2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
15 #include <traceevent/event-parse.h>
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
50 struct perf_tool tool
;
51 struct per_pid
*all_data
;
52 struct power_event
*power_events
;
53 struct wake_event
*wake_events
;
56 u64 min_freq
, /* Lowest CPU frequency seen */
57 max_freq
, /* Highest CPU frequency seen */
59 first_time
, last_time
;
64 /* IO related settings */
78 * Datastructure layout:
79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
80 * Each "pid" entry, has a list of "comm"s.
81 * this is because we want to track different programs different, while
82 * exec will reuse the original pid (by design).
83 * Each comm has a list of samples that will be used to draw
99 struct per_pidcomm
*all
;
100 struct per_pidcomm
*current
;
105 struct per_pidcomm
*next
;
121 struct cpu_sample
*samples
;
122 struct io_sample
*io_samples
;
125 struct sample_wrapper
{
126 struct sample_wrapper
*next
;
129 unsigned char data
[0];
133 #define TYPE_RUNNING 1
134 #define TYPE_WAITING 2
135 #define TYPE_BLOCKED 3
138 struct cpu_sample
*next
;
144 const char *backtrace
;
157 struct io_sample
*next
;
172 struct power_event
*next
;
181 struct wake_event
*next
;
185 const char *backtrace
;
188 struct process_filter
{
191 struct process_filter
*next
;
194 static struct process_filter
*process_filter
;
197 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
199 struct per_pid
*cursor
= tchart
->all_data
;
202 if (cursor
->pid
== pid
)
204 cursor
= cursor
->next
;
206 cursor
= zalloc(sizeof(*cursor
));
207 assert(cursor
!= NULL
);
209 cursor
->next
= tchart
->all_data
;
210 tchart
->all_data
= cursor
;
214 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
217 struct per_pidcomm
*c
;
218 p
= find_create_pid(tchart
, pid
);
221 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
226 c
->comm
= strdup(comm
);
232 c
= zalloc(sizeof(*c
));
234 c
->comm
= strdup(comm
);
240 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
242 struct per_pid
*p
, *pp
;
243 p
= find_create_pid(tchart
, pid
);
244 pp
= find_create_pid(tchart
, ppid
);
246 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
247 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
249 p
->start_time
= timestamp
;
250 if (p
->current
&& !p
->current
->start_time
) {
251 p
->current
->start_time
= timestamp
;
252 p
->current
->state_since
= timestamp
;
256 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
259 p
= find_create_pid(tchart
, pid
);
260 p
->end_time
= timestamp
;
262 p
->current
->end_time
= timestamp
;
265 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
266 unsigned int cpu
, u64 start
, u64 end
,
267 const char *backtrace
)
270 struct per_pidcomm
*c
;
271 struct cpu_sample
*sample
;
273 p
= find_create_pid(tchart
, pid
);
276 c
= zalloc(sizeof(*c
));
283 sample
= zalloc(sizeof(*sample
));
284 assert(sample
!= NULL
);
285 sample
->start_time
= start
;
286 sample
->end_time
= end
;
288 sample
->next
= c
->samples
;
290 sample
->backtrace
= backtrace
;
293 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
294 c
->total_time
+= (end
-start
);
295 p
->total_time
+= (end
-start
);
298 if (c
->start_time
== 0 || c
->start_time
> start
)
299 c
->start_time
= start
;
300 if (p
->start_time
== 0 || p
->start_time
> start
)
301 p
->start_time
= start
;
304 #define MAX_CPUS 4096
306 static u64 cpus_cstate_start_times
[MAX_CPUS
];
307 static int cpus_cstate_state
[MAX_CPUS
];
308 static u64 cpus_pstate_start_times
[MAX_CPUS
];
309 static u64 cpus_pstate_state
[MAX_CPUS
];
311 static int process_comm_event(struct perf_tool
*tool
,
312 union perf_event
*event
,
313 struct perf_sample
*sample __maybe_unused
,
314 struct machine
*machine __maybe_unused
)
316 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
317 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
321 static int process_fork_event(struct perf_tool
*tool
,
322 union perf_event
*event
,
323 struct perf_sample
*sample __maybe_unused
,
324 struct machine
*machine __maybe_unused
)
326 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
327 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
331 static int process_exit_event(struct perf_tool
*tool
,
332 union perf_event
*event
,
333 struct perf_sample
*sample __maybe_unused
,
334 struct machine
*machine __maybe_unused
)
336 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
337 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events
;
345 static void c_state_start(int cpu
, u64 timestamp
, int state
)
347 cpus_cstate_start_times
[cpu
] = timestamp
;
348 cpus_cstate_state
[cpu
] = state
;
351 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
353 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
358 pwr
->state
= cpus_cstate_state
[cpu
];
359 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
360 pwr
->end_time
= timestamp
;
363 pwr
->next
= tchart
->power_events
;
365 tchart
->power_events
= pwr
;
368 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
370 struct power_event
*pwr
;
372 if (new_freq
> 8000000) /* detect invalid data */
375 pwr
= zalloc(sizeof(*pwr
));
379 pwr
->state
= cpus_pstate_state
[cpu
];
380 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
381 pwr
->end_time
= timestamp
;
384 pwr
->next
= tchart
->power_events
;
386 if (!pwr
->start_time
)
387 pwr
->start_time
= tchart
->first_time
;
389 tchart
->power_events
= pwr
;
391 cpus_pstate_state
[cpu
] = new_freq
;
392 cpus_pstate_start_times
[cpu
] = timestamp
;
394 if ((u64
)new_freq
> tchart
->max_freq
)
395 tchart
->max_freq
= new_freq
;
397 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
398 tchart
->min_freq
= new_freq
;
400 if (new_freq
== tchart
->max_freq
- 1000)
401 tchart
->turbo_frequency
= tchart
->max_freq
;
404 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
405 int waker
, int wakee
, u8 flags
, const char *backtrace
)
408 struct wake_event
*we
= zalloc(sizeof(*we
));
413 we
->time
= timestamp
;
415 we
->backtrace
= backtrace
;
417 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
421 we
->next
= tchart
->wake_events
;
422 tchart
->wake_events
= we
;
423 p
= find_create_pid(tchart
, we
->wakee
);
425 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
426 p
->current
->state_since
= timestamp
;
427 p
->current
->state
= TYPE_WAITING
;
429 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
430 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
431 p
->current
->state_since
, timestamp
, NULL
);
432 p
->current
->state_since
= timestamp
;
433 p
->current
->state
= TYPE_WAITING
;
437 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
438 int prev_pid
, int next_pid
, u64 prev_state
,
439 const char *backtrace
)
441 struct per_pid
*p
= NULL
, *prev_p
;
443 prev_p
= find_create_pid(tchart
, prev_pid
);
445 p
= find_create_pid(tchart
, next_pid
);
447 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
448 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
449 prev_p
->current
->state_since
, timestamp
,
451 if (p
&& p
->current
) {
452 if (p
->current
->state
!= TYPE_NONE
)
453 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
454 p
->current
->state_since
, timestamp
,
457 p
->current
->state_since
= timestamp
;
458 p
->current
->state
= TYPE_RUNNING
;
461 if (prev_p
->current
) {
462 prev_p
->current
->state
= TYPE_NONE
;
463 prev_p
->current
->state_since
= timestamp
;
465 prev_p
->current
->state
= TYPE_BLOCKED
;
467 prev_p
->current
->state
= TYPE_WAITING
;
471 static const char *cat_backtrace(union perf_event
*event
,
472 struct perf_sample
*sample
,
473 struct machine
*machine
)
475 struct addr_location al
;
479 u8 cpumode
= PERF_RECORD_MISC_USER
;
480 struct addr_location tal
;
481 struct ip_callchain
*chain
= sample
->callchain
;
482 FILE *f
= open_memstream(&p
, &p_len
);
485 perror("open_memstream error");
492 if (perf_event__preprocess_sample(event
, machine
, &al
, sample
) < 0) {
493 fprintf(stderr
, "problem processing %d event, skipping it.\n",
498 for (i
= 0; i
< chain
->nr
; i
++) {
501 if (callchain_param
.order
== ORDER_CALLEE
)
504 ip
= chain
->ips
[chain
->nr
- i
- 1];
506 if (ip
>= PERF_CONTEXT_MAX
) {
508 case PERF_CONTEXT_HV
:
509 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
511 case PERF_CONTEXT_KERNEL
:
512 cpumode
= PERF_RECORD_MISC_KERNEL
;
514 case PERF_CONTEXT_USER
:
515 cpumode
= PERF_RECORD_MISC_USER
;
518 pr_debug("invalid callchain context: "
519 "%"PRId64
"\n", (s64
) ip
);
522 * It seems the callchain is corrupted.
532 thread__find_addr_location(al
.thread
, cpumode
,
533 MAP__FUNCTION
, ip
, &tal
);
536 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
,
539 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
548 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
549 struct perf_evsel
*evsel
,
550 struct perf_sample
*sample
,
551 const char *backtrace
);
553 static int process_sample_event(struct perf_tool
*tool
,
554 union perf_event
*event
,
555 struct perf_sample
*sample
,
556 struct perf_evsel
*evsel
,
557 struct machine
*machine
)
559 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
561 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
562 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
563 tchart
->first_time
= sample
->time
;
564 if (tchart
->last_time
< sample
->time
)
565 tchart
->last_time
= sample
->time
;
568 if (evsel
->handler
!= NULL
) {
569 tracepoint_handler f
= evsel
->handler
;
570 return f(tchart
, evsel
, sample
,
571 cat_backtrace(event
, sample
, machine
));
578 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
579 struct perf_evsel
*evsel
,
580 struct perf_sample
*sample
,
581 const char *backtrace __maybe_unused
)
583 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
584 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
586 if (state
== (u32
)PWR_EVENT_EXIT
)
587 c_state_end(tchart
, cpu_id
, sample
->time
);
589 c_state_start(cpu_id
, sample
->time
, state
);
594 process_sample_cpu_frequency(struct timechart
*tchart
,
595 struct perf_evsel
*evsel
,
596 struct perf_sample
*sample
,
597 const char *backtrace __maybe_unused
)
599 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
600 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
602 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
607 process_sample_sched_wakeup(struct timechart
*tchart
,
608 struct perf_evsel
*evsel
,
609 struct perf_sample
*sample
,
610 const char *backtrace
)
612 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
613 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
614 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
616 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
621 process_sample_sched_switch(struct timechart
*tchart
,
622 struct perf_evsel
*evsel
,
623 struct perf_sample
*sample
,
624 const char *backtrace
)
626 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
627 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
628 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
630 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
631 prev_state
, backtrace
);
635 #ifdef SUPPORT_OLD_POWER_EVENTS
637 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
638 struct perf_evsel
*evsel
,
639 struct perf_sample
*sample
,
640 const char *backtrace __maybe_unused
)
642 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
643 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
645 c_state_start(cpu_id
, sample
->time
, value
);
650 process_sample_power_end(struct timechart
*tchart
,
651 struct perf_evsel
*evsel __maybe_unused
,
652 struct perf_sample
*sample
,
653 const char *backtrace __maybe_unused
)
655 c_state_end(tchart
, sample
->cpu
, sample
->time
);
660 process_sample_power_frequency(struct timechart
*tchart
,
661 struct perf_evsel
*evsel
,
662 struct perf_sample
*sample
,
663 const char *backtrace __maybe_unused
)
665 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
666 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
668 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
671 #endif /* SUPPORT_OLD_POWER_EVENTS */
674 * After the last sample we need to wrap up the current C/P state
675 * and close out each CPU for these.
677 static void end_sample_processing(struct timechart
*tchart
)
680 struct power_event
*pwr
;
682 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
685 pwr
= zalloc(sizeof(*pwr
));
689 pwr
->state
= cpus_cstate_state
[cpu
];
690 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
691 pwr
->end_time
= tchart
->last_time
;
694 pwr
->next
= tchart
->power_events
;
696 tchart
->power_events
= pwr
;
700 pwr
= zalloc(sizeof(*pwr
));
704 pwr
->state
= cpus_pstate_state
[cpu
];
705 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
706 pwr
->end_time
= tchart
->last_time
;
709 pwr
->next
= tchart
->power_events
;
711 if (!pwr
->start_time
)
712 pwr
->start_time
= tchart
->first_time
;
714 pwr
->state
= tchart
->min_freq
;
715 tchart
->power_events
= pwr
;
719 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
722 struct per_pid
*p
= find_create_pid(tchart
, pid
);
723 struct per_pidcomm
*c
= p
->current
;
724 struct io_sample
*sample
;
725 struct io_sample
*prev
;
728 c
= zalloc(sizeof(*c
));
736 prev
= c
->io_samples
;
738 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
739 pr_warning("Skip invalid start event: "
740 "previous event already started!\n");
742 /* remove previous event that has been started,
743 * we are not sure we will ever get an end for it */
744 c
->io_samples
= prev
->next
;
749 sample
= zalloc(sizeof(*sample
));
752 sample
->start_time
= start
;
755 sample
->next
= c
->io_samples
;
756 c
->io_samples
= sample
;
758 if (c
->start_time
== 0 || c
->start_time
> start
)
759 c
->start_time
= start
;
764 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
767 struct per_pid
*p
= find_create_pid(tchart
, pid
);
768 struct per_pidcomm
*c
= p
->current
;
769 struct io_sample
*sample
, *prev
;
772 pr_warning("Invalid pidcomm!\n");
776 sample
= c
->io_samples
;
778 if (!sample
) /* skip partially captured events */
781 if (sample
->end_time
) {
782 pr_warning("Skip invalid end event: "
783 "previous event already ended!\n");
787 if (sample
->type
!= type
) {
788 pr_warning("Skip invalid end event: invalid event type!\n");
792 sample
->end_time
= end
;
795 /* we want to be able to see small and fast transfers, so make them
796 * at least min_time long, but don't overlap them */
797 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
798 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
799 if (prev
&& sample
->start_time
< prev
->end_time
) {
800 if (prev
->err
) /* try to make errors more visible */
801 sample
->start_time
= prev
->end_time
;
803 prev
->end_time
= sample
->start_time
;
808 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
809 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
811 if ((u64
)ret
> c
->max_bytes
)
814 c
->total_bytes
+= ret
;
815 p
->total_bytes
+= ret
;
819 /* merge two requests to make svg smaller and render-friendly */
821 prev
->type
== sample
->type
&&
822 prev
->err
== sample
->err
&&
823 prev
->fd
== sample
->fd
&&
824 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
826 sample
->bytes
+= prev
->bytes
;
827 sample
->merges
+= prev
->merges
+ 1;
829 sample
->start_time
= prev
->start_time
;
830 sample
->next
= prev
->next
;
833 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
834 c
->max_bytes
= sample
->bytes
;
843 process_enter_read(struct timechart
*tchart
,
844 struct perf_evsel
*evsel
,
845 struct perf_sample
*sample
)
847 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
848 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
853 process_exit_read(struct timechart
*tchart
,
854 struct perf_evsel
*evsel
,
855 struct perf_sample
*sample
)
857 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
858 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
863 process_enter_write(struct timechart
*tchart
,
864 struct perf_evsel
*evsel
,
865 struct perf_sample
*sample
)
867 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
868 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
873 process_exit_write(struct timechart
*tchart
,
874 struct perf_evsel
*evsel
,
875 struct perf_sample
*sample
)
877 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
878 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
883 process_enter_sync(struct timechart
*tchart
,
884 struct perf_evsel
*evsel
,
885 struct perf_sample
*sample
)
887 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
888 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
893 process_exit_sync(struct timechart
*tchart
,
894 struct perf_evsel
*evsel
,
895 struct perf_sample
*sample
)
897 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
898 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
903 process_enter_tx(struct timechart
*tchart
,
904 struct perf_evsel
*evsel
,
905 struct perf_sample
*sample
)
907 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
908 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
913 process_exit_tx(struct timechart
*tchart
,
914 struct perf_evsel
*evsel
,
915 struct perf_sample
*sample
)
917 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
918 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
923 process_enter_rx(struct timechart
*tchart
,
924 struct perf_evsel
*evsel
,
925 struct perf_sample
*sample
)
927 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
928 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
933 process_exit_rx(struct timechart
*tchart
,
934 struct perf_evsel
*evsel
,
935 struct perf_sample
*sample
)
937 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
938 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
943 process_enter_poll(struct timechart
*tchart
,
944 struct perf_evsel
*evsel
,
945 struct perf_sample
*sample
)
947 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
948 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
953 process_exit_poll(struct timechart
*tchart
,
954 struct perf_evsel
*evsel
,
955 struct perf_sample
*sample
)
957 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
958 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
963 * Sort the pid datastructure
965 static void sort_pids(struct timechart
*tchart
)
967 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
968 /* sort by ppid first, then by pid, lowest to highest */
972 while (tchart
->all_data
) {
973 p
= tchart
->all_data
;
974 tchart
->all_data
= p
->next
;
977 if (new_list
== NULL
) {
985 if (cursor
->ppid
> p
->ppid
||
986 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
987 /* must insert before */
989 p
->next
= prev
->next
;
1002 cursor
= cursor
->next
;
1007 tchart
->all_data
= new_list
;
1011 static void draw_c_p_states(struct timechart
*tchart
)
1013 struct power_event
*pwr
;
1014 pwr
= tchart
->power_events
;
1017 * two pass drawing so that the P state bars are on top of the C state blocks
1020 if (pwr
->type
== CSTATE
)
1021 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1025 pwr
= tchart
->power_events
;
1027 if (pwr
->type
== PSTATE
) {
1029 pwr
->state
= tchart
->min_freq
;
1030 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1036 static void draw_wakeups(struct timechart
*tchart
)
1038 struct wake_event
*we
;
1040 struct per_pidcomm
*c
;
1042 we
= tchart
->wake_events
;
1044 int from
= 0, to
= 0;
1045 char *task_from
= NULL
, *task_to
= NULL
;
1047 /* locate the column of the waker and wakee */
1048 p
= tchart
->all_data
;
1050 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1053 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1054 if (p
->pid
== we
->waker
&& !from
) {
1056 task_from
= strdup(c
->comm
);
1058 if (p
->pid
== we
->wakee
&& !to
) {
1060 task_to
= strdup(c
->comm
);
1067 if (p
->pid
== we
->waker
&& !from
) {
1069 task_from
= strdup(c
->comm
);
1071 if (p
->pid
== we
->wakee
&& !to
) {
1073 task_to
= strdup(c
->comm
);
1082 task_from
= malloc(40);
1083 sprintf(task_from
, "[%i]", we
->waker
);
1086 task_to
= malloc(40);
1087 sprintf(task_to
, "[%i]", we
->wakee
);
1090 if (we
->waker
== -1)
1091 svg_interrupt(we
->time
, to
, we
->backtrace
);
1092 else if (from
&& to
&& abs(from
- to
) == 1)
1093 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1095 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1096 task_to
, we
->backtrace
);
1104 static void draw_cpu_usage(struct timechart
*tchart
)
1107 struct per_pidcomm
*c
;
1108 struct cpu_sample
*sample
;
1109 p
= tchart
->all_data
;
1113 sample
= c
->samples
;
1115 if (sample
->type
== TYPE_RUNNING
) {
1116 svg_process(sample
->cpu
,
1124 sample
= sample
->next
;
1132 static void draw_io_bars(struct timechart
*tchart
)
1138 struct per_pidcomm
*c
;
1139 struct io_sample
*sample
;
1142 p
= tchart
->all_data
;
1152 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1153 sample
= c
->io_samples
;
1154 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1155 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1157 if (tchart
->skip_eagain
&&
1158 sample
->err
== -EAGAIN
)
1164 if (sample
->type
== IOTYPE_SYNC
)
1169 sample
->err
? "error" : "sync",
1173 else if (sample
->type
== IOTYPE_POLL
)
1178 sample
->err
? "error" : "poll",
1182 else if (sample
->type
== IOTYPE_READ
)
1187 sample
->err
? "error" : "disk",
1191 else if (sample
->type
== IOTYPE_WRITE
)
1196 sample
->err
? "error" : "disk",
1200 else if (sample
->type
== IOTYPE_RX
)
1205 sample
->err
? "error" : "net",
1209 else if (sample
->type
== IOTYPE_TX
)
1214 sample
->err
? "error" : "net",
1221 bytes
= c
->total_bytes
;
1223 bytes
= bytes
/ 1024;
1227 bytes
= bytes
/ 1024;
1231 bytes
= bytes
/ 1024;
1236 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1237 svg_text(Y
, c
->start_time
, comm
);
1247 static void draw_process_bars(struct timechart
*tchart
)
1250 struct per_pidcomm
*c
;
1251 struct cpu_sample
*sample
;
1254 Y
= 2 * tchart
->numcpus
+ 2;
1256 p
= tchart
->all_data
;
1266 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1267 sample
= c
->samples
;
1269 if (sample
->type
== TYPE_RUNNING
)
1270 svg_running(Y
, sample
->cpu
,
1274 if (sample
->type
== TYPE_BLOCKED
)
1275 svg_blocked(Y
, sample
->cpu
,
1279 if (sample
->type
== TYPE_WAITING
)
1280 svg_waiting(Y
, sample
->cpu
,
1284 sample
= sample
->next
;
1289 if (c
->total_time
> 5000000000) /* 5 seconds */
1290 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ 1000000000.0);
1292 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ 1000000.0);
1294 svg_text(Y
, c
->start_time
, comm
);
1304 static void add_process_filter(const char *string
)
1306 int pid
= strtoull(string
, NULL
, 10);
1307 struct process_filter
*filt
= malloc(sizeof(*filt
));
1312 filt
->name
= strdup(string
);
1314 filt
->next
= process_filter
;
1316 process_filter
= filt
;
1319 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1321 struct process_filter
*filt
;
1322 if (!process_filter
)
1325 filt
= process_filter
;
1327 if (filt
->pid
&& p
->pid
== filt
->pid
)
1329 if (strcmp(filt
->name
, c
->comm
) == 0)
1336 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1339 struct per_pidcomm
*c
;
1342 p
= tchart
->all_data
;
1345 if (p
->start_time
== 1)
1346 p
->start_time
= tchart
->first_time
;
1348 /* no exit marker, task kept running to the end */
1349 if (p
->end_time
== 0)
1350 p
->end_time
= tchart
->last_time
;
1357 if (c
->start_time
== 1)
1358 c
->start_time
= tchart
->first_time
;
1360 if (passes_filter(p
, c
)) {
1366 if (c
->end_time
== 0)
1367 c
->end_time
= tchart
->last_time
;
1376 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1379 struct per_pidcomm
*c
;
1382 p
= tchart
->all_data
;
1385 if (p
->start_time
== 1)
1386 p
->start_time
= tchart
->first_time
;
1388 /* no exit marker, task kept running to the end */
1389 if (p
->end_time
== 0)
1390 p
->end_time
= tchart
->last_time
;
1391 if (p
->total_time
>= threshold
)
1399 if (c
->start_time
== 1)
1400 c
->start_time
= tchart
->first_time
;
1402 if (c
->total_time
>= threshold
) {
1407 if (c
->end_time
== 0)
1408 c
->end_time
= tchart
->last_time
;
1417 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1420 struct per_pidcomm
*c
;
1423 p
= timechart
->all_data
;
1425 /* no exit marker, task kept running to the end */
1426 if (p
->end_time
== 0)
1427 p
->end_time
= timechart
->last_time
;
1434 if (c
->total_bytes
>= threshold
) {
1439 if (c
->end_time
== 0)
1440 c
->end_time
= timechart
->last_time
;
1449 #define BYTES_THRESH (1 * 1024 * 1024)
1450 #define TIME_THRESH 10000000
1452 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1456 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1458 if (tchart
->power_only
)
1459 tchart
->proc_num
= 0;
1461 /* We'd like to show at least proc_num tasks;
1462 * be less picky if we have fewer */
1465 count
= determine_display_tasks_filtered(tchart
);
1466 else if (tchart
->io_events
)
1467 count
= determine_display_io_tasks(tchart
, thresh
);
1469 count
= determine_display_tasks(tchart
, thresh
);
1471 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1473 if (!tchart
->proc_num
)
1476 if (tchart
->io_events
) {
1477 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1482 draw_io_bars(tchart
);
1484 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1490 for (i
= 0; i
< tchart
->numcpus
; i
++)
1491 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1493 draw_cpu_usage(tchart
);
1494 if (tchart
->proc_num
)
1495 draw_process_bars(tchart
);
1496 if (!tchart
->tasks_only
)
1497 draw_c_p_states(tchart
);
1498 if (tchart
->proc_num
)
1499 draw_wakeups(tchart
);
1505 static int process_header(struct perf_file_section
*section __maybe_unused
,
1506 struct perf_header
*ph
,
1508 int fd __maybe_unused
,
1511 struct timechart
*tchart
= data
;
1515 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1518 case HEADER_CPU_TOPOLOGY
:
1519 if (!tchart
->topology
)
1522 if (svg_build_topology_map(ph
->env
.sibling_cores
,
1523 ph
->env
.nr_sibling_cores
,
1524 ph
->env
.sibling_threads
,
1525 ph
->env
.nr_sibling_threads
))
1526 fprintf(stderr
, "problem building topology\n");
1536 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1538 const struct perf_evsel_str_handler power_tracepoints
[] = {
1539 { "power:cpu_idle", process_sample_cpu_idle
},
1540 { "power:cpu_frequency", process_sample_cpu_frequency
},
1541 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1542 { "sched:sched_switch", process_sample_sched_switch
},
1543 #ifdef SUPPORT_OLD_POWER_EVENTS
1544 { "power:power_start", process_sample_power_start
},
1545 { "power:power_end", process_sample_power_end
},
1546 { "power:power_frequency", process_sample_power_frequency
},
1549 { "syscalls:sys_enter_read", process_enter_read
},
1550 { "syscalls:sys_enter_pread64", process_enter_read
},
1551 { "syscalls:sys_enter_readv", process_enter_read
},
1552 { "syscalls:sys_enter_preadv", process_enter_read
},
1553 { "syscalls:sys_enter_write", process_enter_write
},
1554 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1555 { "syscalls:sys_enter_writev", process_enter_write
},
1556 { "syscalls:sys_enter_pwritev", process_enter_write
},
1557 { "syscalls:sys_enter_sync", process_enter_sync
},
1558 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1559 { "syscalls:sys_enter_fsync", process_enter_sync
},
1560 { "syscalls:sys_enter_msync", process_enter_sync
},
1561 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1562 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1563 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1564 { "syscalls:sys_enter_sendto", process_enter_tx
},
1565 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1566 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1567 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1568 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1569 { "syscalls:sys_enter_poll", process_enter_poll
},
1570 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1571 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1572 { "syscalls:sys_enter_select", process_enter_poll
},
1574 { "syscalls:sys_exit_read", process_exit_read
},
1575 { "syscalls:sys_exit_pread64", process_exit_read
},
1576 { "syscalls:sys_exit_readv", process_exit_read
},
1577 { "syscalls:sys_exit_preadv", process_exit_read
},
1578 { "syscalls:sys_exit_write", process_exit_write
},
1579 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1580 { "syscalls:sys_exit_writev", process_exit_write
},
1581 { "syscalls:sys_exit_pwritev", process_exit_write
},
1582 { "syscalls:sys_exit_sync", process_exit_sync
},
1583 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1584 { "syscalls:sys_exit_fsync", process_exit_sync
},
1585 { "syscalls:sys_exit_msync", process_exit_sync
},
1586 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1587 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1588 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1589 { "syscalls:sys_exit_sendto", process_exit_tx
},
1590 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1591 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1592 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1593 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1594 { "syscalls:sys_exit_poll", process_exit_poll
},
1595 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1596 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1597 { "syscalls:sys_exit_select", process_exit_poll
},
1599 struct perf_data_file file
= {
1601 .mode
= PERF_DATA_MODE_READ
,
1602 .force
= tchart
->force
,
1605 struct perf_session
*session
= perf_session__new(&file
, false,
1609 if (session
== NULL
)
1612 symbol__init(&session
->header
.env
);
1614 (void)perf_header__process_sections(&session
->header
,
1615 perf_data_file__fd(session
->file
),
1619 if (!perf_session__has_traces(session
, "timechart record"))
1622 if (perf_session__set_tracepoints_handlers(session
,
1623 power_tracepoints
)) {
1624 pr_err("Initializing session tracepoint handlers failed\n");
1628 ret
= perf_session__process_events(session
);
1632 end_sample_processing(tchart
);
1636 write_svg_file(tchart
, output_name
);
1638 pr_info("Written %2.1f seconds of trace to %s.\n",
1639 (tchart
->last_time
- tchart
->first_time
) / 1000000000.0, output_name
);
1641 perf_session__delete(session
);
1645 static int timechart__io_record(int argc
, const char **argv
)
1647 unsigned int rec_argc
, i
;
1648 const char **rec_argv
;
1650 char *filter
= NULL
;
1652 const char * const common_args
[] = {
1653 "record", "-a", "-R", "-c", "1",
1655 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1657 const char * const disk_events
[] = {
1658 "syscalls:sys_enter_read",
1659 "syscalls:sys_enter_pread64",
1660 "syscalls:sys_enter_readv",
1661 "syscalls:sys_enter_preadv",
1662 "syscalls:sys_enter_write",
1663 "syscalls:sys_enter_pwrite64",
1664 "syscalls:sys_enter_writev",
1665 "syscalls:sys_enter_pwritev",
1666 "syscalls:sys_enter_sync",
1667 "syscalls:sys_enter_sync_file_range",
1668 "syscalls:sys_enter_fsync",
1669 "syscalls:sys_enter_msync",
1671 "syscalls:sys_exit_read",
1672 "syscalls:sys_exit_pread64",
1673 "syscalls:sys_exit_readv",
1674 "syscalls:sys_exit_preadv",
1675 "syscalls:sys_exit_write",
1676 "syscalls:sys_exit_pwrite64",
1677 "syscalls:sys_exit_writev",
1678 "syscalls:sys_exit_pwritev",
1679 "syscalls:sys_exit_sync",
1680 "syscalls:sys_exit_sync_file_range",
1681 "syscalls:sys_exit_fsync",
1682 "syscalls:sys_exit_msync",
1684 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1686 const char * const net_events
[] = {
1687 "syscalls:sys_enter_recvfrom",
1688 "syscalls:sys_enter_recvmmsg",
1689 "syscalls:sys_enter_recvmsg",
1690 "syscalls:sys_enter_sendto",
1691 "syscalls:sys_enter_sendmsg",
1692 "syscalls:sys_enter_sendmmsg",
1694 "syscalls:sys_exit_recvfrom",
1695 "syscalls:sys_exit_recvmmsg",
1696 "syscalls:sys_exit_recvmsg",
1697 "syscalls:sys_exit_sendto",
1698 "syscalls:sys_exit_sendmsg",
1699 "syscalls:sys_exit_sendmmsg",
1701 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1703 const char * const poll_events
[] = {
1704 "syscalls:sys_enter_epoll_pwait",
1705 "syscalls:sys_enter_epoll_wait",
1706 "syscalls:sys_enter_poll",
1707 "syscalls:sys_enter_ppoll",
1708 "syscalls:sys_enter_pselect6",
1709 "syscalls:sys_enter_select",
1711 "syscalls:sys_exit_epoll_pwait",
1712 "syscalls:sys_exit_epoll_wait",
1713 "syscalls:sys_exit_poll",
1714 "syscalls:sys_exit_ppoll",
1715 "syscalls:sys_exit_pselect6",
1716 "syscalls:sys_exit_select",
1718 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1720 rec_argc
= common_args_nr
+
1721 disk_events_nr
* 4 +
1723 poll_events_nr
* 4 +
1725 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1727 if (rec_argv
== NULL
)
1730 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0)
1734 for (i
= 0; i
< common_args_nr
; i
++)
1735 *p
++ = strdup(common_args
[i
]);
1737 for (i
= 0; i
< disk_events_nr
; i
++) {
1738 if (!is_valid_tracepoint(disk_events
[i
])) {
1744 *p
++ = strdup(disk_events
[i
]);
1748 for (i
= 0; i
< net_events_nr
; i
++) {
1749 if (!is_valid_tracepoint(net_events
[i
])) {
1755 *p
++ = strdup(net_events
[i
]);
1759 for (i
= 0; i
< poll_events_nr
; i
++) {
1760 if (!is_valid_tracepoint(poll_events
[i
])) {
1766 *p
++ = strdup(poll_events
[i
]);
1771 for (i
= 0; i
< (unsigned int)argc
; i
++)
1774 return cmd_record(rec_argc
, rec_argv
, NULL
);
1778 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1780 unsigned int rec_argc
, i
, j
;
1781 const char **rec_argv
;
1783 unsigned int record_elems
;
1785 const char * const common_args
[] = {
1786 "record", "-a", "-R", "-c", "1",
1788 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1790 const char * const backtrace_args
[] = {
1793 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1795 const char * const power_args
[] = {
1796 "-e", "power:cpu_frequency",
1797 "-e", "power:cpu_idle",
1799 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1801 const char * const old_power_args
[] = {
1802 #ifdef SUPPORT_OLD_POWER_EVENTS
1803 "-e", "power:power_start",
1804 "-e", "power:power_end",
1805 "-e", "power:power_frequency",
1808 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1810 const char * const tasks_args
[] = {
1811 "-e", "sched:sched_wakeup",
1812 "-e", "sched:sched_switch",
1814 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1816 #ifdef SUPPORT_OLD_POWER_EVENTS
1817 if (!is_valid_tracepoint("power:cpu_idle") &&
1818 is_valid_tracepoint("power:power_start")) {
1819 use_old_power_events
= 1;
1822 old_power_args_nr
= 0;
1826 if (tchart
->power_only
)
1829 if (tchart
->tasks_only
) {
1831 old_power_args_nr
= 0;
1834 if (!tchart
->with_backtrace
)
1835 backtrace_args_no
= 0;
1837 record_elems
= common_args_nr
+ tasks_args_nr
+
1838 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1840 rec_argc
= record_elems
+ argc
;
1841 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1843 if (rec_argv
== NULL
)
1847 for (i
= 0; i
< common_args_nr
; i
++)
1848 *p
++ = strdup(common_args
[i
]);
1850 for (i
= 0; i
< backtrace_args_no
; i
++)
1851 *p
++ = strdup(backtrace_args
[i
]);
1853 for (i
= 0; i
< tasks_args_nr
; i
++)
1854 *p
++ = strdup(tasks_args
[i
]);
1856 for (i
= 0; i
< power_args_nr
; i
++)
1857 *p
++ = strdup(power_args
[i
]);
1859 for (i
= 0; i
< old_power_args_nr
; i
++)
1860 *p
++ = strdup(old_power_args
[i
]);
1862 for (j
= 0; j
< (unsigned int)argc
; j
++)
1865 return cmd_record(rec_argc
, rec_argv
, NULL
);
1869 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1870 int __maybe_unused unset
)
1873 add_process_filter(arg
);
1878 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1879 int __maybe_unused unset
)
1881 unsigned long duration
= strtoul(arg
, NULL
, 0);
1883 if (svg_highlight
|| svg_highlight_name
)
1887 svg_highlight
= duration
;
1889 svg_highlight_name
= strdup(arg
);
1895 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1898 u64
*value
= opt
->value
;
1900 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1918 int cmd_timechart(int argc
, const char **argv
,
1919 const char *prefix __maybe_unused
)
1921 struct timechart tchart
= {
1923 .comm
= process_comm_event
,
1924 .fork
= process_fork_event
,
1925 .exit
= process_exit_event
,
1926 .sample
= process_sample_event
,
1927 .ordered_events
= true,
1930 .min_time
= 1000000,
1933 const char *output_name
= "output.svg";
1934 const struct option timechart_options
[] = {
1935 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1936 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1937 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1938 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1939 "highlight tasks. Pass duration in ns or process name.",
1941 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1942 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1943 "output processes data only"),
1944 OPT_CALLBACK('p', "process", NULL
, "process",
1945 "process selector. Pass a pid or process name.",
1947 OPT_STRING(0, "symfs", &symbol_conf
.symfs
, "directory",
1948 "Look for files with symbols relative to this directory"),
1949 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1950 "min. number of tasks to print"),
1951 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1952 "sort CPUs according to topology"),
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1956 "all IO faster than min-time will visually appear longer",
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1959 "merge events that are merge-dist us apart",
1961 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1964 const char * const timechart_subcommands
[] = { "record", NULL
};
1965 const char *timechart_usage
[] = {
1966 "perf timechart [<options>] {record}",
1970 const struct option timechart_record_options
[] = {
1971 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1972 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1973 "output processes data only"),
1974 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1975 "record only IO data"),
1976 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1979 const char * const timechart_record_usage
[] = {
1980 "perf timechart record [<options>]",
1983 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
1984 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
1986 if (tchart
.power_only
&& tchart
.tasks_only
) {
1987 pr_err("-P and -T options cannot be used at the same time.\n");
1991 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1992 argc
= parse_options(argc
, argv
, timechart_record_options
,
1993 timechart_record_usage
,
1994 PARSE_OPT_STOP_AT_NON_OPTION
);
1996 if (tchart
.power_only
&& tchart
.tasks_only
) {
1997 pr_err("-P and -T options cannot be used at the same time.\n");
2002 return timechart__io_record(argc
, argv
);
2004 return timechart__record(&tchart
, argc
, argv
);
2006 usage_with_options(timechart_usage
, timechart_options
);
2010 return __cmd_timechart(&tchart
, output_name
);