2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
76 static DEFINE_RWLOCK(policy_rwlock
);
78 static struct sidtab sidtab
;
79 struct policydb policydb
;
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
88 static u32 latest_granting
;
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context
*context
, char **scontext
,
94 static void context_struct_compute_av(struct context
*scontext
,
95 struct context
*tcontext
,
97 struct av_decision
*avd
);
99 struct selinux_mapping
{
100 u16 value
; /* policy value */
102 u32 perms
[sizeof(u32
) * 8];
105 static struct selinux_mapping
*current_mapping
;
106 static u16 current_mapping_size
;
108 static int selinux_set_mapping(struct policydb
*pol
,
109 struct security_class_mapping
*map
,
110 struct selinux_mapping
**out_map_p
,
113 struct selinux_mapping
*out_map
= NULL
;
114 size_t size
= sizeof(struct selinux_mapping
);
117 bool print_unknown_handle
= false;
119 /* Find number of classes in the input mapping */
126 /* Allocate space for the class records, plus one for class zero */
127 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
131 /* Store the raw class and permission values */
133 while (map
[j
].name
) {
134 struct security_class_mapping
*p_in
= map
+ (j
++);
135 struct selinux_mapping
*p_out
= out_map
+ j
;
137 /* An empty class string skips ahead */
138 if (!strcmp(p_in
->name
, "")) {
139 p_out
->num_perms
= 0;
143 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
146 "SELinux: Class %s not defined in policy.\n",
148 if (pol
->reject_unknown
)
150 p_out
->num_perms
= 0;
151 print_unknown_handle
= true;
156 while (p_in
->perms
&& p_in
->perms
[k
]) {
157 /* An empty permission string skips ahead */
158 if (!*p_in
->perms
[k
]) {
162 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
164 if (!p_out
->perms
[k
]) {
166 "SELinux: Permission %s in class %s not defined in policy.\n",
167 p_in
->perms
[k
], p_in
->name
);
168 if (pol
->reject_unknown
)
170 print_unknown_handle
= true;
175 p_out
->num_perms
= k
;
178 if (print_unknown_handle
)
179 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
180 pol
->allow_unknown
? "allowed" : "denied");
182 *out_map_p
= out_map
;
191 * Get real, policy values from mapped values
194 static u16
unmap_class(u16 tclass
)
196 if (tclass
< current_mapping_size
)
197 return current_mapping
[tclass
].value
;
203 * Get kernel value for class from its policy value
205 static u16
map_class(u16 pol_value
)
209 for (i
= 1; i
< current_mapping_size
; i
++) {
210 if (current_mapping
[i
].value
== pol_value
)
214 return SECCLASS_NULL
;
217 static void map_decision(u16 tclass
, struct av_decision
*avd
,
220 if (tclass
< current_mapping_size
) {
221 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
224 for (i
= 0, result
= 0; i
< n
; i
++) {
225 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
227 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
230 avd
->allowed
= result
;
232 for (i
= 0, result
= 0; i
< n
; i
++)
233 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
235 avd
->auditallow
= result
;
237 for (i
= 0, result
= 0; i
< n
; i
++) {
238 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
240 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
244 * In case the kernel has a bug and requests a permission
245 * between num_perms and the maximum permission number, we
246 * should audit that denial
248 for (; i
< (sizeof(u32
)*8); i
++)
250 avd
->auditdeny
= result
;
254 int security_mls_enabled(void)
256 return policydb
.mls_enabled
;
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
270 static int constraint_expr_eval(struct context
*scontext
,
271 struct context
*tcontext
,
272 struct context
*xcontext
,
273 struct constraint_expr
*cexpr
)
277 struct role_datum
*r1
, *r2
;
278 struct mls_level
*l1
, *l2
;
279 struct constraint_expr
*e
;
280 int s
[CEXPR_MAXDEPTH
];
283 for (e
= cexpr
; e
; e
= e
->next
) {
284 switch (e
->expr_type
) {
300 if (sp
== (CEXPR_MAXDEPTH
- 1))
304 val1
= scontext
->user
;
305 val2
= tcontext
->user
;
308 val1
= scontext
->type
;
309 val2
= tcontext
->type
;
312 val1
= scontext
->role
;
313 val2
= tcontext
->role
;
314 r1
= policydb
.role_val_to_struct
[val1
- 1];
315 r2
= policydb
.role_val_to_struct
[val2
- 1];
318 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
322 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
326 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
328 !ebitmap_get_bit(&r2
->dominates
,
336 l1
= &(scontext
->range
.level
[0]);
337 l2
= &(tcontext
->range
.level
[0]);
340 l1
= &(scontext
->range
.level
[0]);
341 l2
= &(tcontext
->range
.level
[1]);
344 l1
= &(scontext
->range
.level
[1]);
345 l2
= &(tcontext
->range
.level
[0]);
348 l1
= &(scontext
->range
.level
[1]);
349 l2
= &(tcontext
->range
.level
[1]);
352 l1
= &(scontext
->range
.level
[0]);
353 l2
= &(scontext
->range
.level
[1]);
356 l1
= &(tcontext
->range
.level
[0]);
357 l2
= &(tcontext
->range
.level
[1]);
362 s
[++sp
] = mls_level_eq(l1
, l2
);
365 s
[++sp
] = !mls_level_eq(l1
, l2
);
368 s
[++sp
] = mls_level_dom(l1
, l2
);
371 s
[++sp
] = mls_level_dom(l2
, l1
);
374 s
[++sp
] = mls_level_incomp(l2
, l1
);
388 s
[++sp
] = (val1
== val2
);
391 s
[++sp
] = (val1
!= val2
);
399 if (sp
== (CEXPR_MAXDEPTH
-1))
402 if (e
->attr
& CEXPR_TARGET
)
404 else if (e
->attr
& CEXPR_XTARGET
) {
411 if (e
->attr
& CEXPR_USER
)
413 else if (e
->attr
& CEXPR_ROLE
)
415 else if (e
->attr
& CEXPR_TYPE
)
424 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
427 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
445 * security_dump_masked_av - dumps masked permissions during
446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
450 struct perm_datum
*pdatum
= d
;
451 char **permission_names
= args
;
453 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
455 permission_names
[pdatum
->value
- 1] = (char *)k
;
460 static void security_dump_masked_av(struct context
*scontext
,
461 struct context
*tcontext
,
466 struct common_datum
*common_dat
;
467 struct class_datum
*tclass_dat
;
468 struct audit_buffer
*ab
;
470 char *scontext_name
= NULL
;
471 char *tcontext_name
= NULL
;
472 char *permission_names
[32];
475 bool need_comma
= false;
480 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
481 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
482 common_dat
= tclass_dat
->comdatum
;
484 /* init permission_names */
486 hashtab_map(common_dat
->permissions
.table
,
487 dump_masked_av_helper
, permission_names
) < 0)
490 if (hashtab_map(tclass_dat
->permissions
.table
,
491 dump_masked_av_helper
, permission_names
) < 0)
494 /* get scontext/tcontext in text form */
495 if (context_struct_to_string(scontext
,
496 &scontext_name
, &length
) < 0)
499 if (context_struct_to_string(tcontext
,
500 &tcontext_name
, &length
) < 0)
503 /* audit a message */
504 ab
= audit_log_start(current
->audit_context
,
505 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
509 audit_log_format(ab
, "op=security_compute_av reason=%s "
510 "scontext=%s tcontext=%s tclass=%s perms=",
511 reason
, scontext_name
, tcontext_name
, tclass_name
);
513 for (index
= 0; index
< 32; index
++) {
514 u32 mask
= (1 << index
);
516 if ((mask
& permissions
) == 0)
519 audit_log_format(ab
, "%s%s",
520 need_comma
? "," : "",
521 permission_names
[index
]
522 ? permission_names
[index
] : "????");
527 /* release scontext/tcontext */
528 kfree(tcontext_name
);
529 kfree(scontext_name
);
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
538 static void type_attribute_bounds_av(struct context
*scontext
,
539 struct context
*tcontext
,
541 struct av_decision
*avd
)
543 struct context lo_scontext
;
544 struct context lo_tcontext
;
545 struct av_decision lo_avd
;
546 struct type_datum
*source
;
547 struct type_datum
*target
;
550 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
554 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
558 if (source
->bounds
) {
559 memset(&lo_avd
, 0, sizeof(lo_avd
));
561 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
562 lo_scontext
.type
= source
->bounds
;
564 context_struct_compute_av(&lo_scontext
,
568 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
569 return; /* no masked permission */
570 masked
= ~lo_avd
.allowed
& avd
->allowed
;
573 if (target
->bounds
) {
574 memset(&lo_avd
, 0, sizeof(lo_avd
));
576 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
577 lo_tcontext
.type
= target
->bounds
;
579 context_struct_compute_av(scontext
,
583 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
584 return; /* no masked permission */
585 masked
= ~lo_avd
.allowed
& avd
->allowed
;
588 if (source
->bounds
&& target
->bounds
) {
589 memset(&lo_avd
, 0, sizeof(lo_avd
));
591 * lo_scontext and lo_tcontext are already
595 context_struct_compute_av(&lo_scontext
,
599 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
600 return; /* no masked permission */
601 masked
= ~lo_avd
.allowed
& avd
->allowed
;
605 /* mask violated permissions */
606 avd
->allowed
&= ~masked
;
608 /* audit masked permissions */
609 security_dump_masked_av(scontext
, tcontext
,
610 tclass
, masked
, "bounds");
615 * Compute access vectors based on a context structure pair for
616 * the permissions in a particular class.
618 static void context_struct_compute_av(struct context
*scontext
,
619 struct context
*tcontext
,
621 struct av_decision
*avd
)
623 struct constraint_node
*constraint
;
624 struct role_allow
*ra
;
625 struct avtab_key avkey
;
626 struct avtab_node
*node
;
627 struct class_datum
*tclass_datum
;
628 struct ebitmap
*sattr
, *tattr
;
629 struct ebitmap_node
*snode
, *tnode
;
634 avd
->auditdeny
= 0xffffffff;
636 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
637 if (printk_ratelimit())
638 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
642 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
645 * If a specific type enforcement rule was defined for
646 * this permission check, then use it.
648 avkey
.target_class
= tclass
;
649 avkey
.specified
= AVTAB_AV
;
650 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
652 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
654 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
655 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
656 avkey
.source_type
= i
+ 1;
657 avkey
.target_type
= j
+ 1;
658 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
660 node
= avtab_search_node_next(node
, avkey
.specified
)) {
661 if (node
->key
.specified
== AVTAB_ALLOWED
)
662 avd
->allowed
|= node
->datum
.data
;
663 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
664 avd
->auditallow
|= node
->datum
.data
;
665 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
666 avd
->auditdeny
&= node
->datum
.data
;
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
676 * Remove any permissions prohibited by a constraint (this includes
679 constraint
= tclass_datum
->constraints
;
681 if ((constraint
->permissions
& (avd
->allowed
)) &&
682 !constraint_expr_eval(scontext
, tcontext
, NULL
,
684 avd
->allowed
&= ~(constraint
->permissions
);
686 constraint
= constraint
->next
;
690 * If checking process transition permission and the
691 * role is changing, then check the (current_role, new_role)
694 if (tclass
== policydb
.process_class
&&
695 (avd
->allowed
& policydb
.process_trans_perms
) &&
696 scontext
->role
!= tcontext
->role
) {
697 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
698 if (scontext
->role
== ra
->role
&&
699 tcontext
->role
== ra
->new_role
)
703 avd
->allowed
&= ~policydb
.process_trans_perms
;
707 * If the given source and target types have boundary
708 * constraint, lazy checks have to mask any violated
709 * permission and notice it to userspace via audit.
711 type_attribute_bounds_av(scontext
, tcontext
,
715 static int security_validtrans_handle_fail(struct context
*ocontext
,
716 struct context
*ncontext
,
717 struct context
*tcontext
,
720 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
721 u32 olen
, nlen
, tlen
;
723 if (context_struct_to_string(ocontext
, &o
, &olen
))
725 if (context_struct_to_string(ncontext
, &n
, &nlen
))
727 if (context_struct_to_string(tcontext
, &t
, &tlen
))
729 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
730 "security_validate_transition: denied for"
731 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
738 if (!selinux_enforcing
)
743 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
746 struct context
*ocontext
;
747 struct context
*ncontext
;
748 struct context
*tcontext
;
749 struct class_datum
*tclass_datum
;
750 struct constraint_node
*constraint
;
757 read_lock(&policy_rwlock
);
759 tclass
= unmap_class(orig_tclass
);
761 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
762 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
767 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
769 ocontext
= sidtab_search(&sidtab
, oldsid
);
771 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
777 ncontext
= sidtab_search(&sidtab
, newsid
);
779 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
785 tcontext
= sidtab_search(&sidtab
, tasksid
);
787 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
793 constraint
= tclass_datum
->validatetrans
;
795 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
797 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
801 constraint
= constraint
->next
;
805 read_unlock(&policy_rwlock
);
810 * security_bounded_transition - check whether the given
811 * transition is directed to bounded, or not.
812 * It returns 0, if @newsid is bounded by @oldsid.
813 * Otherwise, it returns error code.
815 * @oldsid : current security identifier
816 * @newsid : destinated security identifier
818 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
820 struct context
*old_context
, *new_context
;
821 struct type_datum
*type
;
825 read_lock(&policy_rwlock
);
828 old_context
= sidtab_search(&sidtab
, old_sid
);
830 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
836 new_context
= sidtab_search(&sidtab
, new_sid
);
838 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
844 /* type/domain unchanged */
845 if (old_context
->type
== new_context
->type
)
848 index
= new_context
->type
;
850 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
854 /* not bounded anymore */
859 /* @newsid is bounded by @oldsid */
861 if (type
->bounds
== old_context
->type
)
864 index
= type
->bounds
;
868 char *old_name
= NULL
;
869 char *new_name
= NULL
;
872 if (!context_struct_to_string(old_context
,
873 &old_name
, &length
) &&
874 !context_struct_to_string(new_context
,
875 &new_name
, &length
)) {
876 audit_log(current
->audit_context
,
877 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
878 "op=security_bounded_transition "
880 "oldcontext=%s newcontext=%s",
887 read_unlock(&policy_rwlock
);
892 static void avd_init(struct av_decision
*avd
)
896 avd
->auditdeny
= 0xffffffff;
897 avd
->seqno
= latest_granting
;
903 * security_compute_av - Compute access vector decisions.
904 * @ssid: source security identifier
905 * @tsid: target security identifier
906 * @tclass: target security class
907 * @avd: access vector decisions
909 * Compute a set of access vector decisions based on the
910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
912 void security_compute_av(u32 ssid
,
915 struct av_decision
*avd
)
918 struct context
*scontext
= NULL
, *tcontext
= NULL
;
920 read_lock(&policy_rwlock
);
925 scontext
= sidtab_search(&sidtab
, ssid
);
927 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
932 /* permissive domain? */
933 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
934 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
936 tcontext
= sidtab_search(&sidtab
, tsid
);
938 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
943 tclass
= unmap_class(orig_tclass
);
944 if (unlikely(orig_tclass
&& !tclass
)) {
945 if (policydb
.allow_unknown
)
949 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
950 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
952 read_unlock(&policy_rwlock
);
955 avd
->allowed
= 0xffffffff;
959 void security_compute_av_user(u32 ssid
,
962 struct av_decision
*avd
)
964 struct context
*scontext
= NULL
, *tcontext
= NULL
;
966 read_lock(&policy_rwlock
);
971 scontext
= sidtab_search(&sidtab
, ssid
);
973 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
978 /* permissive domain? */
979 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
980 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
982 tcontext
= sidtab_search(&sidtab
, tsid
);
984 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
989 if (unlikely(!tclass
)) {
990 if (policydb
.allow_unknown
)
995 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
997 read_unlock(&policy_rwlock
);
1000 avd
->allowed
= 0xffffffff;
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size. Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1011 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1020 *scontext_len
= context
->len
;
1021 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1027 /* Compute the size of the context. */
1028 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1029 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1030 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1031 *scontext_len
+= mls_compute_context_len(context
);
1036 /* Allocate space for the context; caller must free this space. */
1037 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1040 *scontext
= scontextp
;
1043 * Copy the user name, role name and type name into the context.
1045 sprintf(scontextp
, "%s:%s:%s",
1046 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1047 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1048 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1049 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1050 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1051 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1053 mls_sid_to_context(context
, &scontextp
);
1060 #include "initial_sid_to_string.h"
1062 const char *security_get_initial_sid_context(u32 sid
)
1064 if (unlikely(sid
> SECINITSID_NUM
))
1066 return initial_sid_to_string
[sid
];
1069 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1070 u32
*scontext_len
, int force
)
1072 struct context
*context
;
1079 if (!ss_initialized
) {
1080 if (sid
<= SECINITSID_NUM
) {
1083 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1086 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1091 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1092 *scontext
= scontextp
;
1095 printk(KERN_ERR
"SELinux: %s: called before initial "
1096 "load_policy on unknown SID %d\n", __func__
, sid
);
1100 read_lock(&policy_rwlock
);
1102 context
= sidtab_search_force(&sidtab
, sid
);
1104 context
= sidtab_search(&sidtab
, sid
);
1106 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1111 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1113 read_unlock(&policy_rwlock
);
1120 * security_sid_to_context - Obtain a context for a given SID.
1121 * @sid: security identifier, SID
1122 * @scontext: security context
1123 * @scontext_len: length in bytes
1125 * Write the string representation of the context associated with @sid
1126 * into a dynamically allocated string of the correct size. Set @scontext
1127 * to point to this string and set @scontext_len to the length of the string.
1129 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1131 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1134 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1136 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1140 * Caveat: Mutates scontext.
1142 static int string_to_context_struct(struct policydb
*pol
,
1143 struct sidtab
*sidtabp
,
1146 struct context
*ctx
,
1149 struct role_datum
*role
;
1150 struct type_datum
*typdatum
;
1151 struct user_datum
*usrdatum
;
1152 char *scontextp
, *p
, oldc
;
1157 /* Parse the security context. */
1160 scontextp
= (char *) scontext
;
1162 /* Extract the user. */
1164 while (*p
&& *p
!= ':')
1172 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1176 ctx
->user
= usrdatum
->value
;
1180 while (*p
&& *p
!= ':')
1188 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1191 ctx
->role
= role
->value
;
1195 while (*p
&& *p
!= ':')
1200 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1201 if (!typdatum
|| typdatum
->attribute
)
1204 ctx
->type
= typdatum
->value
;
1206 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1211 if ((p
- scontext
) < scontext_len
)
1214 /* Check the validity of the new context. */
1215 if (!policydb_context_isvalid(pol
, ctx
))
1220 context_destroy(ctx
);
1224 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1225 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1228 char *scontext2
, *str
= NULL
;
1229 struct context context
;
1232 if (!ss_initialized
) {
1235 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1236 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1241 *sid
= SECINITSID_KERNEL
;
1246 /* Copy the string so that we can modify the copy as we parse it. */
1247 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1250 memcpy(scontext2
, scontext
, scontext_len
);
1251 scontext2
[scontext_len
] = 0;
1254 /* Save another copy for storing in uninterpreted form */
1256 str
= kstrdup(scontext2
, gfp_flags
);
1261 read_lock(&policy_rwlock
);
1262 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1263 scontext_len
, &context
, def_sid
);
1264 if (rc
== -EINVAL
&& force
) {
1266 context
.len
= scontext_len
;
1270 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1271 context_destroy(&context
);
1273 read_unlock(&policy_rwlock
);
1281 * security_context_to_sid - Obtain a SID for a given security context.
1282 * @scontext: security context
1283 * @scontext_len: length in bytes
1284 * @sid: security identifier, SID
1286 * Obtains a SID associated with the security context that
1287 * has the string representation specified by @scontext.
1288 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1289 * memory is available, or 0 on success.
1291 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1293 return security_context_to_sid_core(scontext
, scontext_len
,
1294 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1298 * security_context_to_sid_default - Obtain a SID for a given security context,
1299 * falling back to specified default if needed.
1301 * @scontext: security context
1302 * @scontext_len: length in bytes
1303 * @sid: security identifier, SID
1304 * @def_sid: default SID to assign on error
1306 * Obtains a SID associated with the security context that
1307 * has the string representation specified by @scontext.
1308 * The default SID is passed to the MLS layer to be used to allow
1309 * kernel labeling of the MLS field if the MLS field is not present
1310 * (for upgrading to MLS without full relabel).
1311 * Implicitly forces adding of the context even if it cannot be mapped yet.
1312 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1313 * memory is available, or 0 on success.
1315 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1316 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1318 return security_context_to_sid_core(scontext
, scontext_len
,
1319 sid
, def_sid
, gfp_flags
, 1);
1322 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1325 return security_context_to_sid_core(scontext
, scontext_len
,
1326 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1329 static int compute_sid_handle_invalid_context(
1330 struct context
*scontext
,
1331 struct context
*tcontext
,
1333 struct context
*newcontext
)
1335 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1336 u32 slen
, tlen
, nlen
;
1338 if (context_struct_to_string(scontext
, &s
, &slen
))
1340 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1342 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1344 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1345 "security_compute_sid: invalid context %s"
1349 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1354 if (!selinux_enforcing
)
1359 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1360 u32 stype
, u32 ttype
, u16 tclass
,
1361 const char *objname
)
1363 struct filename_trans ft
;
1364 struct filename_trans_datum
*otype
;
1367 * Most filename trans rules are going to live in specific directories
1368 * like /dev or /var/run. This bitmap will quickly skip rule searches
1369 * if the ttype does not contain any rules.
1371 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1379 otype
= hashtab_search(p
->filename_trans
, &ft
);
1381 newcontext
->type
= otype
->otype
;
1384 static int security_compute_sid(u32 ssid
,
1388 const char *objname
,
1392 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1393 struct role_trans
*roletr
= NULL
;
1394 struct avtab_key avkey
;
1395 struct avtab_datum
*avdatum
;
1396 struct avtab_node
*node
;
1401 if (!ss_initialized
) {
1402 switch (orig_tclass
) {
1403 case SECCLASS_PROCESS
: /* kernel value */
1413 context_init(&newcontext
);
1415 read_lock(&policy_rwlock
);
1418 tclass
= unmap_class(orig_tclass
);
1419 sock
= security_is_socket_class(orig_tclass
);
1421 tclass
= orig_tclass
;
1422 sock
= security_is_socket_class(map_class(tclass
));
1425 scontext
= sidtab_search(&sidtab
, ssid
);
1427 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1432 tcontext
= sidtab_search(&sidtab
, tsid
);
1434 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1440 /* Set the user identity. */
1441 switch (specified
) {
1442 case AVTAB_TRANSITION
:
1444 /* Use the process user identity. */
1445 newcontext
.user
= scontext
->user
;
1448 /* Use the related object owner. */
1449 newcontext
.user
= tcontext
->user
;
1453 /* Set the role and type to default values. */
1454 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1455 /* Use the current role and type of process. */
1456 newcontext
.role
= scontext
->role
;
1457 newcontext
.type
= scontext
->type
;
1459 /* Use the well-defined object role. */
1460 newcontext
.role
= OBJECT_R_VAL
;
1461 /* Use the type of the related object. */
1462 newcontext
.type
= tcontext
->type
;
1465 /* Look for a type transition/member/change rule. */
1466 avkey
.source_type
= scontext
->type
;
1467 avkey
.target_type
= tcontext
->type
;
1468 avkey
.target_class
= tclass
;
1469 avkey
.specified
= specified
;
1470 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1472 /* If no permanent rule, also check for enabled conditional rules */
1474 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1475 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1476 if (node
->key
.specified
& AVTAB_ENABLED
) {
1477 avdatum
= &node
->datum
;
1484 /* Use the type from the type transition/member/change rule. */
1485 newcontext
.type
= avdatum
->data
;
1488 /* if we have a objname this is a file trans check so check those rules */
1490 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1491 tcontext
->type
, tclass
, objname
);
1493 /* Check for class-specific changes. */
1494 if (specified
& AVTAB_TRANSITION
) {
1495 /* Look for a role transition rule. */
1496 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1497 if ((roletr
->role
== scontext
->role
) &&
1498 (roletr
->type
== tcontext
->type
) &&
1499 (roletr
->tclass
== tclass
)) {
1500 /* Use the role transition rule. */
1501 newcontext
.role
= roletr
->new_role
;
1507 /* Set the MLS attributes.
1508 This is done last because it may allocate memory. */
1509 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1514 /* Check the validity of the context. */
1515 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1516 rc
= compute_sid_handle_invalid_context(scontext
,
1523 /* Obtain the sid for the context. */
1524 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1526 read_unlock(&policy_rwlock
);
1527 context_destroy(&newcontext
);
1533 * security_transition_sid - Compute the SID for a new subject/object.
1534 * @ssid: source security identifier
1535 * @tsid: target security identifier
1536 * @tclass: target security class
1537 * @out_sid: security identifier for new subject/object
1539 * Compute a SID to use for labeling a new subject or object in the
1540 * class @tclass based on a SID pair (@ssid, @tsid).
1541 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1542 * if insufficient memory is available, or %0 if the new SID was
1543 * computed successfully.
1545 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1546 const struct qstr
*qstr
, u32
*out_sid
)
1548 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1549 qstr
? qstr
->name
: NULL
, out_sid
, true);
1552 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1553 const char *objname
, u32
*out_sid
)
1555 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1556 objname
, out_sid
, false);
1560 * security_member_sid - Compute the SID for member selection.
1561 * @ssid: source security identifier
1562 * @tsid: target security identifier
1563 * @tclass: target security class
1564 * @out_sid: security identifier for selected member
1566 * Compute a SID to use when selecting a member of a polyinstantiated
1567 * object of class @tclass based on a SID pair (@ssid, @tsid).
1568 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569 * if insufficient memory is available, or %0 if the SID was
1570 * computed successfully.
1572 int security_member_sid(u32 ssid
,
1577 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1582 * security_change_sid - Compute the SID for object relabeling.
1583 * @ssid: source security identifier
1584 * @tsid: target security identifier
1585 * @tclass: target security class
1586 * @out_sid: security identifier for selected member
1588 * Compute a SID to use for relabeling an object of class @tclass
1589 * based on a SID pair (@ssid, @tsid).
1590 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1591 * if insufficient memory is available, or %0 if the SID was
1592 * computed successfully.
1594 int security_change_sid(u32 ssid
,
1599 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1603 /* Clone the SID into the new SID table. */
1604 static int clone_sid(u32 sid
,
1605 struct context
*context
,
1608 struct sidtab
*s
= arg
;
1610 if (sid
> SECINITSID_NUM
)
1611 return sidtab_insert(s
, sid
, context
);
1616 static inline int convert_context_handle_invalid_context(struct context
*context
)
1621 if (selinux_enforcing
)
1624 if (!context_struct_to_string(context
, &s
, &len
)) {
1625 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1631 struct convert_context_args
{
1632 struct policydb
*oldp
;
1633 struct policydb
*newp
;
1637 * Convert the values in the security context
1638 * structure `c' from the values specified
1639 * in the policy `p->oldp' to the values specified
1640 * in the policy `p->newp'. Verify that the
1641 * context is valid under the new policy.
1643 static int convert_context(u32 key
,
1647 struct convert_context_args
*args
;
1648 struct context oldc
;
1649 struct ocontext
*oc
;
1650 struct mls_range
*range
;
1651 struct role_datum
*role
;
1652 struct type_datum
*typdatum
;
1653 struct user_datum
*usrdatum
;
1658 if (key
<= SECINITSID_NUM
)
1667 s
= kstrdup(c
->str
, GFP_KERNEL
);
1671 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1672 c
->len
, &ctx
, SECSID_NULL
);
1675 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1677 /* Replace string with mapped representation. */
1679 memcpy(c
, &ctx
, sizeof(*c
));
1681 } else if (rc
== -EINVAL
) {
1682 /* Retain string representation for later mapping. */
1686 /* Other error condition, e.g. ENOMEM. */
1687 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1693 rc
= context_cpy(&oldc
, c
);
1697 /* Convert the user. */
1699 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1700 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1703 c
->user
= usrdatum
->value
;
1705 /* Convert the role. */
1707 role
= hashtab_search(args
->newp
->p_roles
.table
,
1708 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1711 c
->role
= role
->value
;
1713 /* Convert the type. */
1715 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1716 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1719 c
->type
= typdatum
->value
;
1721 /* Convert the MLS fields if dealing with MLS policies */
1722 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1723 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1726 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1728 * Switching between MLS and non-MLS policy:
1729 * free any storage used by the MLS fields in the
1730 * context for all existing entries in the sidtab.
1732 mls_context_destroy(c
);
1733 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1735 * Switching between non-MLS and MLS policy:
1736 * ensure that the MLS fields of the context for all
1737 * existing entries in the sidtab are filled in with a
1738 * suitable default value, likely taken from one of the
1741 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1742 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1746 printk(KERN_ERR
"SELinux: unable to look up"
1747 " the initial SIDs list\n");
1750 range
= &oc
->context
[0].range
;
1751 rc
= mls_range_set(c
, range
);
1756 /* Check the validity of the new context. */
1757 if (!policydb_context_isvalid(args
->newp
, c
)) {
1758 rc
= convert_context_handle_invalid_context(&oldc
);
1763 context_destroy(&oldc
);
1769 /* Map old representation to string and save it. */
1770 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1773 context_destroy(&oldc
);
1777 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1783 static void security_load_policycaps(void)
1785 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1786 POLICYDB_CAPABILITY_NETPEER
);
1787 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1788 POLICYDB_CAPABILITY_OPENPERM
);
1791 static int security_preserve_bools(struct policydb
*p
);
1794 * security_load_policy - Load a security policy configuration.
1795 * @data: binary policy data
1796 * @len: length of data in bytes
1798 * Load a new set of security policy configuration data,
1799 * validate it and convert the SID table as necessary.
1800 * This function will flush the access vector cache after
1801 * loading the new policy.
1803 int security_load_policy(void *data
, size_t len
)
1805 struct policydb oldpolicydb
, newpolicydb
;
1806 struct sidtab oldsidtab
, newsidtab
;
1807 struct selinux_mapping
*oldmap
, *map
= NULL
;
1808 struct convert_context_args args
;
1812 struct policy_file file
= { data
, len
}, *fp
= &file
;
1814 if (!ss_initialized
) {
1816 rc
= policydb_read(&policydb
, fp
);
1818 avtab_cache_destroy();
1823 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1825 ¤t_mapping_size
);
1827 policydb_destroy(&policydb
);
1828 avtab_cache_destroy();
1832 rc
= policydb_load_isids(&policydb
, &sidtab
);
1834 policydb_destroy(&policydb
);
1835 avtab_cache_destroy();
1839 security_load_policycaps();
1841 seqno
= ++latest_granting
;
1842 selinux_complete_init();
1843 avc_ss_reset(seqno
);
1844 selnl_notify_policyload(seqno
);
1845 selinux_status_update_policyload(seqno
);
1846 selinux_netlbl_cache_invalidate();
1847 selinux_xfrm_notify_policyload();
1852 sidtab_hash_eval(&sidtab
, "sids");
1855 rc
= policydb_read(&newpolicydb
, fp
);
1859 newpolicydb
.len
= len
;
1860 /* If switching between different policy types, log MLS status */
1861 if (policydb
.mls_enabled
&& !newpolicydb
.mls_enabled
)
1862 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1863 else if (!policydb
.mls_enabled
&& newpolicydb
.mls_enabled
)
1864 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1866 rc
= policydb_load_isids(&newpolicydb
, &newsidtab
);
1868 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1869 policydb_destroy(&newpolicydb
);
1873 rc
= selinux_set_mapping(&newpolicydb
, secclass_map
, &map
, &map_size
);
1877 rc
= security_preserve_bools(&newpolicydb
);
1879 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1883 /* Clone the SID table. */
1884 sidtab_shutdown(&sidtab
);
1886 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1891 * Convert the internal representations of contexts
1892 * in the new SID table.
1894 args
.oldp
= &policydb
;
1895 args
.newp
= &newpolicydb
;
1896 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1898 printk(KERN_ERR
"SELinux: unable to convert the internal"
1899 " representation of contexts in the new SID"
1904 /* Save the old policydb and SID table to free later. */
1905 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1906 sidtab_set(&oldsidtab
, &sidtab
);
1908 /* Install the new policydb and SID table. */
1909 write_lock_irq(&policy_rwlock
);
1910 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1911 sidtab_set(&sidtab
, &newsidtab
);
1912 security_load_policycaps();
1913 oldmap
= current_mapping
;
1914 current_mapping
= map
;
1915 current_mapping_size
= map_size
;
1916 seqno
= ++latest_granting
;
1917 write_unlock_irq(&policy_rwlock
);
1919 /* Free the old policydb and SID table. */
1920 policydb_destroy(&oldpolicydb
);
1921 sidtab_destroy(&oldsidtab
);
1924 avc_ss_reset(seqno
);
1925 selnl_notify_policyload(seqno
);
1926 selinux_status_update_policyload(seqno
);
1927 selinux_netlbl_cache_invalidate();
1928 selinux_xfrm_notify_policyload();
1934 sidtab_destroy(&newsidtab
);
1935 policydb_destroy(&newpolicydb
);
1940 size_t security_policydb_len(void)
1944 read_lock(&policy_rwlock
);
1946 read_unlock(&policy_rwlock
);
1952 * security_port_sid - Obtain the SID for a port.
1953 * @protocol: protocol number
1954 * @port: port number
1955 * @out_sid: security identifier
1957 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1962 read_lock(&policy_rwlock
);
1964 c
= policydb
.ocontexts
[OCON_PORT
];
1966 if (c
->u
.port
.protocol
== protocol
&&
1967 c
->u
.port
.low_port
<= port
&&
1968 c
->u
.port
.high_port
>= port
)
1975 rc
= sidtab_context_to_sid(&sidtab
,
1981 *out_sid
= c
->sid
[0];
1983 *out_sid
= SECINITSID_PORT
;
1987 read_unlock(&policy_rwlock
);
1992 * security_netif_sid - Obtain the SID for a network interface.
1993 * @name: interface name
1994 * @if_sid: interface SID
1996 int security_netif_sid(char *name
, u32
*if_sid
)
2001 read_lock(&policy_rwlock
);
2003 c
= policydb
.ocontexts
[OCON_NETIF
];
2005 if (strcmp(name
, c
->u
.name
) == 0)
2011 if (!c
->sid
[0] || !c
->sid
[1]) {
2012 rc
= sidtab_context_to_sid(&sidtab
,
2017 rc
= sidtab_context_to_sid(&sidtab
,
2023 *if_sid
= c
->sid
[0];
2025 *if_sid
= SECINITSID_NETIF
;
2028 read_unlock(&policy_rwlock
);
2032 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2036 for (i
= 0; i
< 4; i
++)
2037 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2046 * security_node_sid - Obtain the SID for a node (host).
2047 * @domain: communication domain aka address family
2049 * @addrlen: address length in bytes
2050 * @out_sid: security identifier
2052 int security_node_sid(u16 domain
,
2060 read_lock(&policy_rwlock
);
2067 if (addrlen
!= sizeof(u32
))
2070 addr
= *((u32
*)addrp
);
2072 c
= policydb
.ocontexts
[OCON_NODE
];
2074 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2083 if (addrlen
!= sizeof(u64
) * 2)
2085 c
= policydb
.ocontexts
[OCON_NODE6
];
2087 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2096 *out_sid
= SECINITSID_NODE
;
2102 rc
= sidtab_context_to_sid(&sidtab
,
2108 *out_sid
= c
->sid
[0];
2110 *out_sid
= SECINITSID_NODE
;
2115 read_unlock(&policy_rwlock
);
2122 * security_get_user_sids - Obtain reachable SIDs for a user.
2123 * @fromsid: starting SID
2124 * @username: username
2125 * @sids: array of reachable SIDs for user
2126 * @nel: number of elements in @sids
2128 * Generate the set of SIDs for legal security contexts
2129 * for a given user that can be reached by @fromsid.
2130 * Set *@sids to point to a dynamically allocated
2131 * array containing the set of SIDs. Set *@nel to the
2132 * number of elements in the array.
2135 int security_get_user_sids(u32 fromsid
,
2140 struct context
*fromcon
, usercon
;
2141 u32
*mysids
= NULL
, *mysids2
, sid
;
2142 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2143 struct user_datum
*user
;
2144 struct role_datum
*role
;
2145 struct ebitmap_node
*rnode
, *tnode
;
2151 if (!ss_initialized
)
2154 read_lock(&policy_rwlock
);
2156 context_init(&usercon
);
2159 fromcon
= sidtab_search(&sidtab
, fromsid
);
2164 user
= hashtab_search(policydb
.p_users
.table
, username
);
2168 usercon
.user
= user
->value
;
2171 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2175 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2176 role
= policydb
.role_val_to_struct
[i
];
2177 usercon
.role
= i
+ 1;
2178 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2179 usercon
.type
= j
+ 1;
2181 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2184 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2187 if (mynel
< maxnel
) {
2188 mysids
[mynel
++] = sid
;
2192 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2195 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2198 mysids
[mynel
++] = sid
;
2204 read_unlock(&policy_rwlock
);
2211 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2216 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2217 struct av_decision dummy_avd
;
2218 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2219 SECCLASS_PROCESS
, /* kernel value */
2220 PROCESS__TRANSITION
, AVC_STRICT
,
2223 mysids2
[j
++] = mysids
[i
];
2235 * security_genfs_sid - Obtain a SID for a file in a filesystem
2236 * @fstype: filesystem type
2237 * @path: path from root of mount
2238 * @sclass: file security class
2239 * @sid: SID for path
2241 * Obtain a SID to use for a file in a filesystem that
2242 * cannot support xattr or use a fixed labeling behavior like
2243 * transition SIDs or task SIDs.
2245 int security_genfs_sid(const char *fstype
,
2252 struct genfs
*genfs
;
2256 while (path
[0] == '/' && path
[1] == '/')
2259 read_lock(&policy_rwlock
);
2261 sclass
= unmap_class(orig_sclass
);
2262 *sid
= SECINITSID_UNLABELED
;
2264 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2265 cmp
= strcmp(fstype
, genfs
->fstype
);
2274 for (c
= genfs
->head
; c
; c
= c
->next
) {
2275 len
= strlen(c
->u
.name
);
2276 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2277 (strncmp(c
->u
.name
, path
, len
) == 0))
2286 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2294 read_unlock(&policy_rwlock
);
2299 * security_fs_use - Determine how to handle labeling for a filesystem.
2300 * @fstype: filesystem type
2301 * @behavior: labeling behavior
2302 * @sid: SID for filesystem (superblock)
2304 int security_fs_use(
2306 unsigned int *behavior
,
2312 read_lock(&policy_rwlock
);
2314 c
= policydb
.ocontexts
[OCON_FSUSE
];
2316 if (strcmp(fstype
, c
->u
.name
) == 0)
2322 *behavior
= c
->v
.behavior
;
2324 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2331 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2333 *behavior
= SECURITY_FS_USE_NONE
;
2336 *behavior
= SECURITY_FS_USE_GENFS
;
2341 read_unlock(&policy_rwlock
);
2345 int security_get_bools(int *len
, char ***names
, int **values
)
2349 read_lock(&policy_rwlock
);
2354 *len
= policydb
.p_bools
.nprim
;
2359 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2364 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2368 for (i
= 0; i
< *len
; i
++) {
2371 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2372 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2375 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2379 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2380 (*names
)[i
][name_len
- 1] = 0;
2384 read_unlock(&policy_rwlock
);
2388 for (i
= 0; i
< *len
; i
++)
2396 int security_set_bools(int len
, int *values
)
2399 int lenp
, seqno
= 0;
2400 struct cond_node
*cur
;
2402 write_lock_irq(&policy_rwlock
);
2405 lenp
= policydb
.p_bools
.nprim
;
2409 for (i
= 0; i
< len
; i
++) {
2410 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2411 audit_log(current
->audit_context
, GFP_ATOMIC
,
2412 AUDIT_MAC_CONFIG_CHANGE
,
2413 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2414 sym_name(&policydb
, SYM_BOOLS
, i
),
2416 policydb
.bool_val_to_struct
[i
]->state
,
2417 audit_get_loginuid(current
),
2418 audit_get_sessionid(current
));
2421 policydb
.bool_val_to_struct
[i
]->state
= 1;
2423 policydb
.bool_val_to_struct
[i
]->state
= 0;
2426 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2427 rc
= evaluate_cond_node(&policydb
, cur
);
2432 seqno
= ++latest_granting
;
2435 write_unlock_irq(&policy_rwlock
);
2437 avc_ss_reset(seqno
);
2438 selnl_notify_policyload(seqno
);
2439 selinux_status_update_policyload(seqno
);
2440 selinux_xfrm_notify_policyload();
2445 int security_get_bool_value(int bool)
2450 read_lock(&policy_rwlock
);
2453 len
= policydb
.p_bools
.nprim
;
2457 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2459 read_unlock(&policy_rwlock
);
2463 static int security_preserve_bools(struct policydb
*p
)
2465 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2466 char **bnames
= NULL
;
2467 struct cond_bool_datum
*booldatum
;
2468 struct cond_node
*cur
;
2470 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2473 for (i
= 0; i
< nbools
; i
++) {
2474 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2476 booldatum
->state
= bvalues
[i
];
2478 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2479 rc
= evaluate_cond_node(p
, cur
);
2486 for (i
= 0; i
< nbools
; i
++)
2495 * security_sid_mls_copy() - computes a new sid based on the given
2496 * sid and the mls portion of mls_sid.
2498 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2500 struct context
*context1
;
2501 struct context
*context2
;
2502 struct context newcon
;
2508 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2513 context_init(&newcon
);
2515 read_lock(&policy_rwlock
);
2518 context1
= sidtab_search(&sidtab
, sid
);
2520 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2526 context2
= sidtab_search(&sidtab
, mls_sid
);
2528 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2533 newcon
.user
= context1
->user
;
2534 newcon
.role
= context1
->role
;
2535 newcon
.type
= context1
->type
;
2536 rc
= mls_context_cpy(&newcon
, context2
);
2540 /* Check the validity of the new context. */
2541 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2542 rc
= convert_context_handle_invalid_context(&newcon
);
2544 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2545 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2546 "security_sid_mls_copy: invalid context %s", s
);
2553 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2555 read_unlock(&policy_rwlock
);
2556 context_destroy(&newcon
);
2562 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2563 * @nlbl_sid: NetLabel SID
2564 * @nlbl_type: NetLabel labeling protocol type
2565 * @xfrm_sid: XFRM SID
2568 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2569 * resolved into a single SID it is returned via @peer_sid and the function
2570 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2571 * returns a negative value. A table summarizing the behavior is below:
2573 * | function return | @sid
2574 * ------------------------------+-----------------+-----------------
2575 * no peer labels | 0 | SECSID_NULL
2576 * single peer label | 0 | <peer_label>
2577 * multiple, consistent labels | 0 | <peer_label>
2578 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2581 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2586 struct context
*nlbl_ctx
;
2587 struct context
*xfrm_ctx
;
2589 *peer_sid
= SECSID_NULL
;
2591 /* handle the common (which also happens to be the set of easy) cases
2592 * right away, these two if statements catch everything involving a
2593 * single or absent peer SID/label */
2594 if (xfrm_sid
== SECSID_NULL
) {
2595 *peer_sid
= nlbl_sid
;
2598 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2599 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2601 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2602 *peer_sid
= xfrm_sid
;
2606 /* we don't need to check ss_initialized here since the only way both
2607 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2608 * security server was initialized and ss_initialized was true */
2609 if (!policydb
.mls_enabled
)
2612 read_lock(&policy_rwlock
);
2615 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2617 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2618 __func__
, nlbl_sid
);
2622 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2624 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2625 __func__
, xfrm_sid
);
2628 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2632 /* at present NetLabel SIDs/labels really only carry MLS
2633 * information so if the MLS portion of the NetLabel SID
2634 * matches the MLS portion of the labeled XFRM SID/label
2635 * then pass along the XFRM SID as it is the most
2637 *peer_sid
= xfrm_sid
;
2639 read_unlock(&policy_rwlock
);
2643 static int get_classes_callback(void *k
, void *d
, void *args
)
2645 struct class_datum
*datum
= d
;
2646 char *name
= k
, **classes
= args
;
2647 int value
= datum
->value
- 1;
2649 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2650 if (!classes
[value
])
2656 int security_get_classes(char ***classes
, int *nclasses
)
2660 read_lock(&policy_rwlock
);
2663 *nclasses
= policydb
.p_classes
.nprim
;
2664 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2668 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2672 for (i
= 0; i
< *nclasses
; i
++)
2673 kfree((*classes
)[i
]);
2678 read_unlock(&policy_rwlock
);
2682 static int get_permissions_callback(void *k
, void *d
, void *args
)
2684 struct perm_datum
*datum
= d
;
2685 char *name
= k
, **perms
= args
;
2686 int value
= datum
->value
- 1;
2688 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2695 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2698 struct class_datum
*match
;
2700 read_lock(&policy_rwlock
);
2703 match
= hashtab_search(policydb
.p_classes
.table
, class);
2705 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2711 *nperms
= match
->permissions
.nprim
;
2712 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2716 if (match
->comdatum
) {
2717 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2718 get_permissions_callback
, *perms
);
2723 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2729 read_unlock(&policy_rwlock
);
2733 read_unlock(&policy_rwlock
);
2734 for (i
= 0; i
< *nperms
; i
++)
2740 int security_get_reject_unknown(void)
2742 return policydb
.reject_unknown
;
2745 int security_get_allow_unknown(void)
2747 return policydb
.allow_unknown
;
2751 * security_policycap_supported - Check for a specific policy capability
2752 * @req_cap: capability
2755 * This function queries the currently loaded policy to see if it supports the
2756 * capability specified by @req_cap. Returns true (1) if the capability is
2757 * supported, false (0) if it isn't supported.
2760 int security_policycap_supported(unsigned int req_cap
)
2764 read_lock(&policy_rwlock
);
2765 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2766 read_unlock(&policy_rwlock
);
2771 struct selinux_audit_rule
{
2773 struct context au_ctxt
;
2776 void selinux_audit_rule_free(void *vrule
)
2778 struct selinux_audit_rule
*rule
= vrule
;
2781 context_destroy(&rule
->au_ctxt
);
2786 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2788 struct selinux_audit_rule
*tmprule
;
2789 struct role_datum
*roledatum
;
2790 struct type_datum
*typedatum
;
2791 struct user_datum
*userdatum
;
2792 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2797 if (!ss_initialized
)
2801 case AUDIT_SUBJ_USER
:
2802 case AUDIT_SUBJ_ROLE
:
2803 case AUDIT_SUBJ_TYPE
:
2804 case AUDIT_OBJ_USER
:
2805 case AUDIT_OBJ_ROLE
:
2806 case AUDIT_OBJ_TYPE
:
2807 /* only 'equals' and 'not equals' fit user, role, and type */
2808 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2811 case AUDIT_SUBJ_SEN
:
2812 case AUDIT_SUBJ_CLR
:
2813 case AUDIT_OBJ_LEV_LOW
:
2814 case AUDIT_OBJ_LEV_HIGH
:
2815 /* we do not allow a range, indicated by the presence of '-' */
2816 if (strchr(rulestr
, '-'))
2820 /* only the above fields are valid */
2824 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2828 context_init(&tmprule
->au_ctxt
);
2830 read_lock(&policy_rwlock
);
2832 tmprule
->au_seqno
= latest_granting
;
2835 case AUDIT_SUBJ_USER
:
2836 case AUDIT_OBJ_USER
:
2838 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2841 tmprule
->au_ctxt
.user
= userdatum
->value
;
2843 case AUDIT_SUBJ_ROLE
:
2844 case AUDIT_OBJ_ROLE
:
2846 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2849 tmprule
->au_ctxt
.role
= roledatum
->value
;
2851 case AUDIT_SUBJ_TYPE
:
2852 case AUDIT_OBJ_TYPE
:
2854 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2857 tmprule
->au_ctxt
.type
= typedatum
->value
;
2859 case AUDIT_SUBJ_SEN
:
2860 case AUDIT_SUBJ_CLR
:
2861 case AUDIT_OBJ_LEV_LOW
:
2862 case AUDIT_OBJ_LEV_HIGH
:
2863 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2870 read_unlock(&policy_rwlock
);
2873 selinux_audit_rule_free(tmprule
);
2882 /* Check to see if the rule contains any selinux fields */
2883 int selinux_audit_rule_known(struct audit_krule
*rule
)
2887 for (i
= 0; i
< rule
->field_count
; i
++) {
2888 struct audit_field
*f
= &rule
->fields
[i
];
2890 case AUDIT_SUBJ_USER
:
2891 case AUDIT_SUBJ_ROLE
:
2892 case AUDIT_SUBJ_TYPE
:
2893 case AUDIT_SUBJ_SEN
:
2894 case AUDIT_SUBJ_CLR
:
2895 case AUDIT_OBJ_USER
:
2896 case AUDIT_OBJ_ROLE
:
2897 case AUDIT_OBJ_TYPE
:
2898 case AUDIT_OBJ_LEV_LOW
:
2899 case AUDIT_OBJ_LEV_HIGH
:
2907 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2908 struct audit_context
*actx
)
2910 struct context
*ctxt
;
2911 struct mls_level
*level
;
2912 struct selinux_audit_rule
*rule
= vrule
;
2916 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2917 "selinux_audit_rule_match: missing rule\n");
2921 read_lock(&policy_rwlock
);
2923 if (rule
->au_seqno
< latest_granting
) {
2924 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2925 "selinux_audit_rule_match: stale rule\n");
2930 ctxt
= sidtab_search(&sidtab
, sid
);
2932 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2933 "selinux_audit_rule_match: unrecognized SID %d\n",
2939 /* a field/op pair that is not caught here will simply fall through
2942 case AUDIT_SUBJ_USER
:
2943 case AUDIT_OBJ_USER
:
2946 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2948 case Audit_not_equal
:
2949 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2953 case AUDIT_SUBJ_ROLE
:
2954 case AUDIT_OBJ_ROLE
:
2957 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2959 case Audit_not_equal
:
2960 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2964 case AUDIT_SUBJ_TYPE
:
2965 case AUDIT_OBJ_TYPE
:
2968 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2970 case Audit_not_equal
:
2971 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2975 case AUDIT_SUBJ_SEN
:
2976 case AUDIT_SUBJ_CLR
:
2977 case AUDIT_OBJ_LEV_LOW
:
2978 case AUDIT_OBJ_LEV_HIGH
:
2979 level
= ((field
== AUDIT_SUBJ_SEN
||
2980 field
== AUDIT_OBJ_LEV_LOW
) ?
2981 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2984 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2987 case Audit_not_equal
:
2988 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2992 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2994 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2998 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3002 match
= (mls_level_dom(level
,
3003 &rule
->au_ctxt
.range
.level
[0]) &&
3004 !mls_level_eq(level
,
3005 &rule
->au_ctxt
.range
.level
[0]));
3008 match
= mls_level_dom(level
,
3009 &rule
->au_ctxt
.range
.level
[0]);
3015 read_unlock(&policy_rwlock
);
3019 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3021 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
3022 u16
class, u32 perms
, u32
*retained
)
3026 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3027 err
= aurule_callback();
3031 static int __init
aurule_init(void)
3035 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
3036 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
3038 panic("avc_add_callback() failed, error %d\n", err
);
3042 __initcall(aurule_init
);
3044 #ifdef CONFIG_NETLABEL
3046 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3047 * @secattr: the NetLabel packet security attributes
3048 * @sid: the SELinux SID
3051 * Attempt to cache the context in @ctx, which was derived from the packet in
3052 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3053 * already been initialized.
3056 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3061 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3062 if (sid_cache
== NULL
)
3064 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3065 if (secattr
->cache
== NULL
) {
3071 secattr
->cache
->free
= kfree
;
3072 secattr
->cache
->data
= sid_cache
;
3073 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3077 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3078 * @secattr: the NetLabel packet security attributes
3079 * @sid: the SELinux SID
3082 * Convert the given NetLabel security attributes in @secattr into a
3083 * SELinux SID. If the @secattr field does not contain a full SELinux
3084 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3085 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3086 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3087 * conversion for future lookups. Returns zero on success, negative values on
3091 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3095 struct context
*ctx
;
3096 struct context ctx_new
;
3098 if (!ss_initialized
) {
3103 read_lock(&policy_rwlock
);
3105 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3106 *sid
= *(u32
*)secattr
->cache
->data
;
3107 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3108 *sid
= secattr
->attr
.secid
;
3109 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3111 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3115 context_init(&ctx_new
);
3116 ctx_new
.user
= ctx
->user
;
3117 ctx_new
.role
= ctx
->role
;
3118 ctx_new
.type
= ctx
->type
;
3119 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3120 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3121 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3122 secattr
->attr
.mls
.cat
);
3125 memcpy(&ctx_new
.range
.level
[1].cat
,
3126 &ctx_new
.range
.level
[0].cat
,
3127 sizeof(ctx_new
.range
.level
[0].cat
));
3130 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3133 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3137 security_netlbl_cache_add(secattr
, *sid
);
3139 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3143 read_unlock(&policy_rwlock
);
3146 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3148 read_unlock(&policy_rwlock
);
3153 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3154 * @sid: the SELinux SID
3155 * @secattr: the NetLabel packet security attributes
3158 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3159 * Returns zero on success, negative values on failure.
3162 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3165 struct context
*ctx
;
3167 if (!ss_initialized
)
3170 read_lock(&policy_rwlock
);
3173 ctx
= sidtab_search(&sidtab
, sid
);
3178 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3180 if (secattr
->domain
== NULL
)
3183 secattr
->attr
.secid
= sid
;
3184 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3185 mls_export_netlbl_lvl(ctx
, secattr
);
3186 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3188 read_unlock(&policy_rwlock
);
3191 #endif /* CONFIG_NETLABEL */
3194 * security_read_policy - read the policy.
3195 * @data: binary policy data
3196 * @len: length of data in bytes
3199 int security_read_policy(void **data
, size_t *len
)
3202 struct policy_file fp
;
3204 if (!ss_initialized
)
3207 *len
= security_policydb_len();
3209 *data
= vmalloc_user(*len
);
3216 read_lock(&policy_rwlock
);
3217 rc
= policydb_write(&policydb
, &fp
);
3218 read_unlock(&policy_rwlock
);
3223 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;