Merge branch 'mlxsw-fixes'
[linux/fpc-iii.git] / mm / hugetlb.c
blobc1f3c0be150a94f09588672ce44ade9047d78958
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
108 spool->rsv_hpages = min_hpages;
110 return spool;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
132 long ret = delta;
134 if (!spool)
135 return ret;
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
163 unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
177 long ret = delta;
179 if (!spool)
180 return delta;
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
205 return ret;
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
237 struct file_region {
238 struct list_head link;
239 long from;
240 long to;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
287 add += t - f;
288 goto out_locked;
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
324 out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
359 retry:
360 spin_lock(&resv->lock);
361 retry_locked:
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
434 chg -= rg->to - rg->from;
437 out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442 out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
487 retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
500 if (rg->from >= t)
501 break;
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
525 del += t - f;
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
533 rg->to = f;
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
611 return chg;
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
660 #endif
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
709 return NULL;
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
722 return resv_map;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
740 VM_BUG_ON(resv_map->adds_in_progress);
742 kfree(resv_map);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
759 } else {
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 return true;
812 else
813 return false;
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
825 if (chg)
826 return false;
827 else
828 return true;
832 * Only the process that called mmap() has reserves for
833 * private mappings.
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
851 if (chg)
852 return false;
853 else
854 return true;
857 return false;
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 struct page *page;
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h->hugepage_freelists[nid] == &page->lru)
880 return NULL;
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
900 long chg)
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
906 struct zone *zone;
907 struct zoneref *z;
908 unsigned int cpuset_mems_cookie;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
917 goto err;
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 goto err;
923 retry_cpuset:
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
940 break;
945 mpol_cond_put(mpol);
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 goto retry_cpuset;
948 return page;
950 err:
951 return NULL;
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
966 return nid;
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
985 int nid;
987 VM_BUG_ON(!nodes_allowed);
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992 return nid;
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 int nid;
1005 VM_BUG_ON(!nodes_allowed);
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010 return nid;
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026 static void destroy_compound_gigantic_page(struct page *page,
1027 unsigned int order)
1029 int i;
1030 int nr_pages = 1 << order;
1031 struct page *p = page + 1;
1033 atomic_set(compound_mapcount_ptr(page), 0);
1034 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1035 clear_compound_head(p);
1036 set_page_refcounted(p);
1039 set_compound_order(page, 0);
1040 __ClearPageHead(page);
1043 static void free_gigantic_page(struct page *page, unsigned int order)
1045 free_contig_range(page_to_pfn(page), 1 << order);
1048 static int __alloc_gigantic_page(unsigned long start_pfn,
1049 unsigned long nr_pages)
1051 unsigned long end_pfn = start_pfn + nr_pages;
1052 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055 static bool pfn_range_valid_gigantic(struct zone *z,
1056 unsigned long start_pfn, unsigned long nr_pages)
1058 unsigned long i, end_pfn = start_pfn + nr_pages;
1059 struct page *page;
1061 for (i = start_pfn; i < end_pfn; i++) {
1062 if (!pfn_valid(i))
1063 return false;
1065 page = pfn_to_page(i);
1067 if (page_zone(page) != z)
1068 return false;
1070 if (PageReserved(page))
1071 return false;
1073 if (page_count(page) > 0)
1074 return false;
1076 if (PageHuge(page))
1077 return false;
1080 return true;
1083 static bool zone_spans_last_pfn(const struct zone *zone,
1084 unsigned long start_pfn, unsigned long nr_pages)
1086 unsigned long last_pfn = start_pfn + nr_pages - 1;
1087 return zone_spans_pfn(zone, last_pfn);
1090 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1092 unsigned long nr_pages = 1 << order;
1093 unsigned long ret, pfn, flags;
1094 struct zone *z;
1096 z = NODE_DATA(nid)->node_zones;
1097 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1098 spin_lock_irqsave(&z->lock, flags);
1100 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1101 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1102 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1104 * We release the zone lock here because
1105 * alloc_contig_range() will also lock the zone
1106 * at some point. If there's an allocation
1107 * spinning on this lock, it may win the race
1108 * and cause alloc_contig_range() to fail...
1110 spin_unlock_irqrestore(&z->lock, flags);
1111 ret = __alloc_gigantic_page(pfn, nr_pages);
1112 if (!ret)
1113 return pfn_to_page(pfn);
1114 spin_lock_irqsave(&z->lock, flags);
1116 pfn += nr_pages;
1119 spin_unlock_irqrestore(&z->lock, flags);
1122 return NULL;
1125 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1126 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1128 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1130 struct page *page;
1132 page = alloc_gigantic_page(nid, huge_page_order(h));
1133 if (page) {
1134 prep_compound_gigantic_page(page, huge_page_order(h));
1135 prep_new_huge_page(h, page, nid);
1138 return page;
1141 static int alloc_fresh_gigantic_page(struct hstate *h,
1142 nodemask_t *nodes_allowed)
1144 struct page *page = NULL;
1145 int nr_nodes, node;
1147 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1148 page = alloc_fresh_gigantic_page_node(h, node);
1149 if (page)
1150 return 1;
1153 return 0;
1156 static inline bool gigantic_page_supported(void) { return true; }
1157 #else
1158 static inline bool gigantic_page_supported(void) { return false; }
1159 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1160 static inline void destroy_compound_gigantic_page(struct page *page,
1161 unsigned int order) { }
1162 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1163 nodemask_t *nodes_allowed) { return 0; }
1164 #endif
1166 static void update_and_free_page(struct hstate *h, struct page *page)
1168 int i;
1170 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1171 return;
1173 h->nr_huge_pages--;
1174 h->nr_huge_pages_node[page_to_nid(page)]--;
1175 for (i = 0; i < pages_per_huge_page(h); i++) {
1176 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177 1 << PG_referenced | 1 << PG_dirty |
1178 1 << PG_active | 1 << PG_private |
1179 1 << PG_writeback);
1181 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183 set_page_refcounted(page);
1184 if (hstate_is_gigantic(h)) {
1185 destroy_compound_gigantic_page(page, huge_page_order(h));
1186 free_gigantic_page(page, huge_page_order(h));
1187 } else {
1188 __free_pages(page, huge_page_order(h));
1192 struct hstate *size_to_hstate(unsigned long size)
1194 struct hstate *h;
1196 for_each_hstate(h) {
1197 if (huge_page_size(h) == size)
1198 return h;
1200 return NULL;
1204 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205 * to hstate->hugepage_activelist.)
1207 * This function can be called for tail pages, but never returns true for them.
1209 bool page_huge_active(struct page *page)
1211 VM_BUG_ON_PAGE(!PageHuge(page), page);
1212 return PageHead(page) && PagePrivate(&page[1]);
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page *page)
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 SetPagePrivate(&page[1]);
1222 static void clear_page_huge_active(struct page *page)
1224 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225 ClearPagePrivate(&page[1]);
1228 void free_huge_page(struct page *page)
1231 * Can't pass hstate in here because it is called from the
1232 * compound page destructor.
1234 struct hstate *h = page_hstate(page);
1235 int nid = page_to_nid(page);
1236 struct hugepage_subpool *spool =
1237 (struct hugepage_subpool *)page_private(page);
1238 bool restore_reserve;
1240 set_page_private(page, 0);
1241 page->mapping = NULL;
1242 VM_BUG_ON_PAGE(page_count(page), page);
1243 VM_BUG_ON_PAGE(page_mapcount(page), page);
1244 restore_reserve = PagePrivate(page);
1245 ClearPagePrivate(page);
1248 * A return code of zero implies that the subpool will be under its
1249 * minimum size if the reservation is not restored after page is free.
1250 * Therefore, force restore_reserve operation.
1252 if (hugepage_subpool_put_pages(spool, 1) == 0)
1253 restore_reserve = true;
1255 spin_lock(&hugetlb_lock);
1256 clear_page_huge_active(page);
1257 hugetlb_cgroup_uncharge_page(hstate_index(h),
1258 pages_per_huge_page(h), page);
1259 if (restore_reserve)
1260 h->resv_huge_pages++;
1262 if (h->surplus_huge_pages_node[nid]) {
1263 /* remove the page from active list */
1264 list_del(&page->lru);
1265 update_and_free_page(h, page);
1266 h->surplus_huge_pages--;
1267 h->surplus_huge_pages_node[nid]--;
1268 } else {
1269 arch_clear_hugepage_flags(page);
1270 enqueue_huge_page(h, page);
1272 spin_unlock(&hugetlb_lock);
1275 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1277 INIT_LIST_HEAD(&page->lru);
1278 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1279 spin_lock(&hugetlb_lock);
1280 set_hugetlb_cgroup(page, NULL);
1281 h->nr_huge_pages++;
1282 h->nr_huge_pages_node[nid]++;
1283 spin_unlock(&hugetlb_lock);
1284 put_page(page); /* free it into the hugepage allocator */
1287 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1289 int i;
1290 int nr_pages = 1 << order;
1291 struct page *p = page + 1;
1293 /* we rely on prep_new_huge_page to set the destructor */
1294 set_compound_order(page, order);
1295 __ClearPageReserved(page);
1296 __SetPageHead(page);
1297 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1299 * For gigantic hugepages allocated through bootmem at
1300 * boot, it's safer to be consistent with the not-gigantic
1301 * hugepages and clear the PG_reserved bit from all tail pages
1302 * too. Otherwse drivers using get_user_pages() to access tail
1303 * pages may get the reference counting wrong if they see
1304 * PG_reserved set on a tail page (despite the head page not
1305 * having PG_reserved set). Enforcing this consistency between
1306 * head and tail pages allows drivers to optimize away a check
1307 * on the head page when they need know if put_page() is needed
1308 * after get_user_pages().
1310 __ClearPageReserved(p);
1311 set_page_count(p, 0);
1312 set_compound_head(p, page);
1314 atomic_set(compound_mapcount_ptr(page), -1);
1318 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1319 * transparent huge pages. See the PageTransHuge() documentation for more
1320 * details.
1322 int PageHuge(struct page *page)
1324 if (!PageCompound(page))
1325 return 0;
1327 page = compound_head(page);
1328 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1330 EXPORT_SYMBOL_GPL(PageHuge);
1333 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1334 * normal or transparent huge pages.
1336 int PageHeadHuge(struct page *page_head)
1338 if (!PageHead(page_head))
1339 return 0;
1341 return get_compound_page_dtor(page_head) == free_huge_page;
1344 pgoff_t __basepage_index(struct page *page)
1346 struct page *page_head = compound_head(page);
1347 pgoff_t index = page_index(page_head);
1348 unsigned long compound_idx;
1350 if (!PageHuge(page_head))
1351 return page_index(page);
1353 if (compound_order(page_head) >= MAX_ORDER)
1354 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1355 else
1356 compound_idx = page - page_head;
1358 return (index << compound_order(page_head)) + compound_idx;
1361 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1363 struct page *page;
1365 page = __alloc_pages_node(nid,
1366 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1367 __GFP_REPEAT|__GFP_NOWARN,
1368 huge_page_order(h));
1369 if (page) {
1370 prep_new_huge_page(h, page, nid);
1373 return page;
1376 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1378 struct page *page;
1379 int nr_nodes, node;
1380 int ret = 0;
1382 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1383 page = alloc_fresh_huge_page_node(h, node);
1384 if (page) {
1385 ret = 1;
1386 break;
1390 if (ret)
1391 count_vm_event(HTLB_BUDDY_PGALLOC);
1392 else
1393 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395 return ret;
1399 * Free huge page from pool from next node to free.
1400 * Attempt to keep persistent huge pages more or less
1401 * balanced over allowed nodes.
1402 * Called with hugetlb_lock locked.
1404 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1405 bool acct_surplus)
1407 int nr_nodes, node;
1408 int ret = 0;
1410 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1412 * If we're returning unused surplus pages, only examine
1413 * nodes with surplus pages.
1415 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1416 !list_empty(&h->hugepage_freelists[node])) {
1417 struct page *page =
1418 list_entry(h->hugepage_freelists[node].next,
1419 struct page, lru);
1420 list_del(&page->lru);
1421 h->free_huge_pages--;
1422 h->free_huge_pages_node[node]--;
1423 if (acct_surplus) {
1424 h->surplus_huge_pages--;
1425 h->surplus_huge_pages_node[node]--;
1427 update_and_free_page(h, page);
1428 ret = 1;
1429 break;
1433 return ret;
1437 * Dissolve a given free hugepage into free buddy pages. This function does
1438 * nothing for in-use (including surplus) hugepages.
1440 static void dissolve_free_huge_page(struct page *page)
1442 spin_lock(&hugetlb_lock);
1443 if (PageHuge(page) && !page_count(page)) {
1444 struct hstate *h = page_hstate(page);
1445 int nid = page_to_nid(page);
1446 list_del(&page->lru);
1447 h->free_huge_pages--;
1448 h->free_huge_pages_node[nid]--;
1449 update_and_free_page(h, page);
1451 spin_unlock(&hugetlb_lock);
1455 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1456 * make specified memory blocks removable from the system.
1457 * Note that start_pfn should aligned with (minimum) hugepage size.
1459 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1461 unsigned long pfn;
1463 if (!hugepages_supported())
1464 return;
1466 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1467 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1468 dissolve_free_huge_page(pfn_to_page(pfn));
1472 * There are 3 ways this can get called:
1473 * 1. With vma+addr: we use the VMA's memory policy
1474 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1475 * page from any node, and let the buddy allocator itself figure
1476 * it out.
1477 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1478 * strictly from 'nid'
1480 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1481 struct vm_area_struct *vma, unsigned long addr, int nid)
1483 int order = huge_page_order(h);
1484 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1485 unsigned int cpuset_mems_cookie;
1488 * We need a VMA to get a memory policy. If we do not
1489 * have one, we use the 'nid' argument.
1491 * The mempolicy stuff below has some non-inlined bits
1492 * and calls ->vm_ops. That makes it hard to optimize at
1493 * compile-time, even when NUMA is off and it does
1494 * nothing. This helps the compiler optimize it out.
1496 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1498 * If a specific node is requested, make sure to
1499 * get memory from there, but only when a node
1500 * is explicitly specified.
1502 if (nid != NUMA_NO_NODE)
1503 gfp |= __GFP_THISNODE;
1505 * Make sure to call something that can handle
1506 * nid=NUMA_NO_NODE
1508 return alloc_pages_node(nid, gfp, order);
1512 * OK, so we have a VMA. Fetch the mempolicy and try to
1513 * allocate a huge page with it. We will only reach this
1514 * when CONFIG_NUMA=y.
1516 do {
1517 struct page *page;
1518 struct mempolicy *mpol;
1519 struct zonelist *zl;
1520 nodemask_t *nodemask;
1522 cpuset_mems_cookie = read_mems_allowed_begin();
1523 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1524 mpol_cond_put(mpol);
1525 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1526 if (page)
1527 return page;
1528 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1530 return NULL;
1534 * There are two ways to allocate a huge page:
1535 * 1. When you have a VMA and an address (like a fault)
1536 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1538 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1539 * this case which signifies that the allocation should be done with
1540 * respect for the VMA's memory policy.
1542 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1543 * implies that memory policies will not be taken in to account.
1545 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1546 struct vm_area_struct *vma, unsigned long addr, int nid)
1548 struct page *page;
1549 unsigned int r_nid;
1551 if (hstate_is_gigantic(h))
1552 return NULL;
1555 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1556 * This makes sure the caller is picking _one_ of the modes with which
1557 * we can call this function, not both.
1559 if (vma || (addr != -1)) {
1560 VM_WARN_ON_ONCE(addr == -1);
1561 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1564 * Assume we will successfully allocate the surplus page to
1565 * prevent racing processes from causing the surplus to exceed
1566 * overcommit
1568 * This however introduces a different race, where a process B
1569 * tries to grow the static hugepage pool while alloc_pages() is
1570 * called by process A. B will only examine the per-node
1571 * counters in determining if surplus huge pages can be
1572 * converted to normal huge pages in adjust_pool_surplus(). A
1573 * won't be able to increment the per-node counter, until the
1574 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1575 * no more huge pages can be converted from surplus to normal
1576 * state (and doesn't try to convert again). Thus, we have a
1577 * case where a surplus huge page exists, the pool is grown, and
1578 * the surplus huge page still exists after, even though it
1579 * should just have been converted to a normal huge page. This
1580 * does not leak memory, though, as the hugepage will be freed
1581 * once it is out of use. It also does not allow the counters to
1582 * go out of whack in adjust_pool_surplus() as we don't modify
1583 * the node values until we've gotten the hugepage and only the
1584 * per-node value is checked there.
1586 spin_lock(&hugetlb_lock);
1587 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1588 spin_unlock(&hugetlb_lock);
1589 return NULL;
1590 } else {
1591 h->nr_huge_pages++;
1592 h->surplus_huge_pages++;
1594 spin_unlock(&hugetlb_lock);
1596 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1598 spin_lock(&hugetlb_lock);
1599 if (page) {
1600 INIT_LIST_HEAD(&page->lru);
1601 r_nid = page_to_nid(page);
1602 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1603 set_hugetlb_cgroup(page, NULL);
1605 * We incremented the global counters already
1607 h->nr_huge_pages_node[r_nid]++;
1608 h->surplus_huge_pages_node[r_nid]++;
1609 __count_vm_event(HTLB_BUDDY_PGALLOC);
1610 } else {
1611 h->nr_huge_pages--;
1612 h->surplus_huge_pages--;
1613 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1615 spin_unlock(&hugetlb_lock);
1617 return page;
1621 * Allocate a huge page from 'nid'. Note, 'nid' may be
1622 * NUMA_NO_NODE, which means that it may be allocated
1623 * anywhere.
1625 static
1626 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1628 unsigned long addr = -1;
1630 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1634 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1636 static
1637 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1638 struct vm_area_struct *vma, unsigned long addr)
1640 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1644 * This allocation function is useful in the context where vma is irrelevant.
1645 * E.g. soft-offlining uses this function because it only cares physical
1646 * address of error page.
1648 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1650 struct page *page = NULL;
1652 spin_lock(&hugetlb_lock);
1653 if (h->free_huge_pages - h->resv_huge_pages > 0)
1654 page = dequeue_huge_page_node(h, nid);
1655 spin_unlock(&hugetlb_lock);
1657 if (!page)
1658 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1660 return page;
1664 * Increase the hugetlb pool such that it can accommodate a reservation
1665 * of size 'delta'.
1667 static int gather_surplus_pages(struct hstate *h, int delta)
1669 struct list_head surplus_list;
1670 struct page *page, *tmp;
1671 int ret, i;
1672 int needed, allocated;
1673 bool alloc_ok = true;
1675 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1676 if (needed <= 0) {
1677 h->resv_huge_pages += delta;
1678 return 0;
1681 allocated = 0;
1682 INIT_LIST_HEAD(&surplus_list);
1684 ret = -ENOMEM;
1685 retry:
1686 spin_unlock(&hugetlb_lock);
1687 for (i = 0; i < needed; i++) {
1688 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1689 if (!page) {
1690 alloc_ok = false;
1691 break;
1693 list_add(&page->lru, &surplus_list);
1695 allocated += i;
1698 * After retaking hugetlb_lock, we need to recalculate 'needed'
1699 * because either resv_huge_pages or free_huge_pages may have changed.
1701 spin_lock(&hugetlb_lock);
1702 needed = (h->resv_huge_pages + delta) -
1703 (h->free_huge_pages + allocated);
1704 if (needed > 0) {
1705 if (alloc_ok)
1706 goto retry;
1708 * We were not able to allocate enough pages to
1709 * satisfy the entire reservation so we free what
1710 * we've allocated so far.
1712 goto free;
1715 * The surplus_list now contains _at_least_ the number of extra pages
1716 * needed to accommodate the reservation. Add the appropriate number
1717 * of pages to the hugetlb pool and free the extras back to the buddy
1718 * allocator. Commit the entire reservation here to prevent another
1719 * process from stealing the pages as they are added to the pool but
1720 * before they are reserved.
1722 needed += allocated;
1723 h->resv_huge_pages += delta;
1724 ret = 0;
1726 /* Free the needed pages to the hugetlb pool */
1727 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1728 if ((--needed) < 0)
1729 break;
1731 * This page is now managed by the hugetlb allocator and has
1732 * no users -- drop the buddy allocator's reference.
1734 put_page_testzero(page);
1735 VM_BUG_ON_PAGE(page_count(page), page);
1736 enqueue_huge_page(h, page);
1738 free:
1739 spin_unlock(&hugetlb_lock);
1741 /* Free unnecessary surplus pages to the buddy allocator */
1742 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1743 put_page(page);
1744 spin_lock(&hugetlb_lock);
1746 return ret;
1750 * When releasing a hugetlb pool reservation, any surplus pages that were
1751 * allocated to satisfy the reservation must be explicitly freed if they were
1752 * never used.
1753 * Called with hugetlb_lock held.
1755 static void return_unused_surplus_pages(struct hstate *h,
1756 unsigned long unused_resv_pages)
1758 unsigned long nr_pages;
1760 /* Uncommit the reservation */
1761 h->resv_huge_pages -= unused_resv_pages;
1763 /* Cannot return gigantic pages currently */
1764 if (hstate_is_gigantic(h))
1765 return;
1767 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1770 * We want to release as many surplus pages as possible, spread
1771 * evenly across all nodes with memory. Iterate across these nodes
1772 * until we can no longer free unreserved surplus pages. This occurs
1773 * when the nodes with surplus pages have no free pages.
1774 * free_pool_huge_page() will balance the the freed pages across the
1775 * on-line nodes with memory and will handle the hstate accounting.
1777 while (nr_pages--) {
1778 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1779 break;
1780 cond_resched_lock(&hugetlb_lock);
1786 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1787 * are used by the huge page allocation routines to manage reservations.
1789 * vma_needs_reservation is called to determine if the huge page at addr
1790 * within the vma has an associated reservation. If a reservation is
1791 * needed, the value 1 is returned. The caller is then responsible for
1792 * managing the global reservation and subpool usage counts. After
1793 * the huge page has been allocated, vma_commit_reservation is called
1794 * to add the page to the reservation map. If the page allocation fails,
1795 * the reservation must be ended instead of committed. vma_end_reservation
1796 * is called in such cases.
1798 * In the normal case, vma_commit_reservation returns the same value
1799 * as the preceding vma_needs_reservation call. The only time this
1800 * is not the case is if a reserve map was changed between calls. It
1801 * is the responsibility of the caller to notice the difference and
1802 * take appropriate action.
1804 enum vma_resv_mode {
1805 VMA_NEEDS_RESV,
1806 VMA_COMMIT_RESV,
1807 VMA_END_RESV,
1809 static long __vma_reservation_common(struct hstate *h,
1810 struct vm_area_struct *vma, unsigned long addr,
1811 enum vma_resv_mode mode)
1813 struct resv_map *resv;
1814 pgoff_t idx;
1815 long ret;
1817 resv = vma_resv_map(vma);
1818 if (!resv)
1819 return 1;
1821 idx = vma_hugecache_offset(h, vma, addr);
1822 switch (mode) {
1823 case VMA_NEEDS_RESV:
1824 ret = region_chg(resv, idx, idx + 1);
1825 break;
1826 case VMA_COMMIT_RESV:
1827 ret = region_add(resv, idx, idx + 1);
1828 break;
1829 case VMA_END_RESV:
1830 region_abort(resv, idx, idx + 1);
1831 ret = 0;
1832 break;
1833 default:
1834 BUG();
1837 if (vma->vm_flags & VM_MAYSHARE)
1838 return ret;
1839 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1841 * In most cases, reserves always exist for private mappings.
1842 * However, a file associated with mapping could have been
1843 * hole punched or truncated after reserves were consumed.
1844 * As subsequent fault on such a range will not use reserves.
1845 * Subtle - The reserve map for private mappings has the
1846 * opposite meaning than that of shared mappings. If NO
1847 * entry is in the reserve map, it means a reservation exists.
1848 * If an entry exists in the reserve map, it means the
1849 * reservation has already been consumed. As a result, the
1850 * return value of this routine is the opposite of the
1851 * value returned from reserve map manipulation routines above.
1853 if (ret)
1854 return 0;
1855 else
1856 return 1;
1858 else
1859 return ret < 0 ? ret : 0;
1862 static long vma_needs_reservation(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr)
1865 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1868 static long vma_commit_reservation(struct hstate *h,
1869 struct vm_area_struct *vma, unsigned long addr)
1871 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1874 static void vma_end_reservation(struct hstate *h,
1875 struct vm_area_struct *vma, unsigned long addr)
1877 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1880 struct page *alloc_huge_page(struct vm_area_struct *vma,
1881 unsigned long addr, int avoid_reserve)
1883 struct hugepage_subpool *spool = subpool_vma(vma);
1884 struct hstate *h = hstate_vma(vma);
1885 struct page *page;
1886 long map_chg, map_commit;
1887 long gbl_chg;
1888 int ret, idx;
1889 struct hugetlb_cgroup *h_cg;
1891 idx = hstate_index(h);
1893 * Examine the region/reserve map to determine if the process
1894 * has a reservation for the page to be allocated. A return
1895 * code of zero indicates a reservation exists (no change).
1897 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1898 if (map_chg < 0)
1899 return ERR_PTR(-ENOMEM);
1902 * Processes that did not create the mapping will have no
1903 * reserves as indicated by the region/reserve map. Check
1904 * that the allocation will not exceed the subpool limit.
1905 * Allocations for MAP_NORESERVE mappings also need to be
1906 * checked against any subpool limit.
1908 if (map_chg || avoid_reserve) {
1909 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1910 if (gbl_chg < 0) {
1911 vma_end_reservation(h, vma, addr);
1912 return ERR_PTR(-ENOSPC);
1916 * Even though there was no reservation in the region/reserve
1917 * map, there could be reservations associated with the
1918 * subpool that can be used. This would be indicated if the
1919 * return value of hugepage_subpool_get_pages() is zero.
1920 * However, if avoid_reserve is specified we still avoid even
1921 * the subpool reservations.
1923 if (avoid_reserve)
1924 gbl_chg = 1;
1927 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1928 if (ret)
1929 goto out_subpool_put;
1931 spin_lock(&hugetlb_lock);
1933 * glb_chg is passed to indicate whether or not a page must be taken
1934 * from the global free pool (global change). gbl_chg == 0 indicates
1935 * a reservation exists for the allocation.
1937 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1938 if (!page) {
1939 spin_unlock(&hugetlb_lock);
1940 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1941 if (!page)
1942 goto out_uncharge_cgroup;
1943 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1944 SetPagePrivate(page);
1945 h->resv_huge_pages--;
1947 spin_lock(&hugetlb_lock);
1948 list_move(&page->lru, &h->hugepage_activelist);
1949 /* Fall through */
1951 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1952 spin_unlock(&hugetlb_lock);
1954 set_page_private(page, (unsigned long)spool);
1956 map_commit = vma_commit_reservation(h, vma, addr);
1957 if (unlikely(map_chg > map_commit)) {
1959 * The page was added to the reservation map between
1960 * vma_needs_reservation and vma_commit_reservation.
1961 * This indicates a race with hugetlb_reserve_pages.
1962 * Adjust for the subpool count incremented above AND
1963 * in hugetlb_reserve_pages for the same page. Also,
1964 * the reservation count added in hugetlb_reserve_pages
1965 * no longer applies.
1967 long rsv_adjust;
1969 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1970 hugetlb_acct_memory(h, -rsv_adjust);
1972 return page;
1974 out_uncharge_cgroup:
1975 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1976 out_subpool_put:
1977 if (map_chg || avoid_reserve)
1978 hugepage_subpool_put_pages(spool, 1);
1979 vma_end_reservation(h, vma, addr);
1980 return ERR_PTR(-ENOSPC);
1984 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1985 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1986 * where no ERR_VALUE is expected to be returned.
1988 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1989 unsigned long addr, int avoid_reserve)
1991 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1992 if (IS_ERR(page))
1993 page = NULL;
1994 return page;
1997 int __weak alloc_bootmem_huge_page(struct hstate *h)
1999 struct huge_bootmem_page *m;
2000 int nr_nodes, node;
2002 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2003 void *addr;
2005 addr = memblock_virt_alloc_try_nid_nopanic(
2006 huge_page_size(h), huge_page_size(h),
2007 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2008 if (addr) {
2010 * Use the beginning of the huge page to store the
2011 * huge_bootmem_page struct (until gather_bootmem
2012 * puts them into the mem_map).
2014 m = addr;
2015 goto found;
2018 return 0;
2020 found:
2021 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2022 /* Put them into a private list first because mem_map is not up yet */
2023 list_add(&m->list, &huge_boot_pages);
2024 m->hstate = h;
2025 return 1;
2028 static void __init prep_compound_huge_page(struct page *page,
2029 unsigned int order)
2031 if (unlikely(order > (MAX_ORDER - 1)))
2032 prep_compound_gigantic_page(page, order);
2033 else
2034 prep_compound_page(page, order);
2037 /* Put bootmem huge pages into the standard lists after mem_map is up */
2038 static void __init gather_bootmem_prealloc(void)
2040 struct huge_bootmem_page *m;
2042 list_for_each_entry(m, &huge_boot_pages, list) {
2043 struct hstate *h = m->hstate;
2044 struct page *page;
2046 #ifdef CONFIG_HIGHMEM
2047 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2048 memblock_free_late(__pa(m),
2049 sizeof(struct huge_bootmem_page));
2050 #else
2051 page = virt_to_page(m);
2052 #endif
2053 WARN_ON(page_count(page) != 1);
2054 prep_compound_huge_page(page, h->order);
2055 WARN_ON(PageReserved(page));
2056 prep_new_huge_page(h, page, page_to_nid(page));
2058 * If we had gigantic hugepages allocated at boot time, we need
2059 * to restore the 'stolen' pages to totalram_pages in order to
2060 * fix confusing memory reports from free(1) and another
2061 * side-effects, like CommitLimit going negative.
2063 if (hstate_is_gigantic(h))
2064 adjust_managed_page_count(page, 1 << h->order);
2068 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2070 unsigned long i;
2072 for (i = 0; i < h->max_huge_pages; ++i) {
2073 if (hstate_is_gigantic(h)) {
2074 if (!alloc_bootmem_huge_page(h))
2075 break;
2076 } else if (!alloc_fresh_huge_page(h,
2077 &node_states[N_MEMORY]))
2078 break;
2080 h->max_huge_pages = i;
2083 static void __init hugetlb_init_hstates(void)
2085 struct hstate *h;
2087 for_each_hstate(h) {
2088 if (minimum_order > huge_page_order(h))
2089 minimum_order = huge_page_order(h);
2091 /* oversize hugepages were init'ed in early boot */
2092 if (!hstate_is_gigantic(h))
2093 hugetlb_hstate_alloc_pages(h);
2095 VM_BUG_ON(minimum_order == UINT_MAX);
2098 static char * __init memfmt(char *buf, unsigned long n)
2100 if (n >= (1UL << 30))
2101 sprintf(buf, "%lu GB", n >> 30);
2102 else if (n >= (1UL << 20))
2103 sprintf(buf, "%lu MB", n >> 20);
2104 else
2105 sprintf(buf, "%lu KB", n >> 10);
2106 return buf;
2109 static void __init report_hugepages(void)
2111 struct hstate *h;
2113 for_each_hstate(h) {
2114 char buf[32];
2115 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2116 memfmt(buf, huge_page_size(h)),
2117 h->free_huge_pages);
2121 #ifdef CONFIG_HIGHMEM
2122 static void try_to_free_low(struct hstate *h, unsigned long count,
2123 nodemask_t *nodes_allowed)
2125 int i;
2127 if (hstate_is_gigantic(h))
2128 return;
2130 for_each_node_mask(i, *nodes_allowed) {
2131 struct page *page, *next;
2132 struct list_head *freel = &h->hugepage_freelists[i];
2133 list_for_each_entry_safe(page, next, freel, lru) {
2134 if (count >= h->nr_huge_pages)
2135 return;
2136 if (PageHighMem(page))
2137 continue;
2138 list_del(&page->lru);
2139 update_and_free_page(h, page);
2140 h->free_huge_pages--;
2141 h->free_huge_pages_node[page_to_nid(page)]--;
2145 #else
2146 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2147 nodemask_t *nodes_allowed)
2150 #endif
2153 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2154 * balanced by operating on them in a round-robin fashion.
2155 * Returns 1 if an adjustment was made.
2157 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2158 int delta)
2160 int nr_nodes, node;
2162 VM_BUG_ON(delta != -1 && delta != 1);
2164 if (delta < 0) {
2165 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2166 if (h->surplus_huge_pages_node[node])
2167 goto found;
2169 } else {
2170 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2171 if (h->surplus_huge_pages_node[node] <
2172 h->nr_huge_pages_node[node])
2173 goto found;
2176 return 0;
2178 found:
2179 h->surplus_huge_pages += delta;
2180 h->surplus_huge_pages_node[node] += delta;
2181 return 1;
2184 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2185 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2186 nodemask_t *nodes_allowed)
2188 unsigned long min_count, ret;
2190 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2191 return h->max_huge_pages;
2194 * Increase the pool size
2195 * First take pages out of surplus state. Then make up the
2196 * remaining difference by allocating fresh huge pages.
2198 * We might race with __alloc_buddy_huge_page() here and be unable
2199 * to convert a surplus huge page to a normal huge page. That is
2200 * not critical, though, it just means the overall size of the
2201 * pool might be one hugepage larger than it needs to be, but
2202 * within all the constraints specified by the sysctls.
2204 spin_lock(&hugetlb_lock);
2205 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2206 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2207 break;
2210 while (count > persistent_huge_pages(h)) {
2212 * If this allocation races such that we no longer need the
2213 * page, free_huge_page will handle it by freeing the page
2214 * and reducing the surplus.
2216 spin_unlock(&hugetlb_lock);
2217 if (hstate_is_gigantic(h))
2218 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2219 else
2220 ret = alloc_fresh_huge_page(h, nodes_allowed);
2221 spin_lock(&hugetlb_lock);
2222 if (!ret)
2223 goto out;
2225 /* Bail for signals. Probably ctrl-c from user */
2226 if (signal_pending(current))
2227 goto out;
2231 * Decrease the pool size
2232 * First return free pages to the buddy allocator (being careful
2233 * to keep enough around to satisfy reservations). Then place
2234 * pages into surplus state as needed so the pool will shrink
2235 * to the desired size as pages become free.
2237 * By placing pages into the surplus state independent of the
2238 * overcommit value, we are allowing the surplus pool size to
2239 * exceed overcommit. There are few sane options here. Since
2240 * __alloc_buddy_huge_page() is checking the global counter,
2241 * though, we'll note that we're not allowed to exceed surplus
2242 * and won't grow the pool anywhere else. Not until one of the
2243 * sysctls are changed, or the surplus pages go out of use.
2245 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2246 min_count = max(count, min_count);
2247 try_to_free_low(h, min_count, nodes_allowed);
2248 while (min_count < persistent_huge_pages(h)) {
2249 if (!free_pool_huge_page(h, nodes_allowed, 0))
2250 break;
2251 cond_resched_lock(&hugetlb_lock);
2253 while (count < persistent_huge_pages(h)) {
2254 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2255 break;
2257 out:
2258 ret = persistent_huge_pages(h);
2259 spin_unlock(&hugetlb_lock);
2260 return ret;
2263 #define HSTATE_ATTR_RO(_name) \
2264 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2266 #define HSTATE_ATTR(_name) \
2267 static struct kobj_attribute _name##_attr = \
2268 __ATTR(_name, 0644, _name##_show, _name##_store)
2270 static struct kobject *hugepages_kobj;
2271 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2273 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2275 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2277 int i;
2279 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2280 if (hstate_kobjs[i] == kobj) {
2281 if (nidp)
2282 *nidp = NUMA_NO_NODE;
2283 return &hstates[i];
2286 return kobj_to_node_hstate(kobj, nidp);
2289 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2290 struct kobj_attribute *attr, char *buf)
2292 struct hstate *h;
2293 unsigned long nr_huge_pages;
2294 int nid;
2296 h = kobj_to_hstate(kobj, &nid);
2297 if (nid == NUMA_NO_NODE)
2298 nr_huge_pages = h->nr_huge_pages;
2299 else
2300 nr_huge_pages = h->nr_huge_pages_node[nid];
2302 return sprintf(buf, "%lu\n", nr_huge_pages);
2305 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2306 struct hstate *h, int nid,
2307 unsigned long count, size_t len)
2309 int err;
2310 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2312 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2313 err = -EINVAL;
2314 goto out;
2317 if (nid == NUMA_NO_NODE) {
2319 * global hstate attribute
2321 if (!(obey_mempolicy &&
2322 init_nodemask_of_mempolicy(nodes_allowed))) {
2323 NODEMASK_FREE(nodes_allowed);
2324 nodes_allowed = &node_states[N_MEMORY];
2326 } else if (nodes_allowed) {
2328 * per node hstate attribute: adjust count to global,
2329 * but restrict alloc/free to the specified node.
2331 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2332 init_nodemask_of_node(nodes_allowed, nid);
2333 } else
2334 nodes_allowed = &node_states[N_MEMORY];
2336 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2338 if (nodes_allowed != &node_states[N_MEMORY])
2339 NODEMASK_FREE(nodes_allowed);
2341 return len;
2342 out:
2343 NODEMASK_FREE(nodes_allowed);
2344 return err;
2347 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2348 struct kobject *kobj, const char *buf,
2349 size_t len)
2351 struct hstate *h;
2352 unsigned long count;
2353 int nid;
2354 int err;
2356 err = kstrtoul(buf, 10, &count);
2357 if (err)
2358 return err;
2360 h = kobj_to_hstate(kobj, &nid);
2361 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2364 static ssize_t nr_hugepages_show(struct kobject *kobj,
2365 struct kobj_attribute *attr, char *buf)
2367 return nr_hugepages_show_common(kobj, attr, buf);
2370 static ssize_t nr_hugepages_store(struct kobject *kobj,
2371 struct kobj_attribute *attr, const char *buf, size_t len)
2373 return nr_hugepages_store_common(false, kobj, buf, len);
2375 HSTATE_ATTR(nr_hugepages);
2377 #ifdef CONFIG_NUMA
2380 * hstate attribute for optionally mempolicy-based constraint on persistent
2381 * huge page alloc/free.
2383 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2384 struct kobj_attribute *attr, char *buf)
2386 return nr_hugepages_show_common(kobj, attr, buf);
2389 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2390 struct kobj_attribute *attr, const char *buf, size_t len)
2392 return nr_hugepages_store_common(true, kobj, buf, len);
2394 HSTATE_ATTR(nr_hugepages_mempolicy);
2395 #endif
2398 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2399 struct kobj_attribute *attr, char *buf)
2401 struct hstate *h = kobj_to_hstate(kobj, NULL);
2402 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2405 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2406 struct kobj_attribute *attr, const char *buf, size_t count)
2408 int err;
2409 unsigned long input;
2410 struct hstate *h = kobj_to_hstate(kobj, NULL);
2412 if (hstate_is_gigantic(h))
2413 return -EINVAL;
2415 err = kstrtoul(buf, 10, &input);
2416 if (err)
2417 return err;
2419 spin_lock(&hugetlb_lock);
2420 h->nr_overcommit_huge_pages = input;
2421 spin_unlock(&hugetlb_lock);
2423 return count;
2425 HSTATE_ATTR(nr_overcommit_hugepages);
2427 static ssize_t free_hugepages_show(struct kobject *kobj,
2428 struct kobj_attribute *attr, char *buf)
2430 struct hstate *h;
2431 unsigned long free_huge_pages;
2432 int nid;
2434 h = kobj_to_hstate(kobj, &nid);
2435 if (nid == NUMA_NO_NODE)
2436 free_huge_pages = h->free_huge_pages;
2437 else
2438 free_huge_pages = h->free_huge_pages_node[nid];
2440 return sprintf(buf, "%lu\n", free_huge_pages);
2442 HSTATE_ATTR_RO(free_hugepages);
2444 static ssize_t resv_hugepages_show(struct kobject *kobj,
2445 struct kobj_attribute *attr, char *buf)
2447 struct hstate *h = kobj_to_hstate(kobj, NULL);
2448 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2450 HSTATE_ATTR_RO(resv_hugepages);
2452 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2453 struct kobj_attribute *attr, char *buf)
2455 struct hstate *h;
2456 unsigned long surplus_huge_pages;
2457 int nid;
2459 h = kobj_to_hstate(kobj, &nid);
2460 if (nid == NUMA_NO_NODE)
2461 surplus_huge_pages = h->surplus_huge_pages;
2462 else
2463 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2465 return sprintf(buf, "%lu\n", surplus_huge_pages);
2467 HSTATE_ATTR_RO(surplus_hugepages);
2469 static struct attribute *hstate_attrs[] = {
2470 &nr_hugepages_attr.attr,
2471 &nr_overcommit_hugepages_attr.attr,
2472 &free_hugepages_attr.attr,
2473 &resv_hugepages_attr.attr,
2474 &surplus_hugepages_attr.attr,
2475 #ifdef CONFIG_NUMA
2476 &nr_hugepages_mempolicy_attr.attr,
2477 #endif
2478 NULL,
2481 static struct attribute_group hstate_attr_group = {
2482 .attrs = hstate_attrs,
2485 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2486 struct kobject **hstate_kobjs,
2487 struct attribute_group *hstate_attr_group)
2489 int retval;
2490 int hi = hstate_index(h);
2492 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2493 if (!hstate_kobjs[hi])
2494 return -ENOMEM;
2496 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2497 if (retval)
2498 kobject_put(hstate_kobjs[hi]);
2500 return retval;
2503 static void __init hugetlb_sysfs_init(void)
2505 struct hstate *h;
2506 int err;
2508 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2509 if (!hugepages_kobj)
2510 return;
2512 for_each_hstate(h) {
2513 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2514 hstate_kobjs, &hstate_attr_group);
2515 if (err)
2516 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2520 #ifdef CONFIG_NUMA
2523 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2524 * with node devices in node_devices[] using a parallel array. The array
2525 * index of a node device or _hstate == node id.
2526 * This is here to avoid any static dependency of the node device driver, in
2527 * the base kernel, on the hugetlb module.
2529 struct node_hstate {
2530 struct kobject *hugepages_kobj;
2531 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2533 static struct node_hstate node_hstates[MAX_NUMNODES];
2536 * A subset of global hstate attributes for node devices
2538 static struct attribute *per_node_hstate_attrs[] = {
2539 &nr_hugepages_attr.attr,
2540 &free_hugepages_attr.attr,
2541 &surplus_hugepages_attr.attr,
2542 NULL,
2545 static struct attribute_group per_node_hstate_attr_group = {
2546 .attrs = per_node_hstate_attrs,
2550 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2551 * Returns node id via non-NULL nidp.
2553 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2555 int nid;
2557 for (nid = 0; nid < nr_node_ids; nid++) {
2558 struct node_hstate *nhs = &node_hstates[nid];
2559 int i;
2560 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2561 if (nhs->hstate_kobjs[i] == kobj) {
2562 if (nidp)
2563 *nidp = nid;
2564 return &hstates[i];
2568 BUG();
2569 return NULL;
2573 * Unregister hstate attributes from a single node device.
2574 * No-op if no hstate attributes attached.
2576 static void hugetlb_unregister_node(struct node *node)
2578 struct hstate *h;
2579 struct node_hstate *nhs = &node_hstates[node->dev.id];
2581 if (!nhs->hugepages_kobj)
2582 return; /* no hstate attributes */
2584 for_each_hstate(h) {
2585 int idx = hstate_index(h);
2586 if (nhs->hstate_kobjs[idx]) {
2587 kobject_put(nhs->hstate_kobjs[idx]);
2588 nhs->hstate_kobjs[idx] = NULL;
2592 kobject_put(nhs->hugepages_kobj);
2593 nhs->hugepages_kobj = NULL;
2598 * Register hstate attributes for a single node device.
2599 * No-op if attributes already registered.
2601 static void hugetlb_register_node(struct node *node)
2603 struct hstate *h;
2604 struct node_hstate *nhs = &node_hstates[node->dev.id];
2605 int err;
2607 if (nhs->hugepages_kobj)
2608 return; /* already allocated */
2610 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2611 &node->dev.kobj);
2612 if (!nhs->hugepages_kobj)
2613 return;
2615 for_each_hstate(h) {
2616 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2617 nhs->hstate_kobjs,
2618 &per_node_hstate_attr_group);
2619 if (err) {
2620 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2621 h->name, node->dev.id);
2622 hugetlb_unregister_node(node);
2623 break;
2629 * hugetlb init time: register hstate attributes for all registered node
2630 * devices of nodes that have memory. All on-line nodes should have
2631 * registered their associated device by this time.
2633 static void __init hugetlb_register_all_nodes(void)
2635 int nid;
2637 for_each_node_state(nid, N_MEMORY) {
2638 struct node *node = node_devices[nid];
2639 if (node->dev.id == nid)
2640 hugetlb_register_node(node);
2644 * Let the node device driver know we're here so it can
2645 * [un]register hstate attributes on node hotplug.
2647 register_hugetlbfs_with_node(hugetlb_register_node,
2648 hugetlb_unregister_node);
2650 #else /* !CONFIG_NUMA */
2652 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2654 BUG();
2655 if (nidp)
2656 *nidp = -1;
2657 return NULL;
2660 static void hugetlb_register_all_nodes(void) { }
2662 #endif
2664 static int __init hugetlb_init(void)
2666 int i;
2668 if (!hugepages_supported())
2669 return 0;
2671 if (!size_to_hstate(default_hstate_size)) {
2672 default_hstate_size = HPAGE_SIZE;
2673 if (!size_to_hstate(default_hstate_size))
2674 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2676 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2677 if (default_hstate_max_huge_pages) {
2678 if (!default_hstate.max_huge_pages)
2679 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2682 hugetlb_init_hstates();
2683 gather_bootmem_prealloc();
2684 report_hugepages();
2686 hugetlb_sysfs_init();
2687 hugetlb_register_all_nodes();
2688 hugetlb_cgroup_file_init();
2690 #ifdef CONFIG_SMP
2691 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2692 #else
2693 num_fault_mutexes = 1;
2694 #endif
2695 hugetlb_fault_mutex_table =
2696 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2697 BUG_ON(!hugetlb_fault_mutex_table);
2699 for (i = 0; i < num_fault_mutexes; i++)
2700 mutex_init(&hugetlb_fault_mutex_table[i]);
2701 return 0;
2703 subsys_initcall(hugetlb_init);
2705 /* Should be called on processing a hugepagesz=... option */
2706 void __init hugetlb_bad_size(void)
2708 parsed_valid_hugepagesz = false;
2711 void __init hugetlb_add_hstate(unsigned int order)
2713 struct hstate *h;
2714 unsigned long i;
2716 if (size_to_hstate(PAGE_SIZE << order)) {
2717 pr_warn("hugepagesz= specified twice, ignoring\n");
2718 return;
2720 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2721 BUG_ON(order == 0);
2722 h = &hstates[hugetlb_max_hstate++];
2723 h->order = order;
2724 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2725 h->nr_huge_pages = 0;
2726 h->free_huge_pages = 0;
2727 for (i = 0; i < MAX_NUMNODES; ++i)
2728 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2729 INIT_LIST_HEAD(&h->hugepage_activelist);
2730 h->next_nid_to_alloc = first_memory_node;
2731 h->next_nid_to_free = first_memory_node;
2732 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2733 huge_page_size(h)/1024);
2735 parsed_hstate = h;
2738 static int __init hugetlb_nrpages_setup(char *s)
2740 unsigned long *mhp;
2741 static unsigned long *last_mhp;
2743 if (!parsed_valid_hugepagesz) {
2744 pr_warn("hugepages = %s preceded by "
2745 "an unsupported hugepagesz, ignoring\n", s);
2746 parsed_valid_hugepagesz = true;
2747 return 1;
2750 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2751 * so this hugepages= parameter goes to the "default hstate".
2753 else if (!hugetlb_max_hstate)
2754 mhp = &default_hstate_max_huge_pages;
2755 else
2756 mhp = &parsed_hstate->max_huge_pages;
2758 if (mhp == last_mhp) {
2759 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2760 return 1;
2763 if (sscanf(s, "%lu", mhp) <= 0)
2764 *mhp = 0;
2767 * Global state is always initialized later in hugetlb_init.
2768 * But we need to allocate >= MAX_ORDER hstates here early to still
2769 * use the bootmem allocator.
2771 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2772 hugetlb_hstate_alloc_pages(parsed_hstate);
2774 last_mhp = mhp;
2776 return 1;
2778 __setup("hugepages=", hugetlb_nrpages_setup);
2780 static int __init hugetlb_default_setup(char *s)
2782 default_hstate_size = memparse(s, &s);
2783 return 1;
2785 __setup("default_hugepagesz=", hugetlb_default_setup);
2787 static unsigned int cpuset_mems_nr(unsigned int *array)
2789 int node;
2790 unsigned int nr = 0;
2792 for_each_node_mask(node, cpuset_current_mems_allowed)
2793 nr += array[node];
2795 return nr;
2798 #ifdef CONFIG_SYSCTL
2799 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2800 struct ctl_table *table, int write,
2801 void __user *buffer, size_t *length, loff_t *ppos)
2803 struct hstate *h = &default_hstate;
2804 unsigned long tmp = h->max_huge_pages;
2805 int ret;
2807 if (!hugepages_supported())
2808 return -EOPNOTSUPP;
2810 table->data = &tmp;
2811 table->maxlen = sizeof(unsigned long);
2812 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2813 if (ret)
2814 goto out;
2816 if (write)
2817 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2818 NUMA_NO_NODE, tmp, *length);
2819 out:
2820 return ret;
2823 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2824 void __user *buffer, size_t *length, loff_t *ppos)
2827 return hugetlb_sysctl_handler_common(false, table, write,
2828 buffer, length, ppos);
2831 #ifdef CONFIG_NUMA
2832 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2833 void __user *buffer, size_t *length, loff_t *ppos)
2835 return hugetlb_sysctl_handler_common(true, table, write,
2836 buffer, length, ppos);
2838 #endif /* CONFIG_NUMA */
2840 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2841 void __user *buffer,
2842 size_t *length, loff_t *ppos)
2844 struct hstate *h = &default_hstate;
2845 unsigned long tmp;
2846 int ret;
2848 if (!hugepages_supported())
2849 return -EOPNOTSUPP;
2851 tmp = h->nr_overcommit_huge_pages;
2853 if (write && hstate_is_gigantic(h))
2854 return -EINVAL;
2856 table->data = &tmp;
2857 table->maxlen = sizeof(unsigned long);
2858 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2859 if (ret)
2860 goto out;
2862 if (write) {
2863 spin_lock(&hugetlb_lock);
2864 h->nr_overcommit_huge_pages = tmp;
2865 spin_unlock(&hugetlb_lock);
2867 out:
2868 return ret;
2871 #endif /* CONFIG_SYSCTL */
2873 void hugetlb_report_meminfo(struct seq_file *m)
2875 struct hstate *h = &default_hstate;
2876 if (!hugepages_supported())
2877 return;
2878 seq_printf(m,
2879 "HugePages_Total: %5lu\n"
2880 "HugePages_Free: %5lu\n"
2881 "HugePages_Rsvd: %5lu\n"
2882 "HugePages_Surp: %5lu\n"
2883 "Hugepagesize: %8lu kB\n",
2884 h->nr_huge_pages,
2885 h->free_huge_pages,
2886 h->resv_huge_pages,
2887 h->surplus_huge_pages,
2888 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2891 int hugetlb_report_node_meminfo(int nid, char *buf)
2893 struct hstate *h = &default_hstate;
2894 if (!hugepages_supported())
2895 return 0;
2896 return sprintf(buf,
2897 "Node %d HugePages_Total: %5u\n"
2898 "Node %d HugePages_Free: %5u\n"
2899 "Node %d HugePages_Surp: %5u\n",
2900 nid, h->nr_huge_pages_node[nid],
2901 nid, h->free_huge_pages_node[nid],
2902 nid, h->surplus_huge_pages_node[nid]);
2905 void hugetlb_show_meminfo(void)
2907 struct hstate *h;
2908 int nid;
2910 if (!hugepages_supported())
2911 return;
2913 for_each_node_state(nid, N_MEMORY)
2914 for_each_hstate(h)
2915 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2916 nid,
2917 h->nr_huge_pages_node[nid],
2918 h->free_huge_pages_node[nid],
2919 h->surplus_huge_pages_node[nid],
2920 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2923 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2925 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2926 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2929 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2930 unsigned long hugetlb_total_pages(void)
2932 struct hstate *h;
2933 unsigned long nr_total_pages = 0;
2935 for_each_hstate(h)
2936 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2937 return nr_total_pages;
2940 static int hugetlb_acct_memory(struct hstate *h, long delta)
2942 int ret = -ENOMEM;
2944 spin_lock(&hugetlb_lock);
2946 * When cpuset is configured, it breaks the strict hugetlb page
2947 * reservation as the accounting is done on a global variable. Such
2948 * reservation is completely rubbish in the presence of cpuset because
2949 * the reservation is not checked against page availability for the
2950 * current cpuset. Application can still potentially OOM'ed by kernel
2951 * with lack of free htlb page in cpuset that the task is in.
2952 * Attempt to enforce strict accounting with cpuset is almost
2953 * impossible (or too ugly) because cpuset is too fluid that
2954 * task or memory node can be dynamically moved between cpusets.
2956 * The change of semantics for shared hugetlb mapping with cpuset is
2957 * undesirable. However, in order to preserve some of the semantics,
2958 * we fall back to check against current free page availability as
2959 * a best attempt and hopefully to minimize the impact of changing
2960 * semantics that cpuset has.
2962 if (delta > 0) {
2963 if (gather_surplus_pages(h, delta) < 0)
2964 goto out;
2966 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2967 return_unused_surplus_pages(h, delta);
2968 goto out;
2972 ret = 0;
2973 if (delta < 0)
2974 return_unused_surplus_pages(h, (unsigned long) -delta);
2976 out:
2977 spin_unlock(&hugetlb_lock);
2978 return ret;
2981 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2983 struct resv_map *resv = vma_resv_map(vma);
2986 * This new VMA should share its siblings reservation map if present.
2987 * The VMA will only ever have a valid reservation map pointer where
2988 * it is being copied for another still existing VMA. As that VMA
2989 * has a reference to the reservation map it cannot disappear until
2990 * after this open call completes. It is therefore safe to take a
2991 * new reference here without additional locking.
2993 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2994 kref_get(&resv->refs);
2997 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2999 struct hstate *h = hstate_vma(vma);
3000 struct resv_map *resv = vma_resv_map(vma);
3001 struct hugepage_subpool *spool = subpool_vma(vma);
3002 unsigned long reserve, start, end;
3003 long gbl_reserve;
3005 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3006 return;
3008 start = vma_hugecache_offset(h, vma, vma->vm_start);
3009 end = vma_hugecache_offset(h, vma, vma->vm_end);
3011 reserve = (end - start) - region_count(resv, start, end);
3013 kref_put(&resv->refs, resv_map_release);
3015 if (reserve) {
3017 * Decrement reserve counts. The global reserve count may be
3018 * adjusted if the subpool has a minimum size.
3020 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3021 hugetlb_acct_memory(h, -gbl_reserve);
3026 * We cannot handle pagefaults against hugetlb pages at all. They cause
3027 * handle_mm_fault() to try to instantiate regular-sized pages in the
3028 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3029 * this far.
3031 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3033 BUG();
3034 return 0;
3037 const struct vm_operations_struct hugetlb_vm_ops = {
3038 .fault = hugetlb_vm_op_fault,
3039 .open = hugetlb_vm_op_open,
3040 .close = hugetlb_vm_op_close,
3043 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3044 int writable)
3046 pte_t entry;
3048 if (writable) {
3049 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3050 vma->vm_page_prot)));
3051 } else {
3052 entry = huge_pte_wrprotect(mk_huge_pte(page,
3053 vma->vm_page_prot));
3055 entry = pte_mkyoung(entry);
3056 entry = pte_mkhuge(entry);
3057 entry = arch_make_huge_pte(entry, vma, page, writable);
3059 return entry;
3062 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3063 unsigned long address, pte_t *ptep)
3065 pte_t entry;
3067 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3068 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3069 update_mmu_cache(vma, address, ptep);
3072 static int is_hugetlb_entry_migration(pte_t pte)
3074 swp_entry_t swp;
3076 if (huge_pte_none(pte) || pte_present(pte))
3077 return 0;
3078 swp = pte_to_swp_entry(pte);
3079 if (non_swap_entry(swp) && is_migration_entry(swp))
3080 return 1;
3081 else
3082 return 0;
3085 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3087 swp_entry_t swp;
3089 if (huge_pte_none(pte) || pte_present(pte))
3090 return 0;
3091 swp = pte_to_swp_entry(pte);
3092 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3093 return 1;
3094 else
3095 return 0;
3098 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3099 struct vm_area_struct *vma)
3101 pte_t *src_pte, *dst_pte, entry;
3102 struct page *ptepage;
3103 unsigned long addr;
3104 int cow;
3105 struct hstate *h = hstate_vma(vma);
3106 unsigned long sz = huge_page_size(h);
3107 unsigned long mmun_start; /* For mmu_notifiers */
3108 unsigned long mmun_end; /* For mmu_notifiers */
3109 int ret = 0;
3111 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3113 mmun_start = vma->vm_start;
3114 mmun_end = vma->vm_end;
3115 if (cow)
3116 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3118 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3119 spinlock_t *src_ptl, *dst_ptl;
3120 src_pte = huge_pte_offset(src, addr);
3121 if (!src_pte)
3122 continue;
3123 dst_pte = huge_pte_alloc(dst, addr, sz);
3124 if (!dst_pte) {
3125 ret = -ENOMEM;
3126 break;
3129 /* If the pagetables are shared don't copy or take references */
3130 if (dst_pte == src_pte)
3131 continue;
3133 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3134 src_ptl = huge_pte_lockptr(h, src, src_pte);
3135 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3136 entry = huge_ptep_get(src_pte);
3137 if (huge_pte_none(entry)) { /* skip none entry */
3139 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3140 is_hugetlb_entry_hwpoisoned(entry))) {
3141 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3143 if (is_write_migration_entry(swp_entry) && cow) {
3145 * COW mappings require pages in both
3146 * parent and child to be set to read.
3148 make_migration_entry_read(&swp_entry);
3149 entry = swp_entry_to_pte(swp_entry);
3150 set_huge_pte_at(src, addr, src_pte, entry);
3152 set_huge_pte_at(dst, addr, dst_pte, entry);
3153 } else {
3154 if (cow) {
3155 huge_ptep_set_wrprotect(src, addr, src_pte);
3156 mmu_notifier_invalidate_range(src, mmun_start,
3157 mmun_end);
3159 entry = huge_ptep_get(src_pte);
3160 ptepage = pte_page(entry);
3161 get_page(ptepage);
3162 page_dup_rmap(ptepage, true);
3163 set_huge_pte_at(dst, addr, dst_pte, entry);
3164 hugetlb_count_add(pages_per_huge_page(h), dst);
3166 spin_unlock(src_ptl);
3167 spin_unlock(dst_ptl);
3170 if (cow)
3171 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3173 return ret;
3176 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3177 unsigned long start, unsigned long end,
3178 struct page *ref_page)
3180 int force_flush = 0;
3181 struct mm_struct *mm = vma->vm_mm;
3182 unsigned long address;
3183 pte_t *ptep;
3184 pte_t pte;
3185 spinlock_t *ptl;
3186 struct page *page;
3187 struct hstate *h = hstate_vma(vma);
3188 unsigned long sz = huge_page_size(h);
3189 const unsigned long mmun_start = start; /* For mmu_notifiers */
3190 const unsigned long mmun_end = end; /* For mmu_notifiers */
3192 WARN_ON(!is_vm_hugetlb_page(vma));
3193 BUG_ON(start & ~huge_page_mask(h));
3194 BUG_ON(end & ~huge_page_mask(h));
3196 tlb_start_vma(tlb, vma);
3197 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3198 address = start;
3199 again:
3200 for (; address < end; address += sz) {
3201 ptep = huge_pte_offset(mm, address);
3202 if (!ptep)
3203 continue;
3205 ptl = huge_pte_lock(h, mm, ptep);
3206 if (huge_pmd_unshare(mm, &address, ptep))
3207 goto unlock;
3209 pte = huge_ptep_get(ptep);
3210 if (huge_pte_none(pte))
3211 goto unlock;
3214 * Migrating hugepage or HWPoisoned hugepage is already
3215 * unmapped and its refcount is dropped, so just clear pte here.
3217 if (unlikely(!pte_present(pte))) {
3218 huge_pte_clear(mm, address, ptep);
3219 goto unlock;
3222 page = pte_page(pte);
3224 * If a reference page is supplied, it is because a specific
3225 * page is being unmapped, not a range. Ensure the page we
3226 * are about to unmap is the actual page of interest.
3228 if (ref_page) {
3229 if (page != ref_page)
3230 goto unlock;
3233 * Mark the VMA as having unmapped its page so that
3234 * future faults in this VMA will fail rather than
3235 * looking like data was lost
3237 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3240 pte = huge_ptep_get_and_clear(mm, address, ptep);
3241 tlb_remove_tlb_entry(tlb, ptep, address);
3242 if (huge_pte_dirty(pte))
3243 set_page_dirty(page);
3245 hugetlb_count_sub(pages_per_huge_page(h), mm);
3246 page_remove_rmap(page, true);
3247 force_flush = !__tlb_remove_page(tlb, page);
3248 if (force_flush) {
3249 address += sz;
3250 spin_unlock(ptl);
3251 break;
3253 /* Bail out after unmapping reference page if supplied */
3254 if (ref_page) {
3255 spin_unlock(ptl);
3256 break;
3258 unlock:
3259 spin_unlock(ptl);
3262 * mmu_gather ran out of room to batch pages, we break out of
3263 * the PTE lock to avoid doing the potential expensive TLB invalidate
3264 * and page-free while holding it.
3266 if (force_flush) {
3267 force_flush = 0;
3268 tlb_flush_mmu(tlb);
3269 if (address < end && !ref_page)
3270 goto again;
3272 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3273 tlb_end_vma(tlb, vma);
3276 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3277 struct vm_area_struct *vma, unsigned long start,
3278 unsigned long end, struct page *ref_page)
3280 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3283 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3284 * test will fail on a vma being torn down, and not grab a page table
3285 * on its way out. We're lucky that the flag has such an appropriate
3286 * name, and can in fact be safely cleared here. We could clear it
3287 * before the __unmap_hugepage_range above, but all that's necessary
3288 * is to clear it before releasing the i_mmap_rwsem. This works
3289 * because in the context this is called, the VMA is about to be
3290 * destroyed and the i_mmap_rwsem is held.
3292 vma->vm_flags &= ~VM_MAYSHARE;
3295 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3296 unsigned long end, struct page *ref_page)
3298 struct mm_struct *mm;
3299 struct mmu_gather tlb;
3301 mm = vma->vm_mm;
3303 tlb_gather_mmu(&tlb, mm, start, end);
3304 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3305 tlb_finish_mmu(&tlb, start, end);
3309 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3310 * mappping it owns the reserve page for. The intention is to unmap the page
3311 * from other VMAs and let the children be SIGKILLed if they are faulting the
3312 * same region.
3314 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3315 struct page *page, unsigned long address)
3317 struct hstate *h = hstate_vma(vma);
3318 struct vm_area_struct *iter_vma;
3319 struct address_space *mapping;
3320 pgoff_t pgoff;
3323 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3324 * from page cache lookup which is in HPAGE_SIZE units.
3326 address = address & huge_page_mask(h);
3327 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3328 vma->vm_pgoff;
3329 mapping = file_inode(vma->vm_file)->i_mapping;
3332 * Take the mapping lock for the duration of the table walk. As
3333 * this mapping should be shared between all the VMAs,
3334 * __unmap_hugepage_range() is called as the lock is already held
3336 i_mmap_lock_write(mapping);
3337 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3338 /* Do not unmap the current VMA */
3339 if (iter_vma == vma)
3340 continue;
3343 * Shared VMAs have their own reserves and do not affect
3344 * MAP_PRIVATE accounting but it is possible that a shared
3345 * VMA is using the same page so check and skip such VMAs.
3347 if (iter_vma->vm_flags & VM_MAYSHARE)
3348 continue;
3351 * Unmap the page from other VMAs without their own reserves.
3352 * They get marked to be SIGKILLed if they fault in these
3353 * areas. This is because a future no-page fault on this VMA
3354 * could insert a zeroed page instead of the data existing
3355 * from the time of fork. This would look like data corruption
3357 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3358 unmap_hugepage_range(iter_vma, address,
3359 address + huge_page_size(h), page);
3361 i_mmap_unlock_write(mapping);
3365 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3366 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3367 * cannot race with other handlers or page migration.
3368 * Keep the pte_same checks anyway to make transition from the mutex easier.
3370 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3371 unsigned long address, pte_t *ptep, pte_t pte,
3372 struct page *pagecache_page, spinlock_t *ptl)
3374 struct hstate *h = hstate_vma(vma);
3375 struct page *old_page, *new_page;
3376 int ret = 0, outside_reserve = 0;
3377 unsigned long mmun_start; /* For mmu_notifiers */
3378 unsigned long mmun_end; /* For mmu_notifiers */
3380 old_page = pte_page(pte);
3382 retry_avoidcopy:
3383 /* If no-one else is actually using this page, avoid the copy
3384 * and just make the page writable */
3385 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3386 page_move_anon_rmap(old_page, vma, address);
3387 set_huge_ptep_writable(vma, address, ptep);
3388 return 0;
3392 * If the process that created a MAP_PRIVATE mapping is about to
3393 * perform a COW due to a shared page count, attempt to satisfy
3394 * the allocation without using the existing reserves. The pagecache
3395 * page is used to determine if the reserve at this address was
3396 * consumed or not. If reserves were used, a partial faulted mapping
3397 * at the time of fork() could consume its reserves on COW instead
3398 * of the full address range.
3400 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3401 old_page != pagecache_page)
3402 outside_reserve = 1;
3404 get_page(old_page);
3407 * Drop page table lock as buddy allocator may be called. It will
3408 * be acquired again before returning to the caller, as expected.
3410 spin_unlock(ptl);
3411 new_page = alloc_huge_page(vma, address, outside_reserve);
3413 if (IS_ERR(new_page)) {
3415 * If a process owning a MAP_PRIVATE mapping fails to COW,
3416 * it is due to references held by a child and an insufficient
3417 * huge page pool. To guarantee the original mappers
3418 * reliability, unmap the page from child processes. The child
3419 * may get SIGKILLed if it later faults.
3421 if (outside_reserve) {
3422 put_page(old_page);
3423 BUG_ON(huge_pte_none(pte));
3424 unmap_ref_private(mm, vma, old_page, address);
3425 BUG_ON(huge_pte_none(pte));
3426 spin_lock(ptl);
3427 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3428 if (likely(ptep &&
3429 pte_same(huge_ptep_get(ptep), pte)))
3430 goto retry_avoidcopy;
3432 * race occurs while re-acquiring page table
3433 * lock, and our job is done.
3435 return 0;
3438 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3439 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3440 goto out_release_old;
3444 * When the original hugepage is shared one, it does not have
3445 * anon_vma prepared.
3447 if (unlikely(anon_vma_prepare(vma))) {
3448 ret = VM_FAULT_OOM;
3449 goto out_release_all;
3452 copy_user_huge_page(new_page, old_page, address, vma,
3453 pages_per_huge_page(h));
3454 __SetPageUptodate(new_page);
3455 set_page_huge_active(new_page);
3457 mmun_start = address & huge_page_mask(h);
3458 mmun_end = mmun_start + huge_page_size(h);
3459 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3462 * Retake the page table lock to check for racing updates
3463 * before the page tables are altered
3465 spin_lock(ptl);
3466 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3467 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3468 ClearPagePrivate(new_page);
3470 /* Break COW */
3471 huge_ptep_clear_flush(vma, address, ptep);
3472 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3473 set_huge_pte_at(mm, address, ptep,
3474 make_huge_pte(vma, new_page, 1));
3475 page_remove_rmap(old_page, true);
3476 hugepage_add_new_anon_rmap(new_page, vma, address);
3477 /* Make the old page be freed below */
3478 new_page = old_page;
3480 spin_unlock(ptl);
3481 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3482 out_release_all:
3483 put_page(new_page);
3484 out_release_old:
3485 put_page(old_page);
3487 spin_lock(ptl); /* Caller expects lock to be held */
3488 return ret;
3491 /* Return the pagecache page at a given address within a VMA */
3492 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3493 struct vm_area_struct *vma, unsigned long address)
3495 struct address_space *mapping;
3496 pgoff_t idx;
3498 mapping = vma->vm_file->f_mapping;
3499 idx = vma_hugecache_offset(h, vma, address);
3501 return find_lock_page(mapping, idx);
3505 * Return whether there is a pagecache page to back given address within VMA.
3506 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3508 static bool hugetlbfs_pagecache_present(struct hstate *h,
3509 struct vm_area_struct *vma, unsigned long address)
3511 struct address_space *mapping;
3512 pgoff_t idx;
3513 struct page *page;
3515 mapping = vma->vm_file->f_mapping;
3516 idx = vma_hugecache_offset(h, vma, address);
3518 page = find_get_page(mapping, idx);
3519 if (page)
3520 put_page(page);
3521 return page != NULL;
3524 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3525 pgoff_t idx)
3527 struct inode *inode = mapping->host;
3528 struct hstate *h = hstate_inode(inode);
3529 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3531 if (err)
3532 return err;
3533 ClearPagePrivate(page);
3535 spin_lock(&inode->i_lock);
3536 inode->i_blocks += blocks_per_huge_page(h);
3537 spin_unlock(&inode->i_lock);
3538 return 0;
3541 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3542 struct address_space *mapping, pgoff_t idx,
3543 unsigned long address, pte_t *ptep, unsigned int flags)
3545 struct hstate *h = hstate_vma(vma);
3546 int ret = VM_FAULT_SIGBUS;
3547 int anon_rmap = 0;
3548 unsigned long size;
3549 struct page *page;
3550 pte_t new_pte;
3551 spinlock_t *ptl;
3554 * Currently, we are forced to kill the process in the event the
3555 * original mapper has unmapped pages from the child due to a failed
3556 * COW. Warn that such a situation has occurred as it may not be obvious
3558 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3559 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3560 current->pid);
3561 return ret;
3565 * Use page lock to guard against racing truncation
3566 * before we get page_table_lock.
3568 retry:
3569 page = find_lock_page(mapping, idx);
3570 if (!page) {
3571 size = i_size_read(mapping->host) >> huge_page_shift(h);
3572 if (idx >= size)
3573 goto out;
3574 page = alloc_huge_page(vma, address, 0);
3575 if (IS_ERR(page)) {
3576 ret = PTR_ERR(page);
3577 if (ret == -ENOMEM)
3578 ret = VM_FAULT_OOM;
3579 else
3580 ret = VM_FAULT_SIGBUS;
3581 goto out;
3583 clear_huge_page(page, address, pages_per_huge_page(h));
3584 __SetPageUptodate(page);
3585 set_page_huge_active(page);
3587 if (vma->vm_flags & VM_MAYSHARE) {
3588 int err = huge_add_to_page_cache(page, mapping, idx);
3589 if (err) {
3590 put_page(page);
3591 if (err == -EEXIST)
3592 goto retry;
3593 goto out;
3595 } else {
3596 lock_page(page);
3597 if (unlikely(anon_vma_prepare(vma))) {
3598 ret = VM_FAULT_OOM;
3599 goto backout_unlocked;
3601 anon_rmap = 1;
3603 } else {
3605 * If memory error occurs between mmap() and fault, some process
3606 * don't have hwpoisoned swap entry for errored virtual address.
3607 * So we need to block hugepage fault by PG_hwpoison bit check.
3609 if (unlikely(PageHWPoison(page))) {
3610 ret = VM_FAULT_HWPOISON |
3611 VM_FAULT_SET_HINDEX(hstate_index(h));
3612 goto backout_unlocked;
3617 * If we are going to COW a private mapping later, we examine the
3618 * pending reservations for this page now. This will ensure that
3619 * any allocations necessary to record that reservation occur outside
3620 * the spinlock.
3622 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3623 if (vma_needs_reservation(h, vma, address) < 0) {
3624 ret = VM_FAULT_OOM;
3625 goto backout_unlocked;
3627 /* Just decrements count, does not deallocate */
3628 vma_end_reservation(h, vma, address);
3631 ptl = huge_pte_lockptr(h, mm, ptep);
3632 spin_lock(ptl);
3633 size = i_size_read(mapping->host) >> huge_page_shift(h);
3634 if (idx >= size)
3635 goto backout;
3637 ret = 0;
3638 if (!huge_pte_none(huge_ptep_get(ptep)))
3639 goto backout;
3641 if (anon_rmap) {
3642 ClearPagePrivate(page);
3643 hugepage_add_new_anon_rmap(page, vma, address);
3644 } else
3645 page_dup_rmap(page, true);
3646 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3647 && (vma->vm_flags & VM_SHARED)));
3648 set_huge_pte_at(mm, address, ptep, new_pte);
3650 hugetlb_count_add(pages_per_huge_page(h), mm);
3651 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3652 /* Optimization, do the COW without a second fault */
3653 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3656 spin_unlock(ptl);
3657 unlock_page(page);
3658 out:
3659 return ret;
3661 backout:
3662 spin_unlock(ptl);
3663 backout_unlocked:
3664 unlock_page(page);
3665 put_page(page);
3666 goto out;
3669 #ifdef CONFIG_SMP
3670 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3671 struct vm_area_struct *vma,
3672 struct address_space *mapping,
3673 pgoff_t idx, unsigned long address)
3675 unsigned long key[2];
3676 u32 hash;
3678 if (vma->vm_flags & VM_SHARED) {
3679 key[0] = (unsigned long) mapping;
3680 key[1] = idx;
3681 } else {
3682 key[0] = (unsigned long) mm;
3683 key[1] = address >> huge_page_shift(h);
3686 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3688 return hash & (num_fault_mutexes - 1);
3690 #else
3692 * For uniprocesor systems we always use a single mutex, so just
3693 * return 0 and avoid the hashing overhead.
3695 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3696 struct vm_area_struct *vma,
3697 struct address_space *mapping,
3698 pgoff_t idx, unsigned long address)
3700 return 0;
3702 #endif
3704 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3705 unsigned long address, unsigned int flags)
3707 pte_t *ptep, entry;
3708 spinlock_t *ptl;
3709 int ret;
3710 u32 hash;
3711 pgoff_t idx;
3712 struct page *page = NULL;
3713 struct page *pagecache_page = NULL;
3714 struct hstate *h = hstate_vma(vma);
3715 struct address_space *mapping;
3716 int need_wait_lock = 0;
3718 address &= huge_page_mask(h);
3720 ptep = huge_pte_offset(mm, address);
3721 if (ptep) {
3722 entry = huge_ptep_get(ptep);
3723 if (unlikely(is_hugetlb_entry_migration(entry))) {
3724 migration_entry_wait_huge(vma, mm, ptep);
3725 return 0;
3726 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3727 return VM_FAULT_HWPOISON_LARGE |
3728 VM_FAULT_SET_HINDEX(hstate_index(h));
3729 } else {
3730 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3731 if (!ptep)
3732 return VM_FAULT_OOM;
3735 mapping = vma->vm_file->f_mapping;
3736 idx = vma_hugecache_offset(h, vma, address);
3739 * Serialize hugepage allocation and instantiation, so that we don't
3740 * get spurious allocation failures if two CPUs race to instantiate
3741 * the same page in the page cache.
3743 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3744 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3746 entry = huge_ptep_get(ptep);
3747 if (huge_pte_none(entry)) {
3748 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3749 goto out_mutex;
3752 ret = 0;
3755 * entry could be a migration/hwpoison entry at this point, so this
3756 * check prevents the kernel from going below assuming that we have
3757 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3758 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3759 * handle it.
3761 if (!pte_present(entry))
3762 goto out_mutex;
3765 * If we are going to COW the mapping later, we examine the pending
3766 * reservations for this page now. This will ensure that any
3767 * allocations necessary to record that reservation occur outside the
3768 * spinlock. For private mappings, we also lookup the pagecache
3769 * page now as it is used to determine if a reservation has been
3770 * consumed.
3772 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3773 if (vma_needs_reservation(h, vma, address) < 0) {
3774 ret = VM_FAULT_OOM;
3775 goto out_mutex;
3777 /* Just decrements count, does not deallocate */
3778 vma_end_reservation(h, vma, address);
3780 if (!(vma->vm_flags & VM_MAYSHARE))
3781 pagecache_page = hugetlbfs_pagecache_page(h,
3782 vma, address);
3785 ptl = huge_pte_lock(h, mm, ptep);
3787 /* Check for a racing update before calling hugetlb_cow */
3788 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3789 goto out_ptl;
3792 * hugetlb_cow() requires page locks of pte_page(entry) and
3793 * pagecache_page, so here we need take the former one
3794 * when page != pagecache_page or !pagecache_page.
3796 page = pte_page(entry);
3797 if (page != pagecache_page)
3798 if (!trylock_page(page)) {
3799 need_wait_lock = 1;
3800 goto out_ptl;
3803 get_page(page);
3805 if (flags & FAULT_FLAG_WRITE) {
3806 if (!huge_pte_write(entry)) {
3807 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3808 pagecache_page, ptl);
3809 goto out_put_page;
3811 entry = huge_pte_mkdirty(entry);
3813 entry = pte_mkyoung(entry);
3814 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3815 flags & FAULT_FLAG_WRITE))
3816 update_mmu_cache(vma, address, ptep);
3817 out_put_page:
3818 if (page != pagecache_page)
3819 unlock_page(page);
3820 put_page(page);
3821 out_ptl:
3822 spin_unlock(ptl);
3824 if (pagecache_page) {
3825 unlock_page(pagecache_page);
3826 put_page(pagecache_page);
3828 out_mutex:
3829 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3831 * Generally it's safe to hold refcount during waiting page lock. But
3832 * here we just wait to defer the next page fault to avoid busy loop and
3833 * the page is not used after unlocked before returning from the current
3834 * page fault. So we are safe from accessing freed page, even if we wait
3835 * here without taking refcount.
3837 if (need_wait_lock)
3838 wait_on_page_locked(page);
3839 return ret;
3842 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3843 struct page **pages, struct vm_area_struct **vmas,
3844 unsigned long *position, unsigned long *nr_pages,
3845 long i, unsigned int flags)
3847 unsigned long pfn_offset;
3848 unsigned long vaddr = *position;
3849 unsigned long remainder = *nr_pages;
3850 struct hstate *h = hstate_vma(vma);
3852 while (vaddr < vma->vm_end && remainder) {
3853 pte_t *pte;
3854 spinlock_t *ptl = NULL;
3855 int absent;
3856 struct page *page;
3859 * If we have a pending SIGKILL, don't keep faulting pages and
3860 * potentially allocating memory.
3862 if (unlikely(fatal_signal_pending(current))) {
3863 remainder = 0;
3864 break;
3868 * Some archs (sparc64, sh*) have multiple pte_ts to
3869 * each hugepage. We have to make sure we get the
3870 * first, for the page indexing below to work.
3872 * Note that page table lock is not held when pte is null.
3874 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3875 if (pte)
3876 ptl = huge_pte_lock(h, mm, pte);
3877 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3880 * When coredumping, it suits get_dump_page if we just return
3881 * an error where there's an empty slot with no huge pagecache
3882 * to back it. This way, we avoid allocating a hugepage, and
3883 * the sparse dumpfile avoids allocating disk blocks, but its
3884 * huge holes still show up with zeroes where they need to be.
3886 if (absent && (flags & FOLL_DUMP) &&
3887 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3888 if (pte)
3889 spin_unlock(ptl);
3890 remainder = 0;
3891 break;
3895 * We need call hugetlb_fault for both hugepages under migration
3896 * (in which case hugetlb_fault waits for the migration,) and
3897 * hwpoisoned hugepages (in which case we need to prevent the
3898 * caller from accessing to them.) In order to do this, we use
3899 * here is_swap_pte instead of is_hugetlb_entry_migration and
3900 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3901 * both cases, and because we can't follow correct pages
3902 * directly from any kind of swap entries.
3904 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3905 ((flags & FOLL_WRITE) &&
3906 !huge_pte_write(huge_ptep_get(pte)))) {
3907 int ret;
3909 if (pte)
3910 spin_unlock(ptl);
3911 ret = hugetlb_fault(mm, vma, vaddr,
3912 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3913 if (!(ret & VM_FAULT_ERROR))
3914 continue;
3916 remainder = 0;
3917 break;
3920 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3921 page = pte_page(huge_ptep_get(pte));
3922 same_page:
3923 if (pages) {
3924 pages[i] = mem_map_offset(page, pfn_offset);
3925 get_page(pages[i]);
3928 if (vmas)
3929 vmas[i] = vma;
3931 vaddr += PAGE_SIZE;
3932 ++pfn_offset;
3933 --remainder;
3934 ++i;
3935 if (vaddr < vma->vm_end && remainder &&
3936 pfn_offset < pages_per_huge_page(h)) {
3938 * We use pfn_offset to avoid touching the pageframes
3939 * of this compound page.
3941 goto same_page;
3943 spin_unlock(ptl);
3945 *nr_pages = remainder;
3946 *position = vaddr;
3948 return i ? i : -EFAULT;
3951 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3952 unsigned long address, unsigned long end, pgprot_t newprot)
3954 struct mm_struct *mm = vma->vm_mm;
3955 unsigned long start = address;
3956 pte_t *ptep;
3957 pte_t pte;
3958 struct hstate *h = hstate_vma(vma);
3959 unsigned long pages = 0;
3961 BUG_ON(address >= end);
3962 flush_cache_range(vma, address, end);
3964 mmu_notifier_invalidate_range_start(mm, start, end);
3965 i_mmap_lock_write(vma->vm_file->f_mapping);
3966 for (; address < end; address += huge_page_size(h)) {
3967 spinlock_t *ptl;
3968 ptep = huge_pte_offset(mm, address);
3969 if (!ptep)
3970 continue;
3971 ptl = huge_pte_lock(h, mm, ptep);
3972 if (huge_pmd_unshare(mm, &address, ptep)) {
3973 pages++;
3974 spin_unlock(ptl);
3975 continue;
3977 pte = huge_ptep_get(ptep);
3978 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3979 spin_unlock(ptl);
3980 continue;
3982 if (unlikely(is_hugetlb_entry_migration(pte))) {
3983 swp_entry_t entry = pte_to_swp_entry(pte);
3985 if (is_write_migration_entry(entry)) {
3986 pte_t newpte;
3988 make_migration_entry_read(&entry);
3989 newpte = swp_entry_to_pte(entry);
3990 set_huge_pte_at(mm, address, ptep, newpte);
3991 pages++;
3993 spin_unlock(ptl);
3994 continue;
3996 if (!huge_pte_none(pte)) {
3997 pte = huge_ptep_get_and_clear(mm, address, ptep);
3998 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3999 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4000 set_huge_pte_at(mm, address, ptep, pte);
4001 pages++;
4003 spin_unlock(ptl);
4006 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4007 * may have cleared our pud entry and done put_page on the page table:
4008 * once we release i_mmap_rwsem, another task can do the final put_page
4009 * and that page table be reused and filled with junk.
4011 flush_tlb_range(vma, start, end);
4012 mmu_notifier_invalidate_range(mm, start, end);
4013 i_mmap_unlock_write(vma->vm_file->f_mapping);
4014 mmu_notifier_invalidate_range_end(mm, start, end);
4016 return pages << h->order;
4019 int hugetlb_reserve_pages(struct inode *inode,
4020 long from, long to,
4021 struct vm_area_struct *vma,
4022 vm_flags_t vm_flags)
4024 long ret, chg;
4025 struct hstate *h = hstate_inode(inode);
4026 struct hugepage_subpool *spool = subpool_inode(inode);
4027 struct resv_map *resv_map;
4028 long gbl_reserve;
4031 * Only apply hugepage reservation if asked. At fault time, an
4032 * attempt will be made for VM_NORESERVE to allocate a page
4033 * without using reserves
4035 if (vm_flags & VM_NORESERVE)
4036 return 0;
4039 * Shared mappings base their reservation on the number of pages that
4040 * are already allocated on behalf of the file. Private mappings need
4041 * to reserve the full area even if read-only as mprotect() may be
4042 * called to make the mapping read-write. Assume !vma is a shm mapping
4044 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4045 resv_map = inode_resv_map(inode);
4047 chg = region_chg(resv_map, from, to);
4049 } else {
4050 resv_map = resv_map_alloc();
4051 if (!resv_map)
4052 return -ENOMEM;
4054 chg = to - from;
4056 set_vma_resv_map(vma, resv_map);
4057 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4060 if (chg < 0) {
4061 ret = chg;
4062 goto out_err;
4066 * There must be enough pages in the subpool for the mapping. If
4067 * the subpool has a minimum size, there may be some global
4068 * reservations already in place (gbl_reserve).
4070 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4071 if (gbl_reserve < 0) {
4072 ret = -ENOSPC;
4073 goto out_err;
4077 * Check enough hugepages are available for the reservation.
4078 * Hand the pages back to the subpool if there are not
4080 ret = hugetlb_acct_memory(h, gbl_reserve);
4081 if (ret < 0) {
4082 /* put back original number of pages, chg */
4083 (void)hugepage_subpool_put_pages(spool, chg);
4084 goto out_err;
4088 * Account for the reservations made. Shared mappings record regions
4089 * that have reservations as they are shared by multiple VMAs.
4090 * When the last VMA disappears, the region map says how much
4091 * the reservation was and the page cache tells how much of
4092 * the reservation was consumed. Private mappings are per-VMA and
4093 * only the consumed reservations are tracked. When the VMA
4094 * disappears, the original reservation is the VMA size and the
4095 * consumed reservations are stored in the map. Hence, nothing
4096 * else has to be done for private mappings here
4098 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4099 long add = region_add(resv_map, from, to);
4101 if (unlikely(chg > add)) {
4103 * pages in this range were added to the reserve
4104 * map between region_chg and region_add. This
4105 * indicates a race with alloc_huge_page. Adjust
4106 * the subpool and reserve counts modified above
4107 * based on the difference.
4109 long rsv_adjust;
4111 rsv_adjust = hugepage_subpool_put_pages(spool,
4112 chg - add);
4113 hugetlb_acct_memory(h, -rsv_adjust);
4116 return 0;
4117 out_err:
4118 if (!vma || vma->vm_flags & VM_MAYSHARE)
4119 region_abort(resv_map, from, to);
4120 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4121 kref_put(&resv_map->refs, resv_map_release);
4122 return ret;
4125 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4126 long freed)
4128 struct hstate *h = hstate_inode(inode);
4129 struct resv_map *resv_map = inode_resv_map(inode);
4130 long chg = 0;
4131 struct hugepage_subpool *spool = subpool_inode(inode);
4132 long gbl_reserve;
4134 if (resv_map) {
4135 chg = region_del(resv_map, start, end);
4137 * region_del() can fail in the rare case where a region
4138 * must be split and another region descriptor can not be
4139 * allocated. If end == LONG_MAX, it will not fail.
4141 if (chg < 0)
4142 return chg;
4145 spin_lock(&inode->i_lock);
4146 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4147 spin_unlock(&inode->i_lock);
4150 * If the subpool has a minimum size, the number of global
4151 * reservations to be released may be adjusted.
4153 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4154 hugetlb_acct_memory(h, -gbl_reserve);
4156 return 0;
4159 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4160 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4161 struct vm_area_struct *vma,
4162 unsigned long addr, pgoff_t idx)
4164 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4165 svma->vm_start;
4166 unsigned long sbase = saddr & PUD_MASK;
4167 unsigned long s_end = sbase + PUD_SIZE;
4169 /* Allow segments to share if only one is marked locked */
4170 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4171 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4174 * match the virtual addresses, permission and the alignment of the
4175 * page table page.
4177 if (pmd_index(addr) != pmd_index(saddr) ||
4178 vm_flags != svm_flags ||
4179 sbase < svma->vm_start || svma->vm_end < s_end)
4180 return 0;
4182 return saddr;
4185 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4187 unsigned long base = addr & PUD_MASK;
4188 unsigned long end = base + PUD_SIZE;
4191 * check on proper vm_flags and page table alignment
4193 if (vma->vm_flags & VM_MAYSHARE &&
4194 vma->vm_start <= base && end <= vma->vm_end)
4195 return true;
4196 return false;
4200 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4201 * and returns the corresponding pte. While this is not necessary for the
4202 * !shared pmd case because we can allocate the pmd later as well, it makes the
4203 * code much cleaner. pmd allocation is essential for the shared case because
4204 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4205 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4206 * bad pmd for sharing.
4208 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4210 struct vm_area_struct *vma = find_vma(mm, addr);
4211 struct address_space *mapping = vma->vm_file->f_mapping;
4212 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4213 vma->vm_pgoff;
4214 struct vm_area_struct *svma;
4215 unsigned long saddr;
4216 pte_t *spte = NULL;
4217 pte_t *pte;
4218 spinlock_t *ptl;
4220 if (!vma_shareable(vma, addr))
4221 return (pte_t *)pmd_alloc(mm, pud, addr);
4223 i_mmap_lock_write(mapping);
4224 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4225 if (svma == vma)
4226 continue;
4228 saddr = page_table_shareable(svma, vma, addr, idx);
4229 if (saddr) {
4230 spte = huge_pte_offset(svma->vm_mm, saddr);
4231 if (spte) {
4232 get_page(virt_to_page(spte));
4233 break;
4238 if (!spte)
4239 goto out;
4241 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4242 spin_lock(ptl);
4243 if (pud_none(*pud)) {
4244 pud_populate(mm, pud,
4245 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4246 mm_inc_nr_pmds(mm);
4247 } else {
4248 put_page(virt_to_page(spte));
4250 spin_unlock(ptl);
4251 out:
4252 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4253 i_mmap_unlock_write(mapping);
4254 return pte;
4258 * unmap huge page backed by shared pte.
4260 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4261 * indicated by page_count > 1, unmap is achieved by clearing pud and
4262 * decrementing the ref count. If count == 1, the pte page is not shared.
4264 * called with page table lock held.
4266 * returns: 1 successfully unmapped a shared pte page
4267 * 0 the underlying pte page is not shared, or it is the last user
4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4271 pgd_t *pgd = pgd_offset(mm, *addr);
4272 pud_t *pud = pud_offset(pgd, *addr);
4274 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4275 if (page_count(virt_to_page(ptep)) == 1)
4276 return 0;
4278 pud_clear(pud);
4279 put_page(virt_to_page(ptep));
4280 mm_dec_nr_pmds(mm);
4281 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4282 return 1;
4284 #define want_pmd_share() (1)
4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4288 return NULL;
4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4293 return 0;
4295 #define want_pmd_share() (0)
4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4299 pte_t *huge_pte_alloc(struct mm_struct *mm,
4300 unsigned long addr, unsigned long sz)
4302 pgd_t *pgd;
4303 pud_t *pud;
4304 pte_t *pte = NULL;
4306 pgd = pgd_offset(mm, addr);
4307 pud = pud_alloc(mm, pgd, addr);
4308 if (pud) {
4309 if (sz == PUD_SIZE) {
4310 pte = (pte_t *)pud;
4311 } else {
4312 BUG_ON(sz != PMD_SIZE);
4313 if (want_pmd_share() && pud_none(*pud))
4314 pte = huge_pmd_share(mm, addr, pud);
4315 else
4316 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4319 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4321 return pte;
4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4326 pgd_t *pgd;
4327 pud_t *pud;
4328 pmd_t *pmd = NULL;
4330 pgd = pgd_offset(mm, addr);
4331 if (pgd_present(*pgd)) {
4332 pud = pud_offset(pgd, addr);
4333 if (pud_present(*pud)) {
4334 if (pud_huge(*pud))
4335 return (pte_t *)pud;
4336 pmd = pmd_offset(pud, addr);
4339 return (pte_t *) pmd;
4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345 * These functions are overwritable if your architecture needs its own
4346 * behavior.
4348 struct page * __weak
4349 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4350 int write)
4352 return ERR_PTR(-EINVAL);
4355 struct page * __weak
4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4357 pmd_t *pmd, int flags)
4359 struct page *page = NULL;
4360 spinlock_t *ptl;
4361 retry:
4362 ptl = pmd_lockptr(mm, pmd);
4363 spin_lock(ptl);
4365 * make sure that the address range covered by this pmd is not
4366 * unmapped from other threads.
4368 if (!pmd_huge(*pmd))
4369 goto out;
4370 if (pmd_present(*pmd)) {
4371 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4372 if (flags & FOLL_GET)
4373 get_page(page);
4374 } else {
4375 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4376 spin_unlock(ptl);
4377 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4378 goto retry;
4381 * hwpoisoned entry is treated as no_page_table in
4382 * follow_page_mask().
4385 out:
4386 spin_unlock(ptl);
4387 return page;
4390 struct page * __weak
4391 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4392 pud_t *pud, int flags)
4394 if (flags & FOLL_GET)
4395 return NULL;
4397 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4400 #ifdef CONFIG_MEMORY_FAILURE
4403 * This function is called from memory failure code.
4404 * Assume the caller holds page lock of the head page.
4406 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4408 struct hstate *h = page_hstate(hpage);
4409 int nid = page_to_nid(hpage);
4410 int ret = -EBUSY;
4412 spin_lock(&hugetlb_lock);
4414 * Just checking !page_huge_active is not enough, because that could be
4415 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4417 if (!page_huge_active(hpage) && !page_count(hpage)) {
4419 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4420 * but dangling hpage->lru can trigger list-debug warnings
4421 * (this happens when we call unpoison_memory() on it),
4422 * so let it point to itself with list_del_init().
4424 list_del_init(&hpage->lru);
4425 set_page_refcounted(hpage);
4426 h->free_huge_pages--;
4427 h->free_huge_pages_node[nid]--;
4428 ret = 0;
4430 spin_unlock(&hugetlb_lock);
4431 return ret;
4433 #endif
4435 bool isolate_huge_page(struct page *page, struct list_head *list)
4437 bool ret = true;
4439 VM_BUG_ON_PAGE(!PageHead(page), page);
4440 spin_lock(&hugetlb_lock);
4441 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4442 ret = false;
4443 goto unlock;
4445 clear_page_huge_active(page);
4446 list_move_tail(&page->lru, list);
4447 unlock:
4448 spin_unlock(&hugetlb_lock);
4449 return ret;
4452 void putback_active_hugepage(struct page *page)
4454 VM_BUG_ON_PAGE(!PageHead(page), page);
4455 spin_lock(&hugetlb_lock);
4456 set_page_huge_active(page);
4457 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4458 spin_unlock(&hugetlb_lock);
4459 put_page(page);