1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
17 #include "conditional.h"
20 * cond_evaluate_expr evaluates a conditional expr
21 * in reverse polish notation. It returns true (1), false (0),
22 * or undefined (-1). Undefined occurs when the expression
23 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
25 static int cond_evaluate_expr(struct policydb
*p
, struct cond_expr
*expr
)
28 struct cond_expr
*cur
;
29 int s
[COND_EXPR_MAXDEPTH
];
32 for (cur
= expr
; cur
; cur
= cur
->next
) {
33 switch (cur
->expr_type
) {
35 if (sp
== (COND_EXPR_MAXDEPTH
- 1))
38 s
[sp
] = p
->bool_val_to_struct
[cur
->bool - 1]->state
;
67 s
[sp
] = (s
[sp
] == s
[sp
+ 1]);
73 s
[sp
] = (s
[sp
] != s
[sp
+ 1]);
83 * evaluate_cond_node evaluates the conditional stored in
84 * a struct cond_node and if the result is different than the
85 * current state of the node it sets the rules in the true/false
86 * list appropriately. If the result of the expression is undefined
87 * all of the rules are disabled for safety.
89 int evaluate_cond_node(struct policydb
*p
, struct cond_node
*node
)
92 struct cond_av_list
*cur
;
94 new_state
= cond_evaluate_expr(p
, node
->expr
);
95 if (new_state
!= node
->cur_state
) {
96 node
->cur_state
= new_state
;
98 printk(KERN_ERR
"SELinux: expression result was undefined - disabling all rules.\n");
99 /* turn the rules on or off */
100 for (cur
= node
->true_list
; cur
; cur
= cur
->next
) {
102 cur
->node
->key
.specified
&= ~AVTAB_ENABLED
;
104 cur
->node
->key
.specified
|= AVTAB_ENABLED
;
107 for (cur
= node
->false_list
; cur
; cur
= cur
->next
) {
110 cur
->node
->key
.specified
&= ~AVTAB_ENABLED
;
112 cur
->node
->key
.specified
|= AVTAB_ENABLED
;
118 int cond_policydb_init(struct policydb
*p
)
122 p
->bool_val_to_struct
= NULL
;
125 rc
= avtab_init(&p
->te_cond_avtab
);
132 static void cond_av_list_destroy(struct cond_av_list
*list
)
134 struct cond_av_list
*cur
, *next
;
135 for (cur
= list
; cur
; cur
= next
) {
137 /* the avtab_ptr_t node is destroy by the avtab */
142 static void cond_node_destroy(struct cond_node
*node
)
144 struct cond_expr
*cur_expr
, *next_expr
;
146 for (cur_expr
= node
->expr
; cur_expr
; cur_expr
= next_expr
) {
147 next_expr
= cur_expr
->next
;
150 cond_av_list_destroy(node
->true_list
);
151 cond_av_list_destroy(node
->false_list
);
155 static void cond_list_destroy(struct cond_node
*list
)
157 struct cond_node
*next
, *cur
;
162 for (cur
= list
; cur
; cur
= next
) {
164 cond_node_destroy(cur
);
168 void cond_policydb_destroy(struct policydb
*p
)
170 kfree(p
->bool_val_to_struct
);
171 avtab_destroy(&p
->te_cond_avtab
);
172 cond_list_destroy(p
->cond_list
);
175 int cond_init_bool_indexes(struct policydb
*p
)
177 kfree(p
->bool_val_to_struct
);
178 p
->bool_val_to_struct
= (struct cond_bool_datum
**)
179 kmalloc(p
->p_bools
.nprim
* sizeof(struct cond_bool_datum
*), GFP_KERNEL
);
180 if (!p
->bool_val_to_struct
)
185 int cond_destroy_bool(void *key
, void *datum
, void *p
)
192 int cond_index_bool(void *key
, void *datum
, void *datap
)
195 struct cond_bool_datum
*booldatum
;
196 struct flex_array
*fa
;
201 if (!booldatum
->value
|| booldatum
->value
> p
->p_bools
.nprim
)
204 fa
= p
->sym_val_to_name
[SYM_BOOLS
];
205 if (flex_array_put_ptr(fa
, booldatum
->value
- 1, key
,
206 GFP_KERNEL
| __GFP_ZERO
))
208 p
->bool_val_to_struct
[booldatum
->value
- 1] = booldatum
;
213 static int bool_isvalid(struct cond_bool_datum
*b
)
215 if (!(b
->state
== 0 || b
->state
== 1))
220 int cond_read_bool(struct policydb
*p
, struct hashtab
*h
, void *fp
)
223 struct cond_bool_datum
*booldatum
;
228 booldatum
= kzalloc(sizeof(struct cond_bool_datum
), GFP_KERNEL
);
232 rc
= next_entry(buf
, fp
, sizeof buf
);
236 booldatum
->value
= le32_to_cpu(buf
[0]);
237 booldatum
->state
= le32_to_cpu(buf
[1]);
240 if (!bool_isvalid(booldatum
))
243 len
= le32_to_cpu(buf
[2]);
246 key
= kmalloc(len
+ 1, GFP_KERNEL
);
249 rc
= next_entry(key
, fp
, len
);
253 rc
= hashtab_insert(h
, key
, booldatum
);
259 cond_destroy_bool(key
, booldatum
, NULL
);
263 struct cond_insertf_data
{
265 struct cond_av_list
*other
;
266 struct cond_av_list
*head
;
267 struct cond_av_list
*tail
;
270 static int cond_insertf(struct avtab
*a
, struct avtab_key
*k
, struct avtab_datum
*d
, void *ptr
)
272 struct cond_insertf_data
*data
= ptr
;
273 struct policydb
*p
= data
->p
;
274 struct cond_av_list
*other
= data
->other
, *list
, *cur
;
275 struct avtab_node
*node_ptr
;
280 * For type rules we have to make certain there aren't any
281 * conflicting rules by searching the te_avtab and the
284 if (k
->specified
& AVTAB_TYPE
) {
285 if (avtab_search(&p
->te_avtab
, k
)) {
286 printk(KERN_ERR
"SELinux: type rule already exists outside of a conditional.\n");
290 * If we are reading the false list other will be a pointer to
291 * the true list. We can have duplicate entries if there is only
292 * 1 other entry and it is in our true list.
294 * If we are reading the true list (other == NULL) there shouldn't
295 * be any other entries.
298 node_ptr
= avtab_search_node(&p
->te_cond_avtab
, k
);
300 if (avtab_search_node_next(node_ptr
, k
->specified
)) {
301 printk(KERN_ERR
"SELinux: too many conflicting type rules.\n");
305 for (cur
= other
; cur
; cur
= cur
->next
) {
306 if (cur
->node
== node_ptr
) {
312 printk(KERN_ERR
"SELinux: conflicting type rules.\n");
317 if (avtab_search(&p
->te_cond_avtab
, k
)) {
318 printk(KERN_ERR
"SELinux: conflicting type rules when adding type rule for true.\n");
324 node_ptr
= avtab_insert_nonunique(&p
->te_cond_avtab
, k
, d
);
326 printk(KERN_ERR
"SELinux: could not insert rule.\n");
331 list
= kzalloc(sizeof(struct cond_av_list
), GFP_KERNEL
);
337 list
->node
= node_ptr
;
341 data
->tail
->next
= list
;
346 cond_av_list_destroy(data
->head
);
351 static int cond_read_av_list(struct policydb
*p
, void *fp
, struct cond_av_list
**ret_list
, struct cond_av_list
*other
)
356 struct cond_insertf_data data
;
361 rc
= next_entry(buf
, fp
, sizeof(u32
));
365 len
= le32_to_cpu(buf
[0]);
373 for (i
= 0; i
< len
; i
++) {
374 rc
= avtab_read_item(&p
->te_cond_avtab
, fp
, p
, cond_insertf
,
380 *ret_list
= data
.head
;
384 static int expr_isvalid(struct policydb
*p
, struct cond_expr
*expr
)
386 if (expr
->expr_type
<= 0 || expr
->expr_type
> COND_LAST
) {
387 printk(KERN_ERR
"SELinux: conditional expressions uses unknown operator.\n");
391 if (expr
->bool > p
->p_bools
.nprim
) {
392 printk(KERN_ERR
"SELinux: conditional expressions uses unknown bool.\n");
398 static int cond_read_node(struct policydb
*p
, struct cond_node
*node
, void *fp
)
403 struct cond_expr
*expr
= NULL
, *last
= NULL
;
405 rc
= next_entry(buf
, fp
, sizeof(u32
));
409 node
->cur_state
= le32_to_cpu(buf
[0]);
412 rc
= next_entry(buf
, fp
, sizeof(u32
));
417 len
= le32_to_cpu(buf
[0]);
419 for (i
= 0; i
< len
; i
++) {
420 rc
= next_entry(buf
, fp
, sizeof(u32
) * 2);
425 expr
= kzalloc(sizeof(struct cond_expr
), GFP_KERNEL
);
429 expr
->expr_type
= le32_to_cpu(buf
[0]);
430 expr
->bool = le32_to_cpu(buf
[1]);
432 if (!expr_isvalid(p
, expr
)) {
445 rc
= cond_read_av_list(p
, fp
, &node
->true_list
, NULL
);
448 rc
= cond_read_av_list(p
, fp
, &node
->false_list
, node
->true_list
);
453 cond_node_destroy(node
);
457 int cond_read_list(struct policydb
*p
, void *fp
)
459 struct cond_node
*node
, *last
= NULL
;
464 rc
= next_entry(buf
, fp
, sizeof buf
);
468 len
= le32_to_cpu(buf
[0]);
470 rc
= avtab_alloc(&(p
->te_cond_avtab
), p
->te_avtab
.nel
);
474 for (i
= 0; i
< len
; i
++) {
476 node
= kzalloc(sizeof(struct cond_node
), GFP_KERNEL
);
480 rc
= cond_read_node(p
, node
, fp
);
492 cond_list_destroy(p
->cond_list
);
497 int cond_write_bool(void *vkey
, void *datum
, void *ptr
)
500 struct cond_bool_datum
*booldatum
= datum
;
501 struct policy_data
*pd
= ptr
;
508 buf
[0] = cpu_to_le32(booldatum
->value
);
509 buf
[1] = cpu_to_le32(booldatum
->state
);
510 buf
[2] = cpu_to_le32(len
);
511 rc
= put_entry(buf
, sizeof(u32
), 3, fp
);
514 rc
= put_entry(key
, 1, len
, fp
);
521 * cond_write_cond_av_list doesn't write out the av_list nodes.
522 * Instead it writes out the key/value pairs from the avtab. This
523 * is necessary because there is no way to uniquely identifying rules
524 * in the avtab so it is not possible to associate individual rules
525 * in the avtab with a conditional without saving them as part of
526 * the conditional. This means that the avtab with the conditional
527 * rules will not be saved but will be rebuilt on policy load.
529 static int cond_write_av_list(struct policydb
*p
,
530 struct cond_av_list
*list
, struct policy_file
*fp
)
533 struct cond_av_list
*cur_list
;
538 for (cur_list
= list
; cur_list
!= NULL
; cur_list
= cur_list
->next
)
541 buf
[0] = cpu_to_le32(len
);
542 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
549 for (cur_list
= list
; cur_list
!= NULL
; cur_list
= cur_list
->next
) {
550 rc
= avtab_write_item(p
, cur_list
->node
, fp
);
558 static int cond_write_node(struct policydb
*p
, struct cond_node
*node
,
559 struct policy_file
*fp
)
561 struct cond_expr
*cur_expr
;
566 buf
[0] = cpu_to_le32(node
->cur_state
);
567 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
571 for (cur_expr
= node
->expr
; cur_expr
!= NULL
; cur_expr
= cur_expr
->next
)
574 buf
[0] = cpu_to_le32(len
);
575 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
579 for (cur_expr
= node
->expr
; cur_expr
!= NULL
; cur_expr
= cur_expr
->next
) {
580 buf
[0] = cpu_to_le32(cur_expr
->expr_type
);
581 buf
[1] = cpu_to_le32(cur_expr
->bool);
582 rc
= put_entry(buf
, sizeof(u32
), 2, fp
);
587 rc
= cond_write_av_list(p
, node
->true_list
, fp
);
590 rc
= cond_write_av_list(p
, node
->false_list
, fp
);
597 int cond_write_list(struct policydb
*p
, struct cond_node
*list
, void *fp
)
599 struct cond_node
*cur
;
605 for (cur
= list
; cur
!= NULL
; cur
= cur
->next
)
607 buf
[0] = cpu_to_le32(len
);
608 rc
= put_entry(buf
, sizeof(u32
), 1, fp
);
612 for (cur
= list
; cur
!= NULL
; cur
= cur
->next
) {
613 rc
= cond_write_node(p
, cur
, fp
);
620 /* Determine whether additional permissions are granted by the conditional
621 * av table, and if so, add them to the result
623 void cond_compute_av(struct avtab
*ctab
, struct avtab_key
*key
, struct av_decision
*avd
)
625 struct avtab_node
*node
;
627 if (!ctab
|| !key
|| !avd
)
630 for (node
= avtab_search_node(ctab
, key
); node
;
631 node
= avtab_search_node_next(node
, key
->specified
)) {
632 if ((u16
)(AVTAB_ALLOWED
|AVTAB_ENABLED
) ==
633 (node
->key
.specified
& (AVTAB_ALLOWED
|AVTAB_ENABLED
)))
634 avd
->allowed
|= node
->datum
.data
;
635 if ((u16
)(AVTAB_AUDITDENY
|AVTAB_ENABLED
) ==
636 (node
->key
.specified
& (AVTAB_AUDITDENY
|AVTAB_ENABLED
)))
637 /* Since a '0' in an auditdeny mask represents a
638 * permission we do NOT want to audit (dontaudit), we use
639 * the '&' operand to ensure that all '0's in the mask
640 * are retained (much unlike the allow and auditallow cases).
642 avd
->auditdeny
&= node
->datum
.data
;
643 if ((u16
)(AVTAB_AUDITALLOW
|AVTAB_ENABLED
) ==
644 (node
->key
.specified
& (AVTAB_AUDITALLOW
|AVTAB_ENABLED
)))
645 avd
->auditallow
|= node
->datum
.data
;