spi: spi-fsl-qspi: Fix return value check of devm_ioremap() in probe
[linux/fpc-iii.git] / drivers / power / avs / qcom-cpr.c
blobbd7c3e48b38600e23d175dd4afd31bcc373c1e23
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, Linaro Limited
5 */
7 #include <linux/module.h>
8 #include <linux/err.h>
9 #include <linux/debugfs.h>
10 #include <linux/string.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_opp.h>
22 #include <linux/interrupt.h>
23 #include <linux/regmap.h>
24 #include <linux/mfd/syscon.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/clk.h>
27 #include <linux/nvmem-consumer.h>
29 /* Register Offsets for RB-CPR and Bit Definitions */
31 /* RBCPR Version Register */
32 #define REG_RBCPR_VERSION 0
33 #define RBCPR_VER_2 0x02
34 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
36 /* RBCPR Gate Count and Target Registers */
37 #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
39 #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
40 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
41 #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
42 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
44 /* RBCPR Timer Control */
45 #define REG_RBCPR_TIMER_INTERVAL 0x44
46 #define REG_RBIF_TIMER_ADJUST 0x4c
48 #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
49 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
50 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
51 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
52 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
53 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
55 /* RBCPR Config Register */
56 #define REG_RBIF_LIMIT 0x48
57 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
58 #define RBIF_LIMIT_CEILING_SHIFT 6
59 #define RBIF_LIMIT_FLOOR_BITS 6
60 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
62 #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
63 #define RBIF_LIMIT_FLOOR_DEFAULT 0
65 #define REG_RBIF_SW_VLEVEL 0x94
66 #define RBIF_SW_VLEVEL_DEFAULT 0x20
68 #define REG_RBCPR_STEP_QUOT 0x80
69 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
71 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
73 /* RBCPR Control Register */
74 #define REG_RBCPR_CTL 0x90
76 #define RBCPR_CTL_LOOP_EN BIT(0)
77 #define RBCPR_CTL_TIMER_EN BIT(3)
78 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
79 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
80 #define RBCPR_CTL_COUNT_MODE BIT(10)
81 #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
82 #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
83 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
84 #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
86 /* RBCPR Ack/Nack Response */
87 #define REG_RBIF_CONT_ACK_CMD 0x98
88 #define REG_RBIF_CONT_NACK_CMD 0x9c
90 /* RBCPR Result status Register */
91 #define REG_RBCPR_RESULT_0 0xa0
93 #define RBCPR_RESULT0_BUSY_SHIFT 19
94 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
95 #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
96 #define RBCPR_RESULT0_ERROR_SHIFT 6
97 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
98 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
99 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
100 #define RBCPR_RESULT0_STEP_UP_SHIFT 1
102 /* RBCPR Interrupt Control Register */
103 #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
104 #define REG_RBIF_IRQ_CLEAR 0x110
105 #define REG_RBIF_IRQ_STATUS 0x114
107 #define CPR_INT_DONE BIT(0)
108 #define CPR_INT_MIN BIT(1)
109 #define CPR_INT_DOWN BIT(2)
110 #define CPR_INT_MID BIT(3)
111 #define CPR_INT_UP BIT(4)
112 #define CPR_INT_MAX BIT(5)
113 #define CPR_INT_CLAMP BIT(6)
114 #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
115 CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
116 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
118 #define CPR_NUM_RING_OSC 8
120 /* CPR eFuse parameters */
121 #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
123 #define CPR_FUSE_MIN_QUOT_DIFF 50
125 #define FUSE_REVISION_UNKNOWN (-1)
127 enum voltage_change_dir {
128 NO_CHANGE,
129 DOWN,
133 struct cpr_fuse {
134 char *ring_osc;
135 char *init_voltage;
136 char *quotient;
137 char *quotient_offset;
140 struct fuse_corner_data {
141 int ref_uV;
142 int max_uV;
143 int min_uV;
144 int max_volt_scale;
145 int max_quot_scale;
146 /* fuse quot */
147 int quot_offset;
148 int quot_scale;
149 int quot_adjust;
150 /* fuse quot_offset */
151 int quot_offset_scale;
152 int quot_offset_adjust;
155 struct cpr_fuses {
156 int init_voltage_step;
157 int init_voltage_width;
158 struct fuse_corner_data *fuse_corner_data;
161 struct corner_data {
162 unsigned int fuse_corner;
163 unsigned long freq;
166 struct cpr_desc {
167 unsigned int num_fuse_corners;
168 int min_diff_quot;
169 int *step_quot;
171 unsigned int timer_delay_us;
172 unsigned int timer_cons_up;
173 unsigned int timer_cons_down;
174 unsigned int up_threshold;
175 unsigned int down_threshold;
176 unsigned int idle_clocks;
177 unsigned int gcnt_us;
178 unsigned int vdd_apc_step_up_limit;
179 unsigned int vdd_apc_step_down_limit;
180 unsigned int clamp_timer_interval;
182 struct cpr_fuses cpr_fuses;
183 bool reduce_to_fuse_uV;
184 bool reduce_to_corner_uV;
187 struct acc_desc {
188 unsigned int enable_reg;
189 u32 enable_mask;
191 struct reg_sequence *config;
192 struct reg_sequence *settings;
193 int num_regs_per_fuse;
196 struct cpr_acc_desc {
197 const struct cpr_desc *cpr_desc;
198 const struct acc_desc *acc_desc;
201 struct fuse_corner {
202 int min_uV;
203 int max_uV;
204 int uV;
205 int quot;
206 int step_quot;
207 const struct reg_sequence *accs;
208 int num_accs;
209 unsigned long max_freq;
210 u8 ring_osc_idx;
213 struct corner {
214 int min_uV;
215 int max_uV;
216 int uV;
217 int last_uV;
218 int quot_adjust;
219 u32 save_ctl;
220 u32 save_irq;
221 unsigned long freq;
222 struct fuse_corner *fuse_corner;
225 struct cpr_drv {
226 unsigned int num_corners;
227 unsigned int ref_clk_khz;
229 struct generic_pm_domain pd;
230 struct device *dev;
231 struct device *attached_cpu_dev;
232 struct mutex lock;
233 void __iomem *base;
234 struct corner *corner;
235 struct regulator *vdd_apc;
236 struct clk *cpu_clk;
237 struct regmap *tcsr;
238 bool loop_disabled;
239 u32 gcnt;
240 unsigned long flags;
242 struct fuse_corner *fuse_corners;
243 struct corner *corners;
245 const struct cpr_desc *desc;
246 const struct acc_desc *acc_desc;
247 const struct cpr_fuse *cpr_fuses;
249 struct dentry *debugfs;
252 static bool cpr_is_allowed(struct cpr_drv *drv)
254 return !drv->loop_disabled;
257 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
259 writel_relaxed(value, drv->base + offset);
262 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
264 return readl_relaxed(drv->base + offset);
267 static void
268 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
270 u32 val;
272 val = readl_relaxed(drv->base + offset);
273 val &= ~mask;
274 val |= value & mask;
275 writel_relaxed(val, drv->base + offset);
278 static void cpr_irq_clr(struct cpr_drv *drv)
280 cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
283 static void cpr_irq_clr_nack(struct cpr_drv *drv)
285 cpr_irq_clr(drv);
286 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
289 static void cpr_irq_clr_ack(struct cpr_drv *drv)
291 cpr_irq_clr(drv);
292 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
295 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
297 cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
300 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
302 cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
305 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
307 u32 val, mask;
308 const struct cpr_desc *desc = drv->desc;
310 /* Program Consecutive Up & Down */
311 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
312 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
313 mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
314 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
315 cpr_masked_write(drv, REG_RBCPR_CTL,
316 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
317 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
318 corner->save_ctl);
319 cpr_irq_set(drv, corner->save_irq);
321 if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
322 val = RBCPR_CTL_LOOP_EN;
323 else
324 val = 0;
325 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
328 static void cpr_ctl_disable(struct cpr_drv *drv)
330 cpr_irq_set(drv, 0);
331 cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
332 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
333 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
334 RBIF_TIMER_ADJ_CONS_UP_MASK |
335 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
336 cpr_irq_clr(drv);
337 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
338 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
339 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
342 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
344 u32 reg_val;
346 reg_val = cpr_read(drv, REG_RBCPR_CTL);
347 return reg_val & RBCPR_CTL_LOOP_EN;
350 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
352 u32 reg_val;
354 reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
355 return reg_val & RBCPR_RESULT0_BUSY_MASK;
358 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
360 corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
361 corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
364 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
366 u32 gcnt, ctl, irq, ro_sel, step_quot;
367 struct fuse_corner *fuse = corner->fuse_corner;
368 const struct cpr_desc *desc = drv->desc;
369 int i;
371 ro_sel = fuse->ring_osc_idx;
372 gcnt = drv->gcnt;
373 gcnt |= fuse->quot - corner->quot_adjust;
375 /* Program the step quotient and idle clocks */
376 step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
377 step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
378 cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
380 /* Clear the target quotient value and gate count of all ROs */
381 for (i = 0; i < CPR_NUM_RING_OSC; i++)
382 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
384 cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
385 ctl = corner->save_ctl;
386 cpr_write(drv, REG_RBCPR_CTL, ctl);
387 irq = corner->save_irq;
388 cpr_irq_set(drv, irq);
389 dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
390 ctl, irq);
393 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
394 struct fuse_corner *end)
396 if (f == end)
397 return;
399 if (f < end) {
400 for (f += 1; f <= end; f++)
401 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
402 } else {
403 for (f -= 1; f >= end; f--)
404 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
408 static int cpr_pre_voltage(struct cpr_drv *drv,
409 struct fuse_corner *fuse_corner,
410 enum voltage_change_dir dir)
412 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
414 if (drv->tcsr && dir == DOWN)
415 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
417 return 0;
420 static int cpr_post_voltage(struct cpr_drv *drv,
421 struct fuse_corner *fuse_corner,
422 enum voltage_change_dir dir)
424 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
426 if (drv->tcsr && dir == UP)
427 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
429 return 0;
432 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
433 int new_uV, enum voltage_change_dir dir)
435 int ret;
436 struct fuse_corner *fuse_corner = corner->fuse_corner;
438 ret = cpr_pre_voltage(drv, fuse_corner, dir);
439 if (ret)
440 return ret;
442 ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
443 if (ret) {
444 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
445 new_uV);
446 return ret;
449 ret = cpr_post_voltage(drv, fuse_corner, dir);
450 if (ret)
451 return ret;
453 return 0;
456 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
458 return drv->corner ? drv->corner - drv->corners + 1 : 0;
461 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
463 u32 val, error_steps, reg_mask;
464 int last_uV, new_uV, step_uV, ret;
465 struct corner *corner;
466 const struct cpr_desc *desc = drv->desc;
468 if (dir != UP && dir != DOWN)
469 return 0;
471 step_uV = regulator_get_linear_step(drv->vdd_apc);
472 if (!step_uV)
473 return -EINVAL;
475 corner = drv->corner;
477 val = cpr_read(drv, REG_RBCPR_RESULT_0);
479 error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
480 error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
481 last_uV = corner->last_uV;
483 if (dir == UP) {
484 if (desc->clamp_timer_interval &&
485 error_steps < desc->up_threshold) {
487 * Handle the case where another measurement started
488 * after the interrupt was triggered due to a core
489 * exiting from power collapse.
491 error_steps = max(desc->up_threshold,
492 desc->vdd_apc_step_up_limit);
495 if (last_uV >= corner->max_uV) {
496 cpr_irq_clr_nack(drv);
498 /* Maximize the UP threshold */
499 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
500 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
501 val = reg_mask;
502 cpr_ctl_modify(drv, reg_mask, val);
504 /* Disable UP interrupt */
505 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
507 return 0;
510 if (error_steps > desc->vdd_apc_step_up_limit)
511 error_steps = desc->vdd_apc_step_up_limit;
513 /* Calculate new voltage */
514 new_uV = last_uV + error_steps * step_uV;
515 new_uV = min(new_uV, corner->max_uV);
517 dev_dbg(drv->dev,
518 "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
519 new_uV, last_uV, cpr_get_cur_perf_state(drv));
520 } else {
521 if (desc->clamp_timer_interval &&
522 error_steps < desc->down_threshold) {
524 * Handle the case where another measurement started
525 * after the interrupt was triggered due to a core
526 * exiting from power collapse.
528 error_steps = max(desc->down_threshold,
529 desc->vdd_apc_step_down_limit);
532 if (last_uV <= corner->min_uV) {
533 cpr_irq_clr_nack(drv);
535 /* Enable auto nack down */
536 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537 val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
539 cpr_ctl_modify(drv, reg_mask, val);
541 /* Disable DOWN interrupt */
542 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
544 return 0;
547 if (error_steps > desc->vdd_apc_step_down_limit)
548 error_steps = desc->vdd_apc_step_down_limit;
550 /* Calculate new voltage */
551 new_uV = last_uV - error_steps * step_uV;
552 new_uV = max(new_uV, corner->min_uV);
554 dev_dbg(drv->dev,
555 "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
556 new_uV, last_uV, cpr_get_cur_perf_state(drv));
559 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
560 if (ret) {
561 cpr_irq_clr_nack(drv);
562 return ret;
564 drv->corner->last_uV = new_uV;
566 if (dir == UP) {
567 /* Disable auto nack down */
568 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
569 val = 0;
570 } else {
571 /* Restore default threshold for UP */
572 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
573 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
574 val = desc->up_threshold;
575 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
578 cpr_ctl_modify(drv, reg_mask, val);
580 /* Re-enable default interrupts */
581 cpr_irq_set(drv, CPR_INT_DEFAULT);
583 /* Ack */
584 cpr_irq_clr_ack(drv);
586 return 0;
589 static irqreturn_t cpr_irq_handler(int irq, void *dev)
591 struct cpr_drv *drv = dev;
592 const struct cpr_desc *desc = drv->desc;
593 irqreturn_t ret = IRQ_HANDLED;
594 u32 val;
596 mutex_lock(&drv->lock);
598 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
599 if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
600 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
602 dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
604 if (!cpr_ctl_is_enabled(drv)) {
605 dev_dbg(drv->dev, "CPR is disabled\n");
606 ret = IRQ_NONE;
607 } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
608 dev_dbg(drv->dev, "CPR measurement is not ready\n");
609 } else if (!cpr_is_allowed(drv)) {
610 val = cpr_read(drv, REG_RBCPR_CTL);
611 dev_err_ratelimited(drv->dev,
612 "Interrupt broken? RBCPR_CTL = %#02x\n",
613 val);
614 ret = IRQ_NONE;
615 } else {
617 * Following sequence of handling is as per each IRQ's
618 * priority
620 if (val & CPR_INT_UP) {
621 cpr_scale(drv, UP);
622 } else if (val & CPR_INT_DOWN) {
623 cpr_scale(drv, DOWN);
624 } else if (val & CPR_INT_MIN) {
625 cpr_irq_clr_nack(drv);
626 } else if (val & CPR_INT_MAX) {
627 cpr_irq_clr_nack(drv);
628 } else if (val & CPR_INT_MID) {
629 /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
630 dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
631 } else {
632 dev_dbg(drv->dev,
633 "IRQ occurred for unknown flag (%#08x)\n", val);
636 /* Save register values for the corner */
637 cpr_corner_save(drv, drv->corner);
640 mutex_unlock(&drv->lock);
642 return ret;
645 static int cpr_enable(struct cpr_drv *drv)
647 int ret;
649 ret = regulator_enable(drv->vdd_apc);
650 if (ret)
651 return ret;
653 mutex_lock(&drv->lock);
655 if (cpr_is_allowed(drv) && drv->corner) {
656 cpr_irq_clr(drv);
657 cpr_corner_restore(drv, drv->corner);
658 cpr_ctl_enable(drv, drv->corner);
661 mutex_unlock(&drv->lock);
663 return 0;
666 static int cpr_disable(struct cpr_drv *drv)
668 int ret;
670 mutex_lock(&drv->lock);
672 if (cpr_is_allowed(drv)) {
673 cpr_ctl_disable(drv);
674 cpr_irq_clr(drv);
677 mutex_unlock(&drv->lock);
679 ret = regulator_disable(drv->vdd_apc);
680 if (ret)
681 return ret;
683 return 0;
686 static int cpr_config(struct cpr_drv *drv)
688 int i;
689 u32 val, gcnt;
690 struct corner *corner;
691 const struct cpr_desc *desc = drv->desc;
693 /* Disable interrupt and CPR */
694 cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
695 cpr_write(drv, REG_RBCPR_CTL, 0);
697 /* Program the default HW ceiling, floor and vlevel */
698 val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
699 << RBIF_LIMIT_CEILING_SHIFT;
700 val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
701 cpr_write(drv, REG_RBIF_LIMIT, val);
702 cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
705 * Clear the target quotient value and gate count of all
706 * ring oscillators
708 for (i = 0; i < CPR_NUM_RING_OSC; i++)
709 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
711 /* Init and save gcnt */
712 gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
713 gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
714 gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
715 drv->gcnt = gcnt;
717 /* Program the delay count for the timer */
718 val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
719 cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
720 dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
721 desc->timer_delay_us);
723 /* Program Consecutive Up & Down */
724 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
725 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
726 val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
727 cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
729 /* Program the control register */
730 val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
731 val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
732 val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
733 val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
734 cpr_write(drv, REG_RBCPR_CTL, val);
736 for (i = 0; i < drv->num_corners; i++) {
737 corner = &drv->corners[i];
738 corner->save_ctl = val;
739 corner->save_irq = CPR_INT_DEFAULT;
742 cpr_irq_set(drv, CPR_INT_DEFAULT);
744 val = cpr_read(drv, REG_RBCPR_VERSION);
745 if (val <= RBCPR_VER_2)
746 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
748 return 0;
751 static int cpr_set_performance_state(struct generic_pm_domain *domain,
752 unsigned int state)
754 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
755 struct corner *corner, *end;
756 enum voltage_change_dir dir;
757 int ret = 0, new_uV;
759 mutex_lock(&drv->lock);
761 dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
762 __func__, state, cpr_get_cur_perf_state(drv));
765 * Determine new corner we're going to.
766 * Remove one since lowest performance state is 1.
768 corner = drv->corners + state - 1;
769 end = &drv->corners[drv->num_corners - 1];
770 if (corner > end || corner < drv->corners) {
771 ret = -EINVAL;
772 goto unlock;
775 /* Determine direction */
776 if (drv->corner > corner)
777 dir = DOWN;
778 else if (drv->corner < corner)
779 dir = UP;
780 else
781 dir = NO_CHANGE;
783 if (cpr_is_allowed(drv))
784 new_uV = corner->last_uV;
785 else
786 new_uV = corner->uV;
788 if (cpr_is_allowed(drv))
789 cpr_ctl_disable(drv);
791 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
792 if (ret)
793 goto unlock;
795 if (cpr_is_allowed(drv)) {
796 cpr_irq_clr(drv);
797 if (drv->corner != corner)
798 cpr_corner_restore(drv, corner);
799 cpr_ctl_enable(drv, corner);
802 drv->corner = corner;
804 unlock:
805 mutex_unlock(&drv->lock);
807 return ret;
810 static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
812 struct nvmem_cell *cell;
813 ssize_t len;
814 char *ret;
815 int i;
817 *data = 0;
819 cell = nvmem_cell_get(dev, cname);
820 if (IS_ERR(cell)) {
821 if (PTR_ERR(cell) != -EPROBE_DEFER)
822 dev_err(dev, "undefined cell %s\n", cname);
823 return PTR_ERR(cell);
826 ret = nvmem_cell_read(cell, &len);
827 nvmem_cell_put(cell);
828 if (IS_ERR(ret)) {
829 dev_err(dev, "can't read cell %s\n", cname);
830 return PTR_ERR(ret);
833 for (i = 0; i < len; i++)
834 *data |= ret[i] << (8 * i);
836 kfree(ret);
837 dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
839 return 0;
842 static int
843 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
845 struct fuse_corner *fuse = drv->fuse_corners;
846 struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
847 const struct cpr_fuse *fuses = drv->cpr_fuses;
848 u32 data;
849 int ret;
851 for (; fuse < end; fuse++, fuses++) {
852 ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
853 &data);
854 if (ret)
855 return ret;
856 fuse->ring_osc_idx = data;
859 return 0;
862 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
863 const struct fuse_corner_data *fdata,
864 const char *init_v_efuse,
865 int step_volt,
866 struct cpr_drv *drv)
868 int step_size_uV, steps, uV;
869 u32 bits = 0;
870 int ret;
872 ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
873 if (ret)
874 return ret;
876 steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
877 /* Not two's complement.. instead highest bit is sign bit */
878 if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
879 steps = -steps;
881 step_size_uV = desc->cpr_fuses.init_voltage_step;
883 uV = fdata->ref_uV + steps * step_size_uV;
884 return DIV_ROUND_UP(uV, step_volt) * step_volt;
887 static int cpr_fuse_corner_init(struct cpr_drv *drv)
889 const struct cpr_desc *desc = drv->desc;
890 const struct cpr_fuse *fuses = drv->cpr_fuses;
891 const struct acc_desc *acc_desc = drv->acc_desc;
892 int i;
893 unsigned int step_volt;
894 struct fuse_corner_data *fdata;
895 struct fuse_corner *fuse, *end;
896 int uV;
897 const struct reg_sequence *accs;
898 int ret;
900 accs = acc_desc->settings;
902 step_volt = regulator_get_linear_step(drv->vdd_apc);
903 if (!step_volt)
904 return -EINVAL;
906 /* Populate fuse_corner members */
907 fuse = drv->fuse_corners;
908 end = &fuse[desc->num_fuse_corners - 1];
909 fdata = desc->cpr_fuses.fuse_corner_data;
911 for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
913 * Update SoC voltages: platforms might choose a different
914 * regulators than the one used to characterize the algorithms
915 * (ie, init_voltage_step).
917 fdata->min_uV = roundup(fdata->min_uV, step_volt);
918 fdata->max_uV = roundup(fdata->max_uV, step_volt);
920 /* Populate uV */
921 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
922 step_volt, drv);
923 if (uV < 0)
924 return uV;
926 fuse->min_uV = fdata->min_uV;
927 fuse->max_uV = fdata->max_uV;
928 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
930 if (fuse == end) {
932 * Allow the highest fuse corner's PVS voltage to
933 * define the ceiling voltage for that corner in order
934 * to support SoC's in which variable ceiling values
935 * are required.
937 end->max_uV = max(end->max_uV, end->uV);
940 /* Populate target quotient by scaling */
941 ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
942 if (ret)
943 return ret;
945 fuse->quot *= fdata->quot_scale;
946 fuse->quot += fdata->quot_offset;
947 fuse->quot += fdata->quot_adjust;
948 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
950 /* Populate acc settings */
951 fuse->accs = accs;
952 fuse->num_accs = acc_desc->num_regs_per_fuse;
953 accs += acc_desc->num_regs_per_fuse;
957 * Restrict all fuse corner PVS voltages based upon per corner
958 * ceiling and floor voltages.
960 for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
961 if (fuse->uV > fuse->max_uV)
962 fuse->uV = fuse->max_uV;
963 else if (fuse->uV < fuse->min_uV)
964 fuse->uV = fuse->min_uV;
966 ret = regulator_is_supported_voltage(drv->vdd_apc,
967 fuse->min_uV,
968 fuse->min_uV);
969 if (!ret) {
970 dev_err(drv->dev,
971 "min uV: %d (fuse corner: %d) not supported by regulator\n",
972 fuse->min_uV, i);
973 return -EINVAL;
976 ret = regulator_is_supported_voltage(drv->vdd_apc,
977 fuse->max_uV,
978 fuse->max_uV);
979 if (!ret) {
980 dev_err(drv->dev,
981 "max uV: %d (fuse corner: %d) not supported by regulator\n",
982 fuse->max_uV, i);
983 return -EINVAL;
986 dev_dbg(drv->dev,
987 "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
988 i, fuse->min_uV, fuse->uV, fuse->max_uV,
989 fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
992 return 0;
995 static int cpr_calculate_scaling(const char *quot_offset,
996 struct cpr_drv *drv,
997 const struct fuse_corner_data *fdata,
998 const struct corner *corner)
1000 u32 quot_diff = 0;
1001 unsigned long freq_diff;
1002 int scaling;
1003 const struct fuse_corner *fuse, *prev_fuse;
1004 int ret;
1006 fuse = corner->fuse_corner;
1007 prev_fuse = fuse - 1;
1009 if (quot_offset) {
1010 ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
1011 if (ret)
1012 return ret;
1014 quot_diff *= fdata->quot_offset_scale;
1015 quot_diff += fdata->quot_offset_adjust;
1016 } else {
1017 quot_diff = fuse->quot - prev_fuse->quot;
1020 freq_diff = fuse->max_freq - prev_fuse->max_freq;
1021 freq_diff /= 1000000; /* Convert to MHz */
1022 scaling = 1000 * quot_diff / freq_diff;
1023 return min(scaling, fdata->max_quot_scale);
1026 static int cpr_interpolate(const struct corner *corner, int step_volt,
1027 const struct fuse_corner_data *fdata)
1029 unsigned long f_high, f_low, f_diff;
1030 int uV_high, uV_low, uV;
1031 u64 temp, temp_limit;
1032 const struct fuse_corner *fuse, *prev_fuse;
1034 fuse = corner->fuse_corner;
1035 prev_fuse = fuse - 1;
1037 f_high = fuse->max_freq;
1038 f_low = prev_fuse->max_freq;
1039 uV_high = fuse->uV;
1040 uV_low = prev_fuse->uV;
1041 f_diff = fuse->max_freq - corner->freq;
1044 * Don't interpolate in the wrong direction. This could happen
1045 * if the adjusted fuse voltage overlaps with the previous fuse's
1046 * adjusted voltage.
1048 if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1049 return corner->uV;
1051 temp = f_diff * (uV_high - uV_low);
1052 do_div(temp, f_high - f_low);
1055 * max_volt_scale has units of uV/MHz while freq values
1056 * have units of Hz. Divide by 1000000 to convert to.
1058 temp_limit = f_diff * fdata->max_volt_scale;
1059 do_div(temp_limit, 1000000);
1061 uV = uV_high - min(temp, temp_limit);
1062 return roundup(uV, step_volt);
1065 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1067 struct device_node *np;
1068 unsigned int fuse_corner = 0;
1070 np = dev_pm_opp_get_of_node(opp);
1071 if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1072 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1073 __func__);
1075 of_node_put(np);
1077 return fuse_corner;
1080 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1081 struct device *cpu_dev)
1083 u64 rate = 0;
1084 struct device_node *ref_np;
1085 struct device_node *desc_np;
1086 struct device_node *child_np = NULL;
1087 struct device_node *child_req_np = NULL;
1089 desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1090 if (!desc_np)
1091 return 0;
1093 ref_np = dev_pm_opp_get_of_node(ref);
1094 if (!ref_np)
1095 goto out_ref;
1097 do {
1098 of_node_put(child_req_np);
1099 child_np = of_get_next_available_child(desc_np, child_np);
1100 child_req_np = of_parse_phandle(child_np, "required-opps", 0);
1101 } while (child_np && child_req_np != ref_np);
1103 if (child_np && child_req_np == ref_np)
1104 of_property_read_u64(child_np, "opp-hz", &rate);
1106 of_node_put(child_req_np);
1107 of_node_put(child_np);
1108 of_node_put(ref_np);
1109 out_ref:
1110 of_node_put(desc_np);
1112 return (unsigned long) rate;
1115 static int cpr_corner_init(struct cpr_drv *drv)
1117 const struct cpr_desc *desc = drv->desc;
1118 const struct cpr_fuse *fuses = drv->cpr_fuses;
1119 int i, level, scaling = 0;
1120 unsigned int fnum, fc;
1121 const char *quot_offset;
1122 struct fuse_corner *fuse, *prev_fuse;
1123 struct corner *corner, *end;
1124 struct corner_data *cdata;
1125 const struct fuse_corner_data *fdata;
1126 bool apply_scaling;
1127 unsigned long freq_diff, freq_diff_mhz;
1128 unsigned long freq;
1129 int step_volt = regulator_get_linear_step(drv->vdd_apc);
1130 struct dev_pm_opp *opp;
1132 if (!step_volt)
1133 return -EINVAL;
1135 corner = drv->corners;
1136 end = &corner[drv->num_corners - 1];
1138 cdata = devm_kcalloc(drv->dev, drv->num_corners,
1139 sizeof(struct corner_data),
1140 GFP_KERNEL);
1141 if (!cdata)
1142 return -ENOMEM;
1145 * Store maximum frequency for each fuse corner based on the frequency
1146 * plan
1148 for (level = 1; level <= drv->num_corners; level++) {
1149 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1150 if (IS_ERR(opp))
1151 return -EINVAL;
1152 fc = cpr_get_fuse_corner(opp);
1153 if (!fc) {
1154 dev_pm_opp_put(opp);
1155 return -EINVAL;
1157 fnum = fc - 1;
1158 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1159 if (!freq) {
1160 dev_pm_opp_put(opp);
1161 return -EINVAL;
1163 cdata[level - 1].fuse_corner = fnum;
1164 cdata[level - 1].freq = freq;
1166 fuse = &drv->fuse_corners[fnum];
1167 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1168 freq, dev_pm_opp_get_level(opp) - 1, fnum);
1169 if (freq > fuse->max_freq)
1170 fuse->max_freq = freq;
1171 dev_pm_opp_put(opp);
1175 * Get the quotient adjustment scaling factor, according to:
1177 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1178 * / (freq(corner_N) - freq(corner_N-1)), max_factor)
1180 * QUOT(corner_N): quotient read from fuse for fuse corner N
1181 * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
1182 * freq(corner_N): max frequency in MHz supported by fuse corner N
1183 * freq(corner_N-1): max frequency in MHz supported by fuse corner
1184 * (N - 1)
1186 * Then walk through the corners mapped to each fuse corner
1187 * and calculate the quotient adjustment for each one using the
1188 * following formula:
1190 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1192 * freq_max: max frequency in MHz supported by the fuse corner
1193 * freq_corner: frequency in MHz corresponding to the corner
1194 * scaling: calculated from above equation
1197 * + +
1198 * | v |
1199 * q | f c o | f c
1200 * u | c l | c
1201 * o | f t | f
1202 * t | c a | c
1203 * | c f g | c f
1204 * | e |
1205 * +--------------- +----------------
1206 * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1207 * corner corner
1209 * c = corner
1210 * f = fuse corner
1213 for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1214 fnum = cdata[i].fuse_corner;
1215 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1216 quot_offset = fuses[fnum].quotient_offset;
1217 fuse = &drv->fuse_corners[fnum];
1218 if (fnum)
1219 prev_fuse = &drv->fuse_corners[fnum - 1];
1220 else
1221 prev_fuse = NULL;
1223 corner->fuse_corner = fuse;
1224 corner->freq = cdata[i].freq;
1225 corner->uV = fuse->uV;
1227 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1228 scaling = cpr_calculate_scaling(quot_offset, drv,
1229 fdata, corner);
1230 if (scaling < 0)
1231 return scaling;
1233 apply_scaling = true;
1234 } else if (corner->freq == fuse->max_freq) {
1235 /* This is a fuse corner; don't scale anything */
1236 apply_scaling = false;
1239 if (apply_scaling) {
1240 freq_diff = fuse->max_freq - corner->freq;
1241 freq_diff_mhz = freq_diff / 1000000;
1242 corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1244 corner->uV = cpr_interpolate(corner, step_volt, fdata);
1247 corner->max_uV = fuse->max_uV;
1248 corner->min_uV = fuse->min_uV;
1249 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1250 corner->last_uV = corner->uV;
1252 /* Reduce the ceiling voltage if needed */
1253 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1254 corner->max_uV = corner->uV;
1255 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1256 corner->max_uV = max(corner->min_uV, fuse->uV);
1258 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1259 corner->min_uV, corner->uV, corner->max_uV,
1260 fuse->quot - corner->quot_adjust);
1263 return 0;
1266 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1268 const struct cpr_desc *desc = drv->desc;
1269 struct cpr_fuse *fuses;
1270 int i;
1272 fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1273 sizeof(struct cpr_fuse),
1274 GFP_KERNEL);
1275 if (!fuses)
1276 return ERR_PTR(-ENOMEM);
1278 for (i = 0; i < desc->num_fuse_corners; i++) {
1279 char tbuf[32];
1281 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1282 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1283 if (!fuses[i].ring_osc)
1284 return ERR_PTR(-ENOMEM);
1286 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1287 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1288 GFP_KERNEL);
1289 if (!fuses[i].init_voltage)
1290 return ERR_PTR(-ENOMEM);
1292 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1293 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1294 if (!fuses[i].quotient)
1295 return ERR_PTR(-ENOMEM);
1297 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1298 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1299 GFP_KERNEL);
1300 if (!fuses[i].quotient_offset)
1301 return ERR_PTR(-ENOMEM);
1304 return fuses;
1307 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1309 drv->loop_disabled = false;
1312 static int cpr_init_parameters(struct cpr_drv *drv)
1314 const struct cpr_desc *desc = drv->desc;
1315 struct clk *clk;
1317 clk = clk_get(drv->dev, "ref");
1318 if (IS_ERR(clk))
1319 return PTR_ERR(clk);
1321 drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1322 clk_put(clk);
1324 if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1325 desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1326 desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1327 desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1328 desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1329 desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1330 return -EINVAL;
1332 dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1333 desc->up_threshold, desc->down_threshold);
1335 return 0;
1338 static int cpr_find_initial_corner(struct cpr_drv *drv)
1340 unsigned long rate;
1341 const struct corner *end;
1342 struct corner *iter;
1343 unsigned int i = 0;
1345 if (!drv->cpu_clk) {
1346 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1347 return -EINVAL;
1350 end = &drv->corners[drv->num_corners - 1];
1351 rate = clk_get_rate(drv->cpu_clk);
1354 * Some bootloaders set a CPU clock frequency that is not defined
1355 * in the OPP table. When running at an unlisted frequency,
1356 * cpufreq_online() will change to the OPP which has the lowest
1357 * frequency, at or above the unlisted frequency.
1358 * Since cpufreq_online() always "rounds up" in the case of an
1359 * unlisted frequency, this function always "rounds down" in case
1360 * of an unlisted frequency. That way, when cpufreq_online()
1361 * triggers the first ever call to cpr_set_performance_state(),
1362 * it will correctly determine the direction as UP.
1364 for (iter = drv->corners; iter <= end; iter++) {
1365 if (iter->freq > rate)
1366 break;
1367 i++;
1368 if (iter->freq == rate) {
1369 drv->corner = iter;
1370 break;
1372 if (iter->freq < rate)
1373 drv->corner = iter;
1376 if (!drv->corner) {
1377 dev_err(drv->dev, "boot up corner not found\n");
1378 return -EINVAL;
1381 dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1383 return 0;
1386 static const struct cpr_desc qcs404_cpr_desc = {
1387 .num_fuse_corners = 3,
1388 .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1389 .step_quot = (int []){ 25, 25, 25, },
1390 .timer_delay_us = 5000,
1391 .timer_cons_up = 0,
1392 .timer_cons_down = 2,
1393 .up_threshold = 1,
1394 .down_threshold = 3,
1395 .idle_clocks = 15,
1396 .gcnt_us = 1,
1397 .vdd_apc_step_up_limit = 1,
1398 .vdd_apc_step_down_limit = 1,
1399 .cpr_fuses = {
1400 .init_voltage_step = 8000,
1401 .init_voltage_width = 6,
1402 .fuse_corner_data = (struct fuse_corner_data[]){
1403 /* fuse corner 0 */
1405 .ref_uV = 1224000,
1406 .max_uV = 1224000,
1407 .min_uV = 1048000,
1408 .max_volt_scale = 0,
1409 .max_quot_scale = 0,
1410 .quot_offset = 0,
1411 .quot_scale = 1,
1412 .quot_adjust = 0,
1413 .quot_offset_scale = 5,
1414 .quot_offset_adjust = 0,
1416 /* fuse corner 1 */
1418 .ref_uV = 1288000,
1419 .max_uV = 1288000,
1420 .min_uV = 1048000,
1421 .max_volt_scale = 2000,
1422 .max_quot_scale = 1400,
1423 .quot_offset = 0,
1424 .quot_scale = 1,
1425 .quot_adjust = -20,
1426 .quot_offset_scale = 5,
1427 .quot_offset_adjust = 0,
1429 /* fuse corner 2 */
1431 .ref_uV = 1352000,
1432 .max_uV = 1384000,
1433 .min_uV = 1088000,
1434 .max_volt_scale = 2000,
1435 .max_quot_scale = 1400,
1436 .quot_offset = 0,
1437 .quot_scale = 1,
1438 .quot_adjust = 0,
1439 .quot_offset_scale = 5,
1440 .quot_offset_adjust = 0,
1446 static const struct acc_desc qcs404_acc_desc = {
1447 .settings = (struct reg_sequence[]){
1448 { 0xb120, 0x1041040 },
1449 { 0xb124, 0x41 },
1450 { 0xb120, 0x0 },
1451 { 0xb124, 0x0 },
1452 { 0xb120, 0x0 },
1453 { 0xb124, 0x0 },
1455 .config = (struct reg_sequence[]){
1456 { 0xb138, 0xff },
1457 { 0xb130, 0x5555 },
1459 .num_regs_per_fuse = 2,
1462 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1463 .cpr_desc = &qcs404_cpr_desc,
1464 .acc_desc = &qcs404_acc_desc,
1467 static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
1468 struct dev_pm_opp *opp)
1470 return dev_pm_opp_get_level(opp);
1473 static int cpr_power_off(struct generic_pm_domain *domain)
1475 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1477 return cpr_disable(drv);
1480 static int cpr_power_on(struct generic_pm_domain *domain)
1482 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1484 return cpr_enable(drv);
1487 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1488 struct device *dev)
1490 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1491 const struct acc_desc *acc_desc = drv->acc_desc;
1492 int ret = 0;
1494 mutex_lock(&drv->lock);
1496 dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1499 * This driver only supports scaling voltage for a CPU cluster
1500 * where all CPUs in the cluster share a single regulator.
1501 * Therefore, save the struct device pointer only for the first
1502 * CPU device that gets attached. There is no need to do any
1503 * additional initialization when further CPUs get attached.
1505 if (drv->attached_cpu_dev)
1506 goto unlock;
1509 * cpr_scale_voltage() requires the direction (if we are changing
1510 * to a higher or lower OPP). The first time
1511 * cpr_set_performance_state() is called, there is no previous
1512 * performance state defined. Therefore, we call
1513 * cpr_find_initial_corner() that gets the CPU clock frequency
1514 * set by the bootloader, so that we can determine the direction
1515 * the first time cpr_set_performance_state() is called.
1517 drv->cpu_clk = devm_clk_get(dev, NULL);
1518 if (IS_ERR(drv->cpu_clk)) {
1519 ret = PTR_ERR(drv->cpu_clk);
1520 if (ret != -EPROBE_DEFER)
1521 dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
1522 goto unlock;
1524 drv->attached_cpu_dev = dev;
1526 dev_dbg(drv->dev, "using cpu clk from: %s\n",
1527 dev_name(drv->attached_cpu_dev));
1530 * Everything related to (virtual) corners has to be initialized
1531 * here, when attaching to the power domain, since we need to know
1532 * the maximum frequency for each fuse corner, and this is only
1533 * available after the cpufreq driver has attached to us.
1534 * The reason for this is that we need to know the highest
1535 * frequency associated with each fuse corner.
1537 ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1538 if (ret < 0) {
1539 dev_err(drv->dev, "could not get OPP count\n");
1540 goto unlock;
1542 drv->num_corners = ret;
1544 if (drv->num_corners < 2) {
1545 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1546 ret = -EINVAL;
1547 goto unlock;
1550 drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1551 sizeof(*drv->corners),
1552 GFP_KERNEL);
1553 if (!drv->corners) {
1554 ret = -ENOMEM;
1555 goto unlock;
1558 ret = cpr_corner_init(drv);
1559 if (ret)
1560 goto unlock;
1562 cpr_set_loop_allowed(drv);
1564 ret = cpr_init_parameters(drv);
1565 if (ret)
1566 goto unlock;
1568 /* Configure CPR HW but keep it disabled */
1569 ret = cpr_config(drv);
1570 if (ret)
1571 goto unlock;
1573 ret = cpr_find_initial_corner(drv);
1574 if (ret)
1575 goto unlock;
1577 if (acc_desc->config)
1578 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1579 acc_desc->num_regs_per_fuse);
1581 /* Enable ACC if required */
1582 if (acc_desc->enable_mask)
1583 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1584 acc_desc->enable_mask,
1585 acc_desc->enable_mask);
1587 dev_info(drv->dev, "driver initialized with %u OPPs\n",
1588 drv->num_corners);
1590 unlock:
1591 mutex_unlock(&drv->lock);
1593 return ret;
1596 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1598 u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1599 u32 step_dn, step_up, error, error_lt0, busy;
1600 struct cpr_drv *drv = s->private;
1601 struct fuse_corner *fuse_corner;
1602 struct corner *corner;
1604 corner = drv->corner;
1605 fuse_corner = corner->fuse_corner;
1607 seq_printf(s, "corner, current_volt = %d uV\n",
1608 corner->last_uV);
1610 ro_sel = fuse_corner->ring_osc_idx;
1611 gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1612 seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1614 ctl = cpr_read(drv, REG_RBCPR_CTL);
1615 seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1617 irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1618 seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1620 reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1621 seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1623 step_dn = reg & 0x01;
1624 step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1625 seq_printf(s, " [step_dn = %u", step_dn);
1627 seq_printf(s, ", step_up = %u", step_up);
1629 error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1630 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1631 seq_printf(s, ", error_steps = %u", error_steps);
1633 error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1634 seq_printf(s, ", error = %u", error);
1636 error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1637 seq_printf(s, ", error_lt_0 = %u", error_lt0);
1639 busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1640 seq_printf(s, ", busy = %u]\n", busy);
1642 return 0;
1644 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1646 static void cpr_debugfs_init(struct cpr_drv *drv)
1648 drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1650 debugfs_create_file("debug_info", 0444, drv->debugfs,
1651 drv, &cpr_debug_info_fops);
1654 static int cpr_probe(struct platform_device *pdev)
1656 struct resource *res;
1657 struct device *dev = &pdev->dev;
1658 struct cpr_drv *drv;
1659 int irq, ret;
1660 const struct cpr_acc_desc *data;
1661 struct device_node *np;
1662 u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1664 data = of_device_get_match_data(dev);
1665 if (!data || !data->cpr_desc || !data->acc_desc)
1666 return -EINVAL;
1668 drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1669 if (!drv)
1670 return -ENOMEM;
1671 drv->dev = dev;
1672 drv->desc = data->cpr_desc;
1673 drv->acc_desc = data->acc_desc;
1675 drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1676 sizeof(*drv->fuse_corners),
1677 GFP_KERNEL);
1678 if (!drv->fuse_corners)
1679 return -ENOMEM;
1681 np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1682 if (!np)
1683 return -ENODEV;
1685 drv->tcsr = syscon_node_to_regmap(np);
1686 of_node_put(np);
1687 if (IS_ERR(drv->tcsr))
1688 return PTR_ERR(drv->tcsr);
1690 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1691 drv->base = devm_ioremap_resource(dev, res);
1692 if (IS_ERR(drv->base))
1693 return PTR_ERR(drv->base);
1695 irq = platform_get_irq(pdev, 0);
1696 if (irq < 0)
1697 return -EINVAL;
1699 drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1700 if (IS_ERR(drv->vdd_apc))
1701 return PTR_ERR(drv->vdd_apc);
1704 * Initialize fuse corners, since it simply depends
1705 * on data in efuses.
1706 * Everything related to (virtual) corners has to be
1707 * initialized after attaching to the power domain,
1708 * since it depends on the CPU's OPP table.
1710 ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
1711 if (ret)
1712 return ret;
1714 drv->cpr_fuses = cpr_get_fuses(drv);
1715 if (IS_ERR(drv->cpr_fuses))
1716 return PTR_ERR(drv->cpr_fuses);
1718 ret = cpr_populate_ring_osc_idx(drv);
1719 if (ret)
1720 return ret;
1722 ret = cpr_fuse_corner_init(drv);
1723 if (ret)
1724 return ret;
1726 mutex_init(&drv->lock);
1728 ret = devm_request_threaded_irq(dev, irq, NULL,
1729 cpr_irq_handler,
1730 IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1731 "cpr", drv);
1732 if (ret)
1733 return ret;
1735 drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1736 GFP_KERNEL);
1737 if (!drv->pd.name)
1738 return -EINVAL;
1740 drv->pd.power_off = cpr_power_off;
1741 drv->pd.power_on = cpr_power_on;
1742 drv->pd.set_performance_state = cpr_set_performance_state;
1743 drv->pd.opp_to_performance_state = cpr_get_performance_state;
1744 drv->pd.attach_dev = cpr_pd_attach_dev;
1746 ret = pm_genpd_init(&drv->pd, NULL, true);
1747 if (ret)
1748 return ret;
1750 ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1751 if (ret)
1752 return ret;
1754 platform_set_drvdata(pdev, drv);
1755 cpr_debugfs_init(drv);
1757 return 0;
1760 static int cpr_remove(struct platform_device *pdev)
1762 struct cpr_drv *drv = platform_get_drvdata(pdev);
1764 if (cpr_is_allowed(drv)) {
1765 cpr_ctl_disable(drv);
1766 cpr_irq_set(drv, 0);
1769 of_genpd_del_provider(pdev->dev.of_node);
1770 pm_genpd_remove(&drv->pd);
1772 debugfs_remove_recursive(drv->debugfs);
1774 return 0;
1777 static const struct of_device_id cpr_match_table[] = {
1778 { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1781 MODULE_DEVICE_TABLE(of, cpr_match_table);
1783 static struct platform_driver cpr_driver = {
1784 .probe = cpr_probe,
1785 .remove = cpr_remove,
1786 .driver = {
1787 .name = "qcom-cpr",
1788 .of_match_table = cpr_match_table,
1791 module_platform_driver(cpr_driver);
1793 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1794 MODULE_LICENSE("GPL v2");