages currently */
1764 if (hstate_is_gigantic(h
))
1767 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1770 * We want to release as many surplus pages as possible, spread
1771 * evenly across all nodes with memory. Iterate across these nodes
1772 * until we can no longer free unreserved surplus pages. This occurs
1773 * when the nodes with surplus pages have no free pages.
1774 * free_pool_huge_page() will balance the the freed pages across the
1775 * on-line nodes with memory and will handle the hstate accounting.
1777 while (nr_pages
--) {
1778 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1780 cond_resched_lock(&hugetlb_lock
);
1786 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1787 * are used by the huge page allocation routines to manage reservations.
1789 * vma_needs_reservation is called to determine if the huge page at addr
1790 * within the vma has an associated reservation. If a reservation is
1791 * needed, the value 1 is returned. The caller is then responsible for
1792 * managing the global reservation and subpool usage counts. After
1793 * the huge page has been allocated, vma_commit_reservation is called
1794 * to add the page to the reservation map. If the page allocation fails,
1795 * the reservation must be ended instead of committed. vma_end_reservation
1796 * is called in such cases.
1798 * In the normal case, vma_commit_reservation returns the same value
1799 * as the preceding vma_needs_reservation call. The only time this
1800 * is not the case is if a reserve map was changed between calls. It
1801 * is the responsibility of the caller to notice the difference and
1802 * take appropriate action.
1804 enum vma_resv_mode
{
1809 static long __vma_reservation_common(struct hstate
*h
,
1810 struct vm_area_struct
*vma
, unsigned long addr
,
1811 enum vma_resv_mode mode
)
1813 struct resv_map
*resv
;
1817 resv
= vma_resv_map(vma
);
1821 idx
= vma_hugecache_offset(h
, vma
, addr
);
1823 case VMA_NEEDS_RESV
:
1824 ret
= region_chg(resv
, idx
, idx
+ 1);
1826 case VMA_COMMIT_RESV
:
1827 ret
= region_add(resv
, idx
, idx
+ 1);
1830 region_abort(resv
, idx
, idx
+ 1);
1837 if (vma
->vm_flags
& VM_MAYSHARE
)
1839 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1841 * In most cases, reserves always exist for private mappings.
1842 * However, a file associated with mapping could have been
1843 * hole punched or truncated after reserves were consumed.
1844 * As subsequent fault on such a range will not use reserves.
1845 * Subtle - The reserve map for private mappings has the
1846 * opposite meaning than that of shared mappings. If NO
1847 * entry is in the reserve map, it means a reservation exists.
1848 * If an entry exists in the reserve map, it means the
1849 * reservation has already been consumed. As a result, the
1850 * return value of this routine is the opposite of the
1851 * value returned from reserve map manipulation routines above.
1859 return ret
< 0 ? ret
: 0;
1862 static long vma_needs_reservation(struct hstate
*h
,
1863 struct vm_area_struct
*vma
, unsigned long addr
)
1865 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1868 static long vma_commit_reservation(struct hstate
*h
,
1869 struct vm_area_struct
*vma
, unsigned long addr
)
1871 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1874 static void vma_end_reservation(struct hstate
*h
,
1875 struct vm_area_struct
*vma
, unsigned long addr
)
1877 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1880 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1881 unsigned long addr
, int avoid_reserve
)
1883 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1884 struct hstate
*h
= hstate_vma(vma
);
1886 long map_chg
, map_commit
;
1889 struct hugetlb_cgroup
*h_cg
;
1891 idx
= hstate_index(h
);
1893 * Examine the region/reserve map to determine if the process
1894 * has a reservation for the page to be allocated. A return
1895 * code of zero indicates a reservation exists (no change).
1897 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1899 return ERR_PTR(-ENOMEM
);
1902 * Processes that did not create the mapping will have no
1903 * reserves as indicated by the region/reserve map. Check
1904 * that the allocation will not exceed the subpool limit.
1905 * Allocations for MAP_NORESERVE mappings also need to be
1906 * checked against any subpool limit.
1908 if (map_chg
|| avoid_reserve
) {
1909 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
1911 vma_end_reservation(h
, vma
, addr
);
1912 return ERR_PTR(-ENOSPC
);
1916 * Even though there was no reservation in the region/reserve
1917 * map, there could be reservations associated with the
1918 * subpool that can be used. This would be indicated if the
1919 * return value of hugepage_subpool_get_pages() is zero.
1920 * However, if avoid_reserve is specified we still avoid even
1921 * the subpool reservations.
1927 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1929 goto out_subpool_put
;
1931 spin_lock(&hugetlb_lock
);
1933 * glb_chg is passed to indicate whether or not a page must be taken
1934 * from the global free pool (global change). gbl_chg == 0 indicates
1935 * a reservation exists for the allocation.
1937 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
1939 spin_unlock(&hugetlb_lock
);
1940 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
1942 goto out_uncharge_cgroup
;
1943 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
1944 SetPagePrivate(page
);
1945 h
->resv_huge_pages
--;
1947 spin_lock(&hugetlb_lock
);
1948 list_move(&page
->lru
, &h
->hugepage_activelist
);
1951 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1952 spin_unlock(&hugetlb_lock
);
1954 set_page_private(page
, (unsigned long)spool
);
1956 map_commit
= vma_commit_reservation(h
, vma
, addr
);
1957 if (unlikely(map_chg
> map_commit
)) {
1959 * The page was added to the reservation map between
1960 * vma_needs_reservation and vma_commit_reservation.
1961 * This indicates a race with hugetlb_reserve_pages.
1962 * Adjust for the subpool count incremented above AND
1963 * in hugetlb_reserve_pages for the same page. Also,
1964 * the reservation count added in hugetlb_reserve_pages
1965 * no longer applies.
1969 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
1970 hugetlb_acct_memory(h
, -rsv_adjust
);
1974 out_uncharge_cgroup
:
1975 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1977 if (map_chg
|| avoid_reserve
)
1978 hugepage_subpool_put_pages(spool
, 1);
1979 vma_end_reservation(h
, vma
, addr
);
1980 return ERR_PTR(-ENOSPC
);
1984 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1985 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1986 * where no ERR_VALUE is expected to be returned.
1988 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1989 unsigned long addr
, int avoid_reserve
)
1991 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1997 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1999 struct huge_bootmem_page
*m
;
2002 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2005 addr
= memblock_virt_alloc_try_nid_nopanic(
2006 huge_page_size(h
), huge_page_size(h
),
2007 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
2010 * Use the beginning of the huge page to store the
2011 * huge_bootmem_page struct (until gather_bootmem
2012 * puts them into the mem_map).
2021 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2022 /* Put them into a private list first because mem_map is not up yet */
2023 list_add(&m
->list
, &huge_boot_pages
);
2028 static void __init
prep_compound_huge_page(struct page
*page
,
2031 if (unlikely(order
> (MAX_ORDER
- 1)))
2032 prep_compound_gigantic_page(page
, order
);
2034 prep_compound_page(page
, order
);
2037 /* Put bootmem huge pages into the standard lists after mem_map is up */
2038 static void __init
gather_bootmem_prealloc(void)
2040 struct huge_bootmem_page
*m
;
2042 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2043 struct hstate
*h
= m
->hstate
;
2046 #ifdef CONFIG_HIGHMEM
2047 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2048 memblock_free_late(__pa(m
),
2049 sizeof(struct huge_bootmem_page
));
2051 page
= virt_to_page(m
);
2053 WARN_ON(page_count(page
) != 1);
2054 prep_compound_huge_page(page
, h
->order
);
2055 WARN_ON(PageReserved(page
));
2056 prep_new_huge_page(h
, page
, page_to_nid(page
));
2058 * If we had gigantic hugepages allocated at boot time, we need
2059 * to restore the 'stolen' pages to totalram_pages in order to
2060 * fix confusing memory reports from free(1) and another
2061 * side-effects, like CommitLimit going negative.
2063 if (hstate_is_gigantic(h
))
2064 adjust_managed_page_count(page
, 1 << h
->order
);
2068 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2072 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2073 if (hstate_is_gigantic(h
)) {
2074 if (!alloc_bootmem_huge_page(h
))
2076 } else if (!alloc_fresh_huge_page(h
,
2077 &node_states
[N_MEMORY
]))
2080 h
->max_huge_pages
= i
;
2083 static void __init
hugetlb_init_hstates(void)
2087 for_each_hstate(h
) {
2088 if (minimum_order
> huge_page_order(h
))
2089 minimum_order
= huge_page_order(h
);
2091 /* oversize hugepages were init'ed in early boot */
2092 if (!hstate_is_gigantic(h
))
2093 hugetlb_hstate_alloc_pages(h
);
2095 VM_BUG_ON(minimum_order
== UINT_MAX
);
2098 static char * __init
memfmt(char *buf
, unsigned long n
)
2100 if (n
>= (1UL << 30))
2101 sprintf(buf
, "%lu GB", n
>> 30);
2102 else if (n
>= (1UL << 20))
2103 sprintf(buf
, "%lu MB", n
>> 20);
2105 sprintf(buf
, "%lu KB", n
>> 10);
2109 static void __init
report_hugepages(void)
2113 for_each_hstate(h
) {
2115 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2116 memfmt(buf
, huge_page_size(h
)),
2117 h
->free_huge_pages
);
2121 #ifdef CONFIG_HIGHMEM
2122 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2123 nodemask_t
*nodes_allowed
)
2127 if (hstate_is_gigantic(h
))
2130 for_each_node_mask(i
, *nodes_allowed
) {
2131 struct page
*page
, *next
;
2132 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2133 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2134 if (count
>= h
->nr_huge_pages
)
2136 if (PageHighMem(page
))
2138 list_del(&page
->lru
);
2139 update_and_free_page(h
, page
);
2140 h
->free_huge_pages
--;
2141 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2146 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2147 nodemask_t
*nodes_allowed
)
2153 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2154 * balanced by operating on them in a round-robin fashion.
2155 * Returns 1 if an adjustment was made.
2157 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2162 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2165 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2166 if (h
->surplus_huge_pages_node
[node
])
2170 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2171 if (h
->surplus_huge_pages_node
[node
] <
2172 h
->nr_huge_pages_node
[node
])
2179 h
->surplus_huge_pages
+= delta
;
2180 h
->surplus_huge_pages_node
[node
] += delta
;
2184 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2185 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2186 nodemask_t
*nodes_allowed
)
2188 unsigned long min_count
, ret
;
2190 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2191 return h
->max_huge_pages
;
2194 * Increase the pool size
2195 * First take pages out of surplus state. Then make up the
2196 * remaining difference by allocating fresh huge pages.
2198 * We might race with __alloc_buddy_huge_page() here and be unable
2199 * to convert a surplus huge page to a normal huge page. That is
2200 * not critical, though, it just means the overall size of the
2201 * pool might be one hugepage larger than it needs to be, but
2202 * within all the constraints specified by the sysctls.
2204 spin_lock(&hugetlb_lock
);
2205 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2206 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2210 while (count
> persistent_huge_pages(h
)) {
2212 * If this allocation races such that we no longer need the
2213 * page, free_huge_page will handle it by freeing the page
2214 * and reducing the surplus.
2216 spin_unlock(&hugetlb_lock
);
2217 if (hstate_is_gigantic(h
))
2218 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2220 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2221 spin_lock(&hugetlb_lock
);
2225 /* Bail for signals. Probably ctrl-c from user */
2226 if (signal_pending(current
))
2231 * Decrease the pool size
2232 * First return free pages to the buddy allocator (being careful
2233 * to keep enough around to satisfy reservations). Then place
2234 * pages into surplus state as needed so the pool will shrink
2235 * to the desired size as pages become free.
2237 * By placing pages into the surplus state independent of the
2238 * overcommit value, we are allowing the surplus pool size to
2239 * exceed overcommit. There are few sane options here. Since
2240 * __alloc_buddy_huge_page() is checking the global counter,
2241 * though, we'll note that we're not allowed to exceed surplus
2242 * and won't grow the pool anywhere else. Not until one of the
2243 * sysctls are changed, or the surplus pages go out of use.
2245 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2246 min_count
= max(count
, min_count
);
2247 try_to_free_low(h
, min_count
, nodes_allowed
);
2248 while (min_count
< persistent_huge_pages(h
)) {
2249 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2251 cond_resched_lock(&hugetlb_lock
);
2253 while (count
< persistent_huge_pages(h
)) {
2254 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2258 ret
= persistent_huge_pages(h
);
2259 spin_unlock(&hugetlb_lock
);
2263 #define HSTATE_ATTR_RO(_name) \
2264 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2266 #define HSTATE_ATTR(_name) \
2267 static struct kobj_attribute _name##_attr = \
2268 __ATTR(_name, 0644, _name##_show, _name##_store)
2270 static struct kobject
*hugepages_kobj
;
2271 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2273 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2275 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2279 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2280 if (hstate_kobjs
[i
] == kobj
) {
2282 *nidp
= NUMA_NO_NODE
;
2286 return kobj_to_node_hstate(kobj
, nidp
);
2289 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2290 struct kobj_attribute
*attr
, char *buf
)
2293 unsigned long nr_huge_pages
;
2296 h
= kobj_to_hstate(kobj
, &nid
);
2297 if (nid
== NUMA_NO_NODE
)
2298 nr_huge_pages
= h
->nr_huge_pages
;
2300 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2302 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2305 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2306 struct hstate
*h
, int nid
,
2307 unsigned long count
, size_t len
)
2310 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2312 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2317 if (nid
== NUMA_NO_NODE
) {
2319 * global hstate attribute
2321 if (!(obey_mempolicy
&&
2322 init_nodemask_of_mempolicy(nodes_allowed
))) {
2323 NODEMASK_FREE(nodes_allowed
);
2324 nodes_allowed
= &node_states
[N_MEMORY
];
2326 } else if (nodes_allowed
) {
2328 * per node hstate attribute: adjust count to global,
2329 * but restrict alloc/free to the specified node.
2331 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2332 init_nodemask_of_node(nodes_allowed
, nid
);
2334 nodes_allowed
= &node_states
[N_MEMORY
];
2336 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2338 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2339 NODEMASK_FREE(nodes_allowed
);
2343 NODEMASK_FREE(nodes_allowed
);
2347 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2348 struct kobject
*kobj
, const char *buf
,
2352 unsigned long count
;
2356 err
= kstrtoul(buf
, 10, &count
);
2360 h
= kobj_to_hstate(kobj
, &nid
);
2361 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2364 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2365 struct kobj_attribute
*attr
, char *buf
)
2367 return nr_hugepages_show_common(kobj
, attr
, buf
);
2370 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2371 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2373 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2375 HSTATE_ATTR(nr_hugepages
);
2380 * hstate attribute for optionally mempolicy-based constraint on persistent
2381 * huge page alloc/free.
2383 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2384 struct kobj_attribute
*attr
, char *buf
)
2386 return nr_hugepages_show_common(kobj
, attr
, buf
);
2389 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2390 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2392 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2394 HSTATE_ATTR(nr_hugepages_mempolicy
);
2398 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2399 struct kobj_attribute
*attr
, char *buf
)
2401 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2402 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2405 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2406 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2409 unsigned long input
;
2410 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2412 if (hstate_is_gigantic(h
))
2415 err
= kstrtoul(buf
, 10, &input
);
2419 spin_lock(&hugetlb_lock
);
2420 h
->nr_overcommit_huge_pages
= input
;
2421 spin_unlock(&hugetlb_lock
);
2425 HSTATE_ATTR(nr_overcommit_hugepages
);
2427 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2428 struct kobj_attribute
*attr
, char *buf
)
2431 unsigned long free_huge_pages
;
2434 h
= kobj_to_hstate(kobj
, &nid
);
2435 if (nid
== NUMA_NO_NODE
)
2436 free_huge_pages
= h
->free_huge_pages
;
2438 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2440 return sprintf(buf
, "%lu\n", free_huge_pages
);
2442 HSTATE_ATTR_RO(free_hugepages
);
2444 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2445 struct kobj_attribute
*attr
, char *buf
)
2447 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2448 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2450 HSTATE_ATTR_RO(resv_hugepages
);
2452 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2453 struct kobj_attribute
*attr
, char *buf
)
2456 unsigned long surplus_huge_pages
;
2459 h
= kobj_to_hstate(kobj
, &nid
);
2460 if (nid
== NUMA_NO_NODE
)
2461 surplus_huge_pages
= h
->surplus_huge_pages
;
2463 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2465 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2467 HSTATE_ATTR_RO(surplus_hugepages
);
2469 static struct attribute
*hstate_attrs
[] = {
2470 &nr_hugepages_attr
.attr
,
2471 &nr_overcommit_hugepages_attr
.attr
,
2472 &free_hugepages_attr
.attr
,
2473 &resv_hugepages_attr
.attr
,
2474 &surplus_hugepages_attr
.attr
,
2476 &nr_hugepages_mempolicy_attr
.attr
,
2481 static struct attribute_group hstate_attr_group
= {
2482 .attrs
= hstate_attrs
,
2485 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2486 struct kobject
**hstate_kobjs
,
2487 struct attribute_group
*hstate_attr_group
)
2490 int hi
= hstate_index(h
);
2492 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2493 if (!hstate_kobjs
[hi
])
2496 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2498 kobject_put(hstate_kobjs
[hi
]);
2503 static void __init
hugetlb_sysfs_init(void)
2508 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2509 if (!hugepages_kobj
)
2512 for_each_hstate(h
) {
2513 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2514 hstate_kobjs
, &hstate_attr_group
);
2516 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2523 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2524 * with node devices in node_devices[] using a parallel array. The array
2525 * index of a node device or _hstate == node id.
2526 * This is here to avoid any static dependency of the node device driver, in
2527 * the base kernel, on the hugetlb module.
2529 struct node_hstate
{
2530 struct kobject
*hugepages_kobj
;
2531 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2533 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2536 * A subset of global hstate attributes for node devices
2538 static struct attribute
*per_node_hstate_attrs
[] = {
2539 &nr_hugepages_attr
.attr
,
2540 &free_hugepages_attr
.attr
,
2541 &surplus_hugepages_attr
.attr
,
2545 static struct attribute_group per_node_hstate_attr_group
= {
2546 .attrs
= per_node_hstate_attrs
,
2550 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2551 * Returns node id via non-NULL nidp.
2553 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2557 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2558 struct node_hstate
*nhs
= &node_hstates
[nid
];
2560 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2561 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2573 * Unregister hstate attributes from a single node device.
2574 * No-op if no hstate attributes attached.
2576 static void hugetlb_unregister_node(struct node
*node
)
2579 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2581 if (!nhs
->hugepages_kobj
)
2582 return; /* no hstate attributes */
2584 for_each_hstate(h
) {
2585 int idx
= hstate_index(h
);
2586 if (nhs
->hstate_kobjs
[idx
]) {
2587 kobject_put(nhs
->hstate_kobjs
[idx
]);
2588 nhs
->hstate_kobjs
[idx
] = NULL
;
2592 kobject_put(nhs
->hugepages_kobj
);
2593 nhs
->hugepages_kobj
= NULL
;
2598 * Register hstate attributes for a single node device.
2599 * No-op if attributes already registered.
2601 static void hugetlb_register_node(struct node
*node
)
2604 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2607 if (nhs
->hugepages_kobj
)
2608 return; /* already allocated */
2610 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2612 if (!nhs
->hugepages_kobj
)
2615 for_each_hstate(h
) {
2616 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2618 &per_node_hstate_attr_group
);
2620 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2621 h
->name
, node
->dev
.id
);
2622 hugetlb_unregister_node(node
);
2629 * hugetlb init time: register hstate attributes for all registered node
2630 * devices of nodes that have memory. All on-line nodes should have
2631 * registered their associated device by this time.
2633 static void __init
hugetlb_register_all_nodes(void)
2637 for_each_node_state(nid
, N_MEMORY
) {
2638 struct node
*node
= node_devices
[nid
];
2639 if (node
->dev
.id
== nid
)
2640 hugetlb_register_node(node
);
2644 * Let the node device driver know we're here so it can
2645 * [un]register hstate attributes on node hotplug.
2647 register_hugetlbfs_with_node(hugetlb_register_node
,
2648 hugetlb_unregister_node
);
2650 #else /* !CONFIG_NUMA */
2652 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2660 static void hugetlb_register_all_nodes(void) { }
2664 static int __init
hugetlb_init(void)
2668 if (!hugepages_supported())
2671 if (!size_to_hstate(default_hstate_size
)) {
2672 default_hstate_size
= HPAGE_SIZE
;
2673 if (!size_to_hstate(default_hstate_size
))
2674 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2676 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2677 if (default_hstate_max_huge_pages
) {
2678 if (!default_hstate
.max_huge_pages
)
2679 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2682 hugetlb_init_hstates();
2683 gather_bootmem_prealloc();
2686 hugetlb_sysfs_init();
2687 hugetlb_register_all_nodes();
2688 hugetlb_cgroup_file_init();
2691 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2693 num_fault_mutexes
= 1;
2695 hugetlb_fault_mutex_table
=
2696 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2697 BUG_ON(!hugetlb_fault_mutex_table
);
2699 for (i
= 0; i
< num_fault_mutexes
; i
++)
2700 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2703 subsys_initcall(hugetlb_init
);
2705 /* Should be called on processing a hugepagesz=... option */
2706 void __init
hugetlb_bad_size(void)
2708 parsed_valid_hugepagesz
= false;
2711 void __init
hugetlb_add_hstate(unsigned int order
)
2716 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2717 pr_warn("hugepagesz= specified twice, ignoring\n");
2720 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2722 h
= &hstates
[hugetlb_max_hstate
++];
2724 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2725 h
->nr_huge_pages
= 0;
2726 h
->free_huge_pages
= 0;
2727 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2728 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2729 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2730 h
->next_nid_to_alloc
= first_memory_node
;
2731 h
->next_nid_to_free
= first_memory_node
;
2732 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2733 huge_page_size(h
)/1024);
2738 static int __init
hugetlb_nrpages_setup(char *s
)
2741 static unsigned long *last_mhp
;
2743 if (!parsed_valid_hugepagesz
) {
2744 pr_warn("hugepages = %s preceded by "
2745 "an unsupported hugepagesz, ignoring\n", s
);
2746 parsed_valid_hugepagesz
= true;
2750 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2751 * so this hugepages= parameter goes to the "default hstate".
2753 else if (!hugetlb_max_hstate
)
2754 mhp
= &default_hstate_max_huge_pages
;
2756 mhp
= &parsed_hstate
->max_huge_pages
;
2758 if (mhp
== last_mhp
) {
2759 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2763 if (sscanf(s
, "%lu", mhp
) <= 0)
2767 * Global state is always initialized later in hugetlb_init.
2768 * But we need to allocate >= MAX_ORDER hstates here early to still
2769 * use the bootmem allocator.
2771 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2772 hugetlb_hstate_alloc_pages(parsed_hstate
);
2778 __setup("hugepages=", hugetlb_nrpages_setup
);
2780 static int __init
hugetlb_default_setup(char *s
)
2782 default_hstate_size
= memparse(s
, &s
);
2785 __setup("default_hugepagesz=", hugetlb_default_setup
);
2787 static unsigned int cpuset_mems_nr(unsigned int *array
)
2790 unsigned int nr
= 0;
2792 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2798 #ifdef CONFIG_SYSCTL
2799 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2800 struct ctl_table
*table
, int write
,
2801 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2803 struct hstate
*h
= &default_hstate
;
2804 unsigned long tmp
= h
->max_huge_pages
;
2807 if (!hugepages_supported())
2811 table
->maxlen
= sizeof(unsigned long);
2812 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2817 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2818 NUMA_NO_NODE
, tmp
, *length
);
2823 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2824 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2827 return hugetlb_sysctl_handler_common(false, table
, write
,
2828 buffer
, length
, ppos
);
2832 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2833 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2835 return hugetlb_sysctl_handler_common(true, table
, write
,
2836 buffer
, length
, ppos
);
2838 #endif /* CONFIG_NUMA */
2840 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2841 void __user
*buffer
,
2842 size_t *length
, loff_t
*ppos
)
2844 struct hstate
*h
= &default_hstate
;
2848 if (!hugepages_supported())
2851 tmp
= h
->nr_overcommit_huge_pages
;
2853 if (write
&& hstate_is_gigantic(h
))
2857 table
->maxlen
= sizeof(unsigned long);
2858 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2863 spin_lock(&hugetlb_lock
);
2864 h
->nr_overcommit_huge_pages
= tmp
;
2865 spin_unlock(&hugetlb_lock
);
2871 #endif /* CONFIG_SYSCTL */
2873 void hugetlb_report_meminfo(struct seq_file
*m
)
2875 struct hstate
*h
= &default_hstate
;
2876 if (!hugepages_supported())
2879 "HugePages_Total: %5lu\n"
2880 "HugePages_Free: %5lu\n"
2881 "HugePages_Rsvd: %5lu\n"
2882 "HugePages_Surp: %5lu\n"
2883 "Hugepagesize: %8lu kB\n",
2887 h
->surplus_huge_pages
,
2888 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2891 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2893 struct hstate
*h
= &default_hstate
;
2894 if (!hugepages_supported())
2897 "Node %d HugePages_Total: %5u\n"
2898 "Node %d HugePages_Free: %5u\n"
2899 "Node %d HugePages_Surp: %5u\n",
2900 nid
, h
->nr_huge_pages_node
[nid
],
2901 nid
, h
->free_huge_pages_node
[nid
],
2902 nid
, h
->surplus_huge_pages_node
[nid
]);
2905 void hugetlb_show_meminfo(void)
2910 if (!hugepages_supported())
2913 for_each_node_state(nid
, N_MEMORY
)
2915 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2917 h
->nr_huge_pages_node
[nid
],
2918 h
->free_huge_pages_node
[nid
],
2919 h
->surplus_huge_pages_node
[nid
],
2920 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2923 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
2925 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
2926 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
2929 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2930 unsigned long hugetlb_total_pages(void)
2933 unsigned long nr_total_pages
= 0;
2936 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2937 return nr_total_pages
;
2940 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2944 spin_lock(&hugetlb_lock
);
2946 * When cpuset is configured, it breaks the strict hugetlb page
2947 * reservation as the accounting is done on a global variable. Such
2948 * reservation is completely rubbish in the presence of cpuset because
2949 * the reservation is not checked against page availability for the
2950 * current cpuset. Application can still potentially OOM'ed by kernel
2951 * with lack of free htlb page in cpuset that the task is in.
2952 * Attempt to enforce strict accounting with cpuset is almost
2953 * impossible (or too ugly) because cpuset is too fluid that
2954 * task or memory node can be dynamically moved between cpusets.
2956 * The change of semantics for shared hugetlb mapping with cpuset is
2957 * undesirable. However, in order to preserve some of the semantics,
2958 * we fall back to check against current free page availability as
2959 * a best attempt and hopefully to minimize the impact of changing
2960 * semantics that cpuset has.
2963 if (gather_surplus_pages(h
, delta
) < 0)
2966 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2967 return_unused_surplus_pages(h
, delta
);
2974 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2977 spin_unlock(&hugetlb_lock
);
2981 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2983 struct resv_map
*resv
= vma_resv_map(vma
);
2986 * This new VMA should share its siblings reservation map if present.
2987 * The VMA will only ever have a valid reservation map pointer where
2988 * it is being copied for another still existing VMA. As that VMA
2989 * has a reference to the reservation map it cannot disappear until
2990 * after this open call completes. It is therefore safe to take a
2991 * new reference here without additional locking.
2993 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2994 kref_get(&resv
->refs
);
2997 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2999 struct hstate
*h
= hstate_vma(vma
);
3000 struct resv_map
*resv
= vma_resv_map(vma
);
3001 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3002 unsigned long reserve
, start
, end
;
3005 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3008 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3009 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3011 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3013 kref_put(&resv
->refs
, resv_map_release
);
3017 * Decrement reserve counts. The global reserve count may be
3018 * adjusted if the subpool has a minimum size.
3020 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3021 hugetlb_acct_memory(h
, -gbl_reserve
);
3026 * We cannot handle pagefaults against hugetlb pages at all. They cause
3027 * handle_mm_fault() to try to instantiate regular-sized pages in the
3028 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3031 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3037 const struct vm_operations_struct hugetlb_vm_ops
= {
3038 .fault
= hugetlb_vm_op_fault
,
3039 .open
= hugetlb_vm_op_open
,
3040 .close
= hugetlb_vm_op_close
,
3043 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3049 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3050 vma
->vm_page_prot
)));
3052 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3053 vma
->vm_page_prot
));
3055 entry
= pte_mkyoung(entry
);
3056 entry
= pte_mkhuge(entry
);
3057 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3062 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3063 unsigned long address
, pte_t
*ptep
)
3067 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3068 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3069 update_mmu_cache(vma
, address
, ptep
);
3072 static int is_hugetlb_entry_migration(pte_t pte
)
3076 if (huge_pte_none(pte
) || pte_present(pte
))
3078 swp
= pte_to_swp_entry(pte
);
3079 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3085 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3089 if (huge_pte_none(pte
) || pte_present(pte
))
3091 swp
= pte_to_swp_entry(pte
);
3092 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3098 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3099 struct vm_area_struct
*vma
)
3101 pte_t
*src_pte
, *dst_pte
, entry
;
3102 struct page
*ptepage
;
3105 struct hstate
*h
= hstate_vma(vma
);
3106 unsigned long sz
= huge_page_size(h
);
3107 unsigned long mmun_start
; /* For mmu_notifiers */
3108 unsigned long mmun_end
; /* For mmu_notifiers */
3111 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3113 mmun_start
= vma
->vm_start
;
3114 mmun_end
= vma
->vm_end
;
3116 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3118 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3119 spinlock_t
*src_ptl
, *dst_ptl
;
3120 src_pte
= huge_pte_offset(src
, addr
);
3123 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3129 /* If the pagetables are shared don't copy or take references */
3130 if (dst_pte
== src_pte
)
3133 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3134 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3135 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3136 entry
= huge_ptep_get(src_pte
);
3137 if (huge_pte_none(entry
)) { /* skip none entry */
3139 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3140 is_hugetlb_entry_hwpoisoned(entry
))) {
3141 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3143 if (is_write_migration_entry(swp_entry
) && cow
) {
3145 * COW mappings require pages in both
3146 * parent and child to be set to read.
3148 make_migration_entry_read(&swp_entry
);
3149 entry
= swp_entry_to_pte(swp_entry
);
3150 set_huge_pte_at(src
, addr
, src_pte
, entry
);
3152 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3155 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3156 mmu_notifier_invalidate_range(src
, mmun_start
,
3159 entry
= huge_ptep_get(src_pte
);
3160 ptepage
= pte_page(entry
);
3162 page_dup_rmap(ptepage
, true);
3163 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3164 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3166 spin_unlock(src_ptl
);
3167 spin_unlock(dst_ptl
);
3171 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3176 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3177 unsigned long start
, unsigned long end
,
3178 struct page
*ref_page
)
3180 int force_flush
= 0;
3181 struct mm_struct
*mm
= vma
->vm_mm
;
3182 unsigned long address
;
3187 struct hstate
*h
= hstate_vma(vma
);
3188 unsigned long sz
= huge_page_size(h
);
3189 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3190 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3192 WARN_ON(!is_vm_hugetlb_page(vma
));
3193 BUG_ON(start
& ~huge_page_mask(h
));
3194 BUG_ON(end
& ~huge_page_mask(h
));
3196 tlb_start_vma(tlb
, vma
);
3197 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3200 for (; address
< end
; address
+= sz
) {
3201 ptep
= huge_pte_offset(mm
, address
);
3205 ptl
= huge_pte_lock(h
, mm
, ptep
);
3206 if (huge_pmd_unshare(mm
, &address
, ptep
))
3209 pte
= huge_ptep_get(ptep
);
3210 if (huge_pte_none(pte
))
3214 * Migrating hugepage or HWPoisoned hugepage is already
3215 * unmapped and its refcount is dropped, so just clear pte here.
3217 if (unlikely(!pte_present(pte
))) {
3218 huge_pte_clear(mm
, address
, ptep
);
3222 page
= pte_page(pte
);
3224 * If a reference page is supplied, it is because a specific
3225 * page is being unmapped, not a range. Ensure the page we
3226 * are about to unmap is the actual page of interest.
3229 if (page
!= ref_page
)
3233 * Mark the VMA as having unmapped its page so that
3234 * future faults in this VMA will fail rather than
3235 * looking like data was lost
3237 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3240 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3241 tlb_remove_tlb_entry(tlb
, ptep
, address
);
3242 if (huge_pte_dirty(pte
))
3243 set_page_dirty(page
);
3245 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3246 page_remove_rmap(page
, true);
3247 force_flush
= !__tlb_remove_page(tlb
, page
);
3253 /* Bail out after unmapping reference page if supplied */
3262 * mmu_gather ran out of room to batch pages, we break out of
3263 * the PTE lock to avoid doing the potential expensive TLB invalidate
3264 * and page-free while holding it.
3269 if (address
< end
&& !ref_page
)
3272 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3273 tlb_end_vma(tlb
, vma
);
3276 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3277 struct vm_area_struct
*vma
, unsigned long start
,
3278 unsigned long end
, struct page
*ref_page
)
3280 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3283 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3284 * test will fail on a vma being torn down, and not grab a page table
3285 * on its way out. We're lucky that the flag has such an appropriate
3286 * name, and can in fact be safely cleared here. We could clear it
3287 * before the __unmap_hugepage_range above, but all that's necessary
3288 * is to clear it before releasing the i_mmap_rwsem. This works
3289 * because in the context this is called, the VMA is about to be
3290 * destroyed and the i_mmap_rwsem is held.
3292 vma
->vm_flags
&= ~VM_MAYSHARE
;
3295 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3296 unsigned long end
, struct page
*ref_page
)
3298 struct mm_struct
*mm
;
3299 struct mmu_gather tlb
;
3303 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3304 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3305 tlb_finish_mmu(&tlb
, start
, end
);
3309 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3310 * mappping it owns the reserve page for. The intention is to unmap the page
3311 * from other VMAs and let the children be SIGKILLed if they are faulting the
3314 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3315 struct page
*page
, unsigned long address
)
3317 struct hstate
*h
= hstate_vma(vma
);
3318 struct vm_area_struct
*iter_vma
;
3319 struct address_space
*mapping
;
3323 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3324 * from page cache lookup which is in HPAGE_SIZE units.
3326 address
= address
& huge_page_mask(h
);
3327 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3329 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
3332 * Take the mapping lock for the duration of the table walk. As
3333 * this mapping should be shared between all the VMAs,
3334 * __unmap_hugepage_range() is called as the lock is already held
3336 i_mmap_lock_write(mapping
);
3337 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3338 /* Do not unmap the current VMA */
3339 if (iter_vma
== vma
)
3343 * Shared VMAs have their own reserves and do not affect
3344 * MAP_PRIVATE accounting but it is possible that a shared
3345 * VMA is using the same page so check and skip such VMAs.
3347 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3351 * Unmap the page from other VMAs without their own reserves.
3352 * They get marked to be SIGKILLed if they fault in these
3353 * areas. This is because a future no-page fault on this VMA
3354 * could insert a zeroed page instead of the data existing
3355 * from the time of fork. This would look like data corruption
3357 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3358 unmap_hugepage_range(iter_vma
, address
,
3359 address
+ huge_page_size(h
), page
);
3361 i_mmap_unlock_write(mapping
);
3365 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3366 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3367 * cannot race with other handlers or page migration.
3368 * Keep the pte_same checks anyway to make transition from the mutex easier.
3370 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3371 unsigned long address
, pte_t
*ptep
, pte_t pte
,
3372 struct page
*pagecache_page
, spinlock_t
*ptl
)
3374 struct hstate
*h
= hstate_vma(vma
);
3375 struct page
*old_page
, *new_page
;
3376 int ret
= 0, outside_reserve
= 0;
3377 unsigned long mmun_start
; /* For mmu_notifiers */
3378 unsigned long mmun_end
; /* For mmu_notifiers */
3380 old_page
= pte_page(pte
);
3383 /* If no-one else is actually using this page, avoid the copy
3384 * and just make the page writable */
3385 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3386 page_move_anon_rmap(old_page
, vma
, address
);
3387 set_huge_ptep_writable(vma
, address
, ptep
);
3392 * If the process that created a MAP_PRIVATE mapping is about to
3393 * perform a COW due to a shared page count, attempt to satisfy
3394 * the allocation without using the existing reserves. The pagecache
3395 * page is used to determine if the reserve at this address was
3396 * consumed or not. If reserves were used, a partial faulted mapping
3397 * at the time of fork() could consume its reserves on COW instead
3398 * of the full address range.
3400 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3401 old_page
!= pagecache_page
)
3402 outside_reserve
= 1;
3407 * Drop page table lock as buddy allocator may be called. It will
3408 * be acquired again before returning to the caller, as expected.
3411 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3413 if (IS_ERR(new_page
)) {
3415 * If a process owning a MAP_PRIVATE mapping fails to COW,
3416 * it is due to references held by a child and an insufficient
3417 * huge page pool. To guarantee the original mappers
3418 * reliability, unmap the page from child processes. The child
3419 * may get SIGKILLed if it later faults.
3421 if (outside_reserve
) {
3423 BUG_ON(huge_pte_none(pte
));
3424 unmap_ref_private(mm
, vma
, old_page
, address
);
3425 BUG_ON(huge_pte_none(pte
));
3427 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3429 pte_same(huge_ptep_get(ptep
), pte
)))
3430 goto retry_avoidcopy
;
3432 * race occurs while re-acquiring page table
3433 * lock, and our job is done.
3438 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3439 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3440 goto out_release_old
;
3444 * When the original hugepage is shared one, it does not have
3445 * anon_vma prepared.
3447 if (unlikely(anon_vma_prepare(vma
))) {
3449 goto out_release_all
;
3452 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3453 pages_per_huge_page(h
));
3454 __SetPageUptodate(new_page
);
3455 set_page_huge_active(new_page
);
3457 mmun_start
= address
& huge_page_mask(h
);
3458 mmun_end
= mmun_start
+ huge_page_size(h
);
3459 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3462 * Retake the page table lock to check for racing updates
3463 * before the page tables are altered
3466 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3467 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3468 ClearPagePrivate(new_page
);
3471 huge_ptep_clear_flush(vma
, address
, ptep
);
3472 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3473 set_huge_pte_at(mm
, address
, ptep
,
3474 make_huge_pte(vma
, new_page
, 1));
3475 page_remove_rmap(old_page
, true);
3476 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3477 /* Make the old page be freed below */
3478 new_page
= old_page
;
3481 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3487 spin_lock(ptl
); /* Caller expects lock to be held */
3491 /* Return the pagecache page at a given address within a VMA */
3492 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3493 struct vm_area_struct
*vma
, unsigned long address
)
3495 struct address_space
*mapping
;
3498 mapping
= vma
->vm_file
->f_mapping
;
3499 idx
= vma_hugecache_offset(h
, vma
, address
);
3501 return find_lock_page(mapping
, idx
);
3505 * Return whether there is a pagecache page to back given address within VMA.
3506 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3508 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3509 struct vm_area_struct
*vma
, unsigned long address
)
3511 struct address_space
*mapping
;
3515 mapping
= vma
->vm_file
->f_mapping
;
3516 idx
= vma_hugecache_offset(h
, vma
, address
);
3518 page
= find_get_page(mapping
, idx
);
3521 return page
!= NULL
;
3524 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3527 struct inode
*inode
= mapping
->host
;
3528 struct hstate
*h
= hstate_inode(inode
);
3529 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3533 ClearPagePrivate(page
);
3535 spin_lock(&inode
->i_lock
);
3536 inode
->i_blocks
+= blocks_per_huge_page(h
);
3537 spin_unlock(&inode
->i_lock
);
3541 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3542 struct address_space
*mapping
, pgoff_t idx
,
3543 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3545 struct hstate
*h
= hstate_vma(vma
);
3546 int ret
= VM_FAULT_SIGBUS
;
3554 * Currently, we are forced to kill the process in the event the
3555 * original mapper has unmapped pages from the child due to a failed
3556 * COW. Warn that such a situation has occurred as it may not be obvious
3558 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3559 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3565 * Use page lock to guard against racing truncation
3566 * before we get page_table_lock.
3569 page
= find_lock_page(mapping
, idx
);
3571 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3574 page
= alloc_huge_page(vma
, address
, 0);
3576 ret
= PTR_ERR(page
);
3580 ret
= VM_FAULT_SIGBUS
;
3583 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3584 __SetPageUptodate(page
);
3585 set_page_huge_active(page
);
3587 if (vma
->vm_flags
& VM_MAYSHARE
) {
3588 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3597 if (unlikely(anon_vma_prepare(vma
))) {
3599 goto backout_unlocked
;
3605 * If memory error occurs between mmap() and fault, some process
3606 * don't have hwpoisoned swap entry for errored virtual address.
3607 * So we need to block hugepage fault by PG_hwpoison bit check.
3609 if (unlikely(PageHWPoison(page
))) {
3610 ret
= VM_FAULT_HWPOISON
|
3611 VM_FAULT_SET_HINDEX(hstate_index(h
));
3612 goto backout_unlocked
;
3617 * If we are going to COW a private mapping later, we examine the
3618 * pending reservations for this page now. This will ensure that
3619 * any allocations necessary to record that reservation occur outside
3622 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3623 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3625 goto backout_unlocked
;
3627 /* Just decrements count, does not deallocate */
3628 vma_end_reservation(h
, vma
, address
);
3631 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3633 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3638 if (!huge_pte_none(huge_ptep_get(ptep
)))
3642 ClearPagePrivate(page
);
3643 hugepage_add_new_anon_rmap(page
, vma
, address
);
3645 page_dup_rmap(page
, true);
3646 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3647 && (vma
->vm_flags
& VM_SHARED
)));
3648 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3650 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3651 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3652 /* Optimization, do the COW without a second fault */
3653 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3670 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3671 struct vm_area_struct
*vma
,
3672 struct address_space
*mapping
,
3673 pgoff_t idx
, unsigned long address
)
3675 unsigned long key
[2];
3678 if (vma
->vm_flags
& VM_SHARED
) {
3679 key
[0] = (unsigned long) mapping
;
3682 key
[0] = (unsigned long) mm
;
3683 key
[1] = address
>> huge_page_shift(h
);
3686 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3688 return hash
& (num_fault_mutexes
- 1);
3692 * For uniprocesor systems we always use a single mutex, so just
3693 * return 0 and avoid the hashing overhead.
3695 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3696 struct vm_area_struct
*vma
,
3697 struct address_space
*mapping
,
3698 pgoff_t idx
, unsigned long address
)
3704 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3705 unsigned long address
, unsigned int flags
)
3712 struct page
*page
= NULL
;
3713 struct page
*pagecache_page
= NULL
;
3714 struct hstate
*h
= hstate_vma(vma
);
3715 struct address_space
*mapping
;
3716 int need_wait_lock
= 0;
3718 address
&= huge_page_mask(h
);
3720 ptep
= huge_pte_offset(mm
, address
);
3722 entry
= huge_ptep_get(ptep
);
3723 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3724 migration_entry_wait_huge(vma
, mm
, ptep
);
3726 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3727 return VM_FAULT_HWPOISON_LARGE
|
3728 VM_FAULT_SET_HINDEX(hstate_index(h
));
3730 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3732 return VM_FAULT_OOM
;
3735 mapping
= vma
->vm_file
->f_mapping
;
3736 idx
= vma_hugecache_offset(h
, vma
, address
);
3739 * Serialize hugepage allocation and instantiation, so that we don't
3740 * get spurious allocation failures if two CPUs race to instantiate
3741 * the same page in the page cache.
3743 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3744 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3746 entry
= huge_ptep_get(ptep
);
3747 if (huge_pte_none(entry
)) {
3748 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3755 * entry could be a migration/hwpoison entry at this point, so this
3756 * check prevents the kernel from going below assuming that we have
3757 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3758 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3761 if (!pte_present(entry
))
3765 * If we are going to COW the mapping later, we examine the pending
3766 * reservations for this page now. This will ensure that any
3767 * allocations necessary to record that reservation occur outside the
3768 * spinlock. For private mappings, we also lookup the pagecache
3769 * page now as it is used to determine if a reservation has been
3772 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3773 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3777 /* Just decrements count, does not deallocate */
3778 vma_end_reservation(h
, vma
, address
);
3780 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3781 pagecache_page
= hugetlbfs_pagecache_page(h
,
3785 ptl
= huge_pte_lock(h
, mm
, ptep
);
3787 /* Check for a racing update before calling hugetlb_cow */
3788 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3792 * hugetlb_cow() requires page locks of pte_page(entry) and
3793 * pagecache_page, so here we need take the former one
3794 * when page != pagecache_page or !pagecache_page.
3796 page
= pte_page(entry
);
3797 if (page
!= pagecache_page
)
3798 if (!trylock_page(page
)) {
3805 if (flags
& FAULT_FLAG_WRITE
) {
3806 if (!huge_pte_write(entry
)) {
3807 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3808 pagecache_page
, ptl
);
3811 entry
= huge_pte_mkdirty(entry
);
3813 entry
= pte_mkyoung(entry
);
3814 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3815 flags
& FAULT_FLAG_WRITE
))
3816 update_mmu_cache(vma
, address
, ptep
);
3818 if (page
!= pagecache_page
)
3824 if (pagecache_page
) {
3825 unlock_page(pagecache_page
);
3826 put_page(pagecache_page
);
3829 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3831 * Generally it's safe to hold refcount during waiting page lock. But
3832 * here we just wait to defer the next page fault to avoid busy loop and
3833 * the page is not used after unlocked before returning from the current
3834 * page fault. So we are safe from accessing freed page, even if we wait
3835 * here without taking refcount.
3838 wait_on_page_locked(page
);
3842 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3843 struct page
**pages
, struct vm_area_struct
**vmas
,
3844 unsigned long *position
, unsigned long *nr_pages
,
3845 long i
, unsigned int flags
)
3847 unsigned long pfn_offset
;
3848 unsigned long vaddr
= *position
;
3849 unsigned long remainder
= *nr_pages
;
3850 struct hstate
*h
= hstate_vma(vma
);
3852 while (vaddr
< vma
->vm_end
&& remainder
) {
3854 spinlock_t
*ptl
= NULL
;
3859 * If we have a pending SIGKILL, don't keep faulting pages and
3860 * potentially allocating memory.
3862 if (unlikely(fatal_signal_pending(current
))) {
3868 * Some archs (sparc64, sh*) have multiple pte_ts to
3869 * each hugepage. We have to make sure we get the
3870 * first, for the page indexing below to work.
3872 * Note that page table lock is not held when pte is null.
3874 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3876 ptl
= huge_pte_lock(h
, mm
, pte
);
3877 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3880 * When coredumping, it suits get_dump_page if we just return
3881 * an error where there's an empty slot with no huge pagecache
3882 * to back it. This way, we avoid allocating a hugepage, and
3883 * the sparse dumpfile avoids allocating disk blocks, but its
3884 * huge holes still show up with zeroes where they need to be.
3886 if (absent
&& (flags
& FOLL_DUMP
) &&
3887 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3895 * We need call hugetlb_fault for both hugepages under migration
3896 * (in which case hugetlb_fault waits for the migration,) and
3897 * hwpoisoned hugepages (in which case we need to prevent the
3898 * caller from accessing to them.) In order to do this, we use
3899 * here is_swap_pte instead of is_hugetlb_entry_migration and
3900 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3901 * both cases, and because we can't follow correct pages
3902 * directly from any kind of swap entries.
3904 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3905 ((flags
& FOLL_WRITE
) &&
3906 !huge_pte_write(huge_ptep_get(pte
)))) {
3911 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3912 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3913 if (!(ret
& VM_FAULT_ERROR
))
3920 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3921 page
= pte_page(huge_ptep_get(pte
));
3924 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3935 if (vaddr
< vma
->vm_end
&& remainder
&&
3936 pfn_offset
< pages_per_huge_page(h
)) {
3938 * We use pfn_offset to avoid touching the pageframes
3939 * of this compound page.
3945 *nr_pages
= remainder
;
3948 return i
? i
: -EFAULT
;
3951 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3952 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3954 struct mm_struct
*mm
= vma
->vm_mm
;
3955 unsigned long start
= address
;
3958 struct hstate
*h
= hstate_vma(vma
);
3959 unsigned long pages
= 0;
3961 BUG_ON(address
>= end
);
3962 flush_cache_range(vma
, address
, end
);
3964 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3965 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3966 for (; address
< end
; address
+= huge_page_size(h
)) {
3968 ptep
= huge_pte_offset(mm
, address
);
3971 ptl
= huge_pte_lock(h
, mm
, ptep
);
3972 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3977 pte
= huge_ptep_get(ptep
);
3978 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3982 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3983 swp_entry_t entry
= pte_to_swp_entry(pte
);
3985 if (is_write_migration_entry(entry
)) {
3988 make_migration_entry_read(&entry
);
3989 newpte
= swp_entry_to_pte(entry
);
3990 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3996 if (!huge_pte_none(pte
)) {
3997 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3998 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3999 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4000 set_huge_pte_at(mm
, address
, ptep
, pte
);
4006 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4007 * may have cleared our pud entry and done put_page on the page table:
4008 * once we release i_mmap_rwsem, another task can do the final put_page
4009 * and that page table be reused and filled with junk.
4011 flush_tlb_range(vma
, start
, end
);
4012 mmu_notifier_invalidate_range(mm
, start
, end
);
4013 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4014 mmu_notifier_invalidate_range_end(mm
, start
, end
);
4016 return pages
<< h
->order
;
4019 int hugetlb_reserve_pages(struct inode
*inode
,
4021 struct vm_area_struct
*vma
,
4022 vm_flags_t vm_flags
)
4025 struct hstate
*h
= hstate_inode(inode
);
4026 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4027 struct resv_map
*resv_map
;
4031 * Only apply hugepage reservation if asked. At fault time, an
4032 * attempt will be made for VM_NORESERVE to allocate a page
4033 * without using reserves
4035 if (vm_flags
& VM_NORESERVE
)
4039 * Shared mappings base their reservation on the number of pages that
4040 * are already allocated on behalf of the file. Private mappings need
4041 * to reserve the full area even if read-only as mprotect() may be
4042 * called to make the mapping read-write. Assume !vma is a shm mapping
4044 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4045 resv_map
= inode_resv_map(inode
);
4047 chg
= region_chg(resv_map
, from
, to
);
4050 resv_map
= resv_map_alloc();
4056 set_vma_resv_map(vma
, resv_map
);
4057 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4066 * There must be enough pages in the subpool for the mapping. If
4067 * the subpool has a minimum size, there may be some global
4068 * reservations already in place (gbl_reserve).
4070 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4071 if (gbl_reserve
< 0) {
4077 * Check enough hugepages are available for the reservation.
4078 * Hand the pages back to the subpool if there are not
4080 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4082 /* put back original number of pages, chg */
4083 (void)hugepage_subpool_put_pages(spool
, chg
);
4088 * Account for the reservations made. Shared mappings record regions
4089 * that have reservations as they are shared by multiple VMAs.
4090 * When the last VMA disappears, the region map says how much
4091 * the reservation was and the page cache tells how much of
4092 * the reservation was consumed. Private mappings are per-VMA and
4093 * only the consumed reservations are tracked. When the VMA
4094 * disappears, the original reservation is the VMA size and the
4095 * consumed reservations are stored in the map. Hence, nothing
4096 * else has to be done for private mappings here
4098 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4099 long add
= region_add(resv_map
, from
, to
);
4101 if (unlikely(chg
> add
)) {
4103 * pages in this range were added to the reserve
4104 * map between region_chg and region_add. This
4105 * indicates a race with alloc_huge_page. Adjust
4106 * the subpool and reserve counts modified above
4107 * based on the difference.
4111 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4113 hugetlb_acct_memory(h
, -rsv_adjust
);
4118 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4119 region_abort(resv_map
, from
, to
);
4120 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4121 kref_put(&resv_map
->refs
, resv_map_release
);
4125 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4128 struct hstate
*h
= hstate_inode(inode
);
4129 struct resv_map
*resv_map
= inode_resv_map(inode
);
4131 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4135 chg
= region_del(resv_map
, start
, end
);
4137 * region_del() can fail in the rare case where a region
4138 * must be split and another region descriptor can not be
4139 * allocated. If end == LONG_MAX, it will not fail.
4145 spin_lock(&inode
->i_lock
);
4146 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4147 spin_unlock(&inode
->i_lock
);
4150 * If the subpool has a minimum size, the number of global
4151 * reservations to be released may be adjusted.
4153 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4154 hugetlb_acct_memory(h
, -gbl_reserve
);
4159 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4160 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4161 struct vm_area_struct
*vma
,
4162 unsigned long addr
, pgoff_t idx
)
4164 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4166 unsigned long sbase
= saddr
& PUD_MASK
;
4167 unsigned long s_end
= sbase
+ PUD_SIZE
;
4169 /* Allow segments to share if only one is marked locked */
4170 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4171 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4174 * match the virtual addresses, permission and the alignment of the
4177 if (pmd_index(addr
) != pmd_index(saddr
) ||
4178 vm_flags
!= svm_flags
||
4179 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4185 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4187 unsigned long base
= addr
& PUD_MASK
;
4188 unsigned long end
= base
+ PUD_SIZE
;
4191 * check on proper vm_flags and page table alignment
4193 if (vma
->vm_flags
& VM_MAYSHARE
&&
4194 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4200 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4201 * and returns the corresponding pte. While this is not necessary for the
4202 * !shared pmd case because we can allocate the pmd later as well, it makes the
4203 * code much cleaner. pmd allocation is essential for the shared case because
4204 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4205 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4206 * bad pmd for sharing.
4208 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4210 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4211 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4212 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4214 struct vm_area_struct
*svma
;
4215 unsigned long saddr
;
4220 if (!vma_shareable(vma
, addr
))
4221 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4223 i_mmap_lock_write(mapping
);
4224 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4228 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4230 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
4232 get_page(virt_to_page(spte
));
4241 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
4243 if (pud_none(*pud
)) {
4244 pud_populate(mm
, pud
,
4245 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4248 put_page(virt_to_page(spte
));
4252 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4253 i_mmap_unlock_write(mapping
);
4258 * unmap huge page backed by shared pte.
4260 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4261 * indicated by page_count > 1, unmap is achieved by clearing pud and
4262 * decrementing the ref count. If count == 1, the pte page is not shared.
4264 * called with page table lock held.
4266 * returns: 1 successfully unmapped a shared pte page
4267 * 0 the underlying pte page is not shared, or it is the last user
4269 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4271 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4272 pud_t
*pud
= pud_offset(pgd
, *addr
);
4274 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4275 if (page_count(virt_to_page(ptep
)) == 1)
4279 put_page(virt_to_page(ptep
));
4281 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4284 #define want_pmd_share() (1)
4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4286 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4291 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4295 #define want_pmd_share() (0)
4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4299 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4300 unsigned long addr
, unsigned long sz
)
4306 pgd
= pgd_offset(mm
, addr
);
4307 pud
= pud_alloc(mm
, pgd
, addr
);
4309 if (sz
== PUD_SIZE
) {
4312 BUG_ON(sz
!= PMD_SIZE
);
4313 if (want_pmd_share() && pud_none(*pud
))
4314 pte
= huge_pmd_share(mm
, addr
, pud
);
4316 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4319 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
4324 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
4330 pgd
= pgd_offset(mm
, addr
);
4331 if (pgd_present(*pgd
)) {
4332 pud
= pud_offset(pgd
, addr
);
4333 if (pud_present(*pud
)) {
4335 return (pte_t
*)pud
;
4336 pmd
= pmd_offset(pud
, addr
);
4339 return (pte_t
*) pmd
;
4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345 * These functions are overwritable if your architecture needs its own
4348 struct page
* __weak
4349 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4352 return ERR_PTR(-EINVAL
);
4355 struct page
* __weak
4356 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4357 pmd_t
*pmd
, int flags
)
4359 struct page
*page
= NULL
;
4362 ptl
= pmd_lockptr(mm
, pmd
);
4365 * make sure that the address range covered by this pmd is not
4366 * unmapped from other threads.
4368 if (!pmd_huge(*pmd
))
4370 if (pmd_present(*pmd
)) {
4371 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4372 if (flags
& FOLL_GET
)
4375 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
4377 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4381 * hwpoisoned entry is treated as no_page_table in
4382 * follow_page_mask().
4390 struct page
* __weak
4391 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4392 pud_t
*pud
, int flags
)
4394 if (flags
& FOLL_GET
)
4397 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4400 #ifdef CONFIG_MEMORY_FAILURE
4403 * This function is called from memory failure code.
4404 * Assume the caller holds page lock of the head page.
4406 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
4408 struct hstate
*h
= page_hstate(hpage
);
4409 int nid
= page_to_nid(hpage
);
4412 spin_lock(&hugetlb_lock
);
4414 * Just checking !page_huge_active is not enough, because that could be
4415 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4417 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
4419 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4420 * but dangling hpage->lru can trigger list-debug warnings
4421 * (this happens when we call unpoison_memory() on it),
4422 * so let it point to itself with list_del_init().
4424 list_del_init(&hpage
->lru
);
4425 set_page_refcounted(hpage
);
4426 h
->free_huge_pages
--;
4427 h
->free_huge_pages_node
[nid
]--;
4430 spin_unlock(&hugetlb_lock
);
4435 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4439 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4440 spin_lock(&hugetlb_lock
);
4441 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4445 clear_page_huge_active(page
);
4446 list_move_tail(&page
->lru
, list
);
4448 spin_unlock(&hugetlb_lock
);
4452 void putback_active_hugepage(struct page
*page
)
4454 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4455 spin_lock(&hugetlb_lock
);
4456 set_page_huge_active(page
);
4457 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4458 spin_unlock(&hugetlb_lock
);