2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
38 * Execute a iomap write on a segment of the mapping that spans a
39 * contiguous range of pages that have identical block mapping state.
41 * This avoids the need to map pages individually, do individual allocations
42 * for each page and most importantly avoid the need for filesystem specific
43 * locking per page. Instead, all the operations are amortised over the entire
44 * range of pages. It is assumed that the filesystems will lock whatever
45 * resources they require in the iomap_begin call, and release them in the
49 iomap_apply(struct inode
*inode
, loff_t pos
, loff_t length
, unsigned flags
,
50 const struct iomap_ops
*ops
, void *data
, iomap_actor_t actor
)
52 struct iomap iomap
= { 0 };
53 loff_t written
= 0, ret
;
56 * Need to map a range from start position for length bytes. This can
57 * span multiple pages - it is only guaranteed to return a range of a
58 * single type of pages (e.g. all into a hole, all mapped or all
59 * unwritten). Failure at this point has nothing to undo.
61 * If allocation is required for this range, reserve the space now so
62 * that the allocation is guaranteed to succeed later on. Once we copy
63 * the data into the page cache pages, then we cannot fail otherwise we
64 * expose transient stale data. If the reserve fails, we can safely
65 * back out at this point as there is nothing to undo.
67 ret
= ops
->iomap_begin(inode
, pos
, length
, flags
, &iomap
);
70 if (WARN_ON(iomap
.offset
> pos
))
72 if (WARN_ON(iomap
.length
== 0))
76 * Cut down the length to the one actually provided by the filesystem,
77 * as it might not be able to give us the whole size that we requested.
79 if (iomap
.offset
+ iomap
.length
< pos
+ length
)
80 length
= iomap
.offset
+ iomap
.length
- pos
;
83 * Now that we have guaranteed that the space allocation will succeed.
84 * we can do the copy-in page by page without having to worry about
85 * failures exposing transient data.
87 written
= actor(inode
, pos
, length
, data
, &iomap
);
90 * Now the data has been copied, commit the range we've copied. This
91 * should not fail unless the filesystem has had a fatal error.
94 ret
= ops
->iomap_end(inode
, pos
, length
,
95 written
> 0 ? written
: 0,
99 return written
? written
: ret
;
103 iomap_sector(struct iomap
*iomap
, loff_t pos
)
105 return (iomap
->addr
+ pos
- iomap
->offset
) >> SECTOR_SHIFT
;
108 static struct iomap_page
*
109 iomap_page_create(struct inode
*inode
, struct page
*page
)
111 struct iomap_page
*iop
= to_iomap_page(page
);
113 if (iop
|| i_blocksize(inode
) == PAGE_SIZE
)
116 iop
= kmalloc(sizeof(*iop
), GFP_NOFS
| __GFP_NOFAIL
);
117 atomic_set(&iop
->read_count
, 0);
118 atomic_set(&iop
->write_count
, 0);
119 bitmap_zero(iop
->uptodate
, PAGE_SIZE
/ SECTOR_SIZE
);
120 set_page_private(page
, (unsigned long)iop
);
121 SetPagePrivate(page
);
126 iomap_page_release(struct page
*page
)
128 struct iomap_page
*iop
= to_iomap_page(page
);
132 WARN_ON_ONCE(atomic_read(&iop
->read_count
));
133 WARN_ON_ONCE(atomic_read(&iop
->write_count
));
134 ClearPagePrivate(page
);
135 set_page_private(page
, 0);
140 * Calculate the range inside the page that we actually need to read.
143 iomap_adjust_read_range(struct inode
*inode
, struct iomap_page
*iop
,
144 loff_t
*pos
, loff_t length
, unsigned *offp
, unsigned *lenp
)
146 unsigned block_bits
= inode
->i_blkbits
;
147 unsigned block_size
= (1 << block_bits
);
148 unsigned poff
= offset_in_page(*pos
);
149 unsigned plen
= min_t(loff_t
, PAGE_SIZE
- poff
, length
);
150 unsigned first
= poff
>> block_bits
;
151 unsigned last
= (poff
+ plen
- 1) >> block_bits
;
152 unsigned end
= offset_in_page(i_size_read(inode
)) >> block_bits
;
155 * If the block size is smaller than the page size we need to check the
156 * per-block uptodate status and adjust the offset and length if needed
157 * to avoid reading in already uptodate ranges.
162 /* move forward for each leading block marked uptodate */
163 for (i
= first
; i
<= last
; i
++) {
164 if (!test_bit(i
, iop
->uptodate
))
172 /* truncate len if we find any trailing uptodate block(s) */
173 for ( ; i
<= last
; i
++) {
174 if (test_bit(i
, iop
->uptodate
)) {
175 plen
-= (last
- i
+ 1) * block_size
;
183 * If the extent spans the block that contains the i_size we need to
184 * handle both halves separately so that we properly zero data in the
185 * page cache for blocks that are entirely outside of i_size.
187 if (first
<= end
&& last
> end
)
188 plen
-= (last
- end
) * block_size
;
195 iomap_set_range_uptodate(struct page
*page
, unsigned off
, unsigned len
)
197 struct iomap_page
*iop
= to_iomap_page(page
);
198 struct inode
*inode
= page
->mapping
->host
;
199 unsigned first
= off
>> inode
->i_blkbits
;
200 unsigned last
= (off
+ len
- 1) >> inode
->i_blkbits
;
202 bool uptodate
= true;
205 for (i
= 0; i
< PAGE_SIZE
/ i_blocksize(inode
); i
++) {
206 if (i
>= first
&& i
<= last
)
207 set_bit(i
, iop
->uptodate
);
208 else if (!test_bit(i
, iop
->uptodate
))
213 if (uptodate
&& !PageError(page
))
214 SetPageUptodate(page
);
218 iomap_read_finish(struct iomap_page
*iop
, struct page
*page
)
220 if (!iop
|| atomic_dec_and_test(&iop
->read_count
))
225 iomap_read_page_end_io(struct bio_vec
*bvec
, int error
)
227 struct page
*page
= bvec
->bv_page
;
228 struct iomap_page
*iop
= to_iomap_page(page
);
230 if (unlikely(error
)) {
231 ClearPageUptodate(page
);
234 iomap_set_range_uptodate(page
, bvec
->bv_offset
, bvec
->bv_len
);
237 iomap_read_finish(iop
, page
);
241 iomap_read_inline_data(struct inode
*inode
, struct page
*page
,
244 size_t size
= i_size_read(inode
);
247 if (PageUptodate(page
))
251 BUG_ON(size
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
253 addr
= kmap_atomic(page
);
254 memcpy(addr
, iomap
->inline_data
, size
);
255 memset(addr
+ size
, 0, PAGE_SIZE
- size
);
257 SetPageUptodate(page
);
261 iomap_read_end_io(struct bio
*bio
)
263 int error
= blk_status_to_errno(bio
->bi_status
);
264 struct bio_vec
*bvec
;
267 bio_for_each_segment_all(bvec
, bio
, i
)
268 iomap_read_page_end_io(bvec
, error
);
272 struct iomap_readpage_ctx
{
273 struct page
*cur_page
;
274 bool cur_page_in_bio
;
277 struct list_head
*pages
;
281 iomap_readpage_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
284 struct iomap_readpage_ctx
*ctx
= data
;
285 struct page
*page
= ctx
->cur_page
;
286 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
287 bool is_contig
= false;
288 loff_t orig_pos
= pos
;
292 if (iomap
->type
== IOMAP_INLINE
) {
294 iomap_read_inline_data(inode
, page
, iomap
);
298 /* zero post-eof blocks as the page may be mapped */
299 iomap_adjust_read_range(inode
, iop
, &pos
, length
, &poff
, &plen
);
303 if (iomap
->type
!= IOMAP_MAPPED
|| pos
>= i_size_read(inode
)) {
304 zero_user(page
, poff
, plen
);
305 iomap_set_range_uptodate(page
, poff
, plen
);
309 ctx
->cur_page_in_bio
= true;
312 * Try to merge into a previous segment if we can.
314 sector
= iomap_sector(iomap
, pos
);
315 if (ctx
->bio
&& bio_end_sector(ctx
->bio
) == sector
) {
316 if (__bio_try_merge_page(ctx
->bio
, page
, plen
, poff
))
322 * If we start a new segment we need to increase the read count, and we
323 * need to do so before submitting any previous full bio to make sure
324 * that we don't prematurely unlock the page.
327 atomic_inc(&iop
->read_count
);
329 if (!ctx
->bio
|| !is_contig
|| bio_full(ctx
->bio
)) {
330 gfp_t gfp
= mapping_gfp_constraint(page
->mapping
, GFP_KERNEL
);
331 int nr_vecs
= (length
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
334 submit_bio(ctx
->bio
);
336 if (ctx
->is_readahead
) /* same as readahead_gfp_mask */
337 gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
338 ctx
->bio
= bio_alloc(gfp
, min(BIO_MAX_PAGES
, nr_vecs
));
339 ctx
->bio
->bi_opf
= REQ_OP_READ
;
340 if (ctx
->is_readahead
)
341 ctx
->bio
->bi_opf
|= REQ_RAHEAD
;
342 ctx
->bio
->bi_iter
.bi_sector
= sector
;
343 bio_set_dev(ctx
->bio
, iomap
->bdev
);
344 ctx
->bio
->bi_end_io
= iomap_read_end_io
;
347 __bio_add_page(ctx
->bio
, page
, plen
, poff
);
350 * Move the caller beyond our range so that it keeps making progress.
351 * For that we have to include any leading non-uptodate ranges, but
352 * we can skip trailing ones as they will be handled in the next
355 return pos
- orig_pos
+ plen
;
359 iomap_readpage(struct page
*page
, const struct iomap_ops
*ops
)
361 struct iomap_readpage_ctx ctx
= { .cur_page
= page
};
362 struct inode
*inode
= page
->mapping
->host
;
366 for (poff
= 0; poff
< PAGE_SIZE
; poff
+= ret
) {
367 ret
= iomap_apply(inode
, page_offset(page
) + poff
,
368 PAGE_SIZE
- poff
, 0, ops
, &ctx
,
369 iomap_readpage_actor
);
371 WARN_ON_ONCE(ret
== 0);
379 WARN_ON_ONCE(!ctx
.cur_page_in_bio
);
381 WARN_ON_ONCE(ctx
.cur_page_in_bio
);
386 * Just like mpage_readpages and block_read_full_page we always
387 * return 0 and just mark the page as PageError on errors. This
388 * should be cleaned up all through the stack eventually.
392 EXPORT_SYMBOL_GPL(iomap_readpage
);
395 iomap_next_page(struct inode
*inode
, struct list_head
*pages
, loff_t pos
,
396 loff_t length
, loff_t
*done
)
398 while (!list_empty(pages
)) {
399 struct page
*page
= lru_to_page(pages
);
401 if (page_offset(page
) >= (u64
)pos
+ length
)
404 list_del(&page
->lru
);
405 if (!add_to_page_cache_lru(page
, inode
->i_mapping
, page
->index
,
410 * If we already have a page in the page cache at index we are
411 * done. Upper layers don't care if it is uptodate after the
412 * readpages call itself as every page gets checked again once
423 iomap_readpages_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
424 void *data
, struct iomap
*iomap
)
426 struct iomap_readpage_ctx
*ctx
= data
;
429 for (done
= 0; done
< length
; done
+= ret
) {
430 if (ctx
->cur_page
&& offset_in_page(pos
+ done
) == 0) {
431 if (!ctx
->cur_page_in_bio
)
432 unlock_page(ctx
->cur_page
);
433 put_page(ctx
->cur_page
);
434 ctx
->cur_page
= NULL
;
436 if (!ctx
->cur_page
) {
437 ctx
->cur_page
= iomap_next_page(inode
, ctx
->pages
,
441 ctx
->cur_page_in_bio
= false;
443 ret
= iomap_readpage_actor(inode
, pos
+ done
, length
- done
,
451 iomap_readpages(struct address_space
*mapping
, struct list_head
*pages
,
452 unsigned nr_pages
, const struct iomap_ops
*ops
)
454 struct iomap_readpage_ctx ctx
= {
456 .is_readahead
= true,
458 loff_t pos
= page_offset(list_entry(pages
->prev
, struct page
, lru
));
459 loff_t last
= page_offset(list_entry(pages
->next
, struct page
, lru
));
460 loff_t length
= last
- pos
+ PAGE_SIZE
, ret
= 0;
463 ret
= iomap_apply(mapping
->host
, pos
, length
, 0, ops
,
464 &ctx
, iomap_readpages_actor
);
466 WARN_ON_ONCE(ret
== 0);
477 if (!ctx
.cur_page_in_bio
)
478 unlock_page(ctx
.cur_page
);
479 put_page(ctx
.cur_page
);
483 * Check that we didn't lose a page due to the arcance calling
486 WARN_ON_ONCE(!ret
&& !list_empty(ctx
.pages
));
489 EXPORT_SYMBOL_GPL(iomap_readpages
);
492 iomap_is_partially_uptodate(struct page
*page
, unsigned long from
,
495 struct iomap_page
*iop
= to_iomap_page(page
);
496 struct inode
*inode
= page
->mapping
->host
;
497 unsigned first
= from
>> inode
->i_blkbits
;
498 unsigned last
= (from
+ count
- 1) >> inode
->i_blkbits
;
502 for (i
= first
; i
<= last
; i
++)
503 if (!test_bit(i
, iop
->uptodate
))
510 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate
);
513 iomap_releasepage(struct page
*page
, gfp_t gfp_mask
)
516 * mm accommodates an old ext3 case where clean pages might not have had
517 * the dirty bit cleared. Thus, it can send actual dirty pages to
518 * ->releasepage() via shrink_active_list(), skip those here.
520 if (PageDirty(page
) || PageWriteback(page
))
522 iomap_page_release(page
);
525 EXPORT_SYMBOL_GPL(iomap_releasepage
);
528 iomap_invalidatepage(struct page
*page
, unsigned int offset
, unsigned int len
)
531 * If we are invalidating the entire page, clear the dirty state from it
532 * and release it to avoid unnecessary buildup of the LRU.
534 if (offset
== 0 && len
== PAGE_SIZE
) {
535 WARN_ON_ONCE(PageWriteback(page
));
536 cancel_dirty_page(page
);
537 iomap_page_release(page
);
540 EXPORT_SYMBOL_GPL(iomap_invalidatepage
);
542 #ifdef CONFIG_MIGRATION
544 iomap_migrate_page(struct address_space
*mapping
, struct page
*newpage
,
545 struct page
*page
, enum migrate_mode mode
)
549 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
550 if (ret
!= MIGRATEPAGE_SUCCESS
)
553 if (page_has_private(page
)) {
554 ClearPagePrivate(page
);
555 set_page_private(newpage
, page_private(page
));
556 set_page_private(page
, 0);
557 SetPagePrivate(newpage
);
560 if (mode
!= MIGRATE_SYNC_NO_COPY
)
561 migrate_page_copy(newpage
, page
);
563 migrate_page_states(newpage
, page
);
564 return MIGRATEPAGE_SUCCESS
;
566 EXPORT_SYMBOL_GPL(iomap_migrate_page
);
567 #endif /* CONFIG_MIGRATION */
570 iomap_write_failed(struct inode
*inode
, loff_t pos
, unsigned len
)
572 loff_t i_size
= i_size_read(inode
);
575 * Only truncate newly allocated pages beyoned EOF, even if the
576 * write started inside the existing inode size.
578 if (pos
+ len
> i_size
)
579 truncate_pagecache_range(inode
, max(pos
, i_size
), pos
+ len
);
583 iomap_read_page_sync(struct inode
*inode
, loff_t block_start
, struct page
*page
,
584 unsigned poff
, unsigned plen
, unsigned from
, unsigned to
,
590 if (iomap
->type
!= IOMAP_MAPPED
|| block_start
>= i_size_read(inode
)) {
591 zero_user_segments(page
, poff
, from
, to
, poff
+ plen
);
592 iomap_set_range_uptodate(page
, poff
, plen
);
596 bio_init(&bio
, &bvec
, 1);
597 bio
.bi_opf
= REQ_OP_READ
;
598 bio
.bi_iter
.bi_sector
= iomap_sector(iomap
, block_start
);
599 bio_set_dev(&bio
, iomap
->bdev
);
600 __bio_add_page(&bio
, page
, plen
, poff
);
601 return submit_bio_wait(&bio
);
605 __iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
,
606 struct page
*page
, struct iomap
*iomap
)
608 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
609 loff_t block_size
= i_blocksize(inode
);
610 loff_t block_start
= pos
& ~(block_size
- 1);
611 loff_t block_end
= (pos
+ len
+ block_size
- 1) & ~(block_size
- 1);
612 unsigned from
= offset_in_page(pos
), to
= from
+ len
, poff
, plen
;
615 if (PageUptodate(page
))
619 iomap_adjust_read_range(inode
, iop
, &block_start
,
620 block_end
- block_start
, &poff
, &plen
);
624 if ((from
> poff
&& from
< poff
+ plen
) ||
625 (to
> poff
&& to
< poff
+ plen
)) {
626 status
= iomap_read_page_sync(inode
, block_start
, page
,
627 poff
, plen
, from
, to
, iomap
);
632 } while ((block_start
+= plen
) < block_end
);
638 iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
, unsigned flags
,
639 struct page
**pagep
, struct iomap
*iomap
)
641 pgoff_t index
= pos
>> PAGE_SHIFT
;
645 BUG_ON(pos
+ len
> iomap
->offset
+ iomap
->length
);
647 if (fatal_signal_pending(current
))
650 page
= grab_cache_page_write_begin(inode
->i_mapping
, index
, flags
);
654 if (iomap
->type
== IOMAP_INLINE
)
655 iomap_read_inline_data(inode
, page
, iomap
);
656 else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
)
657 status
= __block_write_begin_int(page
, pos
, len
, NULL
, iomap
);
659 status
= __iomap_write_begin(inode
, pos
, len
, page
, iomap
);
660 if (unlikely(status
)) {
665 iomap_write_failed(inode
, pos
, len
);
673 iomap_set_page_dirty(struct page
*page
)
675 struct address_space
*mapping
= page_mapping(page
);
678 if (unlikely(!mapping
))
679 return !TestSetPageDirty(page
);
682 * Lock out page->mem_cgroup migration to keep PageDirty
683 * synchronized with per-memcg dirty page counters.
685 lock_page_memcg(page
);
686 newly_dirty
= !TestSetPageDirty(page
);
688 __set_page_dirty(page
, mapping
, 0);
689 unlock_page_memcg(page
);
692 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
695 EXPORT_SYMBOL_GPL(iomap_set_page_dirty
);
698 __iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
699 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
701 flush_dcache_page(page
);
704 * The blocks that were entirely written will now be uptodate, so we
705 * don't have to worry about a readpage reading them and overwriting a
706 * partial write. However if we have encountered a short write and only
707 * partially written into a block, it will not be marked uptodate, so a
708 * readpage might come in and destroy our partial write.
710 * Do the simplest thing, and just treat any short write to a non
711 * uptodate page as a zero-length write, and force the caller to redo
714 if (unlikely(copied
< len
&& !PageUptodate(page
))) {
717 iomap_set_range_uptodate(page
, offset_in_page(pos
), len
);
718 iomap_set_page_dirty(page
);
720 return __generic_write_end(inode
, pos
, copied
, page
);
724 iomap_write_end_inline(struct inode
*inode
, struct page
*page
,
725 struct iomap
*iomap
, loff_t pos
, unsigned copied
)
729 WARN_ON_ONCE(!PageUptodate(page
));
730 BUG_ON(pos
+ copied
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
732 addr
= kmap_atomic(page
);
733 memcpy(iomap
->inline_data
+ pos
, addr
+ pos
, copied
);
736 mark_inode_dirty(inode
);
737 __generic_write_end(inode
, pos
, copied
, page
);
742 iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
743 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
747 if (iomap
->type
== IOMAP_INLINE
) {
748 ret
= iomap_write_end_inline(inode
, page
, iomap
, pos
, copied
);
749 } else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
750 ret
= generic_write_end(NULL
, inode
->i_mapping
, pos
, len
,
753 ret
= __iomap_write_end(inode
, pos
, len
, copied
, page
, iomap
);
756 if (iomap
->page_done
)
757 iomap
->page_done(inode
, pos
, copied
, page
, iomap
);
760 iomap_write_failed(inode
, pos
, len
);
765 iomap_write_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
768 struct iov_iter
*i
= data
;
771 unsigned int flags
= AOP_FLAG_NOFS
;
775 unsigned long offset
; /* Offset into pagecache page */
776 unsigned long bytes
; /* Bytes to write to page */
777 size_t copied
; /* Bytes copied from user */
779 offset
= offset_in_page(pos
);
780 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
787 * Bring in the user page that we will copy from _first_.
788 * Otherwise there's a nasty deadlock on copying from the
789 * same page as we're writing to, without it being marked
792 * Not only is this an optimisation, but it is also required
793 * to check that the address is actually valid, when atomic
794 * usercopies are used, below.
796 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
801 status
= iomap_write_begin(inode
, pos
, bytes
, flags
, &page
,
803 if (unlikely(status
))
806 if (mapping_writably_mapped(inode
->i_mapping
))
807 flush_dcache_page(page
);
809 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
811 flush_dcache_page(page
);
813 status
= iomap_write_end(inode
, pos
, bytes
, copied
, page
,
815 if (unlikely(status
< 0))
821 iov_iter_advance(i
, copied
);
822 if (unlikely(copied
== 0)) {
824 * If we were unable to copy any data at all, we must
825 * fall back to a single segment length write.
827 * If we didn't fallback here, we could livelock
828 * because not all segments in the iov can be copied at
829 * once without a pagefault.
831 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
832 iov_iter_single_seg_count(i
));
839 balance_dirty_pages_ratelimited(inode
->i_mapping
);
840 } while (iov_iter_count(i
) && length
);
842 return written
? written
: status
;
846 iomap_file_buffered_write(struct kiocb
*iocb
, struct iov_iter
*iter
,
847 const struct iomap_ops
*ops
)
849 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
850 loff_t pos
= iocb
->ki_pos
, ret
= 0, written
= 0;
852 while (iov_iter_count(iter
)) {
853 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
),
854 IOMAP_WRITE
, ops
, iter
, iomap_write_actor
);
861 return written
? written
: ret
;
863 EXPORT_SYMBOL_GPL(iomap_file_buffered_write
);
866 __iomap_read_page(struct inode
*inode
, loff_t offset
)
868 struct address_space
*mapping
= inode
->i_mapping
;
871 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, NULL
);
874 if (!PageUptodate(page
)) {
876 return ERR_PTR(-EIO
);
882 iomap_dirty_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
889 struct page
*page
, *rpage
;
890 unsigned long offset
; /* Offset into pagecache page */
891 unsigned long bytes
; /* Bytes to write to page */
893 offset
= offset_in_page(pos
);
894 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, length
);
896 rpage
= __iomap_read_page(inode
, pos
);
898 return PTR_ERR(rpage
);
900 status
= iomap_write_begin(inode
, pos
, bytes
,
901 AOP_FLAG_NOFS
, &page
, iomap
);
903 if (unlikely(status
))
906 WARN_ON_ONCE(!PageUptodate(page
));
908 status
= iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
909 if (unlikely(status
<= 0)) {
910 if (WARN_ON_ONCE(status
== 0))
921 balance_dirty_pages_ratelimited(inode
->i_mapping
);
928 iomap_file_dirty(struct inode
*inode
, loff_t pos
, loff_t len
,
929 const struct iomap_ops
*ops
)
934 ret
= iomap_apply(inode
, pos
, len
, IOMAP_WRITE
, ops
, NULL
,
944 EXPORT_SYMBOL_GPL(iomap_file_dirty
);
946 static int iomap_zero(struct inode
*inode
, loff_t pos
, unsigned offset
,
947 unsigned bytes
, struct iomap
*iomap
)
952 status
= iomap_write_begin(inode
, pos
, bytes
, AOP_FLAG_NOFS
, &page
,
957 zero_user(page
, offset
, bytes
);
958 mark_page_accessed(page
);
960 return iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
963 static int iomap_dax_zero(loff_t pos
, unsigned offset
, unsigned bytes
,
966 return __dax_zero_page_range(iomap
->bdev
, iomap
->dax_dev
,
967 iomap_sector(iomap
, pos
& PAGE_MASK
), offset
, bytes
);
971 iomap_zero_range_actor(struct inode
*inode
, loff_t pos
, loff_t count
,
972 void *data
, struct iomap
*iomap
)
974 bool *did_zero
= data
;
978 /* already zeroed? we're done. */
979 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
983 unsigned offset
, bytes
;
985 offset
= offset_in_page(pos
);
986 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, count
);
989 status
= iomap_dax_zero(pos
, offset
, bytes
, iomap
);
991 status
= iomap_zero(inode
, pos
, offset
, bytes
, iomap
);
1000 } while (count
> 0);
1006 iomap_zero_range(struct inode
*inode
, loff_t pos
, loff_t len
, bool *did_zero
,
1007 const struct iomap_ops
*ops
)
1012 ret
= iomap_apply(inode
, pos
, len
, IOMAP_ZERO
,
1013 ops
, did_zero
, iomap_zero_range_actor
);
1023 EXPORT_SYMBOL_GPL(iomap_zero_range
);
1026 iomap_truncate_page(struct inode
*inode
, loff_t pos
, bool *did_zero
,
1027 const struct iomap_ops
*ops
)
1029 unsigned int blocksize
= i_blocksize(inode
);
1030 unsigned int off
= pos
& (blocksize
- 1);
1032 /* Block boundary? Nothing to do */
1035 return iomap_zero_range(inode
, pos
, blocksize
- off
, did_zero
, ops
);
1037 EXPORT_SYMBOL_GPL(iomap_truncate_page
);
1040 iomap_page_mkwrite_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1041 void *data
, struct iomap
*iomap
)
1043 struct page
*page
= data
;
1046 if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
1047 ret
= __block_write_begin_int(page
, pos
, length
, NULL
, iomap
);
1050 block_commit_write(page
, 0, length
);
1052 WARN_ON_ONCE(!PageUptodate(page
));
1053 iomap_page_create(inode
, page
);
1054 set_page_dirty(page
);
1060 vm_fault_t
iomap_page_mkwrite(struct vm_fault
*vmf
, const struct iomap_ops
*ops
)
1062 struct page
*page
= vmf
->page
;
1063 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1064 unsigned long length
;
1065 loff_t offset
, size
;
1069 size
= i_size_read(inode
);
1070 if ((page
->mapping
!= inode
->i_mapping
) ||
1071 (page_offset(page
) > size
)) {
1072 /* We overload EFAULT to mean page got truncated */
1077 /* page is wholly or partially inside EOF */
1078 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
1079 length
= offset_in_page(size
);
1083 offset
= page_offset(page
);
1084 while (length
> 0) {
1085 ret
= iomap_apply(inode
, offset
, length
,
1086 IOMAP_WRITE
| IOMAP_FAULT
, ops
, page
,
1087 iomap_page_mkwrite_actor
);
1088 if (unlikely(ret
<= 0))
1094 wait_for_stable_page(page
);
1095 return VM_FAULT_LOCKED
;
1098 return block_page_mkwrite_return(ret
);
1100 EXPORT_SYMBOL_GPL(iomap_page_mkwrite
);
1103 struct fiemap_extent_info
*fi
;
1107 static int iomap_to_fiemap(struct fiemap_extent_info
*fi
,
1108 struct iomap
*iomap
, u32 flags
)
1110 switch (iomap
->type
) {
1114 case IOMAP_DELALLOC
:
1115 flags
|= FIEMAP_EXTENT_DELALLOC
| FIEMAP_EXTENT_UNKNOWN
;
1119 case IOMAP_UNWRITTEN
:
1120 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
1123 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
1127 if (iomap
->flags
& IOMAP_F_MERGED
)
1128 flags
|= FIEMAP_EXTENT_MERGED
;
1129 if (iomap
->flags
& IOMAP_F_SHARED
)
1130 flags
|= FIEMAP_EXTENT_SHARED
;
1132 return fiemap_fill_next_extent(fi
, iomap
->offset
,
1133 iomap
->addr
!= IOMAP_NULL_ADDR
? iomap
->addr
: 0,
1134 iomap
->length
, flags
);
1138 iomap_fiemap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1139 struct iomap
*iomap
)
1141 struct fiemap_ctx
*ctx
= data
;
1142 loff_t ret
= length
;
1144 if (iomap
->type
== IOMAP_HOLE
)
1147 ret
= iomap_to_fiemap(ctx
->fi
, &ctx
->prev
, 0);
1150 case 0: /* success */
1152 case 1: /* extent array full */
1159 int iomap_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fi
,
1160 loff_t start
, loff_t len
, const struct iomap_ops
*ops
)
1162 struct fiemap_ctx ctx
;
1165 memset(&ctx
, 0, sizeof(ctx
));
1167 ctx
.prev
.type
= IOMAP_HOLE
;
1169 ret
= fiemap_check_flags(fi
, FIEMAP_FLAG_SYNC
);
1173 if (fi
->fi_flags
& FIEMAP_FLAG_SYNC
) {
1174 ret
= filemap_write_and_wait(inode
->i_mapping
);
1180 ret
= iomap_apply(inode
, start
, len
, IOMAP_REPORT
, ops
, &ctx
,
1181 iomap_fiemap_actor
);
1182 /* inode with no (attribute) mapping will give ENOENT */
1194 if (ctx
.prev
.type
!= IOMAP_HOLE
) {
1195 ret
= iomap_to_fiemap(fi
, &ctx
.prev
, FIEMAP_EXTENT_LAST
);
1202 EXPORT_SYMBOL_GPL(iomap_fiemap
);
1205 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1206 * Returns true if found and updates @lastoff to the offset in file.
1209 page_seek_hole_data(struct inode
*inode
, struct page
*page
, loff_t
*lastoff
,
1212 const struct address_space_operations
*ops
= inode
->i_mapping
->a_ops
;
1213 unsigned int bsize
= i_blocksize(inode
), off
;
1214 bool seek_data
= whence
== SEEK_DATA
;
1215 loff_t poff
= page_offset(page
);
1217 if (WARN_ON_ONCE(*lastoff
>= poff
+ PAGE_SIZE
))
1220 if (*lastoff
< poff
) {
1222 * Last offset smaller than the start of the page means we found
1225 if (whence
== SEEK_HOLE
)
1231 * Just check the page unless we can and should check block ranges:
1233 if (bsize
== PAGE_SIZE
|| !ops
->is_partially_uptodate
)
1234 return PageUptodate(page
) == seek_data
;
1237 if (unlikely(page
->mapping
!= inode
->i_mapping
))
1238 goto out_unlock_not_found
;
1240 for (off
= 0; off
< PAGE_SIZE
; off
+= bsize
) {
1241 if (offset_in_page(*lastoff
) >= off
+ bsize
)
1243 if (ops
->is_partially_uptodate(page
, off
, bsize
) == seek_data
) {
1247 *lastoff
= poff
+ off
+ bsize
;
1250 out_unlock_not_found
:
1256 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1258 * Within unwritten extents, the page cache determines which parts are holes
1259 * and which are data: uptodate buffer heads count as data; everything else
1262 * Returns the resulting offset on successs, and -ENOENT otherwise.
1265 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
1268 pgoff_t index
= offset
>> PAGE_SHIFT
;
1269 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1270 loff_t lastoff
= offset
;
1271 struct pagevec pvec
;
1276 pagevec_init(&pvec
);
1279 unsigned nr_pages
, i
;
1281 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
1286 for (i
= 0; i
< nr_pages
; i
++) {
1287 struct page
*page
= pvec
.pages
[i
];
1289 if (page_seek_hole_data(inode
, page
, &lastoff
, whence
))
1291 lastoff
= page_offset(page
) + PAGE_SIZE
;
1293 pagevec_release(&pvec
);
1294 } while (index
< end
);
1296 /* When no page at lastoff and we are not done, we found a hole. */
1297 if (whence
!= SEEK_HOLE
)
1301 if (lastoff
< offset
+ length
)
1306 pagevec_release(&pvec
);
1312 iomap_seek_hole_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1313 void *data
, struct iomap
*iomap
)
1315 switch (iomap
->type
) {
1316 case IOMAP_UNWRITTEN
:
1317 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1323 *(loff_t
*)data
= offset
;
1331 iomap_seek_hole(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1333 loff_t size
= i_size_read(inode
);
1334 loff_t length
= size
- offset
;
1337 /* Nothing to be found before or beyond the end of the file. */
1338 if (offset
< 0 || offset
>= size
)
1341 while (length
> 0) {
1342 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1343 &offset
, iomap_seek_hole_actor
);
1355 EXPORT_SYMBOL_GPL(iomap_seek_hole
);
1358 iomap_seek_data_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1359 void *data
, struct iomap
*iomap
)
1361 switch (iomap
->type
) {
1364 case IOMAP_UNWRITTEN
:
1365 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1371 *(loff_t
*)data
= offset
;
1377 iomap_seek_data(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1379 loff_t size
= i_size_read(inode
);
1380 loff_t length
= size
- offset
;
1383 /* Nothing to be found before or beyond the end of the file. */
1384 if (offset
< 0 || offset
>= size
)
1387 while (length
> 0) {
1388 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1389 &offset
, iomap_seek_data_actor
);
1403 EXPORT_SYMBOL_GPL(iomap_seek_data
);
1406 * Private flags for iomap_dio, must not overlap with the public ones in
1409 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1410 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1411 #define IOMAP_DIO_WRITE (1 << 30)
1412 #define IOMAP_DIO_DIRTY (1 << 31)
1416 iomap_dio_end_io_t
*end_io
;
1422 bool wait_for_completion
;
1425 /* used during submission and for synchronous completion: */
1427 struct iov_iter
*iter
;
1428 struct task_struct
*waiter
;
1429 struct request_queue
*last_queue
;
1433 /* used for aio completion: */
1435 struct work_struct work
;
1440 static ssize_t
iomap_dio_complete(struct iomap_dio
*dio
)
1442 struct kiocb
*iocb
= dio
->iocb
;
1443 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1444 loff_t offset
= iocb
->ki_pos
;
1448 ret
= dio
->end_io(iocb
,
1449 dio
->error
? dio
->error
: dio
->size
,
1457 /* check for short read */
1458 if (offset
+ ret
> dio
->i_size
&&
1459 !(dio
->flags
& IOMAP_DIO_WRITE
))
1460 ret
= dio
->i_size
- offset
;
1461 iocb
->ki_pos
+= ret
;
1465 * Try again to invalidate clean pages which might have been cached by
1466 * non-direct readahead, or faulted in by get_user_pages() if the source
1467 * of the write was an mmap'ed region of the file we're writing. Either
1468 * one is a pretty crazy thing to do, so we don't support it 100%. If
1469 * this invalidation fails, tough, the write still worked...
1471 * And this page cache invalidation has to be after dio->end_io(), as
1472 * some filesystems convert unwritten extents to real allocations in
1473 * end_io() when necessary, otherwise a racing buffer read would cache
1474 * zeros from unwritten extents.
1477 (dio
->flags
& IOMAP_DIO_WRITE
) && inode
->i_mapping
->nrpages
) {
1479 err
= invalidate_inode_pages2_range(inode
->i_mapping
,
1480 offset
>> PAGE_SHIFT
,
1481 (offset
+ dio
->size
- 1) >> PAGE_SHIFT
);
1483 dio_warn_stale_pagecache(iocb
->ki_filp
);
1487 * If this is a DSYNC write, make sure we push it to stable storage now
1488 * that we've written data.
1490 if (ret
> 0 && (dio
->flags
& IOMAP_DIO_NEED_SYNC
))
1491 ret
= generic_write_sync(iocb
, ret
);
1493 inode_dio_end(file_inode(iocb
->ki_filp
));
1499 static void iomap_dio_complete_work(struct work_struct
*work
)
1501 struct iomap_dio
*dio
= container_of(work
, struct iomap_dio
, aio
.work
);
1502 struct kiocb
*iocb
= dio
->iocb
;
1504 iocb
->ki_complete(iocb
, iomap_dio_complete(dio
), 0);
1508 * Set an error in the dio if none is set yet. We have to use cmpxchg
1509 * as the submission context and the completion context(s) can race to
1512 static inline void iomap_dio_set_error(struct iomap_dio
*dio
, int ret
)
1514 cmpxchg(&dio
->error
, 0, ret
);
1517 static void iomap_dio_bio_end_io(struct bio
*bio
)
1519 struct iomap_dio
*dio
= bio
->bi_private
;
1520 bool should_dirty
= (dio
->flags
& IOMAP_DIO_DIRTY
);
1523 iomap_dio_set_error(dio
, blk_status_to_errno(bio
->bi_status
));
1525 if (atomic_dec_and_test(&dio
->ref
)) {
1526 if (dio
->wait_for_completion
) {
1527 struct task_struct
*waiter
= dio
->submit
.waiter
;
1528 WRITE_ONCE(dio
->submit
.waiter
, NULL
);
1529 wake_up_process(waiter
);
1530 } else if (dio
->flags
& IOMAP_DIO_WRITE
) {
1531 struct inode
*inode
= file_inode(dio
->iocb
->ki_filp
);
1533 INIT_WORK(&dio
->aio
.work
, iomap_dio_complete_work
);
1534 queue_work(inode
->i_sb
->s_dio_done_wq
, &dio
->aio
.work
);
1536 iomap_dio_complete_work(&dio
->aio
.work
);
1541 bio_check_pages_dirty(bio
);
1543 struct bio_vec
*bvec
;
1546 bio_for_each_segment_all(bvec
, bio
, i
)
1547 put_page(bvec
->bv_page
);
1553 iomap_dio_zero(struct iomap_dio
*dio
, struct iomap
*iomap
, loff_t pos
,
1556 struct page
*page
= ZERO_PAGE(0);
1559 bio
= bio_alloc(GFP_KERNEL
, 1);
1560 bio_set_dev(bio
, iomap
->bdev
);
1561 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1562 bio
->bi_private
= dio
;
1563 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1566 __bio_add_page(bio
, page
, len
, 0);
1567 bio_set_op_attrs(bio
, REQ_OP_WRITE
, REQ_SYNC
| REQ_IDLE
);
1569 atomic_inc(&dio
->ref
);
1570 return submit_bio(bio
);
1574 iomap_dio_bio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1575 struct iomap_dio
*dio
, struct iomap
*iomap
)
1577 unsigned int blkbits
= blksize_bits(bdev_logical_block_size(iomap
->bdev
));
1578 unsigned int fs_block_size
= i_blocksize(inode
), pad
;
1579 unsigned int align
= iov_iter_alignment(dio
->submit
.iter
);
1580 struct iov_iter iter
;
1582 bool need_zeroout
= false;
1583 bool use_fua
= false;
1587 if ((pos
| length
| align
) & ((1 << blkbits
) - 1))
1590 if (iomap
->type
== IOMAP_UNWRITTEN
) {
1591 dio
->flags
|= IOMAP_DIO_UNWRITTEN
;
1592 need_zeroout
= true;
1595 if (iomap
->flags
& IOMAP_F_SHARED
)
1596 dio
->flags
|= IOMAP_DIO_COW
;
1598 if (iomap
->flags
& IOMAP_F_NEW
) {
1599 need_zeroout
= true;
1602 * Use a FUA write if we need datasync semantics, this
1603 * is a pure data IO that doesn't require any metadata
1604 * updates and the underlying device supports FUA. This
1605 * allows us to avoid cache flushes on IO completion.
1607 if (!(iomap
->flags
& (IOMAP_F_SHARED
|IOMAP_F_DIRTY
)) &&
1608 (dio
->flags
& IOMAP_DIO_WRITE_FUA
) &&
1609 blk_queue_fua(bdev_get_queue(iomap
->bdev
)))
1614 * Operate on a partial iter trimmed to the extent we were called for.
1615 * We'll update the iter in the dio once we're done with this extent.
1617 iter
= *dio
->submit
.iter
;
1618 iov_iter_truncate(&iter
, length
);
1620 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1625 /* zero out from the start of the block to the write offset */
1626 pad
= pos
& (fs_block_size
- 1);
1628 iomap_dio_zero(dio
, iomap
, pos
- pad
, pad
);
1634 iov_iter_revert(dio
->submit
.iter
, copied
);
1638 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
1639 bio_set_dev(bio
, iomap
->bdev
);
1640 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1641 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
1642 bio
->bi_ioprio
= dio
->iocb
->ki_ioprio
;
1643 bio
->bi_private
= dio
;
1644 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1646 ret
= bio_iov_iter_get_pages(bio
, &iter
);
1647 if (unlikely(ret
)) {
1649 return copied
? copied
: ret
;
1652 n
= bio
->bi_iter
.bi_size
;
1653 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1654 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
1656 bio
->bi_opf
|= REQ_FUA
;
1658 dio
->flags
&= ~IOMAP_DIO_WRITE_FUA
;
1659 task_io_account_write(n
);
1661 bio
->bi_opf
= REQ_OP_READ
;
1662 if (dio
->flags
& IOMAP_DIO_DIRTY
)
1663 bio_set_pages_dirty(bio
);
1666 iov_iter_advance(dio
->submit
.iter
, n
);
1672 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1674 atomic_inc(&dio
->ref
);
1676 dio
->submit
.last_queue
= bdev_get_queue(iomap
->bdev
);
1677 dio
->submit
.cookie
= submit_bio(bio
);
1681 /* zero out from the end of the write to the end of the block */
1682 pad
= pos
& (fs_block_size
- 1);
1684 iomap_dio_zero(dio
, iomap
, pos
, fs_block_size
- pad
);
1690 iomap_dio_hole_actor(loff_t length
, struct iomap_dio
*dio
)
1692 length
= iov_iter_zero(length
, dio
->submit
.iter
);
1693 dio
->size
+= length
;
1698 iomap_dio_inline_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1699 struct iomap_dio
*dio
, struct iomap
*iomap
)
1701 struct iov_iter
*iter
= dio
->submit
.iter
;
1704 BUG_ON(pos
+ length
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
1706 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1707 loff_t size
= inode
->i_size
;
1710 memset(iomap
->inline_data
+ size
, 0, pos
- size
);
1711 copied
= copy_from_iter(iomap
->inline_data
+ pos
, length
, iter
);
1713 if (pos
+ copied
> size
)
1714 i_size_write(inode
, pos
+ copied
);
1715 mark_inode_dirty(inode
);
1718 copied
= copy_to_iter(iomap
->inline_data
+ pos
, length
, iter
);
1720 dio
->size
+= copied
;
1725 iomap_dio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1726 void *data
, struct iomap
*iomap
)
1728 struct iomap_dio
*dio
= data
;
1730 switch (iomap
->type
) {
1732 if (WARN_ON_ONCE(dio
->flags
& IOMAP_DIO_WRITE
))
1734 return iomap_dio_hole_actor(length
, dio
);
1735 case IOMAP_UNWRITTEN
:
1736 if (!(dio
->flags
& IOMAP_DIO_WRITE
))
1737 return iomap_dio_hole_actor(length
, dio
);
1738 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1740 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1742 return iomap_dio_inline_actor(inode
, pos
, length
, dio
, iomap
);
1750 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1751 * is being issued as AIO or not. This allows us to optimise pure data writes
1752 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1753 * REQ_FLUSH post write. This is slightly tricky because a single request here
1754 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1755 * may be pure data writes. In that case, we still need to do a full data sync
1759 iomap_dio_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1760 const struct iomap_ops
*ops
, iomap_dio_end_io_t end_io
)
1762 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1763 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1764 size_t count
= iov_iter_count(iter
);
1765 loff_t pos
= iocb
->ki_pos
, start
= pos
;
1766 loff_t end
= iocb
->ki_pos
+ count
- 1, ret
= 0;
1767 unsigned int flags
= IOMAP_DIRECT
;
1768 struct blk_plug plug
;
1769 struct iomap_dio
*dio
;
1771 lockdep_assert_held(&inode
->i_rwsem
);
1776 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1781 atomic_set(&dio
->ref
, 1);
1783 dio
->i_size
= i_size_read(inode
);
1784 dio
->end_io
= end_io
;
1787 dio
->wait_for_completion
= is_sync_kiocb(iocb
);
1789 dio
->submit
.iter
= iter
;
1790 dio
->submit
.waiter
= current
;
1791 dio
->submit
.cookie
= BLK_QC_T_NONE
;
1792 dio
->submit
.last_queue
= NULL
;
1794 if (iov_iter_rw(iter
) == READ
) {
1795 if (pos
>= dio
->i_size
)
1798 if (iter
->type
== ITER_IOVEC
)
1799 dio
->flags
|= IOMAP_DIO_DIRTY
;
1801 flags
|= IOMAP_WRITE
;
1802 dio
->flags
|= IOMAP_DIO_WRITE
;
1804 /* for data sync or sync, we need sync completion processing */
1805 if (iocb
->ki_flags
& IOCB_DSYNC
)
1806 dio
->flags
|= IOMAP_DIO_NEED_SYNC
;
1809 * For datasync only writes, we optimistically try using FUA for
1810 * this IO. Any non-FUA write that occurs will clear this flag,
1811 * hence we know before completion whether a cache flush is
1814 if ((iocb
->ki_flags
& (IOCB_DSYNC
| IOCB_SYNC
)) == IOCB_DSYNC
)
1815 dio
->flags
|= IOMAP_DIO_WRITE_FUA
;
1818 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1819 if (filemap_range_has_page(mapping
, start
, end
)) {
1823 flags
|= IOMAP_NOWAIT
;
1826 ret
= filemap_write_and_wait_range(mapping
, start
, end
);
1831 * Try to invalidate cache pages for the range we're direct
1832 * writing. If this invalidation fails, tough, the write will
1833 * still work, but racing two incompatible write paths is a
1834 * pretty crazy thing to do, so we don't support it 100%.
1836 ret
= invalidate_inode_pages2_range(mapping
,
1837 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
);
1839 dio_warn_stale_pagecache(iocb
->ki_filp
);
1842 if (iov_iter_rw(iter
) == WRITE
&& !dio
->wait_for_completion
&&
1843 !inode
->i_sb
->s_dio_done_wq
) {
1844 ret
= sb_init_dio_done_wq(inode
->i_sb
);
1849 inode_dio_begin(inode
);
1851 blk_start_plug(&plug
);
1853 ret
= iomap_apply(inode
, pos
, count
, flags
, ops
, dio
,
1856 /* magic error code to fall back to buffered I/O */
1857 if (ret
== -ENOTBLK
) {
1858 dio
->wait_for_completion
= true;
1865 if (iov_iter_rw(iter
) == READ
&& pos
>= dio
->i_size
)
1867 } while ((count
= iov_iter_count(iter
)) > 0);
1868 blk_finish_plug(&plug
);
1871 iomap_dio_set_error(dio
, ret
);
1874 * If all the writes we issued were FUA, we don't need to flush the
1875 * cache on IO completion. Clear the sync flag for this case.
1877 if (dio
->flags
& IOMAP_DIO_WRITE_FUA
)
1878 dio
->flags
&= ~IOMAP_DIO_NEED_SYNC
;
1880 if (!atomic_dec_and_test(&dio
->ref
)) {
1881 if (!dio
->wait_for_completion
)
1882 return -EIOCBQUEUED
;
1885 set_current_state(TASK_UNINTERRUPTIBLE
);
1886 if (!READ_ONCE(dio
->submit
.waiter
))
1889 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
1890 !dio
->submit
.last_queue
||
1891 !blk_poll(dio
->submit
.last_queue
,
1892 dio
->submit
.cookie
))
1895 __set_current_state(TASK_RUNNING
);
1898 ret
= iomap_dio_complete(dio
);
1906 EXPORT_SYMBOL_GPL(iomap_dio_rw
);
1908 /* Swapfile activation */
1911 struct iomap_swapfile_info
{
1912 struct iomap iomap
; /* accumulated iomap */
1913 struct swap_info_struct
*sis
;
1914 uint64_t lowest_ppage
; /* lowest physical addr seen (pages) */
1915 uint64_t highest_ppage
; /* highest physical addr seen (pages) */
1916 unsigned long nr_pages
; /* number of pages collected */
1917 int nr_extents
; /* extent count */
1921 * Collect physical extents for this swap file. Physical extents reported to
1922 * the swap code must be trimmed to align to a page boundary. The logical
1923 * offset within the file is irrelevant since the swapfile code maps logical
1924 * page numbers of the swap device to the physical page-aligned extents.
1926 static int iomap_swapfile_add_extent(struct iomap_swapfile_info
*isi
)
1928 struct iomap
*iomap
= &isi
->iomap
;
1929 unsigned long nr_pages
;
1930 uint64_t first_ppage
;
1931 uint64_t first_ppage_reported
;
1932 uint64_t next_ppage
;
1936 * Round the start up and the end down so that the physical
1937 * extent aligns to a page boundary.
1939 first_ppage
= ALIGN(iomap
->addr
, PAGE_SIZE
) >> PAGE_SHIFT
;
1940 next_ppage
= ALIGN_DOWN(iomap
->addr
+ iomap
->length
, PAGE_SIZE
) >>
1943 /* Skip too-short physical extents. */
1944 if (first_ppage
>= next_ppage
)
1946 nr_pages
= next_ppage
- first_ppage
;
1949 * Calculate how much swap space we're adding; the first page contains
1950 * the swap header and doesn't count. The mm still wants that first
1951 * page fed to add_swap_extent, however.
1953 first_ppage_reported
= first_ppage
;
1954 if (iomap
->offset
== 0)
1955 first_ppage_reported
++;
1956 if (isi
->lowest_ppage
> first_ppage_reported
)
1957 isi
->lowest_ppage
= first_ppage_reported
;
1958 if (isi
->highest_ppage
< (next_ppage
- 1))
1959 isi
->highest_ppage
= next_ppage
- 1;
1961 /* Add extent, set up for the next call. */
1962 error
= add_swap_extent(isi
->sis
, isi
->nr_pages
, nr_pages
, first_ppage
);
1965 isi
->nr_extents
+= error
;
1966 isi
->nr_pages
+= nr_pages
;
1971 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
1972 * swap only cares about contiguous page-aligned physical extents and makes no
1973 * distinction between written and unwritten extents.
1975 static loff_t
iomap_swapfile_activate_actor(struct inode
*inode
, loff_t pos
,
1976 loff_t count
, void *data
, struct iomap
*iomap
)
1978 struct iomap_swapfile_info
*isi
= data
;
1981 switch (iomap
->type
) {
1983 case IOMAP_UNWRITTEN
:
1984 /* Only real or unwritten extents. */
1987 /* No inline data. */
1988 pr_err("swapon: file is inline\n");
1991 pr_err("swapon: file has unallocated extents\n");
1995 /* No uncommitted metadata or shared blocks. */
1996 if (iomap
->flags
& IOMAP_F_DIRTY
) {
1997 pr_err("swapon: file is not committed\n");
2000 if (iomap
->flags
& IOMAP_F_SHARED
) {
2001 pr_err("swapon: file has shared extents\n");
2005 /* Only one bdev per swap file. */
2006 if (iomap
->bdev
!= isi
->sis
->bdev
) {
2007 pr_err("swapon: file is on multiple devices\n");
2011 if (isi
->iomap
.length
== 0) {
2012 /* No accumulated extent, so just store it. */
2013 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2014 } else if (isi
->iomap
.addr
+ isi
->iomap
.length
== iomap
->addr
) {
2015 /* Append this to the accumulated extent. */
2016 isi
->iomap
.length
+= iomap
->length
;
2018 /* Otherwise, add the retained iomap and store this one. */
2019 error
= iomap_swapfile_add_extent(isi
);
2022 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2028 * Iterate a swap file's iomaps to construct physical extents that can be
2029 * passed to the swapfile subsystem.
2031 int iomap_swapfile_activate(struct swap_info_struct
*sis
,
2032 struct file
*swap_file
, sector_t
*pagespan
,
2033 const struct iomap_ops
*ops
)
2035 struct iomap_swapfile_info isi
= {
2037 .lowest_ppage
= (sector_t
)-1ULL,
2039 struct address_space
*mapping
= swap_file
->f_mapping
;
2040 struct inode
*inode
= mapping
->host
;
2042 loff_t len
= ALIGN_DOWN(i_size_read(inode
), PAGE_SIZE
);
2046 * Persist all file mapping metadata so that we won't have any
2047 * IOMAP_F_DIRTY iomaps.
2049 ret
= vfs_fsync(swap_file
, 1);
2054 ret
= iomap_apply(inode
, pos
, len
, IOMAP_REPORT
,
2055 ops
, &isi
, iomap_swapfile_activate_actor
);
2063 if (isi
.iomap
.length
) {
2064 ret
= iomap_swapfile_add_extent(&isi
);
2069 *pagespan
= 1 + isi
.highest_ppage
- isi
.lowest_ppage
;
2070 sis
->max
= isi
.nr_pages
;
2071 sis
->pages
= isi
.nr_pages
- 1;
2072 sis
->highest_bit
= isi
.nr_pages
- 1;
2073 return isi
.nr_extents
;
2075 EXPORT_SYMBOL_GPL(iomap_swapfile_activate
);
2076 #endif /* CONFIG_SWAP */
2079 iomap_bmap_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
2080 void *data
, struct iomap
*iomap
)
2082 sector_t
*bno
= data
, addr
;
2084 if (iomap
->type
== IOMAP_MAPPED
) {
2085 addr
= (pos
- iomap
->offset
+ iomap
->addr
) >> inode
->i_blkbits
;
2087 WARN(1, "would truncate bmap result\n");
2094 /* legacy ->bmap interface. 0 is the error return (!) */
2096 iomap_bmap(struct address_space
*mapping
, sector_t bno
,
2097 const struct iomap_ops
*ops
)
2099 struct inode
*inode
= mapping
->host
;
2100 loff_t pos
= bno
<< inode
->i_blkbits
;
2101 unsigned blocksize
= i_blocksize(inode
);
2103 if (filemap_write_and_wait(mapping
))
2107 iomap_apply(inode
, pos
, blocksize
, 0, ops
, &bno
, iomap_bmap_actor
);
2110 EXPORT_SYMBOL_GPL(iomap_bmap
);