1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree_per_node
{
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
144 struct mem_cgroup_tree
{
145 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
151 struct mem_cgroup_eventfd_list
{
152 struct list_head list
;
153 struct eventfd_ctx
*eventfd
;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event
{
161 * memcg which the event belongs to.
163 struct mem_cgroup
*memcg
;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx
*eventfd
;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list
;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event
)(struct mem_cgroup
*memcg
,
178 struct eventfd_ctx
*eventfd
, const char *args
);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event
)(struct mem_cgroup
*memcg
,
185 struct eventfd_ctx
*eventfd
);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
191 wait_queue_head_t
*wqh
;
193 struct work_struct remove
;
196 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
197 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct
{
209 spinlock_t lock
; /* for from, to */
210 struct mm_struct
*mm
;
211 struct mem_cgroup
*from
;
212 struct mem_cgroup
*to
;
214 unsigned long precharge
;
215 unsigned long moved_charge
;
216 unsigned long moved_swap
;
217 struct task_struct
*moving_task
; /* a task moving charges */
218 wait_queue_head_t waitq
; /* a waitq for other context */
220 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
221 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
232 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON
,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
239 /* for encoding cft->private value on file */
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
258 memcg
= root_mem_cgroup
;
259 return &memcg
->vmpressure
;
262 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
264 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
267 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
269 return (memcg
== root_mem_cgroup
);
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
284 static DEFINE_IDA(memcg_cache_ida
);
285 int memcg_nr_cache_ids
;
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem
);
290 void memcg_get_cache_ids(void)
292 down_read(&memcg_cache_ids_sem
);
295 void memcg_put_cache_ids(void)
297 up_read(&memcg_cache_ids_sem
);
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
324 #endif /* !CONFIG_SLOB */
326 static struct mem_cgroup_per_zone
*
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
329 int nid
= zone_to_nid(zone
);
330 int zid
= zone_idx(zone
);
332 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
346 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
348 struct mem_cgroup
*memcg
;
350 memcg
= page
->mem_cgroup
;
352 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
353 memcg
= root_mem_cgroup
;
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
371 ino_t
page_cgroup_ino(struct page
*page
)
373 struct mem_cgroup
*memcg
;
374 unsigned long ino
= 0;
377 memcg
= READ_ONCE(page
->mem_cgroup
);
378 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
379 memcg
= parent_mem_cgroup(memcg
);
381 ino
= cgroup_ino(memcg
->css
.cgroup
);
386 static struct mem_cgroup_per_zone
*
387 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
389 int nid
= page_to_nid(page
);
390 int zid
= page_zonenum(page
);
392 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
395 static struct mem_cgroup_tree_per_zone
*
396 soft_limit_tree_node_zone(int nid
, int zid
)
398 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
401 static struct mem_cgroup_tree_per_zone
*
402 soft_limit_tree_from_page(struct page
*page
)
404 int nid
= page_to_nid(page
);
405 int zid
= page_zonenum(page
);
407 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
411 struct mem_cgroup_tree_per_zone
*mctz
,
412 unsigned long new_usage_in_excess
)
414 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
415 struct rb_node
*parent
= NULL
;
416 struct mem_cgroup_per_zone
*mz_node
;
421 mz
->usage_in_excess
= new_usage_in_excess
;
422 if (!mz
->usage_in_excess
)
426 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
428 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
434 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
437 rb_link_node(&mz
->tree_node
, parent
, p
);
438 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
443 struct mem_cgroup_tree_per_zone
*mctz
)
447 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
452 struct mem_cgroup_tree_per_zone
*mctz
)
456 spin_lock_irqsave(&mctz
->lock
, flags
);
457 __mem_cgroup_remove_exceeded(mz
, mctz
);
458 spin_unlock_irqrestore(&mctz
->lock
, flags
);
461 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
463 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
464 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
465 unsigned long excess
= 0;
467 if (nr_pages
> soft_limit
)
468 excess
= nr_pages
- soft_limit
;
473 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
475 unsigned long excess
;
476 struct mem_cgroup_per_zone
*mz
;
477 struct mem_cgroup_tree_per_zone
*mctz
;
479 mctz
= soft_limit_tree_from_page(page
);
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
484 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
485 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
486 excess
= soft_limit_excess(memcg
);
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
491 if (excess
|| mz
->on_tree
) {
494 spin_lock_irqsave(&mctz
->lock
, flags
);
495 /* if on-tree, remove it */
497 __mem_cgroup_remove_exceeded(mz
, mctz
);
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
502 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
503 spin_unlock_irqrestore(&mctz
->lock
, flags
);
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
510 struct mem_cgroup_tree_per_zone
*mctz
;
511 struct mem_cgroup_per_zone
*mz
;
515 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
516 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
517 mctz
= soft_limit_tree_node_zone(nid
, zid
);
518 mem_cgroup_remove_exceeded(mz
, mctz
);
523 static struct mem_cgroup_per_zone
*
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
526 struct rb_node
*rightmost
= NULL
;
527 struct mem_cgroup_per_zone
*mz
;
531 rightmost
= rb_last(&mctz
->rb_root
);
533 goto done
; /* Nothing to reclaim from */
535 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
541 __mem_cgroup_remove_exceeded(mz
, mctz
);
542 if (!soft_limit_excess(mz
->memcg
) ||
543 !css_tryget_online(&mz
->memcg
->css
))
549 static struct mem_cgroup_per_zone
*
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
552 struct mem_cgroup_per_zone
*mz
;
554 spin_lock_irq(&mctz
->lock
);
555 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
556 spin_unlock_irq(&mctz
->lock
);
561 * Return page count for single (non recursive) @memcg.
563 * Implementation Note: reading percpu statistics for memcg.
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
582 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu
)
589 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
600 enum mem_cgroup_events_index idx
)
602 unsigned long val
= 0;
605 for_each_possible_cpu(cpu
)
606 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
610 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
612 bool compound
, int nr_pages
)
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
619 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
622 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
626 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
627 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
631 /* pagein of a big page is an event. So, ignore page size */
633 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
635 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
636 nr_pages
= -nr_pages
; /* for event */
639 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
643 int nid
, unsigned int lru_mask
)
645 unsigned long nr
= 0;
648 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
650 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
651 struct mem_cgroup_per_zone
*mz
;
655 if (!(BIT(lru
) & lru_mask
))
657 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
658 nr
+= mz
->lru_size
[lru
];
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
665 unsigned int lru_mask
)
667 unsigned long nr
= 0;
670 for_each_node_state(nid
, N_MEMORY
)
671 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
676 enum mem_cgroup_events_target target
)
678 unsigned long val
, next
;
680 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
681 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
682 /* from time_after() in jiffies.h */
683 if ((long)next
- (long)val
< 0) {
685 case MEM_CGROUP_TARGET_THRESH
:
686 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
688 case MEM_CGROUP_TARGET_SOFTLIMIT
:
689 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
691 case MEM_CGROUP_TARGET_NUMAINFO
:
692 next
= val
+ NUMAINFO_EVENTS_TARGET
;
697 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
704 * Check events in order.
707 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
711 MEM_CGROUP_TARGET_THRESH
))) {
713 bool do_numainfo __maybe_unused
;
715 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
716 MEM_CGROUP_TARGET_SOFTLIMIT
);
718 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
719 MEM_CGROUP_TARGET_NUMAINFO
);
721 mem_cgroup_threshold(memcg
);
722 if (unlikely(do_softlimit
))
723 mem_cgroup_update_tree(memcg
, page
);
725 if (unlikely(do_numainfo
))
726 atomic_inc(&memcg
->numainfo_events
);
731 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
741 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
743 EXPORT_SYMBOL(mem_cgroup_from_task
);
745 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
747 struct mem_cgroup
*memcg
= NULL
;
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
757 memcg
= root_mem_cgroup
;
759 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
760 if (unlikely(!memcg
))
761 memcg
= root_mem_cgroup
;
763 } while (!css_tryget_online(&memcg
->css
));
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
785 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
786 struct mem_cgroup
*prev
,
787 struct mem_cgroup_reclaim_cookie
*reclaim
)
789 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
790 struct cgroup_subsys_state
*css
= NULL
;
791 struct mem_cgroup
*memcg
= NULL
;
792 struct mem_cgroup
*pos
= NULL
;
794 if (mem_cgroup_disabled())
798 root
= root_mem_cgroup
;
800 if (prev
&& !reclaim
)
803 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
812 struct mem_cgroup_per_zone
*mz
;
814 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
815 iter
= &mz
->iter
[reclaim
->priority
];
817 if (prev
&& reclaim
->generation
!= iter
->generation
)
821 pos
= READ_ONCE(iter
->position
);
822 if (!pos
|| css_tryget(&pos
->css
))
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
832 (void)cmpxchg(&iter
->position
, pos
, NULL
);
840 css
= css_next_descendant_pre(css
, &root
->css
);
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
858 memcg
= mem_cgroup_from_css(css
);
860 if (css
== &root
->css
)
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
875 (void)cmpxchg(&iter
->position
, pos
, memcg
);
883 reclaim
->generation
= iter
->generation
;
889 if (prev
&& prev
!= root
)
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
900 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
901 struct mem_cgroup
*prev
)
904 root
= root_mem_cgroup
;
905 if (prev
&& prev
!= root
)
909 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
911 struct mem_cgroup
*memcg
= dead_memcg
;
912 struct mem_cgroup_reclaim_iter
*iter
;
913 struct mem_cgroup_per_zone
*mz
;
917 while ((memcg
= parent_mem_cgroup(memcg
))) {
919 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
920 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
921 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
923 cmpxchg(&iter
->position
,
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
939 iter = mem_cgroup_iter(root, iter, NULL))
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
955 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
956 struct mem_cgroup
*memcg
)
958 struct mem_cgroup_per_zone
*mz
;
959 struct lruvec
*lruvec
;
961 if (mem_cgroup_disabled()) {
962 lruvec
= &zone
->lruvec
;
966 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
967 lruvec
= &mz
->lruvec
;
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
974 if (unlikely(lruvec
->zone
!= zone
))
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
982 * @zone: zone of the page
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
988 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
990 struct mem_cgroup_per_zone
*mz
;
991 struct mem_cgroup
*memcg
;
992 struct lruvec
*lruvec
;
994 if (mem_cgroup_disabled()) {
995 lruvec
= &zone
->lruvec
;
999 memcg
= page
->mem_cgroup
;
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1005 memcg
= root_mem_cgroup
;
1007 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1008 lruvec
= &mz
->lruvec
;
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1015 if (unlikely(lruvec
->zone
!= zone
))
1016 lruvec
->zone
= zone
;
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1030 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1033 struct mem_cgroup_per_zone
*mz
;
1034 unsigned long *lru_size
;
1038 __update_lru_size(lruvec
, lru
, nr_pages
);
1040 if (mem_cgroup_disabled())
1043 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1044 lru_size
= mz
->lru_size
+ lru
;
1045 empty
= list_empty(lruvec
->lists
+ lru
);
1048 *lru_size
+= nr_pages
;
1051 if (WARN_ONCE(size
< 0 || empty
!= !size
,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__
, lruvec
, lru
, nr_pages
, size
, empty
? "" : "not ")) {
1059 *lru_size
+= nr_pages
;
1062 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1064 struct mem_cgroup
*task_memcg
;
1065 struct task_struct
*p
;
1068 p
= find_lock_task_mm(task
);
1070 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1079 task_memcg
= mem_cgroup_from_task(task
);
1080 css_get(&task_memcg
->css
);
1083 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1084 css_put(&task_memcg
->css
);
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1092 * Returns the maximum amount of memory @mem can be charged with, in
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1097 unsigned long margin
= 0;
1098 unsigned long count
;
1099 unsigned long limit
;
1101 count
= page_counter_read(&memcg
->memory
);
1102 limit
= READ_ONCE(memcg
->memory
.limit
);
1104 margin
= limit
- count
;
1106 if (do_memsw_account()) {
1107 count
= page_counter_read(&memcg
->memsw
);
1108 limit
= READ_ONCE(memcg
->memsw
.limit
);
1110 margin
= min(margin
, limit
- count
);
1119 * A routine for checking "mem" is under move_account() or not.
1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122 * moving cgroups. This is for waiting at high-memory pressure
1125 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1127 struct mem_cgroup
*from
;
1128 struct mem_cgroup
*to
;
1131 * Unlike task_move routines, we access mc.to, mc.from not under
1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1134 spin_lock(&mc
.lock
);
1140 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1141 mem_cgroup_is_descendant(to
, memcg
);
1143 spin_unlock(&mc
.lock
);
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1149 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1150 if (mem_cgroup_under_move(memcg
)) {
1152 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1153 /* moving charge context might have finished. */
1156 finish_wait(&mc
.waitq
, &wait
);
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 * @memcg: The memory cgroup that went over limit
1167 * @p: Task that is going to be killed
1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1172 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1174 struct mem_cgroup
*iter
;
1180 pr_info("Task in ");
1181 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1182 pr_cont(" killed as a result of limit of ");
1184 pr_info("Memory limit reached of cgroup ");
1187 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 K((u64
)page_counter_read(&memcg
->memory
)),
1194 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 K((u64
)page_counter_read(&memcg
->memsw
)),
1197 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 K((u64
)page_counter_read(&memcg
->kmem
)),
1200 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1202 for_each_mem_cgroup_tree(iter
, memcg
) {
1203 pr_info("Memory cgroup stats for ");
1204 pr_cont_cgroup_path(iter
->css
.cgroup
);
1207 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1208 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1211 K(mem_cgroup_read_stat(iter
, i
)));
1214 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1216 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1223 * This function returns the number of memcg under hierarchy tree. Returns
1224 * 1(self count) if no children.
1226 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1229 struct mem_cgroup
*iter
;
1231 for_each_mem_cgroup_tree(iter
, memcg
)
1237 * Return the memory (and swap, if configured) limit for a memcg.
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1241 unsigned long limit
;
1243 limit
= memcg
->memory
.limit
;
1244 if (mem_cgroup_swappiness(memcg
)) {
1245 unsigned long memsw_limit
;
1246 unsigned long swap_limit
;
1248 memsw_limit
= memcg
->memsw
.limit
;
1249 swap_limit
= memcg
->swap
.limit
;
1250 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1251 limit
= min(limit
+ swap_limit
, memsw_limit
);
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1259 struct oom_control oc
= {
1262 .gfp_mask
= gfp_mask
,
1265 struct mem_cgroup
*iter
;
1266 unsigned long chosen_points
= 0;
1267 unsigned long totalpages
;
1268 unsigned int points
= 0;
1269 struct task_struct
*chosen
= NULL
;
1271 mutex_lock(&oom_lock
);
1274 * If current has a pending SIGKILL or is exiting, then automatically
1275 * select it. The goal is to allow it to allocate so that it may
1276 * quickly exit and free its memory.
1278 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1279 mark_oom_victim(current
);
1280 try_oom_reaper(current
);
1284 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1285 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1286 for_each_mem_cgroup_tree(iter
, memcg
) {
1287 struct css_task_iter it
;
1288 struct task_struct
*task
;
1290 css_task_iter_start(&iter
->css
, &it
);
1291 while ((task
= css_task_iter_next(&it
))) {
1292 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1293 case OOM_SCAN_SELECT
:
1295 put_task_struct(chosen
);
1297 chosen_points
= ULONG_MAX
;
1298 get_task_struct(chosen
);
1300 case OOM_SCAN_CONTINUE
:
1302 case OOM_SCAN_ABORT
:
1303 css_task_iter_end(&it
);
1304 mem_cgroup_iter_break(memcg
, iter
);
1306 put_task_struct(chosen
);
1307 /* Set a dummy value to return "true". */
1308 chosen
= (void *) 1;
1313 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1314 if (!points
|| points
< chosen_points
)
1316 /* Prefer thread group leaders for display purposes */
1317 if (points
== chosen_points
&&
1318 thread_group_leader(chosen
))
1322 put_task_struct(chosen
);
1324 chosen_points
= points
;
1325 get_task_struct(chosen
);
1327 css_task_iter_end(&it
);
1331 points
= chosen_points
* 1000 / totalpages
;
1332 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1333 "Memory cgroup out of memory");
1336 mutex_unlock(&oom_lock
);
1340 #if MAX_NUMNODES > 1
1343 * test_mem_cgroup_node_reclaimable
1344 * @memcg: the target memcg
1345 * @nid: the node ID to be checked.
1346 * @noswap : specify true here if the user wants flle only information.
1348 * This function returns whether the specified memcg contains any
1349 * reclaimable pages on a node. Returns true if there are any reclaimable
1350 * pages in the node.
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1353 int nid
, bool noswap
)
1355 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1357 if (noswap
|| !total_swap_pages
)
1359 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1366 * Always updating the nodemask is not very good - even if we have an empty
1367 * list or the wrong list here, we can start from some node and traverse all
1368 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1375 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376 * pagein/pageout changes since the last update.
1378 if (!atomic_read(&memcg
->numainfo_events
))
1380 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1383 /* make a nodemask where this memcg uses memory from */
1384 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1386 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1388 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1389 node_clear(nid
, memcg
->scan_nodes
);
1392 atomic_set(&memcg
->numainfo_events
, 0);
1393 atomic_set(&memcg
->numainfo_updating
, 0);
1397 * Selecting a node where we start reclaim from. Because what we need is just
1398 * reducing usage counter, start from anywhere is O,K. Considering
1399 * memory reclaim from current node, there are pros. and cons.
1401 * Freeing memory from current node means freeing memory from a node which
1402 * we'll use or we've used. So, it may make LRU bad. And if several threads
1403 * hit limits, it will see a contention on a node. But freeing from remote
1404 * node means more costs for memory reclaim because of memory latency.
1406 * Now, we use round-robin. Better algorithm is welcomed.
1408 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1412 mem_cgroup_may_update_nodemask(memcg
);
1413 node
= memcg
->last_scanned_node
;
1415 node
= next_node_in(node
, memcg
->scan_nodes
);
1417 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418 * last time it really checked all the LRUs due to rate limiting.
1419 * Fallback to the current node in that case for simplicity.
1421 if (unlikely(node
== MAX_NUMNODES
))
1422 node
= numa_node_id();
1424 memcg
->last_scanned_node
= node
;
1428 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1437 unsigned long *total_scanned
)
1439 struct mem_cgroup
*victim
= NULL
;
1442 unsigned long excess
;
1443 unsigned long nr_scanned
;
1444 struct mem_cgroup_reclaim_cookie reclaim
= {
1449 excess
= soft_limit_excess(root_memcg
);
1452 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1457 * If we have not been able to reclaim
1458 * anything, it might because there are
1459 * no reclaimable pages under this hierarchy
1464 * We want to do more targeted reclaim.
1465 * excess >> 2 is not to excessive so as to
1466 * reclaim too much, nor too less that we keep
1467 * coming back to reclaim from this cgroup
1469 if (total
>= (excess
>> 2) ||
1470 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1475 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1477 *total_scanned
+= nr_scanned
;
1478 if (!soft_limit_excess(root_memcg
))
1481 mem_cgroup_iter_break(root_memcg
, victim
);
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map
= {
1487 .name
= "memcg_oom_lock",
1491 static DEFINE_SPINLOCK(memcg_oom_lock
);
1494 * Check OOM-Killer is already running under our hierarchy.
1495 * If someone is running, return false.
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1499 struct mem_cgroup
*iter
, *failed
= NULL
;
1501 spin_lock(&memcg_oom_lock
);
1503 for_each_mem_cgroup_tree(iter
, memcg
) {
1504 if (iter
->oom_lock
) {
1506 * this subtree of our hierarchy is already locked
1507 * so we cannot give a lock.
1510 mem_cgroup_iter_break(memcg
, iter
);
1513 iter
->oom_lock
= true;
1518 * OK, we failed to lock the whole subtree so we have
1519 * to clean up what we set up to the failing subtree
1521 for_each_mem_cgroup_tree(iter
, memcg
) {
1522 if (iter
== failed
) {
1523 mem_cgroup_iter_break(memcg
, iter
);
1526 iter
->oom_lock
= false;
1529 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1531 spin_unlock(&memcg_oom_lock
);
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1538 struct mem_cgroup
*iter
;
1540 spin_lock(&memcg_oom_lock
);
1541 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1542 for_each_mem_cgroup_tree(iter
, memcg
)
1543 iter
->oom_lock
= false;
1544 spin_unlock(&memcg_oom_lock
);
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1549 struct mem_cgroup
*iter
;
1551 spin_lock(&memcg_oom_lock
);
1552 for_each_mem_cgroup_tree(iter
, memcg
)
1554 spin_unlock(&memcg_oom_lock
);
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1559 struct mem_cgroup
*iter
;
1562 * When a new child is created while the hierarchy is under oom,
1563 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1565 spin_lock(&memcg_oom_lock
);
1566 for_each_mem_cgroup_tree(iter
, memcg
)
1567 if (iter
->under_oom
> 0)
1569 spin_unlock(&memcg_oom_lock
);
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1574 struct oom_wait_info
{
1575 struct mem_cgroup
*memcg
;
1579 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1580 unsigned mode
, int sync
, void *arg
)
1582 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1583 struct mem_cgroup
*oom_wait_memcg
;
1584 struct oom_wait_info
*oom_wait_info
;
1586 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1587 oom_wait_memcg
= oom_wait_info
->memcg
;
1589 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1590 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1592 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1595 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1598 * For the following lockless ->under_oom test, the only required
1599 * guarantee is that it must see the state asserted by an OOM when
1600 * this function is called as a result of userland actions
1601 * triggered by the notification of the OOM. This is trivially
1602 * achieved by invoking mem_cgroup_mark_under_oom() before
1603 * triggering notification.
1605 if (memcg
&& memcg
->under_oom
)
1606 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1609 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1611 if (!current
->memcg_may_oom
)
1614 * We are in the middle of the charge context here, so we
1615 * don't want to block when potentially sitting on a callstack
1616 * that holds all kinds of filesystem and mm locks.
1618 * Also, the caller may handle a failed allocation gracefully
1619 * (like optional page cache readahead) and so an OOM killer
1620 * invocation might not even be necessary.
1622 * That's why we don't do anything here except remember the
1623 * OOM context and then deal with it at the end of the page
1624 * fault when the stack is unwound, the locks are released,
1625 * and when we know whether the fault was overall successful.
1627 css_get(&memcg
->css
);
1628 current
->memcg_in_oom
= memcg
;
1629 current
->memcg_oom_gfp_mask
= mask
;
1630 current
->memcg_oom_order
= order
;
1634 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635 * @handle: actually kill/wait or just clean up the OOM state
1637 * This has to be called at the end of a page fault if the memcg OOM
1638 * handler was enabled.
1640 * Memcg supports userspace OOM handling where failed allocations must
1641 * sleep on a waitqueue until the userspace task resolves the
1642 * situation. Sleeping directly in the charge context with all kinds
1643 * of locks held is not a good idea, instead we remember an OOM state
1644 * in the task and mem_cgroup_oom_synchronize() has to be called at
1645 * the end of the page fault to complete the OOM handling.
1647 * Returns %true if an ongoing memcg OOM situation was detected and
1648 * completed, %false otherwise.
1650 bool mem_cgroup_oom_synchronize(bool handle
)
1652 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1653 struct oom_wait_info owait
;
1656 /* OOM is global, do not handle */
1660 if (!handle
|| oom_killer_disabled
)
1663 owait
.memcg
= memcg
;
1664 owait
.wait
.flags
= 0;
1665 owait
.wait
.func
= memcg_oom_wake_function
;
1666 owait
.wait
.private = current
;
1667 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1669 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1670 mem_cgroup_mark_under_oom(memcg
);
1672 locked
= mem_cgroup_oom_trylock(memcg
);
1675 mem_cgroup_oom_notify(memcg
);
1677 if (locked
&& !memcg
->oom_kill_disable
) {
1678 mem_cgroup_unmark_under_oom(memcg
);
1679 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1680 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1681 current
->memcg_oom_order
);
1684 mem_cgroup_unmark_under_oom(memcg
);
1685 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1689 mem_cgroup_oom_unlock(memcg
);
1691 * There is no guarantee that an OOM-lock contender
1692 * sees the wakeups triggered by the OOM kill
1693 * uncharges. Wake any sleepers explicitely.
1695 memcg_oom_recover(memcg
);
1698 current
->memcg_in_oom
= NULL
;
1699 css_put(&memcg
->css
);
1704 * lock_page_memcg - lock a page->mem_cgroup binding
1707 * This function protects unlocked LRU pages from being moved to
1708 * another cgroup and stabilizes their page->mem_cgroup binding.
1710 void lock_page_memcg(struct page
*page
)
1712 struct mem_cgroup
*memcg
;
1713 unsigned long flags
;
1716 * The RCU lock is held throughout the transaction. The fast
1717 * path can get away without acquiring the memcg->move_lock
1718 * because page moving starts with an RCU grace period.
1722 if (mem_cgroup_disabled())
1725 memcg
= page
->mem_cgroup
;
1726 if (unlikely(!memcg
))
1729 if (atomic_read(&memcg
->moving_account
) <= 0)
1732 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1733 if (memcg
!= page
->mem_cgroup
) {
1734 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1739 * When charge migration first begins, we can have locked and
1740 * unlocked page stat updates happening concurrently. Track
1741 * the task who has the lock for unlock_page_memcg().
1743 memcg
->move_lock_task
= current
;
1744 memcg
->move_lock_flags
= flags
;
1748 EXPORT_SYMBOL(lock_page_memcg
);
1751 * unlock_page_memcg - unlock a page->mem_cgroup binding
1754 void unlock_page_memcg(struct page
*page
)
1756 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1758 if (memcg
&& memcg
->move_lock_task
== current
) {
1759 unsigned long flags
= memcg
->move_lock_flags
;
1761 memcg
->move_lock_task
= NULL
;
1762 memcg
->move_lock_flags
= 0;
1764 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1769 EXPORT_SYMBOL(unlock_page_memcg
);
1772 * size of first charge trial. "32" comes from vmscan.c's magic value.
1773 * TODO: maybe necessary to use big numbers in big irons.
1775 #define CHARGE_BATCH 32U
1776 struct memcg_stock_pcp
{
1777 struct mem_cgroup
*cached
; /* this never be root cgroup */
1778 unsigned int nr_pages
;
1779 struct work_struct work
;
1780 unsigned long flags
;
1781 #define FLUSHING_CACHED_CHARGE 0
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1784 static DEFINE_MUTEX(percpu_charge_mutex
);
1787 * consume_stock: Try to consume stocked charge on this cpu.
1788 * @memcg: memcg to consume from.
1789 * @nr_pages: how many pages to charge.
1791 * The charges will only happen if @memcg matches the current cpu's memcg
1792 * stock, and at least @nr_pages are available in that stock. Failure to
1793 * service an allocation will refill the stock.
1795 * returns true if successful, false otherwise.
1797 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1799 struct memcg_stock_pcp
*stock
;
1802 if (nr_pages
> CHARGE_BATCH
)
1805 stock
= &get_cpu_var(memcg_stock
);
1806 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1807 stock
->nr_pages
-= nr_pages
;
1810 put_cpu_var(memcg_stock
);
1815 * Returns stocks cached in percpu and reset cached information.
1817 static void drain_stock(struct memcg_stock_pcp
*stock
)
1819 struct mem_cgroup
*old
= stock
->cached
;
1821 if (stock
->nr_pages
) {
1822 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1823 if (do_memsw_account())
1824 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1825 css_put_many(&old
->css
, stock
->nr_pages
);
1826 stock
->nr_pages
= 0;
1828 stock
->cached
= NULL
;
1832 * This must be called under preempt disabled or must be called by
1833 * a thread which is pinned to local cpu.
1835 static void drain_local_stock(struct work_struct
*dummy
)
1837 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1839 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1843 * Cache charges(val) to local per_cpu area.
1844 * This will be consumed by consume_stock() function, later.
1846 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1848 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1850 if (stock
->cached
!= memcg
) { /* reset if necessary */
1852 stock
->cached
= memcg
;
1854 stock
->nr_pages
+= nr_pages
;
1855 put_cpu_var(memcg_stock
);
1859 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860 * of the hierarchy under it.
1862 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1866 /* If someone's already draining, avoid adding running more workers. */
1867 if (!mutex_trylock(&percpu_charge_mutex
))
1869 /* Notify other cpus that system-wide "drain" is running */
1872 for_each_online_cpu(cpu
) {
1873 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1874 struct mem_cgroup
*memcg
;
1876 memcg
= stock
->cached
;
1877 if (!memcg
|| !stock
->nr_pages
)
1879 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1881 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1883 drain_local_stock(&stock
->work
);
1885 schedule_work_on(cpu
, &stock
->work
);
1890 mutex_unlock(&percpu_charge_mutex
);
1893 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1894 unsigned long action
,
1897 int cpu
= (unsigned long)hcpu
;
1898 struct memcg_stock_pcp
*stock
;
1900 if (action
== CPU_ONLINE
)
1903 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1906 stock
= &per_cpu(memcg_stock
, cpu
);
1911 static void reclaim_high(struct mem_cgroup
*memcg
,
1912 unsigned int nr_pages
,
1916 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1918 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1919 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1920 } while ((memcg
= parent_mem_cgroup(memcg
)));
1923 static void high_work_func(struct work_struct
*work
)
1925 struct mem_cgroup
*memcg
;
1927 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1928 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1932 * Scheduled by try_charge() to be executed from the userland return path
1933 * and reclaims memory over the high limit.
1935 void mem_cgroup_handle_over_high(void)
1937 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1938 struct mem_cgroup
*memcg
;
1940 if (likely(!nr_pages
))
1943 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1944 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1945 css_put(&memcg
->css
);
1946 current
->memcg_nr_pages_over_high
= 0;
1949 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1950 unsigned int nr_pages
)
1952 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1953 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1954 struct mem_cgroup
*mem_over_limit
;
1955 struct page_counter
*counter
;
1956 unsigned long nr_reclaimed
;
1957 bool may_swap
= true;
1958 bool drained
= false;
1960 if (mem_cgroup_is_root(memcg
))
1963 if (consume_stock(memcg
, nr_pages
))
1966 if (!do_memsw_account() ||
1967 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1968 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1970 if (do_memsw_account())
1971 page_counter_uncharge(&memcg
->memsw
, batch
);
1972 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1974 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1978 if (batch
> nr_pages
) {
1984 * Unlike in global OOM situations, memcg is not in a physical
1985 * memory shortage. Allow dying and OOM-killed tasks to
1986 * bypass the last charges so that they can exit quickly and
1987 * free their memory.
1989 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1990 fatal_signal_pending(current
) ||
1991 current
->flags
& PF_EXITING
))
1994 if (unlikely(task_in_memcg_oom(current
)))
1997 if (!gfpflags_allow_blocking(gfp_mask
))
2000 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
2002 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2003 gfp_mask
, may_swap
);
2005 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2009 drain_all_stock(mem_over_limit
);
2014 if (gfp_mask
& __GFP_NORETRY
)
2017 * Even though the limit is exceeded at this point, reclaim
2018 * may have been able to free some pages. Retry the charge
2019 * before killing the task.
2021 * Only for regular pages, though: huge pages are rather
2022 * unlikely to succeed so close to the limit, and we fall back
2023 * to regular pages anyway in case of failure.
2025 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2028 * At task move, charge accounts can be doubly counted. So, it's
2029 * better to wait until the end of task_move if something is going on.
2031 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2037 if (gfp_mask
& __GFP_NOFAIL
)
2040 if (fatal_signal_pending(current
))
2043 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2045 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2046 get_order(nr_pages
* PAGE_SIZE
));
2048 if (!(gfp_mask
& __GFP_NOFAIL
))
2052 * The allocation either can't fail or will lead to more memory
2053 * being freed very soon. Allow memory usage go over the limit
2054 * temporarily by force charging it.
2056 page_counter_charge(&memcg
->memory
, nr_pages
);
2057 if (do_memsw_account())
2058 page_counter_charge(&memcg
->memsw
, nr_pages
);
2059 css_get_many(&memcg
->css
, nr_pages
);
2064 css_get_many(&memcg
->css
, batch
);
2065 if (batch
> nr_pages
)
2066 refill_stock(memcg
, batch
- nr_pages
);
2069 * If the hierarchy is above the normal consumption range, schedule
2070 * reclaim on returning to userland. We can perform reclaim here
2071 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2073 * not recorded as it most likely matches current's and won't
2074 * change in the meantime. As high limit is checked again before
2075 * reclaim, the cost of mismatch is negligible.
2078 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2079 /* Don't bother a random interrupted task */
2080 if (in_interrupt()) {
2081 schedule_work(&memcg
->high_work
);
2084 current
->memcg_nr_pages_over_high
+= batch
;
2085 set_notify_resume(current
);
2088 } while ((memcg
= parent_mem_cgroup(memcg
)));
2093 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2095 if (mem_cgroup_is_root(memcg
))
2098 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2099 if (do_memsw_account())
2100 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2102 css_put_many(&memcg
->css
, nr_pages
);
2105 static void lock_page_lru(struct page
*page
, int *isolated
)
2107 struct zone
*zone
= page_zone(page
);
2109 spin_lock_irq(&zone
->lru_lock
);
2110 if (PageLRU(page
)) {
2111 struct lruvec
*lruvec
;
2113 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2115 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2121 static void unlock_page_lru(struct page
*page
, int isolated
)
2123 struct zone
*zone
= page_zone(page
);
2126 struct lruvec
*lruvec
;
2128 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2129 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2131 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2133 spin_unlock_irq(&zone
->lru_lock
);
2136 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2141 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2144 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145 * may already be on some other mem_cgroup's LRU. Take care of it.
2148 lock_page_lru(page
, &isolated
);
2151 * Nobody should be changing or seriously looking at
2152 * page->mem_cgroup at this point:
2154 * - the page is uncharged
2156 * - the page is off-LRU
2158 * - an anonymous fault has exclusive page access, except for
2159 * a locked page table
2161 * - a page cache insertion, a swapin fault, or a migration
2162 * have the page locked
2164 page
->mem_cgroup
= memcg
;
2167 unlock_page_lru(page
, isolated
);
2171 static int memcg_alloc_cache_id(void)
2176 id
= ida_simple_get(&memcg_cache_ida
,
2177 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2181 if (id
< memcg_nr_cache_ids
)
2185 * There's no space for the new id in memcg_caches arrays,
2186 * so we have to grow them.
2188 down_write(&memcg_cache_ids_sem
);
2190 size
= 2 * (id
+ 1);
2191 if (size
< MEMCG_CACHES_MIN_SIZE
)
2192 size
= MEMCG_CACHES_MIN_SIZE
;
2193 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2194 size
= MEMCG_CACHES_MAX_SIZE
;
2196 err
= memcg_update_all_caches(size
);
2198 err
= memcg_update_all_list_lrus(size
);
2200 memcg_nr_cache_ids
= size
;
2202 up_write(&memcg_cache_ids_sem
);
2205 ida_simple_remove(&memcg_cache_ida
, id
);
2211 static void memcg_free_cache_id(int id
)
2213 ida_simple_remove(&memcg_cache_ida
, id
);
2216 struct memcg_kmem_cache_create_work
{
2217 struct mem_cgroup
*memcg
;
2218 struct kmem_cache
*cachep
;
2219 struct work_struct work
;
2222 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2224 struct memcg_kmem_cache_create_work
*cw
=
2225 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2226 struct mem_cgroup
*memcg
= cw
->memcg
;
2227 struct kmem_cache
*cachep
= cw
->cachep
;
2229 memcg_create_kmem_cache(memcg
, cachep
);
2231 css_put(&memcg
->css
);
2236 * Enqueue the creation of a per-memcg kmem_cache.
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2239 struct kmem_cache
*cachep
)
2241 struct memcg_kmem_cache_create_work
*cw
;
2243 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2247 css_get(&memcg
->css
);
2250 cw
->cachep
= cachep
;
2251 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2253 schedule_work(&cw
->work
);
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2257 struct kmem_cache
*cachep
)
2260 * We need to stop accounting when we kmalloc, because if the
2261 * corresponding kmalloc cache is not yet created, the first allocation
2262 * in __memcg_schedule_kmem_cache_create will recurse.
2264 * However, it is better to enclose the whole function. Depending on
2265 * the debugging options enabled, INIT_WORK(), for instance, can
2266 * trigger an allocation. This too, will make us recurse. Because at
2267 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268 * the safest choice is to do it like this, wrapping the whole function.
2270 current
->memcg_kmem_skip_account
= 1;
2271 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2272 current
->memcg_kmem_skip_account
= 0;
2276 * Return the kmem_cache we're supposed to use for a slab allocation.
2277 * We try to use the current memcg's version of the cache.
2279 * If the cache does not exist yet, if we are the first user of it,
2280 * we either create it immediately, if possible, or create it asynchronously
2282 * In the latter case, we will let the current allocation go through with
2283 * the original cache.
2285 * Can't be called in interrupt context or from kernel threads.
2286 * This function needs to be called with rcu_read_lock() held.
2288 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2290 struct mem_cgroup
*memcg
;
2291 struct kmem_cache
*memcg_cachep
;
2294 VM_BUG_ON(!is_root_cache(cachep
));
2296 if (cachep
->flags
& SLAB_ACCOUNT
)
2297 gfp
|= __GFP_ACCOUNT
;
2299 if (!(gfp
& __GFP_ACCOUNT
))
2302 if (current
->memcg_kmem_skip_account
)
2305 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2306 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2310 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2311 if (likely(memcg_cachep
))
2312 return memcg_cachep
;
2315 * If we are in a safe context (can wait, and not in interrupt
2316 * context), we could be be predictable and return right away.
2317 * This would guarantee that the allocation being performed
2318 * already belongs in the new cache.
2320 * However, there are some clashes that can arrive from locking.
2321 * For instance, because we acquire the slab_mutex while doing
2322 * memcg_create_kmem_cache, this means no further allocation
2323 * could happen with the slab_mutex held. So it's better to
2326 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2328 css_put(&memcg
->css
);
2332 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2334 if (!is_root_cache(cachep
))
2335 css_put(&cachep
->memcg_params
.memcg
->css
);
2338 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2339 struct mem_cgroup
*memcg
)
2341 unsigned int nr_pages
= 1 << order
;
2342 struct page_counter
*counter
;
2345 ret
= try_charge(memcg
, gfp
, nr_pages
);
2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2350 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2351 cancel_charge(memcg
, nr_pages
);
2355 page
->mem_cgroup
= memcg
;
2360 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2362 struct mem_cgroup
*memcg
;
2365 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2366 if (!mem_cgroup_is_root(memcg
))
2367 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2368 css_put(&memcg
->css
);
2372 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2374 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2375 unsigned int nr_pages
= 1 << order
;
2380 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2382 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2383 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2385 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2386 if (do_memsw_account())
2387 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2389 page
->mem_cgroup
= NULL
;
2390 css_put_many(&memcg
->css
, nr_pages
);
2392 #endif /* !CONFIG_SLOB */
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2397 * Because tail pages are not marked as "used", set it. We're under
2398 * zone->lru_lock and migration entries setup in all page mappings.
2400 void mem_cgroup_split_huge_fixup(struct page
*head
)
2404 if (mem_cgroup_disabled())
2407 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2408 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2410 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2419 int val
= (charge
) ? 1 : -1;
2420 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2424 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425 * @entry: swap entry to be moved
2426 * @from: mem_cgroup which the entry is moved from
2427 * @to: mem_cgroup which the entry is moved to
2429 * It succeeds only when the swap_cgroup's record for this entry is the same
2430 * as the mem_cgroup's id of @from.
2432 * Returns 0 on success, -EINVAL on failure.
2434 * The caller must have charged to @to, IOW, called page_counter_charge() about
2435 * both res and memsw, and called css_get().
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2438 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2440 unsigned short old_id
, new_id
;
2442 old_id
= mem_cgroup_id(from
);
2443 new_id
= mem_cgroup_id(to
);
2445 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2446 mem_cgroup_swap_statistics(from
, false);
2447 mem_cgroup_swap_statistics(to
, true);
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2454 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2460 static DEFINE_MUTEX(memcg_limit_mutex
);
2462 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2463 unsigned long limit
)
2465 unsigned long curusage
;
2466 unsigned long oldusage
;
2467 bool enlarge
= false;
2472 * For keeping hierarchical_reclaim simple, how long we should retry
2473 * is depends on callers. We set our retry-count to be function
2474 * of # of children which we should visit in this loop.
2476 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2477 mem_cgroup_count_children(memcg
);
2479 oldusage
= page_counter_read(&memcg
->memory
);
2482 if (signal_pending(current
)) {
2487 mutex_lock(&memcg_limit_mutex
);
2488 if (limit
> memcg
->memsw
.limit
) {
2489 mutex_unlock(&memcg_limit_mutex
);
2493 if (limit
> memcg
->memory
.limit
)
2495 ret
= page_counter_limit(&memcg
->memory
, limit
);
2496 mutex_unlock(&memcg_limit_mutex
);
2501 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2503 curusage
= page_counter_read(&memcg
->memory
);
2504 /* Usage is reduced ? */
2505 if (curusage
>= oldusage
)
2508 oldusage
= curusage
;
2509 } while (retry_count
);
2511 if (!ret
&& enlarge
)
2512 memcg_oom_recover(memcg
);
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2518 unsigned long limit
)
2520 unsigned long curusage
;
2521 unsigned long oldusage
;
2522 bool enlarge
= false;
2526 /* see mem_cgroup_resize_res_limit */
2527 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2528 mem_cgroup_count_children(memcg
);
2530 oldusage
= page_counter_read(&memcg
->memsw
);
2533 if (signal_pending(current
)) {
2538 mutex_lock(&memcg_limit_mutex
);
2539 if (limit
< memcg
->memory
.limit
) {
2540 mutex_unlock(&memcg_limit_mutex
);
2544 if (limit
> memcg
->memsw
.limit
)
2546 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2547 mutex_unlock(&memcg_limit_mutex
);
2552 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2554 curusage
= page_counter_read(&memcg
->memsw
);
2555 /* Usage is reduced ? */
2556 if (curusage
>= oldusage
)
2559 oldusage
= curusage
;
2560 } while (retry_count
);
2562 if (!ret
&& enlarge
)
2563 memcg_oom_recover(memcg
);
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2570 unsigned long *total_scanned
)
2572 unsigned long nr_reclaimed
= 0;
2573 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2574 unsigned long reclaimed
;
2576 struct mem_cgroup_tree_per_zone
*mctz
;
2577 unsigned long excess
;
2578 unsigned long nr_scanned
;
2583 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2585 * This loop can run a while, specially if mem_cgroup's continuously
2586 * keep exceeding their soft limit and putting the system under
2593 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2598 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2599 gfp_mask
, &nr_scanned
);
2600 nr_reclaimed
+= reclaimed
;
2601 *total_scanned
+= nr_scanned
;
2602 spin_lock_irq(&mctz
->lock
);
2603 __mem_cgroup_remove_exceeded(mz
, mctz
);
2606 * If we failed to reclaim anything from this memory cgroup
2607 * it is time to move on to the next cgroup
2611 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2613 excess
= soft_limit_excess(mz
->memcg
);
2615 * One school of thought says that we should not add
2616 * back the node to the tree if reclaim returns 0.
2617 * But our reclaim could return 0, simply because due
2618 * to priority we are exposing a smaller subset of
2619 * memory to reclaim from. Consider this as a longer
2622 /* If excess == 0, no tree ops */
2623 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2624 spin_unlock_irq(&mctz
->lock
);
2625 css_put(&mz
->memcg
->css
);
2628 * Could not reclaim anything and there are no more
2629 * mem cgroups to try or we seem to be looping without
2630 * reclaiming anything.
2632 if (!nr_reclaimed
&&
2634 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2636 } while (!nr_reclaimed
);
2638 css_put(&next_mz
->memcg
->css
);
2639 return nr_reclaimed
;
2643 * Test whether @memcg has children, dead or alive. Note that this
2644 * function doesn't care whether @memcg has use_hierarchy enabled and
2645 * returns %true if there are child csses according to the cgroup
2646 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2648 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2653 ret
= css_next_child(NULL
, &memcg
->css
);
2659 * Reclaims as many pages from the given memcg as possible.
2661 * Caller is responsible for holding css reference for memcg.
2663 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2665 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2667 /* we call try-to-free pages for make this cgroup empty */
2668 lru_add_drain_all();
2669 /* try to free all pages in this cgroup */
2670 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2673 if (signal_pending(current
))
2676 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2680 /* maybe some writeback is necessary */
2681 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2689 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2690 char *buf
, size_t nbytes
,
2693 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2695 if (mem_cgroup_is_root(memcg
))
2697 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2700 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2703 return mem_cgroup_from_css(css
)->use_hierarchy
;
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2707 struct cftype
*cft
, u64 val
)
2710 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2711 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2713 if (memcg
->use_hierarchy
== val
)
2717 * If parent's use_hierarchy is set, we can't make any modifications
2718 * in the child subtrees. If it is unset, then the change can
2719 * occur, provided the current cgroup has no children.
2721 * For the root cgroup, parent_mem is NULL, we allow value to be
2722 * set if there are no children.
2724 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2725 (val
== 1 || val
== 0)) {
2726 if (!memcg_has_children(memcg
))
2727 memcg
->use_hierarchy
= val
;
2736 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2738 struct mem_cgroup
*iter
;
2741 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2743 for_each_mem_cgroup_tree(iter
, memcg
) {
2744 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2745 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2749 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2751 struct mem_cgroup
*iter
;
2754 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2756 for_each_mem_cgroup_tree(iter
, memcg
) {
2757 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2758 events
[i
] += mem_cgroup_read_events(iter
, i
);
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2764 unsigned long val
= 0;
2766 if (mem_cgroup_is_root(memcg
)) {
2767 struct mem_cgroup
*iter
;
2769 for_each_mem_cgroup_tree(iter
, memcg
) {
2770 val
+= mem_cgroup_read_stat(iter
,
2771 MEM_CGROUP_STAT_CACHE
);
2772 val
+= mem_cgroup_read_stat(iter
,
2773 MEM_CGROUP_STAT_RSS
);
2775 val
+= mem_cgroup_read_stat(iter
,
2776 MEM_CGROUP_STAT_SWAP
);
2780 val
= page_counter_read(&memcg
->memory
);
2782 val
= page_counter_read(&memcg
->memsw
);
2795 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2798 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2799 struct page_counter
*counter
;
2801 switch (MEMFILE_TYPE(cft
->private)) {
2803 counter
= &memcg
->memory
;
2806 counter
= &memcg
->memsw
;
2809 counter
= &memcg
->kmem
;
2812 counter
= &memcg
->tcpmem
;
2818 switch (MEMFILE_ATTR(cft
->private)) {
2820 if (counter
== &memcg
->memory
)
2821 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2822 if (counter
== &memcg
->memsw
)
2823 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2824 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2826 return (u64
)counter
->limit
* PAGE_SIZE
;
2828 return (u64
)counter
->watermark
* PAGE_SIZE
;
2830 return counter
->failcnt
;
2831 case RES_SOFT_LIMIT
:
2832 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2839 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2843 if (cgroup_memory_nokmem
)
2846 BUG_ON(memcg
->kmemcg_id
>= 0);
2847 BUG_ON(memcg
->kmem_state
);
2849 memcg_id
= memcg_alloc_cache_id();
2853 static_branch_inc(&memcg_kmem_enabled_key
);
2855 * A memory cgroup is considered kmem-online as soon as it gets
2856 * kmemcg_id. Setting the id after enabling static branching will
2857 * guarantee no one starts accounting before all call sites are
2860 memcg
->kmemcg_id
= memcg_id
;
2861 memcg
->kmem_state
= KMEM_ONLINE
;
2866 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2868 struct cgroup_subsys_state
*css
;
2869 struct mem_cgroup
*parent
, *child
;
2872 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2875 * Clear the online state before clearing memcg_caches array
2876 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877 * guarantees that no cache will be created for this cgroup
2878 * after we are done (see memcg_create_kmem_cache()).
2880 memcg
->kmem_state
= KMEM_ALLOCATED
;
2882 memcg_deactivate_kmem_caches(memcg
);
2884 kmemcg_id
= memcg
->kmemcg_id
;
2885 BUG_ON(kmemcg_id
< 0);
2887 parent
= parent_mem_cgroup(memcg
);
2889 parent
= root_mem_cgroup
;
2892 * Change kmemcg_id of this cgroup and all its descendants to the
2893 * parent's id, and then move all entries from this cgroup's list_lrus
2894 * to ones of the parent. After we have finished, all list_lrus
2895 * corresponding to this cgroup are guaranteed to remain empty. The
2896 * ordering is imposed by list_lru_node->lock taken by
2897 * memcg_drain_all_list_lrus().
2899 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2900 css_for_each_descendant_pre(css
, &memcg
->css
) {
2901 child
= mem_cgroup_from_css(css
);
2902 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2903 child
->kmemcg_id
= parent
->kmemcg_id
;
2904 if (!memcg
->use_hierarchy
)
2909 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2911 memcg_free_cache_id(kmemcg_id
);
2914 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2916 /* css_alloc() failed, offlining didn't happen */
2917 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2918 memcg_offline_kmem(memcg
);
2920 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2921 memcg_destroy_kmem_caches(memcg
);
2922 static_branch_dec(&memcg_kmem_enabled_key
);
2923 WARN_ON(page_counter_read(&memcg
->kmem
));
2927 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2931 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2934 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2937 #endif /* !CONFIG_SLOB */
2939 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2940 unsigned long limit
)
2944 mutex_lock(&memcg_limit_mutex
);
2945 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2946 mutex_unlock(&memcg_limit_mutex
);
2950 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2954 mutex_lock(&memcg_limit_mutex
);
2956 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2960 if (!memcg
->tcpmem_active
) {
2962 * The active flag needs to be written after the static_key
2963 * update. This is what guarantees that the socket activation
2964 * function is the last one to run. See sock_update_memcg() for
2965 * details, and note that we don't mark any socket as belonging
2966 * to this memcg until that flag is up.
2968 * We need to do this, because static_keys will span multiple
2969 * sites, but we can't control their order. If we mark a socket
2970 * as accounted, but the accounting functions are not patched in
2971 * yet, we'll lose accounting.
2973 * We never race with the readers in sock_update_memcg(),
2974 * because when this value change, the code to process it is not
2977 static_branch_inc(&memcg_sockets_enabled_key
);
2978 memcg
->tcpmem_active
= true;
2981 mutex_unlock(&memcg_limit_mutex
);
2986 * The user of this function is...
2989 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2990 char *buf
, size_t nbytes
, loff_t off
)
2992 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2993 unsigned long nr_pages
;
2996 buf
= strstrip(buf
);
2997 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3001 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3003 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3007 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3009 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3012 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3015 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3018 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3022 case RES_SOFT_LIMIT
:
3023 memcg
->soft_limit
= nr_pages
;
3027 return ret
?: nbytes
;
3030 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3031 size_t nbytes
, loff_t off
)
3033 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3034 struct page_counter
*counter
;
3036 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3038 counter
= &memcg
->memory
;
3041 counter
= &memcg
->memsw
;
3044 counter
= &memcg
->kmem
;
3047 counter
= &memcg
->tcpmem
;
3053 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3055 page_counter_reset_watermark(counter
);
3058 counter
->failcnt
= 0;
3067 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3070 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3074 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3075 struct cftype
*cft
, u64 val
)
3077 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3079 if (val
& ~MOVE_MASK
)
3083 * No kind of locking is needed in here, because ->can_attach() will
3084 * check this value once in the beginning of the process, and then carry
3085 * on with stale data. This means that changes to this value will only
3086 * affect task migrations starting after the change.
3088 memcg
->move_charge_at_immigrate
= val
;
3092 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3093 struct cftype
*cft
, u64 val
)
3100 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3104 unsigned int lru_mask
;
3107 static const struct numa_stat stats
[] = {
3108 { "total", LRU_ALL
},
3109 { "file", LRU_ALL_FILE
},
3110 { "anon", LRU_ALL_ANON
},
3111 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3113 const struct numa_stat
*stat
;
3116 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3118 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3119 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3120 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3121 for_each_node_state(nid
, N_MEMORY
) {
3122 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3124 seq_printf(m
, " N%d=%lu", nid
, nr
);
3129 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3130 struct mem_cgroup
*iter
;
3133 for_each_mem_cgroup_tree(iter
, memcg
)
3134 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3135 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3136 for_each_node_state(nid
, N_MEMORY
) {
3138 for_each_mem_cgroup_tree(iter
, memcg
)
3139 nr
+= mem_cgroup_node_nr_lru_pages(
3140 iter
, nid
, stat
->lru_mask
);
3141 seq_printf(m
, " N%d=%lu", nid
, nr
);
3148 #endif /* CONFIG_NUMA */
3150 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3152 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3153 unsigned long memory
, memsw
;
3154 struct mem_cgroup
*mi
;
3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3158 MEM_CGROUP_STAT_NSTATS
);
3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3160 MEM_CGROUP_EVENTS_NSTATS
);
3161 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3163 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3164 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3166 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3167 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3170 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3171 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3172 mem_cgroup_read_events(memcg
, i
));
3174 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3175 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3176 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3178 /* Hierarchical information */
3179 memory
= memsw
= PAGE_COUNTER_MAX
;
3180 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3181 memory
= min(memory
, mi
->memory
.limit
);
3182 memsw
= min(memsw
, mi
->memsw
.limit
);
3184 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3185 (u64
)memory
* PAGE_SIZE
);
3186 if (do_memsw_account())
3187 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3188 (u64
)memsw
* PAGE_SIZE
);
3190 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3191 unsigned long long val
= 0;
3193 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3195 for_each_mem_cgroup_tree(mi
, memcg
)
3196 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3197 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3200 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3201 unsigned long long val
= 0;
3203 for_each_mem_cgroup_tree(mi
, memcg
)
3204 val
+= mem_cgroup_read_events(mi
, i
);
3205 seq_printf(m
, "total_%s %llu\n",
3206 mem_cgroup_events_names
[i
], val
);
3209 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3210 unsigned long long val
= 0;
3212 for_each_mem_cgroup_tree(mi
, memcg
)
3213 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3214 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3217 #ifdef CONFIG_DEBUG_VM
3220 struct mem_cgroup_per_zone
*mz
;
3221 struct zone_reclaim_stat
*rstat
;
3222 unsigned long recent_rotated
[2] = {0, 0};
3223 unsigned long recent_scanned
[2] = {0, 0};
3225 for_each_online_node(nid
)
3226 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3227 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3228 rstat
= &mz
->lruvec
.reclaim_stat
;
3230 recent_rotated
[0] += rstat
->recent_rotated
[0];
3231 recent_rotated
[1] += rstat
->recent_rotated
[1];
3232 recent_scanned
[0] += rstat
->recent_scanned
[0];
3233 recent_scanned
[1] += rstat
->recent_scanned
[1];
3235 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3236 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3237 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3238 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3245 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3248 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3250 return mem_cgroup_swappiness(memcg
);
3253 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3254 struct cftype
*cft
, u64 val
)
3256 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3262 memcg
->swappiness
= val
;
3264 vm_swappiness
= val
;
3269 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3271 struct mem_cgroup_threshold_ary
*t
;
3272 unsigned long usage
;
3277 t
= rcu_dereference(memcg
->thresholds
.primary
);
3279 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3284 usage
= mem_cgroup_usage(memcg
, swap
);
3287 * current_threshold points to threshold just below or equal to usage.
3288 * If it's not true, a threshold was crossed after last
3289 * call of __mem_cgroup_threshold().
3291 i
= t
->current_threshold
;
3294 * Iterate backward over array of thresholds starting from
3295 * current_threshold and check if a threshold is crossed.
3296 * If none of thresholds below usage is crossed, we read
3297 * only one element of the array here.
3299 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3300 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3302 /* i = current_threshold + 1 */
3306 * Iterate forward over array of thresholds starting from
3307 * current_threshold+1 and check if a threshold is crossed.
3308 * If none of thresholds above usage is crossed, we read
3309 * only one element of the array here.
3311 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3312 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3314 /* Update current_threshold */
3315 t
->current_threshold
= i
- 1;
3320 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3323 __mem_cgroup_threshold(memcg
, false);
3324 if (do_memsw_account())
3325 __mem_cgroup_threshold(memcg
, true);
3327 memcg
= parent_mem_cgroup(memcg
);
3331 static int compare_thresholds(const void *a
, const void *b
)
3333 const struct mem_cgroup_threshold
*_a
= a
;
3334 const struct mem_cgroup_threshold
*_b
= b
;
3336 if (_a
->threshold
> _b
->threshold
)
3339 if (_a
->threshold
< _b
->threshold
)
3345 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3347 struct mem_cgroup_eventfd_list
*ev
;
3349 spin_lock(&memcg_oom_lock
);
3351 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3352 eventfd_signal(ev
->eventfd
, 1);
3354 spin_unlock(&memcg_oom_lock
);
3358 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3360 struct mem_cgroup
*iter
;
3362 for_each_mem_cgroup_tree(iter
, memcg
)
3363 mem_cgroup_oom_notify_cb(iter
);
3366 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3367 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3369 struct mem_cgroup_thresholds
*thresholds
;
3370 struct mem_cgroup_threshold_ary
*new;
3371 unsigned long threshold
;
3372 unsigned long usage
;
3375 ret
= page_counter_memparse(args
, "-1", &threshold
);
3379 mutex_lock(&memcg
->thresholds_lock
);
3382 thresholds
= &memcg
->thresholds
;
3383 usage
= mem_cgroup_usage(memcg
, false);
3384 } else if (type
== _MEMSWAP
) {
3385 thresholds
= &memcg
->memsw_thresholds
;
3386 usage
= mem_cgroup_usage(memcg
, true);
3390 /* Check if a threshold crossed before adding a new one */
3391 if (thresholds
->primary
)
3392 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3394 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3396 /* Allocate memory for new array of thresholds */
3397 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3405 /* Copy thresholds (if any) to new array */
3406 if (thresholds
->primary
) {
3407 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3408 sizeof(struct mem_cgroup_threshold
));
3411 /* Add new threshold */
3412 new->entries
[size
- 1].eventfd
= eventfd
;
3413 new->entries
[size
- 1].threshold
= threshold
;
3415 /* Sort thresholds. Registering of new threshold isn't time-critical */
3416 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3417 compare_thresholds
, NULL
);
3419 /* Find current threshold */
3420 new->current_threshold
= -1;
3421 for (i
= 0; i
< size
; i
++) {
3422 if (new->entries
[i
].threshold
<= usage
) {
3424 * new->current_threshold will not be used until
3425 * rcu_assign_pointer(), so it's safe to increment
3428 ++new->current_threshold
;
3433 /* Free old spare buffer and save old primary buffer as spare */
3434 kfree(thresholds
->spare
);
3435 thresholds
->spare
= thresholds
->primary
;
3437 rcu_assign_pointer(thresholds
->primary
, new);
3439 /* To be sure that nobody uses thresholds */
3443 mutex_unlock(&memcg
->thresholds_lock
);
3448 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3449 struct eventfd_ctx
*eventfd
, const char *args
)
3451 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3454 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3455 struct eventfd_ctx
*eventfd
, const char *args
)
3457 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3460 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3461 struct eventfd_ctx
*eventfd
, enum res_type type
)
3463 struct mem_cgroup_thresholds
*thresholds
;
3464 struct mem_cgroup_threshold_ary
*new;
3465 unsigned long usage
;
3468 mutex_lock(&memcg
->thresholds_lock
);
3471 thresholds
= &memcg
->thresholds
;
3472 usage
= mem_cgroup_usage(memcg
, false);
3473 } else if (type
== _MEMSWAP
) {
3474 thresholds
= &memcg
->memsw_thresholds
;
3475 usage
= mem_cgroup_usage(memcg
, true);
3479 if (!thresholds
->primary
)
3482 /* Check if a threshold crossed before removing */
3483 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3485 /* Calculate new number of threshold */
3487 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3488 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3492 new = thresholds
->spare
;
3494 /* Set thresholds array to NULL if we don't have thresholds */
3503 /* Copy thresholds and find current threshold */
3504 new->current_threshold
= -1;
3505 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3506 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3509 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3510 if (new->entries
[j
].threshold
<= usage
) {
3512 * new->current_threshold will not be used
3513 * until rcu_assign_pointer(), so it's safe to increment
3516 ++new->current_threshold
;
3522 /* Swap primary and spare array */
3523 thresholds
->spare
= thresholds
->primary
;
3525 rcu_assign_pointer(thresholds
->primary
, new);
3527 /* To be sure that nobody uses thresholds */
3530 /* If all events are unregistered, free the spare array */
3532 kfree(thresholds
->spare
);
3533 thresholds
->spare
= NULL
;
3536 mutex_unlock(&memcg
->thresholds_lock
);
3539 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3540 struct eventfd_ctx
*eventfd
)
3542 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3545 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3546 struct eventfd_ctx
*eventfd
)
3548 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3551 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3552 struct eventfd_ctx
*eventfd
, const char *args
)
3554 struct mem_cgroup_eventfd_list
*event
;
3556 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3560 spin_lock(&memcg_oom_lock
);
3562 event
->eventfd
= eventfd
;
3563 list_add(&event
->list
, &memcg
->oom_notify
);
3565 /* already in OOM ? */
3566 if (memcg
->under_oom
)
3567 eventfd_signal(eventfd
, 1);
3568 spin_unlock(&memcg_oom_lock
);
3573 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3574 struct eventfd_ctx
*eventfd
)
3576 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3578 spin_lock(&memcg_oom_lock
);
3580 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3581 if (ev
->eventfd
== eventfd
) {
3582 list_del(&ev
->list
);
3587 spin_unlock(&memcg_oom_lock
);
3590 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3592 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3594 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3595 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3600 struct cftype
*cft
, u64 val
)
3602 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
3605 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3608 memcg
->oom_kill_disable
= val
;
3610 memcg_oom_recover(memcg
);
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3617 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3619 return &memcg
->cgwb_list
;
3622 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3624 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3627 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3629 wb_domain_exit(&memcg
->cgwb_domain
);
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3634 wb_domain_size_changed(&memcg
->cgwb_domain
);
3637 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3639 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3641 if (!memcg
->css
.parent
)
3644 return &memcg
->cgwb_domain
;
3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649 * @wb: bdi_writeback in question
3650 * @pfilepages: out parameter for number of file pages
3651 * @pheadroom: out parameter for number of allocatable pages according to memcg
3652 * @pdirty: out parameter for number of dirty pages
3653 * @pwriteback: out parameter for number of pages under writeback
3655 * Determine the numbers of file, headroom, dirty, and writeback pages in
3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3657 * is a bit more involved.
3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3660 * headroom is calculated as the lowest headroom of itself and the
3661 * ancestors. Note that this doesn't consider the actual amount of
3662 * available memory in the system. The caller should further cap
3663 * *@pheadroom accordingly.
3665 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3666 unsigned long *pheadroom
, unsigned long *pdirty
,
3667 unsigned long *pwriteback
)
3669 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3670 struct mem_cgroup
*parent
;
3672 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3674 /* this should eventually include NR_UNSTABLE_NFS */
3675 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3676 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3677 (1 << LRU_ACTIVE_FILE
));
3678 *pheadroom
= PAGE_COUNTER_MAX
;
3680 while ((parent
= parent_mem_cgroup(memcg
))) {
3681 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3682 unsigned long used
= page_counter_read(&memcg
->memory
);
3684 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3689 #else /* CONFIG_CGROUP_WRITEBACK */
3691 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3696 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3704 #endif /* CONFIG_CGROUP_WRITEBACK */
3707 * DO NOT USE IN NEW FILES.
3709 * "cgroup.event_control" implementation.
3711 * This is way over-engineered. It tries to support fully configurable
3712 * events for each user. Such level of flexibility is completely
3713 * unnecessary especially in the light of the planned unified hierarchy.
3715 * Please deprecate this and replace with something simpler if at all
3720 * Unregister event and free resources.
3722 * Gets called from workqueue.
3724 static void memcg_event_remove(struct work_struct
*work
)
3726 struct mem_cgroup_event
*event
=
3727 container_of(work
, struct mem_cgroup_event
, remove
);
3728 struct mem_cgroup
*memcg
= event
->memcg
;
3730 remove_wait_queue(event
->wqh
, &event
->wait
);
3732 event
->unregister_event(memcg
, event
->eventfd
);
3734 /* Notify userspace the event is going away. */
3735 eventfd_signal(event
->eventfd
, 1);
3737 eventfd_ctx_put(event
->eventfd
);
3739 css_put(&memcg
->css
);
3743 * Gets called on POLLHUP on eventfd when user closes it.
3745 * Called with wqh->lock held and interrupts disabled.
3747 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3748 int sync
, void *key
)
3750 struct mem_cgroup_event
*event
=
3751 container_of(wait
, struct mem_cgroup_event
, wait
);
3752 struct mem_cgroup
*memcg
= event
->memcg
;
3753 unsigned long flags
= (unsigned long)key
;
3755 if (flags
& POLLHUP
) {
3757 * If the event has been detached at cgroup removal, we
3758 * can simply return knowing the other side will cleanup
3761 * We can't race against event freeing since the other
3762 * side will require wqh->lock via remove_wait_queue(),
3765 spin_lock(&memcg
->event_list_lock
);
3766 if (!list_empty(&event
->list
)) {
3767 list_del_init(&event
->list
);
3769 * We are in atomic context, but cgroup_event_remove()
3770 * may sleep, so we have to call it in workqueue.
3772 schedule_work(&event
->remove
);
3774 spin_unlock(&memcg
->event_list_lock
);
3780 static void memcg_event_ptable_queue_proc(struct file
*file
,
3781 wait_queue_head_t
*wqh
, poll_table
*pt
)
3783 struct mem_cgroup_event
*event
=
3784 container_of(pt
, struct mem_cgroup_event
, pt
);
3787 add_wait_queue(wqh
, &event
->wait
);
3791 * DO NOT USE IN NEW FILES.
3793 * Parse input and register new cgroup event handler.
3795 * Input must be in format '<event_fd> <control_fd> <args>'.
3796 * Interpretation of args is defined by control file implementation.
3798 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3799 char *buf
, size_t nbytes
, loff_t off
)
3801 struct cgroup_subsys_state
*css
= of_css(of
);
3802 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3803 struct mem_cgroup_event
*event
;
3804 struct cgroup_subsys_state
*cfile_css
;
3805 unsigned int efd
, cfd
;
3812 buf
= strstrip(buf
);
3814 efd
= simple_strtoul(buf
, &endp
, 10);
3819 cfd
= simple_strtoul(buf
, &endp
, 10);
3820 if ((*endp
!= ' ') && (*endp
!= '\0'))
3824 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3828 event
->memcg
= memcg
;
3829 INIT_LIST_HEAD(&event
->list
);
3830 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3831 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3832 INIT_WORK(&event
->remove
, memcg_event_remove
);
3840 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3841 if (IS_ERR(event
->eventfd
)) {
3842 ret
= PTR_ERR(event
->eventfd
);
3849 goto out_put_eventfd
;
3852 /* the process need read permission on control file */
3853 /* AV: shouldn't we check that it's been opened for read instead? */
3854 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3859 * Determine the event callbacks and set them in @event. This used
3860 * to be done via struct cftype but cgroup core no longer knows
3861 * about these events. The following is crude but the whole thing
3862 * is for compatibility anyway.
3864 * DO NOT ADD NEW FILES.
3866 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3868 if (!strcmp(name
, "memory.usage_in_bytes")) {
3869 event
->register_event
= mem_cgroup_usage_register_event
;
3870 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3871 } else if (!strcmp(name
, "memory.oom_control")) {
3872 event
->register_event
= mem_cgroup_oom_register_event
;
3873 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3874 } else if (!strcmp(name
, "memory.pressure_level")) {
3875 event
->register_event
= vmpressure_register_event
;
3876 event
->unregister_event
= vmpressure_unregister_event
;
3877 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3878 event
->register_event
= memsw_cgroup_usage_register_event
;
3879 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3886 * Verify @cfile should belong to @css. Also, remaining events are
3887 * automatically removed on cgroup destruction but the removal is
3888 * asynchronous, so take an extra ref on @css.
3890 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3891 &memory_cgrp_subsys
);
3893 if (IS_ERR(cfile_css
))
3895 if (cfile_css
!= css
) {
3900 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3904 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3906 spin_lock(&memcg
->event_list_lock
);
3907 list_add(&event
->list
, &memcg
->event_list
);
3908 spin_unlock(&memcg
->event_list_lock
);
3920 eventfd_ctx_put(event
->eventfd
);
3929 static struct cftype mem_cgroup_legacy_files
[] = {
3931 .name
= "usage_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3933 .read_u64
= mem_cgroup_read_u64
,
3936 .name
= "max_usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3938 .write
= mem_cgroup_reset
,
3939 .read_u64
= mem_cgroup_read_u64
,
3942 .name
= "limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3944 .write
= mem_cgroup_write
,
3945 .read_u64
= mem_cgroup_read_u64
,
3948 .name
= "soft_limit_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3950 .write
= mem_cgroup_write
,
3951 .read_u64
= mem_cgroup_read_u64
,
3955 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3956 .write
= mem_cgroup_reset
,
3957 .read_u64
= mem_cgroup_read_u64
,
3961 .seq_show
= memcg_stat_show
,
3964 .name
= "force_empty",
3965 .write
= mem_cgroup_force_empty_write
,
3968 .name
= "use_hierarchy",
3969 .write_u64
= mem_cgroup_hierarchy_write
,
3970 .read_u64
= mem_cgroup_hierarchy_read
,
3973 .name
= "cgroup.event_control", /* XXX: for compat */
3974 .write
= memcg_write_event_control
,
3975 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3978 .name
= "swappiness",
3979 .read_u64
= mem_cgroup_swappiness_read
,
3980 .write_u64
= mem_cgroup_swappiness_write
,
3983 .name
= "move_charge_at_immigrate",
3984 .read_u64
= mem_cgroup_move_charge_read
,
3985 .write_u64
= mem_cgroup_move_charge_write
,
3988 .name
= "oom_control",
3989 .seq_show
= mem_cgroup_oom_control_read
,
3990 .write_u64
= mem_cgroup_oom_control_write
,
3991 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3994 .name
= "pressure_level",
3998 .name
= "numa_stat",
3999 .seq_show
= memcg_numa_stat_show
,
4003 .name
= "kmem.limit_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4005 .write
= mem_cgroup_write
,
4006 .read_u64
= mem_cgroup_read_u64
,
4009 .name
= "kmem.usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4011 .read_u64
= mem_cgroup_read_u64
,
4014 .name
= "kmem.failcnt",
4015 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4016 .write
= mem_cgroup_reset
,
4017 .read_u64
= mem_cgroup_read_u64
,
4020 .name
= "kmem.max_usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4022 .write
= mem_cgroup_reset
,
4023 .read_u64
= mem_cgroup_read_u64
,
4025 #ifdef CONFIG_SLABINFO
4027 .name
= "kmem.slabinfo",
4028 .seq_start
= slab_start
,
4029 .seq_next
= slab_next
,
4030 .seq_stop
= slab_stop
,
4031 .seq_show
= memcg_slab_show
,
4035 .name
= "kmem.tcp.limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4037 .write
= mem_cgroup_write
,
4038 .read_u64
= mem_cgroup_read_u64
,
4041 .name
= "kmem.tcp.usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4043 .read_u64
= mem_cgroup_read_u64
,
4046 .name
= "kmem.tcp.failcnt",
4047 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4048 .write
= mem_cgroup_reset
,
4049 .read_u64
= mem_cgroup_read_u64
,
4052 .name
= "kmem.tcp.max_usage_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4054 .write
= mem_cgroup_reset
,
4055 .read_u64
= mem_cgroup_read_u64
,
4057 { }, /* terminate */
4060 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4062 struct mem_cgroup_per_node
*pn
;
4063 struct mem_cgroup_per_zone
*mz
;
4064 int zone
, tmp
= node
;
4066 * This routine is called against possible nodes.
4067 * But it's BUG to call kmalloc() against offline node.
4069 * TODO: this routine can waste much memory for nodes which will
4070 * never be onlined. It's better to use memory hotplug callback
4073 if (!node_state(node
, N_NORMAL_MEMORY
))
4075 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4079 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4080 mz
= &pn
->zoneinfo
[zone
];
4081 lruvec_init(&mz
->lruvec
);
4082 mz
->usage_in_excess
= 0;
4083 mz
->on_tree
= false;
4086 memcg
->nodeinfo
[node
] = pn
;
4090 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4092 kfree(memcg
->nodeinfo
[node
]);
4095 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4099 memcg_wb_domain_exit(memcg
);
4101 free_mem_cgroup_per_zone_info(memcg
, node
);
4102 free_percpu(memcg
->stat
);
4106 static struct mem_cgroup
*mem_cgroup_alloc(void)
4108 struct mem_cgroup
*memcg
;
4112 size
= sizeof(struct mem_cgroup
);
4113 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4115 memcg
= kzalloc(size
, GFP_KERNEL
);
4119 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4124 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4127 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4130 INIT_WORK(&memcg
->high_work
, high_work_func
);
4131 memcg
->last_scanned_node
= MAX_NUMNODES
;
4132 INIT_LIST_HEAD(&memcg
->oom_notify
);
4133 mutex_init(&memcg
->thresholds_lock
);
4134 spin_lock_init(&memcg
->move_lock
);
4135 vmpressure_init(&memcg
->vmpressure
);
4136 INIT_LIST_HEAD(&memcg
->event_list
);
4137 spin_lock_init(&memcg
->event_list_lock
);
4138 memcg
->socket_pressure
= jiffies
;
4140 memcg
->kmemcg_id
= -1;
4142 #ifdef CONFIG_CGROUP_WRITEBACK
4143 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4147 mem_cgroup_free(memcg
);
4151 static struct cgroup_subsys_state
* __ref
4152 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4154 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4155 struct mem_cgroup
*memcg
;
4156 long error
= -ENOMEM
;
4158 memcg
= mem_cgroup_alloc();
4160 return ERR_PTR(error
);
4162 memcg
->high
= PAGE_COUNTER_MAX
;
4163 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4165 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4166 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4168 if (parent
&& parent
->use_hierarchy
) {
4169 memcg
->use_hierarchy
= true;
4170 page_counter_init(&memcg
->memory
, &parent
->memory
);
4171 page_counter_init(&memcg
->swap
, &parent
->swap
);
4172 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4173 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4174 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4176 page_counter_init(&memcg
->memory
, NULL
);
4177 page_counter_init(&memcg
->swap
, NULL
);
4178 page_counter_init(&memcg
->memsw
, NULL
);
4179 page_counter_init(&memcg
->kmem
, NULL
);
4180 page_counter_init(&memcg
->tcpmem
, NULL
);
4182 * Deeper hierachy with use_hierarchy == false doesn't make
4183 * much sense so let cgroup subsystem know about this
4184 * unfortunate state in our controller.
4186 if (parent
!= root_mem_cgroup
)
4187 memory_cgrp_subsys
.broken_hierarchy
= true;
4190 /* The following stuff does not apply to the root */
4192 root_mem_cgroup
= memcg
;
4196 error
= memcg_online_kmem(memcg
);
4200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4201 static_branch_inc(&memcg_sockets_enabled_key
);
4205 mem_cgroup_free(memcg
);
4206 return ERR_PTR(-ENOMEM
);
4210 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4212 if (css
->id
> MEM_CGROUP_ID_MAX
)
4218 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4220 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4221 struct mem_cgroup_event
*event
, *tmp
;
4224 * Unregister events and notify userspace.
4225 * Notify userspace about cgroup removing only after rmdir of cgroup
4226 * directory to avoid race between userspace and kernelspace.
4228 spin_lock(&memcg
->event_list_lock
);
4229 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4230 list_del_init(&event
->list
);
4231 schedule_work(&event
->remove
);
4233 spin_unlock(&memcg
->event_list_lock
);
4235 memcg_offline_kmem(memcg
);
4236 wb_memcg_offline(memcg
);
4239 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4241 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4243 invalidate_reclaim_iterators(memcg
);
4246 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4248 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4250 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4251 static_branch_dec(&memcg_sockets_enabled_key
);
4253 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4254 static_branch_dec(&memcg_sockets_enabled_key
);
4256 vmpressure_cleanup(&memcg
->vmpressure
);
4257 cancel_work_sync(&memcg
->high_work
);
4258 mem_cgroup_remove_from_trees(memcg
);
4259 memcg_free_kmem(memcg
);
4260 mem_cgroup_free(memcg
);
4264 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4265 * @css: the target css
4267 * Reset the states of the mem_cgroup associated with @css. This is
4268 * invoked when the userland requests disabling on the default hierarchy
4269 * but the memcg is pinned through dependency. The memcg should stop
4270 * applying policies and should revert to the vanilla state as it may be
4271 * made visible again.
4273 * The current implementation only resets the essential configurations.
4274 * This needs to be expanded to cover all the visible parts.
4276 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4278 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4280 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4281 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4282 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4283 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4284 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4286 memcg
->high
= PAGE_COUNTER_MAX
;
4287 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4288 memcg_wb_domain_size_changed(memcg
);
4292 /* Handlers for move charge at task migration. */
4293 static int mem_cgroup_do_precharge(unsigned long count
)
4297 /* Try a single bulk charge without reclaim first, kswapd may wake */
4298 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4300 mc
.precharge
+= count
;
4304 /* Try charges one by one with reclaim */
4306 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
4320 enum mc_target_type
{
4326 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4327 unsigned long addr
, pte_t ptent
)
4329 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4331 if (!page
|| !page_mapped(page
))
4333 if (PageAnon(page
)) {
4334 if (!(mc
.flags
& MOVE_ANON
))
4337 if (!(mc
.flags
& MOVE_FILE
))
4340 if (!get_page_unless_zero(page
))
4347 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4348 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4350 struct page
*page
= NULL
;
4351 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4353 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4356 * Because lookup_swap_cache() updates some statistics counter,
4357 * we call find_get_page() with swapper_space directly.
4359 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4360 if (do_memsw_account())
4361 entry
->val
= ent
.val
;
4366 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4367 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4373 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4374 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4376 struct page
*page
= NULL
;
4377 struct address_space
*mapping
;
4380 if (!vma
->vm_file
) /* anonymous vma */
4382 if (!(mc
.flags
& MOVE_FILE
))
4385 mapping
= vma
->vm_file
->f_mapping
;
4386 pgoff
= linear_page_index(vma
, addr
);
4388 /* page is moved even if it's not RSS of this task(page-faulted). */
4390 /* shmem/tmpfs may report page out on swap: account for that too. */
4391 if (shmem_mapping(mapping
)) {
4392 page
= find_get_entry(mapping
, pgoff
);
4393 if (radix_tree_exceptional_entry(page
)) {
4394 swp_entry_t swp
= radix_to_swp_entry(page
);
4395 if (do_memsw_account())
4397 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4400 page
= find_get_page(mapping
, pgoff
);
4402 page
= find_get_page(mapping
, pgoff
);
4408 * mem_cgroup_move_account - move account of the page
4410 * @nr_pages: number of regular pages (>1 for huge pages)
4411 * @from: mem_cgroup which the page is moved from.
4412 * @to: mem_cgroup which the page is moved to. @from != @to.
4414 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4416 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4419 static int mem_cgroup_move_account(struct page
*page
,
4421 struct mem_cgroup
*from
,
4422 struct mem_cgroup
*to
)
4424 unsigned long flags
;
4425 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4429 VM_BUG_ON(from
== to
);
4430 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4431 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4434 * Prevent mem_cgroup_migrate() from looking at
4435 * page->mem_cgroup of its source page while we change it.
4438 if (!trylock_page(page
))
4442 if (page
->mem_cgroup
!= from
)
4445 anon
= PageAnon(page
);
4447 spin_lock_irqsave(&from
->move_lock
, flags
);
4449 if (!anon
&& page_mapped(page
)) {
4450 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4452 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4457 * move_lock grabbed above and caller set from->moving_account, so
4458 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4459 * So mapping should be stable for dirty pages.
4461 if (!anon
&& PageDirty(page
)) {
4462 struct address_space
*mapping
= page_mapping(page
);
4464 if (mapping_cap_account_dirty(mapping
)) {
4465 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4467 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4472 if (PageWriteback(page
)) {
4473 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4475 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4480 * It is safe to change page->mem_cgroup here because the page
4481 * is referenced, charged, and isolated - we can't race with
4482 * uncharging, charging, migration, or LRU putback.
4485 /* caller should have done css_get */
4486 page
->mem_cgroup
= to
;
4487 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4491 local_irq_disable();
4492 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4493 memcg_check_events(to
, page
);
4494 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4495 memcg_check_events(from
, page
);
4504 * get_mctgt_type - get target type of moving charge
4505 * @vma: the vma the pte to be checked belongs
4506 * @addr: the address corresponding to the pte to be checked
4507 * @ptent: the pte to be checked
4508 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4511 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4512 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4513 * move charge. if @target is not NULL, the page is stored in target->page
4514 * with extra refcnt got(Callers should handle it).
4515 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4516 * target for charge migration. if @target is not NULL, the entry is stored
4519 * Called with pte lock held.
4522 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4523 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4525 struct page
*page
= NULL
;
4526 enum mc_target_type ret
= MC_TARGET_NONE
;
4527 swp_entry_t ent
= { .val
= 0 };
4529 if (pte_present(ptent
))
4530 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4531 else if (is_swap_pte(ptent
))
4532 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4533 else if (pte_none(ptent
))
4534 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4536 if (!page
&& !ent
.val
)
4540 * Do only loose check w/o serialization.
4541 * mem_cgroup_move_account() checks the page is valid or
4542 * not under LRU exclusion.
4544 if (page
->mem_cgroup
== mc
.from
) {
4545 ret
= MC_TARGET_PAGE
;
4547 target
->page
= page
;
4549 if (!ret
|| !target
)
4552 /* There is a swap entry and a page doesn't exist or isn't charged */
4553 if (ent
.val
&& !ret
&&
4554 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4555 ret
= MC_TARGET_SWAP
;
4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4564 * We don't consider swapping or file mapped pages because THP does not
4565 * support them for now.
4566 * Caller should make sure that pmd_trans_huge(pmd) is true.
4568 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4569 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4571 struct page
*page
= NULL
;
4572 enum mc_target_type ret
= MC_TARGET_NONE
;
4574 page
= pmd_page(pmd
);
4575 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4576 if (!(mc
.flags
& MOVE_ANON
))
4578 if (page
->mem_cgroup
== mc
.from
) {
4579 ret
= MC_TARGET_PAGE
;
4582 target
->page
= page
;
4588 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4589 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4591 return MC_TARGET_NONE
;
4595 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4596 unsigned long addr
, unsigned long end
,
4597 struct mm_walk
*walk
)
4599 struct vm_area_struct
*vma
= walk
->vma
;
4603 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4605 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4606 mc
.precharge
+= HPAGE_PMD_NR
;
4611 if (pmd_trans_unstable(pmd
))
4613 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4614 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4615 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4616 mc
.precharge
++; /* increment precharge temporarily */
4617 pte_unmap_unlock(pte
- 1, ptl
);
4623 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4625 unsigned long precharge
;
4627 struct mm_walk mem_cgroup_count_precharge_walk
= {
4628 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4631 down_read(&mm
->mmap_sem
);
4632 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4633 up_read(&mm
->mmap_sem
);
4635 precharge
= mc
.precharge
;
4641 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4643 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4645 VM_BUG_ON(mc
.moving_task
);
4646 mc
.moving_task
= current
;
4647 return mem_cgroup_do_precharge(precharge
);
4650 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4651 static void __mem_cgroup_clear_mc(void)
4653 struct mem_cgroup
*from
= mc
.from
;
4654 struct mem_cgroup
*to
= mc
.to
;
4656 /* we must uncharge all the leftover precharges from mc.to */
4658 cancel_charge(mc
.to
, mc
.precharge
);
4662 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4663 * we must uncharge here.
4665 if (mc
.moved_charge
) {
4666 cancel_charge(mc
.from
, mc
.moved_charge
);
4667 mc
.moved_charge
= 0;
4669 /* we must fixup refcnts and charges */
4670 if (mc
.moved_swap
) {
4671 /* uncharge swap account from the old cgroup */
4672 if (!mem_cgroup_is_root(mc
.from
))
4673 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4676 * we charged both to->memory and to->memsw, so we
4677 * should uncharge to->memory.
4679 if (!mem_cgroup_is_root(mc
.to
))
4680 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4682 css_put_many(&mc
.from
->css
, mc
.moved_swap
);
4684 /* we've already done css_get(mc.to) */
4687 memcg_oom_recover(from
);
4688 memcg_oom_recover(to
);
4689 wake_up_all(&mc
.waitq
);
4692 static void mem_cgroup_clear_mc(void)
4694 struct mm_struct
*mm
= mc
.mm
;
4697 * we must clear moving_task before waking up waiters at the end of
4700 mc
.moving_task
= NULL
;
4701 __mem_cgroup_clear_mc();
4702 spin_lock(&mc
.lock
);
4706 spin_unlock(&mc
.lock
);
4711 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4713 struct cgroup_subsys_state
*css
;
4714 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4715 struct mem_cgroup
*from
;
4716 struct task_struct
*leader
, *p
;
4717 struct mm_struct
*mm
;
4718 unsigned long move_flags
;
4721 /* charge immigration isn't supported on the default hierarchy */
4722 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4726 * Multi-process migrations only happen on the default hierarchy
4727 * where charge immigration is not used. Perform charge
4728 * immigration if @tset contains a leader and whine if there are
4732 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4735 memcg
= mem_cgroup_from_css(css
);
4741 * We are now commited to this value whatever it is. Changes in this
4742 * tunable will only affect upcoming migrations, not the current one.
4743 * So we need to save it, and keep it going.
4745 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4749 from
= mem_cgroup_from_task(p
);
4751 VM_BUG_ON(from
== memcg
);
4753 mm
= get_task_mm(p
);
4756 /* We move charges only when we move a owner of the mm */
4757 if (mm
->owner
== p
) {
4760 VM_BUG_ON(mc
.precharge
);
4761 VM_BUG_ON(mc
.moved_charge
);
4762 VM_BUG_ON(mc
.moved_swap
);
4764 spin_lock(&mc
.lock
);
4768 mc
.flags
= move_flags
;
4769 spin_unlock(&mc
.lock
);
4770 /* We set mc.moving_task later */
4772 ret
= mem_cgroup_precharge_mc(mm
);
4774 mem_cgroup_clear_mc();
4781 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4784 mem_cgroup_clear_mc();
4787 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4788 unsigned long addr
, unsigned long end
,
4789 struct mm_walk
*walk
)
4792 struct vm_area_struct
*vma
= walk
->vma
;
4795 enum mc_target_type target_type
;
4796 union mc_target target
;
4799 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4801 if (mc
.precharge
< HPAGE_PMD_NR
) {
4805 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4806 if (target_type
== MC_TARGET_PAGE
) {
4808 if (!isolate_lru_page(page
)) {
4809 if (!mem_cgroup_move_account(page
, true,
4811 mc
.precharge
-= HPAGE_PMD_NR
;
4812 mc
.moved_charge
+= HPAGE_PMD_NR
;
4814 putback_lru_page(page
);
4822 if (pmd_trans_unstable(pmd
))
4825 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4826 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4827 pte_t ptent
= *(pte
++);
4833 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4834 case MC_TARGET_PAGE
:
4837 * We can have a part of the split pmd here. Moving it
4838 * can be done but it would be too convoluted so simply
4839 * ignore such a partial THP and keep it in original
4840 * memcg. There should be somebody mapping the head.
4842 if (PageTransCompound(page
))
4844 if (isolate_lru_page(page
))
4846 if (!mem_cgroup_move_account(page
, false,
4849 /* we uncharge from mc.from later. */
4852 putback_lru_page(page
);
4853 put
: /* get_mctgt_type() gets the page */
4856 case MC_TARGET_SWAP
:
4858 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4860 /* we fixup refcnts and charges later. */
4868 pte_unmap_unlock(pte
- 1, ptl
);
4873 * We have consumed all precharges we got in can_attach().
4874 * We try charge one by one, but don't do any additional
4875 * charges to mc.to if we have failed in charge once in attach()
4878 ret
= mem_cgroup_do_precharge(1);
4886 static void mem_cgroup_move_charge(void)
4888 struct mm_walk mem_cgroup_move_charge_walk
= {
4889 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4893 lru_add_drain_all();
4895 * Signal lock_page_memcg() to take the memcg's move_lock
4896 * while we're moving its pages to another memcg. Then wait
4897 * for already started RCU-only updates to finish.
4899 atomic_inc(&mc
.from
->moving_account
);
4902 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
4904 * Someone who are holding the mmap_sem might be waiting in
4905 * waitq. So we cancel all extra charges, wake up all waiters,
4906 * and retry. Because we cancel precharges, we might not be able
4907 * to move enough charges, but moving charge is a best-effort
4908 * feature anyway, so it wouldn't be a big problem.
4910 __mem_cgroup_clear_mc();
4915 * When we have consumed all precharges and failed in doing
4916 * additional charge, the page walk just aborts.
4918 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
4919 up_read(&mc
.mm
->mmap_sem
);
4920 atomic_dec(&mc
.from
->moving_account
);
4923 static void mem_cgroup_move_task(void)
4926 mem_cgroup_move_charge();
4927 mem_cgroup_clear_mc();
4930 #else /* !CONFIG_MMU */
4931 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4935 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4938 static void mem_cgroup_move_task(void)
4944 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4945 * to verify whether we're attached to the default hierarchy on each mount
4948 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
4951 * use_hierarchy is forced on the default hierarchy. cgroup core
4952 * guarantees that @root doesn't have any children, so turning it
4953 * on for the root memcg is enough.
4955 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4956 root_mem_cgroup
->use_hierarchy
= true;
4958 root_mem_cgroup
->use_hierarchy
= false;
4961 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
4964 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4966 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
4969 static int memory_low_show(struct seq_file
*m
, void *v
)
4971 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4972 unsigned long low
= READ_ONCE(memcg
->low
);
4974 if (low
== PAGE_COUNTER_MAX
)
4975 seq_puts(m
, "max\n");
4977 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
4982 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
4983 char *buf
, size_t nbytes
, loff_t off
)
4985 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4989 buf
= strstrip(buf
);
4990 err
= page_counter_memparse(buf
, "max", &low
);
4999 static int memory_high_show(struct seq_file
*m
, void *v
)
5001 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5002 unsigned long high
= READ_ONCE(memcg
->high
);
5004 if (high
== PAGE_COUNTER_MAX
)
5005 seq_puts(m
, "max\n");
5007 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5012 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5013 char *buf
, size_t nbytes
, loff_t off
)
5015 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5016 unsigned long nr_pages
;
5020 buf
= strstrip(buf
);
5021 err
= page_counter_memparse(buf
, "max", &high
);
5027 nr_pages
= page_counter_read(&memcg
->memory
);
5028 if (nr_pages
> high
)
5029 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5032 memcg_wb_domain_size_changed(memcg
);
5036 static int memory_max_show(struct seq_file
*m
, void *v
)
5038 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5039 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5041 if (max
== PAGE_COUNTER_MAX
)
5042 seq_puts(m
, "max\n");
5044 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5049 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5050 char *buf
, size_t nbytes
, loff_t off
)
5052 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5053 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5054 bool drained
= false;
5058 buf
= strstrip(buf
);
5059 err
= page_counter_memparse(buf
, "max", &max
);
5063 xchg(&memcg
->memory
.limit
, max
);
5066 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5068 if (nr_pages
<= max
)
5071 if (signal_pending(current
)) {
5077 drain_all_stock(memcg
);
5083 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5089 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5090 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5094 memcg_wb_domain_size_changed(memcg
);
5098 static int memory_events_show(struct seq_file
*m
, void *v
)
5100 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5102 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5103 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5104 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5105 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5110 static int memory_stat_show(struct seq_file
*m
, void *v
)
5112 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5113 unsigned long stat
[MEMCG_NR_STAT
];
5114 unsigned long events
[MEMCG_NR_EVENTS
];
5118 * Provide statistics on the state of the memory subsystem as
5119 * well as cumulative event counters that show past behavior.
5121 * This list is ordered following a combination of these gradients:
5122 * 1) generic big picture -> specifics and details
5123 * 2) reflecting userspace activity -> reflecting kernel heuristics
5125 * Current memory state:
5128 tree_stat(memcg
, stat
);
5129 tree_events(memcg
, events
);
5131 seq_printf(m
, "anon %llu\n",
5132 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5133 seq_printf(m
, "file %llu\n",
5134 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5135 seq_printf(m
, "kernel_stack %llu\n",
5136 (u64
)stat
[MEMCG_KERNEL_STACK
] * PAGE_SIZE
);
5137 seq_printf(m
, "slab %llu\n",
5138 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5139 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5140 seq_printf(m
, "sock %llu\n",
5141 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5143 seq_printf(m
, "file_mapped %llu\n",
5144 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5145 seq_printf(m
, "file_dirty %llu\n",
5146 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5147 seq_printf(m
, "file_writeback %llu\n",
5148 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5150 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5151 struct mem_cgroup
*mi
;
5152 unsigned long val
= 0;
5154 for_each_mem_cgroup_tree(mi
, memcg
)
5155 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5156 seq_printf(m
, "%s %llu\n",
5157 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5160 seq_printf(m
, "slab_reclaimable %llu\n",
5161 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5162 seq_printf(m
, "slab_unreclaimable %llu\n",
5163 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5165 /* Accumulated memory events */
5167 seq_printf(m
, "pgfault %lu\n",
5168 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5169 seq_printf(m
, "pgmajfault %lu\n",
5170 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5175 static struct cftype memory_files
[] = {
5178 .flags
= CFTYPE_NOT_ON_ROOT
,
5179 .read_u64
= memory_current_read
,
5183 .flags
= CFTYPE_NOT_ON_ROOT
,
5184 .seq_show
= memory_low_show
,
5185 .write
= memory_low_write
,
5189 .flags
= CFTYPE_NOT_ON_ROOT
,
5190 .seq_show
= memory_high_show
,
5191 .write
= memory_high_write
,
5195 .flags
= CFTYPE_NOT_ON_ROOT
,
5196 .seq_show
= memory_max_show
,
5197 .write
= memory_max_write
,
5201 .flags
= CFTYPE_NOT_ON_ROOT
,
5202 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5203 .seq_show
= memory_events_show
,
5207 .flags
= CFTYPE_NOT_ON_ROOT
,
5208 .seq_show
= memory_stat_show
,
5213 struct cgroup_subsys memory_cgrp_subsys
= {
5214 .css_alloc
= mem_cgroup_css_alloc
,
5215 .css_online
= mem_cgroup_css_online
,
5216 .css_offline
= mem_cgroup_css_offline
,
5217 .css_released
= mem_cgroup_css_released
,
5218 .css_free
= mem_cgroup_css_free
,
5219 .css_reset
= mem_cgroup_css_reset
,
5220 .can_attach
= mem_cgroup_can_attach
,
5221 .cancel_attach
= mem_cgroup_cancel_attach
,
5222 .post_attach
= mem_cgroup_move_task
,
5223 .bind
= mem_cgroup_bind
,
5224 .dfl_cftypes
= memory_files
,
5225 .legacy_cftypes
= mem_cgroup_legacy_files
,
5230 * mem_cgroup_low - check if memory consumption is below the normal range
5231 * @root: the highest ancestor to consider
5232 * @memcg: the memory cgroup to check
5234 * Returns %true if memory consumption of @memcg, and that of all
5235 * configurable ancestors up to @root, is below the normal range.
5237 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5239 if (mem_cgroup_disabled())
5243 * The toplevel group doesn't have a configurable range, so
5244 * it's never low when looked at directly, and it is not
5245 * considered an ancestor when assessing the hierarchy.
5248 if (memcg
== root_mem_cgroup
)
5251 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5254 while (memcg
!= root
) {
5255 memcg
= parent_mem_cgroup(memcg
);
5257 if (memcg
== root_mem_cgroup
)
5260 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5267 * mem_cgroup_try_charge - try charging a page
5268 * @page: page to charge
5269 * @mm: mm context of the victim
5270 * @gfp_mask: reclaim mode
5271 * @memcgp: charged memcg return
5273 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5274 * pages according to @gfp_mask if necessary.
5276 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5277 * Otherwise, an error code is returned.
5279 * After page->mapping has been set up, the caller must finalize the
5280 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5281 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5283 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5284 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5287 struct mem_cgroup
*memcg
= NULL
;
5288 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5291 if (mem_cgroup_disabled())
5294 if (PageSwapCache(page
)) {
5296 * Every swap fault against a single page tries to charge the
5297 * page, bail as early as possible. shmem_unuse() encounters
5298 * already charged pages, too. The USED bit is protected by
5299 * the page lock, which serializes swap cache removal, which
5300 * in turn serializes uncharging.
5302 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5303 if (page
->mem_cgroup
)
5306 if (do_swap_account
) {
5307 swp_entry_t ent
= { .val
= page_private(page
), };
5308 unsigned short id
= lookup_swap_cgroup_id(ent
);
5311 memcg
= mem_cgroup_from_id(id
);
5312 if (memcg
&& !css_tryget_online(&memcg
->css
))
5319 memcg
= get_mem_cgroup_from_mm(mm
);
5321 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5323 css_put(&memcg
->css
);
5330 * mem_cgroup_commit_charge - commit a page charge
5331 * @page: page to charge
5332 * @memcg: memcg to charge the page to
5333 * @lrucare: page might be on LRU already
5335 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5336 * after page->mapping has been set up. This must happen atomically
5337 * as part of the page instantiation, i.e. under the page table lock
5338 * for anonymous pages, under the page lock for page and swap cache.
5340 * In addition, the page must not be on the LRU during the commit, to
5341 * prevent racing with task migration. If it might be, use @lrucare.
5343 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5345 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5346 bool lrucare
, bool compound
)
5348 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5350 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5351 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5353 if (mem_cgroup_disabled())
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5363 commit_charge(page
, memcg
, lrucare
);
5365 local_irq_disable();
5366 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5367 memcg_check_events(memcg
, page
);
5370 if (do_memsw_account() && PageSwapCache(page
)) {
5371 swp_entry_t entry
= { .val
= page_private(page
) };
5373 * The swap entry might not get freed for a long time,
5374 * let's not wait for it. The page already received a
5375 * memory+swap charge, drop the swap entry duplicate.
5377 mem_cgroup_uncharge_swap(entry
);
5382 * mem_cgroup_cancel_charge - cancel a page charge
5383 * @page: page to charge
5384 * @memcg: memcg to charge the page to
5386 * Cancel a charge transaction started by mem_cgroup_try_charge().
5388 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5391 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5393 if (mem_cgroup_disabled())
5396 * Swap faults will attempt to charge the same page multiple
5397 * times. But reuse_swap_page() might have removed the page
5398 * from swapcache already, so we can't check PageSwapCache().
5403 cancel_charge(memcg
, nr_pages
);
5406 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5407 unsigned long nr_anon
, unsigned long nr_file
,
5408 unsigned long nr_huge
, struct page
*dummy_page
)
5410 unsigned long nr_pages
= nr_anon
+ nr_file
;
5411 unsigned long flags
;
5413 if (!mem_cgroup_is_root(memcg
)) {
5414 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5415 if (do_memsw_account())
5416 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5417 memcg_oom_recover(memcg
);
5420 local_irq_save(flags
);
5421 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5422 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5423 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5424 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5425 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5426 memcg_check_events(memcg
, dummy_page
);
5427 local_irq_restore(flags
);
5429 if (!mem_cgroup_is_root(memcg
))
5430 css_put_many(&memcg
->css
, nr_pages
);
5433 static void uncharge_list(struct list_head
*page_list
)
5435 struct mem_cgroup
*memcg
= NULL
;
5436 unsigned long nr_anon
= 0;
5437 unsigned long nr_file
= 0;
5438 unsigned long nr_huge
= 0;
5439 unsigned long pgpgout
= 0;
5440 struct list_head
*next
;
5444 * Note that the list can be a single page->lru; hence the
5445 * do-while loop instead of a simple list_for_each_entry().
5447 next
= page_list
->next
;
5449 unsigned int nr_pages
= 1;
5451 page
= list_entry(next
, struct page
, lru
);
5452 next
= page
->lru
.next
;
5454 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5455 VM_BUG_ON_PAGE(page_count(page
), page
);
5457 if (!page
->mem_cgroup
)
5461 * Nobody should be changing or seriously looking at
5462 * page->mem_cgroup at this point, we have fully
5463 * exclusive access to the page.
5466 if (memcg
!= page
->mem_cgroup
) {
5468 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5470 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5472 memcg
= page
->mem_cgroup
;
5475 if (PageTransHuge(page
)) {
5476 nr_pages
<<= compound_order(page
);
5477 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5478 nr_huge
+= nr_pages
;
5482 nr_anon
+= nr_pages
;
5484 nr_file
+= nr_pages
;
5486 page
->mem_cgroup
= NULL
;
5489 } while (next
!= page_list
);
5492 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5497 * mem_cgroup_uncharge - uncharge a page
5498 * @page: page to uncharge
5500 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5501 * mem_cgroup_commit_charge().
5503 void mem_cgroup_uncharge(struct page
*page
)
5505 if (mem_cgroup_disabled())
5508 /* Don't touch page->lru of any random page, pre-check: */
5509 if (!page
->mem_cgroup
)
5512 INIT_LIST_HEAD(&page
->lru
);
5513 uncharge_list(&page
->lru
);
5517 * mem_cgroup_uncharge_list - uncharge a list of page
5518 * @page_list: list of pages to uncharge
5520 * Uncharge a list of pages previously charged with
5521 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5523 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5525 if (mem_cgroup_disabled())
5528 if (!list_empty(page_list
))
5529 uncharge_list(page_list
);
5533 * mem_cgroup_migrate - charge a page's replacement
5534 * @oldpage: currently circulating page
5535 * @newpage: replacement page
5537 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5538 * be uncharged upon free.
5540 * Both pages must be locked, @newpage->mapping must be set up.
5542 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5544 struct mem_cgroup
*memcg
;
5545 unsigned int nr_pages
;
5547 unsigned long flags
;
5549 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5550 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5551 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5552 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5555 if (mem_cgroup_disabled())
5558 /* Page cache replacement: new page already charged? */
5559 if (newpage
->mem_cgroup
)
5562 /* Swapcache readahead pages can get replaced before being charged */
5563 memcg
= oldpage
->mem_cgroup
;
5567 /* Force-charge the new page. The old one will be freed soon */
5568 compound
= PageTransHuge(newpage
);
5569 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5571 page_counter_charge(&memcg
->memory
, nr_pages
);
5572 if (do_memsw_account())
5573 page_counter_charge(&memcg
->memsw
, nr_pages
);
5574 css_get_many(&memcg
->css
, nr_pages
);
5576 commit_charge(newpage
, memcg
, false);
5578 local_irq_save(flags
);
5579 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5580 memcg_check_events(memcg
, newpage
);
5581 local_irq_restore(flags
);
5584 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5585 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5587 void sock_update_memcg(struct sock
*sk
)
5589 struct mem_cgroup
*memcg
;
5591 /* Socket cloning can throw us here with sk_cgrp already
5592 * filled. It won't however, necessarily happen from
5593 * process context. So the test for root memcg given
5594 * the current task's memcg won't help us in this case.
5596 * Respecting the original socket's memcg is a better
5597 * decision in this case.
5600 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5601 css_get(&sk
->sk_memcg
->css
);
5606 memcg
= mem_cgroup_from_task(current
);
5607 if (memcg
== root_mem_cgroup
)
5609 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5611 if (css_tryget_online(&memcg
->css
))
5612 sk
->sk_memcg
= memcg
;
5616 EXPORT_SYMBOL(sock_update_memcg
);
5618 void sock_release_memcg(struct sock
*sk
)
5620 WARN_ON(!sk
->sk_memcg
);
5621 css_put(&sk
->sk_memcg
->css
);
5625 * mem_cgroup_charge_skmem - charge socket memory
5626 * @memcg: memcg to charge
5627 * @nr_pages: number of pages to charge
5629 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5630 * @memcg's configured limit, %false if the charge had to be forced.
5632 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5634 gfp_t gfp_mask
= GFP_KERNEL
;
5636 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5637 struct page_counter
*fail
;
5639 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5640 memcg
->tcpmem_pressure
= 0;
5643 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5644 memcg
->tcpmem_pressure
= 1;
5648 /* Don't block in the packet receive path */
5650 gfp_mask
= GFP_NOWAIT
;
5652 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5654 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5657 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5662 * mem_cgroup_uncharge_skmem - uncharge socket memory
5663 * @memcg - memcg to uncharge
5664 * @nr_pages - number of pages to uncharge
5666 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5668 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5669 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5673 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5675 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5676 css_put_many(&memcg
->css
, nr_pages
);
5679 static int __init
cgroup_memory(char *s
)
5683 while ((token
= strsep(&s
, ",")) != NULL
) {
5686 if (!strcmp(token
, "nosocket"))
5687 cgroup_memory_nosocket
= true;
5688 if (!strcmp(token
, "nokmem"))
5689 cgroup_memory_nokmem
= true;
5693 __setup("cgroup.memory=", cgroup_memory
);
5696 * subsys_initcall() for memory controller.
5698 * Some parts like hotcpu_notifier() have to be initialized from this context
5699 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5700 * everything that doesn't depend on a specific mem_cgroup structure should
5701 * be initialized from here.
5703 static int __init
mem_cgroup_init(void)
5707 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5709 for_each_possible_cpu(cpu
)
5710 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5713 for_each_node(node
) {
5714 struct mem_cgroup_tree_per_node
*rtpn
;
5717 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5718 node_online(node
) ? node
: NUMA_NO_NODE
);
5720 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5721 struct mem_cgroup_tree_per_zone
*rtpz
;
5723 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5724 rtpz
->rb_root
= RB_ROOT
;
5725 spin_lock_init(&rtpz
->lock
);
5727 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5732 subsys_initcall(mem_cgroup_init
);
5734 #ifdef CONFIG_MEMCG_SWAP
5736 * mem_cgroup_swapout - transfer a memsw charge to swap
5737 * @page: page whose memsw charge to transfer
5738 * @entry: swap entry to move the charge to
5740 * Transfer the memsw charge of @page to @entry.
5742 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5744 struct mem_cgroup
*memcg
;
5745 unsigned short oldid
;
5747 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5748 VM_BUG_ON_PAGE(page_count(page
), page
);
5750 if (!do_memsw_account())
5753 memcg
= page
->mem_cgroup
;
5755 /* Readahead page, never charged */
5759 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5760 VM_BUG_ON_PAGE(oldid
, page
);
5761 mem_cgroup_swap_statistics(memcg
, true);
5763 page
->mem_cgroup
= NULL
;
5765 if (!mem_cgroup_is_root(memcg
))
5766 page_counter_uncharge(&memcg
->memory
, 1);
5769 * Interrupts should be disabled here because the caller holds the
5770 * mapping->tree_lock lock which is taken with interrupts-off. It is
5771 * important here to have the interrupts disabled because it is the
5772 * only synchronisation we have for udpating the per-CPU variables.
5774 VM_BUG_ON(!irqs_disabled());
5775 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5776 memcg_check_events(memcg
, page
);
5780 * mem_cgroup_try_charge_swap - try charging a swap entry
5781 * @page: page being added to swap
5782 * @entry: swap entry to charge
5784 * Try to charge @entry to the memcg that @page belongs to.
5786 * Returns 0 on success, -ENOMEM on failure.
5788 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5790 struct mem_cgroup
*memcg
;
5791 struct page_counter
*counter
;
5792 unsigned short oldid
;
5794 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5797 memcg
= page
->mem_cgroup
;
5799 /* Readahead page, never charged */
5803 if (!mem_cgroup_is_root(memcg
) &&
5804 !page_counter_try_charge(&memcg
->swap
, 1, &counter
))
5807 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5808 VM_BUG_ON_PAGE(oldid
, page
);
5809 mem_cgroup_swap_statistics(memcg
, true);
5811 css_get(&memcg
->css
);
5816 * mem_cgroup_uncharge_swap - uncharge a swap entry
5817 * @entry: swap entry to uncharge
5819 * Drop the swap charge associated with @entry.
5821 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5823 struct mem_cgroup
*memcg
;
5826 if (!do_swap_account
)
5829 id
= swap_cgroup_record(entry
, 0);
5831 memcg
= mem_cgroup_from_id(id
);
5833 if (!mem_cgroup_is_root(memcg
)) {
5834 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5835 page_counter_uncharge(&memcg
->swap
, 1);
5837 page_counter_uncharge(&memcg
->memsw
, 1);
5839 mem_cgroup_swap_statistics(memcg
, false);
5840 css_put(&memcg
->css
);
5845 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5847 long nr_swap_pages
= get_nr_swap_pages();
5849 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5850 return nr_swap_pages
;
5851 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5852 nr_swap_pages
= min_t(long, nr_swap_pages
,
5853 READ_ONCE(memcg
->swap
.limit
) -
5854 page_counter_read(&memcg
->swap
));
5855 return nr_swap_pages
;
5858 bool mem_cgroup_swap_full(struct page
*page
)
5860 struct mem_cgroup
*memcg
;
5862 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5866 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5869 memcg
= page
->mem_cgroup
;
5873 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5874 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
5880 /* for remember boot option*/
5881 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5882 static int really_do_swap_account __initdata
= 1;
5884 static int really_do_swap_account __initdata
;
5887 static int __init
enable_swap_account(char *s
)
5889 if (!strcmp(s
, "1"))
5890 really_do_swap_account
= 1;
5891 else if (!strcmp(s
, "0"))
5892 really_do_swap_account
= 0;
5895 __setup("swapaccount=", enable_swap_account
);
5897 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
5900 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5902 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
5905 static int swap_max_show(struct seq_file
*m
, void *v
)
5907 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5908 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
5910 if (max
== PAGE_COUNTER_MAX
)
5911 seq_puts(m
, "max\n");
5913 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5918 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
5919 char *buf
, size_t nbytes
, loff_t off
)
5921 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5925 buf
= strstrip(buf
);
5926 err
= page_counter_memparse(buf
, "max", &max
);
5930 mutex_lock(&memcg_limit_mutex
);
5931 err
= page_counter_limit(&memcg
->swap
, max
);
5932 mutex_unlock(&memcg_limit_mutex
);
5939 static struct cftype swap_files
[] = {
5941 .name
= "swap.current",
5942 .flags
= CFTYPE_NOT_ON_ROOT
,
5943 .read_u64
= swap_current_read
,
5947 .flags
= CFTYPE_NOT_ON_ROOT
,
5948 .seq_show
= swap_max_show
,
5949 .write
= swap_max_write
,
5954 static struct cftype memsw_cgroup_files
[] = {
5956 .name
= "memsw.usage_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5958 .read_u64
= mem_cgroup_read_u64
,
5961 .name
= "memsw.max_usage_in_bytes",
5962 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5963 .write
= mem_cgroup_reset
,
5964 .read_u64
= mem_cgroup_read_u64
,
5967 .name
= "memsw.limit_in_bytes",
5968 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5969 .write
= mem_cgroup_write
,
5970 .read_u64
= mem_cgroup_read_u64
,
5973 .name
= "memsw.failcnt",
5974 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5975 .write
= mem_cgroup_reset
,
5976 .read_u64
= mem_cgroup_read_u64
,
5978 { }, /* terminate */
5981 static int __init
mem_cgroup_swap_init(void)
5983 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5984 do_swap_account
= 1;
5985 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
5987 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5988 memsw_cgroup_files
));
5992 subsys_initcall(mem_cgroup_swap_init
);
5994 #endif /* CONFIG_MEMCG_SWAP */