4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
109 return dentry_hashtable
+ (hash
>> (32 - d_hash_shift
));
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
115 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
118 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
119 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat
= {
128 static DEFINE_PER_CPU(long, nr_dentry
);
129 static DEFINE_PER_CPU(long, nr_dentry_unused
);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
145 static long get_nr_dentry(void)
149 for_each_possible_cpu(i
)
150 sum
+= per_cpu(nr_dentry
, i
);
151 return sum
< 0 ? 0 : sum
;
154 static long get_nr_dentry_unused(void)
158 for_each_possible_cpu(i
)
159 sum
+= per_cpu(nr_dentry_unused
, i
);
160 return sum
< 0 ? 0 : sum
;
163 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
164 size_t *lenp
, loff_t
*ppos
)
166 dentry_stat
.nr_dentry
= get_nr_dentry();
167 dentry_stat
.nr_unused
= get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
178 #include <asm/word-at-a-time.h>
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
188 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
190 unsigned long a
,b
,mask
;
193 a
= *(unsigned long *)cs
;
194 b
= load_unaligned_zeropad(ct
);
195 if (tcount
< sizeof(unsigned long))
197 if (unlikely(a
!= b
))
199 cs
+= sizeof(unsigned long);
200 ct
+= sizeof(unsigned long);
201 tcount
-= sizeof(unsigned long);
205 mask
= bytemask_from_count(tcount
);
206 return unlikely(!!((a
^ b
) & mask
));
211 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
225 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
243 const unsigned char *cs
= lockless_dereference(dentry
->d_name
.name
);
245 return dentry_string_cmp(cs
, ct
, tcount
);
248 struct external_name
{
251 struct rcu_head head
;
253 unsigned char name
[];
256 static inline struct external_name
*external_name(struct dentry
*dentry
)
258 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
261 static void __d_free(struct rcu_head
*head
)
263 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
265 kmem_cache_free(dentry_cache
, dentry
);
268 static void __d_free_external(struct rcu_head
*head
)
270 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
271 kfree(external_name(dentry
));
272 kmem_cache_free(dentry_cache
, dentry
);
275 static inline int dname_external(const struct dentry
*dentry
)
277 return dentry
->d_name
.name
!= dentry
->d_iname
;
280 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
282 spin_lock(&dentry
->d_lock
);
283 if (unlikely(dname_external(dentry
))) {
284 struct external_name
*p
= external_name(dentry
);
285 atomic_inc(&p
->u
.count
);
286 spin_unlock(&dentry
->d_lock
);
287 name
->name
= p
->name
;
289 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
290 spin_unlock(&dentry
->d_lock
);
291 name
->name
= name
->inline_name
;
294 EXPORT_SYMBOL(take_dentry_name_snapshot
);
296 void release_dentry_name_snapshot(struct name_snapshot
*name
)
298 if (unlikely(name
->name
!= name
->inline_name
)) {
299 struct external_name
*p
;
300 p
= container_of(name
->name
, struct external_name
, name
[0]);
301 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
302 kfree_rcu(p
, u
.head
);
305 EXPORT_SYMBOL(release_dentry_name_snapshot
);
307 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
313 dentry
->d_inode
= inode
;
314 flags
= READ_ONCE(dentry
->d_flags
);
315 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
317 WRITE_ONCE(dentry
->d_flags
, flags
);
320 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
322 unsigned flags
= READ_ONCE(dentry
->d_flags
);
324 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
325 WRITE_ONCE(dentry
->d_flags
, flags
);
326 dentry
->d_inode
= NULL
;
329 static void dentry_free(struct dentry
*dentry
)
331 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
332 if (unlikely(dname_external(dentry
))) {
333 struct external_name
*p
= external_name(dentry
);
334 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
335 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
341 __d_free(&dentry
->d_u
.d_rcu
);
343 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
347 * Release the dentry's inode, using the filesystem
348 * d_iput() operation if defined.
350 static void dentry_unlink_inode(struct dentry
* dentry
)
351 __releases(dentry
->d_lock
)
352 __releases(dentry
->d_inode
->i_lock
)
354 struct inode
*inode
= dentry
->d_inode
;
355 bool hashed
= !d_unhashed(dentry
);
358 raw_write_seqcount_begin(&dentry
->d_seq
);
359 __d_clear_type_and_inode(dentry
);
360 hlist_del_init(&dentry
->d_u
.d_alias
);
362 raw_write_seqcount_end(&dentry
->d_seq
);
363 spin_unlock(&dentry
->d_lock
);
364 spin_unlock(&inode
->i_lock
);
366 fsnotify_inoderemove(inode
);
367 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
368 dentry
->d_op
->d_iput(dentry
, inode
);
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388 static void d_lru_add(struct dentry
*dentry
)
390 D_FLAG_VERIFY(dentry
, 0);
391 dentry
->d_flags
|= DCACHE_LRU_LIST
;
392 this_cpu_inc(nr_dentry_unused
);
393 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
396 static void d_lru_del(struct dentry
*dentry
)
398 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
399 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
400 this_cpu_dec(nr_dentry_unused
);
401 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
404 static void d_shrink_del(struct dentry
*dentry
)
406 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
407 list_del_init(&dentry
->d_lru
);
408 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
409 this_cpu_dec(nr_dentry_unused
);
412 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
414 D_FLAG_VERIFY(dentry
, 0);
415 list_add(&dentry
->d_lru
, list
);
416 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
417 this_cpu_inc(nr_dentry_unused
);
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
426 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
428 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
429 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
430 this_cpu_dec(nr_dentry_unused
);
431 list_lru_isolate(lru
, &dentry
->d_lru
);
434 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
435 struct list_head
*list
)
437 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
438 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
439 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
443 * dentry_lru_(add|del)_list) must be called with d_lock held.
445 static void dentry_lru_add(struct dentry
*dentry
)
447 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
452 * d_drop - drop a dentry
453 * @dentry: dentry to drop
455 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
456 * be found through a VFS lookup any more. Note that this is different from
457 * deleting the dentry - d_delete will try to mark the dentry negative if
458 * possible, giving a successful _negative_ lookup, while d_drop will
459 * just make the cache lookup fail.
461 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
462 * reason (NFS timeouts or autofs deletes).
464 * __d_drop requires dentry->d_lock
465 * ___d_drop doesn't mark dentry as "unhashed"
466 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
468 static void ___d_drop(struct dentry
*dentry
)
470 if (!d_unhashed(dentry
)) {
471 struct hlist_bl_head
*b
;
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
477 if (unlikely(IS_ROOT(dentry
)))
478 b
= &dentry
->d_sb
->s_anon
;
480 b
= d_hash(dentry
->d_name
.hash
);
483 __hlist_bl_del(&dentry
->d_hash
);
485 /* After this call, in-progress rcu-walk path lookup will fail. */
486 write_seqcount_invalidate(&dentry
->d_seq
);
490 void __d_drop(struct dentry
*dentry
)
493 dentry
->d_hash
.pprev
= NULL
;
495 EXPORT_SYMBOL(__d_drop
);
497 void d_drop(struct dentry
*dentry
)
499 spin_lock(&dentry
->d_lock
);
501 spin_unlock(&dentry
->d_lock
);
503 EXPORT_SYMBOL(d_drop
);
505 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
509 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 * attached to the dentry tree
512 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
513 if (unlikely(list_empty(&dentry
->d_child
)))
515 __list_del_entry(&dentry
->d_child
);
517 * Cursors can move around the list of children. While we'd been
518 * a normal list member, it didn't matter - ->d_child.next would've
519 * been updated. However, from now on it won't be and for the
520 * things like d_walk() it might end up with a nasty surprise.
521 * Normally d_walk() doesn't care about cursors moving around -
522 * ->d_lock on parent prevents that and since a cursor has no children
523 * of its own, we get through it without ever unlocking the parent.
524 * There is one exception, though - if we ascend from a child that
525 * gets killed as soon as we unlock it, the next sibling is found
526 * using the value left in its ->d_child.next. And if _that_
527 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 * before d_walk() regains parent->d_lock, we'll end up skipping
529 * everything the cursor had been moved past.
531 * Solution: make sure that the pointer left behind in ->d_child.next
532 * points to something that won't be moving around. I.e. skip the
535 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
536 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
537 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
539 dentry
->d_child
.next
= next
->d_child
.next
;
543 static void __dentry_kill(struct dentry
*dentry
)
545 struct dentry
*parent
= NULL
;
546 bool can_free
= true;
547 if (!IS_ROOT(dentry
))
548 parent
= dentry
->d_parent
;
551 * The dentry is now unrecoverably dead to the world.
553 lockref_mark_dead(&dentry
->d_lockref
);
556 * inform the fs via d_prune that this dentry is about to be
557 * unhashed and destroyed.
559 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
560 dentry
->d_op
->d_prune(dentry
);
562 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
563 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
566 /* if it was on the hash then remove it */
568 dentry_unlist(dentry
, parent
);
570 spin_unlock(&parent
->d_lock
);
572 dentry_unlink_inode(dentry
);
574 spin_unlock(&dentry
->d_lock
);
575 this_cpu_dec(nr_dentry
);
576 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
577 dentry
->d_op
->d_release(dentry
);
579 spin_lock(&dentry
->d_lock
);
580 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
581 dentry
->d_flags
|= DCACHE_MAY_FREE
;
584 spin_unlock(&dentry
->d_lock
);
585 if (likely(can_free
))
590 * Finish off a dentry we've decided to kill.
591 * dentry->d_lock must be held, returns with it unlocked.
592 * If ref is non-zero, then decrement the refcount too.
593 * Returns dentry requiring refcount drop, or NULL if we're done.
595 static struct dentry
*dentry_kill(struct dentry
*dentry
)
596 __releases(dentry
->d_lock
)
598 struct inode
*inode
= dentry
->d_inode
;
599 struct dentry
*parent
= NULL
;
601 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
604 if (!IS_ROOT(dentry
)) {
605 parent
= dentry
->d_parent
;
606 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
608 spin_unlock(&inode
->i_lock
);
613 __dentry_kill(dentry
);
617 spin_unlock(&dentry
->d_lock
);
618 return dentry
; /* try again with same dentry */
621 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
623 struct dentry
*parent
= dentry
->d_parent
;
626 if (unlikely(dentry
->d_lockref
.count
< 0))
628 if (likely(spin_trylock(&parent
->d_lock
)))
631 spin_unlock(&dentry
->d_lock
);
633 parent
= ACCESS_ONCE(dentry
->d_parent
);
634 spin_lock(&parent
->d_lock
);
636 * We can't blindly lock dentry until we are sure
637 * that we won't violate the locking order.
638 * Any changes of dentry->d_parent must have
639 * been done with parent->d_lock held, so
640 * spin_lock() above is enough of a barrier
641 * for checking if it's still our child.
643 if (unlikely(parent
!= dentry
->d_parent
)) {
644 spin_unlock(&parent
->d_lock
);
647 if (parent
!= dentry
) {
648 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
649 if (unlikely(dentry
->d_lockref
.count
< 0)) {
650 spin_unlock(&parent
->d_lock
);
661 * Try to do a lockless dput(), and return whether that was successful.
663 * If unsuccessful, we return false, having already taken the dentry lock.
665 * The caller needs to hold the RCU read lock, so that the dentry is
666 * guaranteed to stay around even if the refcount goes down to zero!
668 static inline bool fast_dput(struct dentry
*dentry
)
671 unsigned int d_flags
;
674 * If we have a d_op->d_delete() operation, we sould not
675 * let the dentry count go to zero, so use "put_or_lock".
677 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
678 return lockref_put_or_lock(&dentry
->d_lockref
);
681 * .. otherwise, we can try to just decrement the
682 * lockref optimistically.
684 ret
= lockref_put_return(&dentry
->d_lockref
);
687 * If the lockref_put_return() failed due to the lock being held
688 * by somebody else, the fast path has failed. We will need to
689 * get the lock, and then check the count again.
691 if (unlikely(ret
< 0)) {
692 spin_lock(&dentry
->d_lock
);
693 if (dentry
->d_lockref
.count
> 1) {
694 dentry
->d_lockref
.count
--;
695 spin_unlock(&dentry
->d_lock
);
702 * If we weren't the last ref, we're done.
708 * Careful, careful. The reference count went down
709 * to zero, but we don't hold the dentry lock, so
710 * somebody else could get it again, and do another
711 * dput(), and we need to not race with that.
713 * However, there is a very special and common case
714 * where we don't care, because there is nothing to
715 * do: the dentry is still hashed, it does not have
716 * a 'delete' op, and it's referenced and already on
719 * NOTE! Since we aren't locked, these values are
720 * not "stable". However, it is sufficient that at
721 * some point after we dropped the reference the
722 * dentry was hashed and the flags had the proper
723 * value. Other dentry users may have re-gotten
724 * a reference to the dentry and change that, but
725 * our work is done - we can leave the dentry
726 * around with a zero refcount.
729 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
730 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
732 /* Nothing to do? Dropping the reference was all we needed? */
733 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
737 * Not the fast normal case? Get the lock. We've already decremented
738 * the refcount, but we'll need to re-check the situation after
741 spin_lock(&dentry
->d_lock
);
744 * Did somebody else grab a reference to it in the meantime, and
745 * we're no longer the last user after all? Alternatively, somebody
746 * else could have killed it and marked it dead. Either way, we
747 * don't need to do anything else.
749 if (dentry
->d_lockref
.count
) {
750 spin_unlock(&dentry
->d_lock
);
755 * Re-get the reference we optimistically dropped. We hold the
756 * lock, and we just tested that it was zero, so we can just
759 dentry
->d_lockref
.count
= 1;
767 * This is complicated by the fact that we do not want to put
768 * dentries that are no longer on any hash chain on the unused
769 * list: we'd much rather just get rid of them immediately.
771 * However, that implies that we have to traverse the dentry
772 * tree upwards to the parents which might _also_ now be
773 * scheduled for deletion (it may have been only waiting for
774 * its last child to go away).
776 * This tail recursion is done by hand as we don't want to depend
777 * on the compiler to always get this right (gcc generally doesn't).
778 * Real recursion would eat up our stack space.
782 * dput - release a dentry
783 * @dentry: dentry to release
785 * Release a dentry. This will drop the usage count and if appropriate
786 * call the dentry unlink method as well as removing it from the queues and
787 * releasing its resources. If the parent dentries were scheduled for release
788 * they too may now get deleted.
790 void dput(struct dentry
*dentry
)
792 if (unlikely(!dentry
))
799 if (likely(fast_dput(dentry
))) {
804 /* Slow case: now with the dentry lock held */
807 WARN_ON(d_in_lookup(dentry
));
809 /* Unreachable? Get rid of it */
810 if (unlikely(d_unhashed(dentry
)))
813 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
816 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
817 if (dentry
->d_op
->d_delete(dentry
))
821 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
822 dentry
->d_flags
|= DCACHE_REFERENCED
;
823 dentry_lru_add(dentry
);
825 dentry
->d_lockref
.count
--;
826 spin_unlock(&dentry
->d_lock
);
830 dentry
= dentry_kill(dentry
);
839 /* This must be called with d_lock held */
840 static inline void __dget_dlock(struct dentry
*dentry
)
842 dentry
->d_lockref
.count
++;
845 static inline void __dget(struct dentry
*dentry
)
847 lockref_get(&dentry
->d_lockref
);
850 struct dentry
*dget_parent(struct dentry
*dentry
)
856 * Do optimistic parent lookup without any
860 ret
= ACCESS_ONCE(dentry
->d_parent
);
861 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
863 if (likely(gotref
)) {
864 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
871 * Don't need rcu_dereference because we re-check it was correct under
875 ret
= dentry
->d_parent
;
876 spin_lock(&ret
->d_lock
);
877 if (unlikely(ret
!= dentry
->d_parent
)) {
878 spin_unlock(&ret
->d_lock
);
883 BUG_ON(!ret
->d_lockref
.count
);
884 ret
->d_lockref
.count
++;
885 spin_unlock(&ret
->d_lock
);
888 EXPORT_SYMBOL(dget_parent
);
891 * d_find_alias - grab a hashed alias of inode
892 * @inode: inode in question
894 * If inode has a hashed alias, or is a directory and has any alias,
895 * acquire the reference to alias and return it. Otherwise return NULL.
896 * Notice that if inode is a directory there can be only one alias and
897 * it can be unhashed only if it has no children, or if it is the root
898 * of a filesystem, or if the directory was renamed and d_revalidate
899 * was the first vfs operation to notice.
901 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
902 * any other hashed alias over that one.
904 static struct dentry
*__d_find_alias(struct inode
*inode
)
906 struct dentry
*alias
, *discon_alias
;
910 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
911 spin_lock(&alias
->d_lock
);
912 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
913 if (IS_ROOT(alias
) &&
914 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
915 discon_alias
= alias
;
918 spin_unlock(&alias
->d_lock
);
922 spin_unlock(&alias
->d_lock
);
925 alias
= discon_alias
;
926 spin_lock(&alias
->d_lock
);
927 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
929 spin_unlock(&alias
->d_lock
);
932 spin_unlock(&alias
->d_lock
);
938 struct dentry
*d_find_alias(struct inode
*inode
)
940 struct dentry
*de
= NULL
;
942 if (!hlist_empty(&inode
->i_dentry
)) {
943 spin_lock(&inode
->i_lock
);
944 de
= __d_find_alias(inode
);
945 spin_unlock(&inode
->i_lock
);
949 EXPORT_SYMBOL(d_find_alias
);
952 * Try to kill dentries associated with this inode.
953 * WARNING: you must own a reference to inode.
955 void d_prune_aliases(struct inode
*inode
)
957 struct dentry
*dentry
;
959 spin_lock(&inode
->i_lock
);
960 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
961 spin_lock(&dentry
->d_lock
);
962 if (!dentry
->d_lockref
.count
) {
963 struct dentry
*parent
= lock_parent(dentry
);
964 if (likely(!dentry
->d_lockref
.count
)) {
965 __dentry_kill(dentry
);
970 spin_unlock(&parent
->d_lock
);
972 spin_unlock(&dentry
->d_lock
);
974 spin_unlock(&inode
->i_lock
);
976 EXPORT_SYMBOL(d_prune_aliases
);
978 static void shrink_dentry_list(struct list_head
*list
)
980 struct dentry
*dentry
, *parent
;
982 while (!list_empty(list
)) {
984 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
985 spin_lock(&dentry
->d_lock
);
986 parent
= lock_parent(dentry
);
989 * The dispose list is isolated and dentries are not accounted
990 * to the LRU here, so we can simply remove it from the list
991 * here regardless of whether it is referenced or not.
993 d_shrink_del(dentry
);
996 * We found an inuse dentry which was not removed from
997 * the LRU because of laziness during lookup. Do not free it.
999 if (dentry
->d_lockref
.count
> 0) {
1000 spin_unlock(&dentry
->d_lock
);
1002 spin_unlock(&parent
->d_lock
);
1007 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1008 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1009 spin_unlock(&dentry
->d_lock
);
1011 spin_unlock(&parent
->d_lock
);
1013 dentry_free(dentry
);
1017 inode
= dentry
->d_inode
;
1018 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1019 d_shrink_add(dentry
, list
);
1020 spin_unlock(&dentry
->d_lock
);
1022 spin_unlock(&parent
->d_lock
);
1026 __dentry_kill(dentry
);
1029 * We need to prune ancestors too. This is necessary to prevent
1030 * quadratic behavior of shrink_dcache_parent(), but is also
1031 * expected to be beneficial in reducing dentry cache
1035 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1036 parent
= lock_parent(dentry
);
1037 if (dentry
->d_lockref
.count
!= 1) {
1038 dentry
->d_lockref
.count
--;
1039 spin_unlock(&dentry
->d_lock
);
1041 spin_unlock(&parent
->d_lock
);
1044 inode
= dentry
->d_inode
; /* can't be NULL */
1045 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1046 spin_unlock(&dentry
->d_lock
);
1048 spin_unlock(&parent
->d_lock
);
1052 __dentry_kill(dentry
);
1058 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1059 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1061 struct list_head
*freeable
= arg
;
1062 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1066 * we are inverting the lru lock/dentry->d_lock here,
1067 * so use a trylock. If we fail to get the lock, just skip
1070 if (!spin_trylock(&dentry
->d_lock
))
1074 * Referenced dentries are still in use. If they have active
1075 * counts, just remove them from the LRU. Otherwise give them
1076 * another pass through the LRU.
1078 if (dentry
->d_lockref
.count
) {
1079 d_lru_isolate(lru
, dentry
);
1080 spin_unlock(&dentry
->d_lock
);
1084 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1085 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1086 spin_unlock(&dentry
->d_lock
);
1089 * The list move itself will be made by the common LRU code. At
1090 * this point, we've dropped the dentry->d_lock but keep the
1091 * lru lock. This is safe to do, since every list movement is
1092 * protected by the lru lock even if both locks are held.
1094 * This is guaranteed by the fact that all LRU management
1095 * functions are intermediated by the LRU API calls like
1096 * list_lru_add and list_lru_del. List movement in this file
1097 * only ever occur through this functions or through callbacks
1098 * like this one, that are called from the LRU API.
1100 * The only exceptions to this are functions like
1101 * shrink_dentry_list, and code that first checks for the
1102 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1103 * operating only with stack provided lists after they are
1104 * properly isolated from the main list. It is thus, always a
1110 d_lru_shrink_move(lru
, dentry
, freeable
);
1111 spin_unlock(&dentry
->d_lock
);
1117 * prune_dcache_sb - shrink the dcache
1119 * @sc: shrink control, passed to list_lru_shrink_walk()
1121 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1122 * is done when we need more memory and called from the superblock shrinker
1125 * This function may fail to free any resources if all the dentries are in
1128 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1133 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1134 dentry_lru_isolate
, &dispose
);
1135 shrink_dentry_list(&dispose
);
1139 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1140 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1142 struct list_head
*freeable
= arg
;
1143 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1146 * we are inverting the lru lock/dentry->d_lock here,
1147 * so use a trylock. If we fail to get the lock, just skip
1150 if (!spin_trylock(&dentry
->d_lock
))
1153 d_lru_shrink_move(lru
, dentry
, freeable
);
1154 spin_unlock(&dentry
->d_lock
);
1161 * shrink_dcache_sb - shrink dcache for a superblock
1164 * Shrink the dcache for the specified super block. This is used to free
1165 * the dcache before unmounting a file system.
1167 void shrink_dcache_sb(struct super_block
*sb
)
1174 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1175 dentry_lru_isolate_shrink
, &dispose
, 1024);
1177 this_cpu_sub(nr_dentry_unused
, freed
);
1178 shrink_dentry_list(&dispose
);
1180 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1182 EXPORT_SYMBOL(shrink_dcache_sb
);
1185 * enum d_walk_ret - action to talke during tree walk
1186 * @D_WALK_CONTINUE: contrinue walk
1187 * @D_WALK_QUIT: quit walk
1188 * @D_WALK_NORETRY: quit when retry is needed
1189 * @D_WALK_SKIP: skip this dentry and its children
1199 * d_walk - walk the dentry tree
1200 * @parent: start of walk
1201 * @data: data passed to @enter() and @finish()
1202 * @enter: callback when first entering the dentry
1203 * @finish: callback when successfully finished the walk
1205 * The @enter() and @finish() callbacks are called with d_lock held.
1207 static void d_walk(struct dentry
*parent
, void *data
,
1208 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1209 void (*finish
)(void *))
1211 struct dentry
*this_parent
;
1212 struct list_head
*next
;
1214 enum d_walk_ret ret
;
1218 read_seqbegin_or_lock(&rename_lock
, &seq
);
1219 this_parent
= parent
;
1220 spin_lock(&this_parent
->d_lock
);
1222 ret
= enter(data
, this_parent
);
1224 case D_WALK_CONTINUE
:
1229 case D_WALK_NORETRY
:
1234 next
= this_parent
->d_subdirs
.next
;
1236 while (next
!= &this_parent
->d_subdirs
) {
1237 struct list_head
*tmp
= next
;
1238 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1241 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1244 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1246 ret
= enter(data
, dentry
);
1248 case D_WALK_CONTINUE
:
1251 spin_unlock(&dentry
->d_lock
);
1253 case D_WALK_NORETRY
:
1257 spin_unlock(&dentry
->d_lock
);
1261 if (!list_empty(&dentry
->d_subdirs
)) {
1262 spin_unlock(&this_parent
->d_lock
);
1263 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1264 this_parent
= dentry
;
1265 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1268 spin_unlock(&dentry
->d_lock
);
1271 * All done at this level ... ascend and resume the search.
1275 if (this_parent
!= parent
) {
1276 struct dentry
*child
= this_parent
;
1277 this_parent
= child
->d_parent
;
1279 spin_unlock(&child
->d_lock
);
1280 spin_lock(&this_parent
->d_lock
);
1282 /* might go back up the wrong parent if we have had a rename. */
1283 if (need_seqretry(&rename_lock
, seq
))
1285 /* go into the first sibling still alive */
1287 next
= child
->d_child
.next
;
1288 if (next
== &this_parent
->d_subdirs
)
1290 child
= list_entry(next
, struct dentry
, d_child
);
1291 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1295 if (need_seqretry(&rename_lock
, seq
))
1302 spin_unlock(&this_parent
->d_lock
);
1303 done_seqretry(&rename_lock
, seq
);
1307 spin_unlock(&this_parent
->d_lock
);
1317 * Search for at least 1 mount point in the dentry's subdirs.
1318 * We descend to the next level whenever the d_subdirs
1319 * list is non-empty and continue searching.
1322 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1325 if (d_mountpoint(dentry
)) {
1329 return D_WALK_CONTINUE
;
1333 * have_submounts - check for mounts over a dentry
1334 * @parent: dentry to check.
1336 * Return true if the parent or its subdirectories contain
1339 int have_submounts(struct dentry
*parent
)
1343 d_walk(parent
, &ret
, check_mount
, NULL
);
1347 EXPORT_SYMBOL(have_submounts
);
1350 * Called by mount code to set a mountpoint and check if the mountpoint is
1351 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1352 * subtree can become unreachable).
1354 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1355 * this reason take rename_lock and d_lock on dentry and ancestors.
1357 int d_set_mounted(struct dentry
*dentry
)
1361 write_seqlock(&rename_lock
);
1362 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1363 /* Need exclusion wrt. d_invalidate() */
1364 spin_lock(&p
->d_lock
);
1365 if (unlikely(d_unhashed(p
))) {
1366 spin_unlock(&p
->d_lock
);
1369 spin_unlock(&p
->d_lock
);
1371 spin_lock(&dentry
->d_lock
);
1372 if (!d_unlinked(dentry
)) {
1374 if (!d_mountpoint(dentry
)) {
1375 dentry
->d_flags
|= DCACHE_MOUNTED
;
1379 spin_unlock(&dentry
->d_lock
);
1381 write_sequnlock(&rename_lock
);
1386 * Search the dentry child list of the specified parent,
1387 * and move any unused dentries to the end of the unused
1388 * list for prune_dcache(). We descend to the next level
1389 * whenever the d_subdirs list is non-empty and continue
1392 * It returns zero iff there are no unused children,
1393 * otherwise it returns the number of children moved to
1394 * the end of the unused list. This may not be the total
1395 * number of unused children, because select_parent can
1396 * drop the lock and return early due to latency
1400 struct select_data
{
1401 struct dentry
*start
;
1402 struct list_head dispose
;
1406 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1408 struct select_data
*data
= _data
;
1409 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1411 if (data
->start
== dentry
)
1414 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1417 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1419 if (!dentry
->d_lockref
.count
) {
1420 d_shrink_add(dentry
, &data
->dispose
);
1425 * We can return to the caller if we have found some (this
1426 * ensures forward progress). We'll be coming back to find
1429 if (!list_empty(&data
->dispose
))
1430 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1436 * shrink_dcache_parent - prune dcache
1437 * @parent: parent of entries to prune
1439 * Prune the dcache to remove unused children of the parent dentry.
1441 void shrink_dcache_parent(struct dentry
*parent
)
1444 struct select_data data
;
1446 INIT_LIST_HEAD(&data
.dispose
);
1447 data
.start
= parent
;
1450 d_walk(parent
, &data
, select_collect
, NULL
);
1454 shrink_dentry_list(&data
.dispose
);
1458 EXPORT_SYMBOL(shrink_dcache_parent
);
1460 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1462 /* it has busy descendents; complain about those instead */
1463 if (!list_empty(&dentry
->d_subdirs
))
1464 return D_WALK_CONTINUE
;
1466 /* root with refcount 1 is fine */
1467 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1468 return D_WALK_CONTINUE
;
1470 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1471 " still in use (%d) [unmount of %s %s]\n",
1474 dentry
->d_inode
->i_ino
: 0UL,
1476 dentry
->d_lockref
.count
,
1477 dentry
->d_sb
->s_type
->name
,
1478 dentry
->d_sb
->s_id
);
1480 return D_WALK_CONTINUE
;
1483 static void do_one_tree(struct dentry
*dentry
)
1485 shrink_dcache_parent(dentry
);
1486 d_walk(dentry
, dentry
, umount_check
, NULL
);
1492 * destroy the dentries attached to a superblock on unmounting
1494 void shrink_dcache_for_umount(struct super_block
*sb
)
1496 struct dentry
*dentry
;
1498 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1500 dentry
= sb
->s_root
;
1502 do_one_tree(dentry
);
1504 while (!hlist_bl_empty(&sb
->s_anon
)) {
1505 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1506 do_one_tree(dentry
);
1510 struct detach_data
{
1511 struct select_data select
;
1512 struct dentry
*mountpoint
;
1514 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1516 struct detach_data
*data
= _data
;
1518 if (d_mountpoint(dentry
)) {
1519 __dget_dlock(dentry
);
1520 data
->mountpoint
= dentry
;
1524 return select_collect(&data
->select
, dentry
);
1527 static void check_and_drop(void *_data
)
1529 struct detach_data
*data
= _data
;
1531 if (!data
->mountpoint
&& !data
->select
.found
)
1532 __d_drop(data
->select
.start
);
1536 * d_invalidate - detach submounts, prune dcache, and drop
1537 * @dentry: dentry to invalidate (aka detach, prune and drop)
1541 * The final d_drop is done as an atomic operation relative to
1542 * rename_lock ensuring there are no races with d_set_mounted. This
1543 * ensures there are no unhashed dentries on the path to a mountpoint.
1545 void d_invalidate(struct dentry
*dentry
)
1548 * If it's already been dropped, return OK.
1550 spin_lock(&dentry
->d_lock
);
1551 if (d_unhashed(dentry
)) {
1552 spin_unlock(&dentry
->d_lock
);
1555 spin_unlock(&dentry
->d_lock
);
1557 /* Negative dentries can be dropped without further checks */
1558 if (!dentry
->d_inode
) {
1564 struct detach_data data
;
1566 data
.mountpoint
= NULL
;
1567 INIT_LIST_HEAD(&data
.select
.dispose
);
1568 data
.select
.start
= dentry
;
1569 data
.select
.found
= 0;
1571 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1573 if (data
.select
.found
)
1574 shrink_dentry_list(&data
.select
.dispose
);
1576 if (data
.mountpoint
) {
1577 detach_mounts(data
.mountpoint
);
1578 dput(data
.mountpoint
);
1581 if (!data
.mountpoint
&& !data
.select
.found
)
1587 EXPORT_SYMBOL(d_invalidate
);
1590 * __d_alloc - allocate a dcache entry
1591 * @sb: filesystem it will belong to
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1599 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1601 struct dentry
*dentry
;
1605 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1610 * We guarantee that the inline name is always NUL-terminated.
1611 * This way the memcpy() done by the name switching in rename
1612 * will still always have a NUL at the end, even if we might
1613 * be overwriting an internal NUL character
1615 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1616 if (unlikely(!name
)) {
1617 static const struct qstr anon
= QSTR_INIT("/", 1);
1619 dname
= dentry
->d_iname
;
1620 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1621 size_t size
= offsetof(struct external_name
, name
[1]);
1622 struct external_name
*p
= kmalloc(size
+ name
->len
,
1623 GFP_KERNEL_ACCOUNT
);
1625 kmem_cache_free(dentry_cache
, dentry
);
1628 atomic_set(&p
->u
.count
, 1);
1630 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1631 kasan_unpoison_shadow(dname
,
1632 round_up(name
->len
+ 1, sizeof(unsigned long)));
1634 dname
= dentry
->d_iname
;
1637 dentry
->d_name
.len
= name
->len
;
1638 dentry
->d_name
.hash
= name
->hash
;
1639 memcpy(dname
, name
->name
, name
->len
);
1640 dname
[name
->len
] = 0;
1642 /* Make sure we always see the terminating NUL character */
1644 dentry
->d_name
.name
= dname
;
1646 dentry
->d_lockref
.count
= 1;
1647 dentry
->d_flags
= 0;
1648 spin_lock_init(&dentry
->d_lock
);
1649 seqcount_init(&dentry
->d_seq
);
1650 dentry
->d_inode
= NULL
;
1651 dentry
->d_parent
= dentry
;
1653 dentry
->d_op
= NULL
;
1654 dentry
->d_fsdata
= NULL
;
1655 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1656 INIT_LIST_HEAD(&dentry
->d_lru
);
1657 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1658 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1659 INIT_LIST_HEAD(&dentry
->d_child
);
1660 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1662 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1663 err
= dentry
->d_op
->d_init(dentry
);
1665 if (dname_external(dentry
))
1666 kfree(external_name(dentry
));
1667 kmem_cache_free(dentry_cache
, dentry
);
1672 this_cpu_inc(nr_dentry
);
1678 * d_alloc - allocate a dcache entry
1679 * @parent: parent of entry to allocate
1680 * @name: qstr of the name
1682 * Allocates a dentry. It returns %NULL if there is insufficient memory
1683 * available. On a success the dentry is returned. The name passed in is
1684 * copied and the copy passed in may be reused after this call.
1686 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1688 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1691 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1692 spin_lock(&parent
->d_lock
);
1694 * don't need child lock because it is not subject
1695 * to concurrency here
1697 __dget_dlock(parent
);
1698 dentry
->d_parent
= parent
;
1699 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1700 spin_unlock(&parent
->d_lock
);
1704 EXPORT_SYMBOL(d_alloc
);
1706 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1708 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, NULL
);
1710 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1711 dentry
->d_parent
= dget(parent
);
1717 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1718 * @sb: the superblock
1719 * @name: qstr of the name
1721 * For a filesystem that just pins its dentries in memory and never
1722 * performs lookups at all, return an unhashed IS_ROOT dentry.
1724 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1726 return __d_alloc(sb
, name
);
1728 EXPORT_SYMBOL(d_alloc_pseudo
);
1730 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1735 q
.hash_len
= hashlen_string(parent
, name
);
1736 return d_alloc(parent
, &q
);
1738 EXPORT_SYMBOL(d_alloc_name
);
1740 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1742 WARN_ON_ONCE(dentry
->d_op
);
1743 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1745 DCACHE_OP_REVALIDATE
|
1746 DCACHE_OP_WEAK_REVALIDATE
|
1753 dentry
->d_flags
|= DCACHE_OP_HASH
;
1755 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1756 if (op
->d_revalidate
)
1757 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1758 if (op
->d_weak_revalidate
)
1759 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1761 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1763 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1765 dentry
->d_flags
|= DCACHE_OP_REAL
;
1768 EXPORT_SYMBOL(d_set_d_op
);
1772 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1773 * @dentry - The dentry to mark
1775 * Mark a dentry as falling through to the lower layer (as set with
1776 * d_pin_lower()). This flag may be recorded on the medium.
1778 void d_set_fallthru(struct dentry
*dentry
)
1780 spin_lock(&dentry
->d_lock
);
1781 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1782 spin_unlock(&dentry
->d_lock
);
1784 EXPORT_SYMBOL(d_set_fallthru
);
1786 static unsigned d_flags_for_inode(struct inode
*inode
)
1788 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1791 return DCACHE_MISS_TYPE
;
1793 if (S_ISDIR(inode
->i_mode
)) {
1794 add_flags
= DCACHE_DIRECTORY_TYPE
;
1795 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1796 if (unlikely(!inode
->i_op
->lookup
))
1797 add_flags
= DCACHE_AUTODIR_TYPE
;
1799 inode
->i_opflags
|= IOP_LOOKUP
;
1801 goto type_determined
;
1804 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1805 if (unlikely(inode
->i_op
->get_link
)) {
1806 add_flags
= DCACHE_SYMLINK_TYPE
;
1807 goto type_determined
;
1809 inode
->i_opflags
|= IOP_NOFOLLOW
;
1812 if (unlikely(!S_ISREG(inode
->i_mode
)))
1813 add_flags
= DCACHE_SPECIAL_TYPE
;
1816 if (unlikely(IS_AUTOMOUNT(inode
)))
1817 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1821 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1823 unsigned add_flags
= d_flags_for_inode(inode
);
1824 WARN_ON(d_in_lookup(dentry
));
1826 spin_lock(&dentry
->d_lock
);
1827 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1828 raw_write_seqcount_begin(&dentry
->d_seq
);
1829 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1830 raw_write_seqcount_end(&dentry
->d_seq
);
1831 fsnotify_update_flags(dentry
);
1832 spin_unlock(&dentry
->d_lock
);
1836 * d_instantiate - fill in inode information for a dentry
1837 * @entry: dentry to complete
1838 * @inode: inode to attach to this dentry
1840 * Fill in inode information in the entry.
1842 * This turns negative dentries into productive full members
1845 * NOTE! This assumes that the inode count has been incremented
1846 * (or otherwise set) by the caller to indicate that it is now
1847 * in use by the dcache.
1850 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1852 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1854 security_d_instantiate(entry
, inode
);
1855 spin_lock(&inode
->i_lock
);
1856 __d_instantiate(entry
, inode
);
1857 spin_unlock(&inode
->i_lock
);
1860 EXPORT_SYMBOL(d_instantiate
);
1863 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1864 * @entry: dentry to complete
1865 * @inode: inode to attach to this dentry
1867 * Fill in inode information in the entry. If a directory alias is found, then
1868 * return an error (and drop inode). Together with d_materialise_unique() this
1869 * guarantees that a directory inode may never have more than one alias.
1871 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1873 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1875 security_d_instantiate(entry
, inode
);
1876 spin_lock(&inode
->i_lock
);
1877 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1878 spin_unlock(&inode
->i_lock
);
1882 __d_instantiate(entry
, inode
);
1883 spin_unlock(&inode
->i_lock
);
1887 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1889 struct dentry
*d_make_root(struct inode
*root_inode
)
1891 struct dentry
*res
= NULL
;
1894 res
= __d_alloc(root_inode
->i_sb
, NULL
);
1896 d_instantiate(res
, root_inode
);
1902 EXPORT_SYMBOL(d_make_root
);
1904 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1906 struct dentry
*alias
;
1908 if (hlist_empty(&inode
->i_dentry
))
1910 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1916 * d_find_any_alias - find any alias for a given inode
1917 * @inode: inode to find an alias for
1919 * If any aliases exist for the given inode, take and return a
1920 * reference for one of them. If no aliases exist, return %NULL.
1922 struct dentry
*d_find_any_alias(struct inode
*inode
)
1926 spin_lock(&inode
->i_lock
);
1927 de
= __d_find_any_alias(inode
);
1928 spin_unlock(&inode
->i_lock
);
1931 EXPORT_SYMBOL(d_find_any_alias
);
1933 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1940 return ERR_PTR(-ESTALE
);
1942 return ERR_CAST(inode
);
1944 res
= d_find_any_alias(inode
);
1948 tmp
= __d_alloc(inode
->i_sb
, NULL
);
1950 res
= ERR_PTR(-ENOMEM
);
1954 security_d_instantiate(tmp
, inode
);
1955 spin_lock(&inode
->i_lock
);
1956 res
= __d_find_any_alias(inode
);
1958 spin_unlock(&inode
->i_lock
);
1963 /* attach a disconnected dentry */
1964 add_flags
= d_flags_for_inode(inode
);
1967 add_flags
|= DCACHE_DISCONNECTED
;
1969 spin_lock(&tmp
->d_lock
);
1970 __d_set_inode_and_type(tmp
, inode
, add_flags
);
1971 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1972 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1973 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1974 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1975 spin_unlock(&tmp
->d_lock
);
1976 spin_unlock(&inode
->i_lock
);
1986 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1987 * @inode: inode to allocate the dentry for
1989 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1990 * similar open by handle operations. The returned dentry may be anonymous,
1991 * or may have a full name (if the inode was already in the cache).
1993 * When called on a directory inode, we must ensure that the inode only ever
1994 * has one dentry. If a dentry is found, that is returned instead of
1995 * allocating a new one.
1997 * On successful return, the reference to the inode has been transferred
1998 * to the dentry. In case of an error the reference on the inode is released.
1999 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2000 * be passed in and the error will be propagated to the return value,
2001 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2003 struct dentry
*d_obtain_alias(struct inode
*inode
)
2005 return __d_obtain_alias(inode
, 1);
2007 EXPORT_SYMBOL(d_obtain_alias
);
2010 * d_obtain_root - find or allocate a dentry for a given inode
2011 * @inode: inode to allocate the dentry for
2013 * Obtain an IS_ROOT dentry for the root of a filesystem.
2015 * We must ensure that directory inodes only ever have one dentry. If a
2016 * dentry is found, that is returned instead of allocating a new one.
2018 * On successful return, the reference to the inode has been transferred
2019 * to the dentry. In case of an error the reference on the inode is
2020 * released. A %NULL or IS_ERR inode may be passed in and will be the
2021 * error will be propagate to the return value, with a %NULL @inode
2022 * replaced by ERR_PTR(-ESTALE).
2024 struct dentry
*d_obtain_root(struct inode
*inode
)
2026 return __d_obtain_alias(inode
, 0);
2028 EXPORT_SYMBOL(d_obtain_root
);
2031 * d_add_ci - lookup or allocate new dentry with case-exact name
2032 * @inode: the inode case-insensitive lookup has found
2033 * @dentry: the negative dentry that was passed to the parent's lookup func
2034 * @name: the case-exact name to be associated with the returned dentry
2036 * This is to avoid filling the dcache with case-insensitive names to the
2037 * same inode, only the actual correct case is stored in the dcache for
2038 * case-insensitive filesystems.
2040 * For a case-insensitive lookup match and if the the case-exact dentry
2041 * already exists in in the dcache, use it and return it.
2043 * If no entry exists with the exact case name, allocate new dentry with
2044 * the exact case, and return the spliced entry.
2046 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2049 struct dentry
*found
, *res
;
2052 * First check if a dentry matching the name already exists,
2053 * if not go ahead and create it now.
2055 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2060 if (d_in_lookup(dentry
)) {
2061 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2063 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2068 found
= d_alloc(dentry
->d_parent
, name
);
2071 return ERR_PTR(-ENOMEM
);
2074 res
= d_splice_alias(inode
, found
);
2081 EXPORT_SYMBOL(d_add_ci
);
2084 static inline bool d_same_name(const struct dentry
*dentry
,
2085 const struct dentry
*parent
,
2086 const struct qstr
*name
)
2088 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2089 if (dentry
->d_name
.len
!= name
->len
)
2091 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2093 return parent
->d_op
->d_compare(dentry
,
2094 dentry
->d_name
.len
, dentry
->d_name
.name
,
2099 * __d_lookup_rcu - search for a dentry (racy, store-free)
2100 * @parent: parent dentry
2101 * @name: qstr of name we wish to find
2102 * @seqp: returns d_seq value at the point where the dentry was found
2103 * Returns: dentry, or NULL
2105 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2106 * resolution (store-free path walking) design described in
2107 * Documentation/filesystems/path-lookup.txt.
2109 * This is not to be used outside core vfs.
2111 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2112 * held, and rcu_read_lock held. The returned dentry must not be stored into
2113 * without taking d_lock and checking d_seq sequence count against @seq
2116 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2119 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2120 * the returned dentry, so long as its parent's seqlock is checked after the
2121 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2122 * is formed, giving integrity down the path walk.
2124 * NOTE! The caller *has* to check the resulting dentry against the sequence
2125 * number we've returned before using any of the resulting dentry state!
2127 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2128 const struct qstr
*name
,
2131 u64 hashlen
= name
->hash_len
;
2132 const unsigned char *str
= name
->name
;
2133 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2134 struct hlist_bl_node
*node
;
2135 struct dentry
*dentry
;
2138 * Note: There is significant duplication with __d_lookup_rcu which is
2139 * required to prevent single threaded performance regressions
2140 * especially on architectures where smp_rmb (in seqcounts) are costly.
2141 * Keep the two functions in sync.
2145 * The hash list is protected using RCU.
2147 * Carefully use d_seq when comparing a candidate dentry, to avoid
2148 * races with d_move().
2150 * It is possible that concurrent renames can mess up our list
2151 * walk here and result in missing our dentry, resulting in the
2152 * false-negative result. d_lookup() protects against concurrent
2153 * renames using rename_lock seqlock.
2155 * See Documentation/filesystems/path-lookup.txt for more details.
2157 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2162 * The dentry sequence count protects us from concurrent
2163 * renames, and thus protects parent and name fields.
2165 * The caller must perform a seqcount check in order
2166 * to do anything useful with the returned dentry.
2168 * NOTE! We do a "raw" seqcount_begin here. That means that
2169 * we don't wait for the sequence count to stabilize if it
2170 * is in the middle of a sequence change. If we do the slow
2171 * dentry compare, we will do seqretries until it is stable,
2172 * and if we end up with a successful lookup, we actually
2173 * want to exit RCU lookup anyway.
2175 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2176 * we are still guaranteed NUL-termination of ->d_name.name.
2178 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2179 if (dentry
->d_parent
!= parent
)
2181 if (d_unhashed(dentry
))
2184 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2187 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2189 tlen
= dentry
->d_name
.len
;
2190 tname
= dentry
->d_name
.name
;
2191 /* we want a consistent (name,len) pair */
2192 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2196 if (parent
->d_op
->d_compare(dentry
,
2197 tlen
, tname
, name
) != 0)
2200 if (dentry
->d_name
.hash_len
!= hashlen
)
2202 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2212 * d_lookup - search for a dentry
2213 * @parent: parent dentry
2214 * @name: qstr of name we wish to find
2215 * Returns: dentry, or NULL
2217 * d_lookup searches the children of the parent dentry for the name in
2218 * question. If the dentry is found its reference count is incremented and the
2219 * dentry is returned. The caller must use dput to free the entry when it has
2220 * finished using it. %NULL is returned if the dentry does not exist.
2222 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2224 struct dentry
*dentry
;
2228 seq
= read_seqbegin(&rename_lock
);
2229 dentry
= __d_lookup(parent
, name
);
2232 } while (read_seqretry(&rename_lock
, seq
));
2235 EXPORT_SYMBOL(d_lookup
);
2238 * __d_lookup - search for a dentry (racy)
2239 * @parent: parent dentry
2240 * @name: qstr of name we wish to find
2241 * Returns: dentry, or NULL
2243 * __d_lookup is like d_lookup, however it may (rarely) return a
2244 * false-negative result due to unrelated rename activity.
2246 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2247 * however it must be used carefully, eg. with a following d_lookup in
2248 * the case of failure.
2250 * __d_lookup callers must be commented.
2252 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2254 unsigned int hash
= name
->hash
;
2255 struct hlist_bl_head
*b
= d_hash(hash
);
2256 struct hlist_bl_node
*node
;
2257 struct dentry
*found
= NULL
;
2258 struct dentry
*dentry
;
2261 * Note: There is significant duplication with __d_lookup_rcu which is
2262 * required to prevent single threaded performance regressions
2263 * especially on architectures where smp_rmb (in seqcounts) are costly.
2264 * Keep the two functions in sync.
2268 * The hash list is protected using RCU.
2270 * Take d_lock when comparing a candidate dentry, to avoid races
2273 * It is possible that concurrent renames can mess up our list
2274 * walk here and result in missing our dentry, resulting in the
2275 * false-negative result. d_lookup() protects against concurrent
2276 * renames using rename_lock seqlock.
2278 * See Documentation/filesystems/path-lookup.txt for more details.
2282 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2284 if (dentry
->d_name
.hash
!= hash
)
2287 spin_lock(&dentry
->d_lock
);
2288 if (dentry
->d_parent
!= parent
)
2290 if (d_unhashed(dentry
))
2293 if (!d_same_name(dentry
, parent
, name
))
2296 dentry
->d_lockref
.count
++;
2298 spin_unlock(&dentry
->d_lock
);
2301 spin_unlock(&dentry
->d_lock
);
2309 * d_hash_and_lookup - hash the qstr then search for a dentry
2310 * @dir: Directory to search in
2311 * @name: qstr of name we wish to find
2313 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2315 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2318 * Check for a fs-specific hash function. Note that we must
2319 * calculate the standard hash first, as the d_op->d_hash()
2320 * routine may choose to leave the hash value unchanged.
2322 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2323 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2324 int err
= dir
->d_op
->d_hash(dir
, name
);
2325 if (unlikely(err
< 0))
2326 return ERR_PTR(err
);
2328 return d_lookup(dir
, name
);
2330 EXPORT_SYMBOL(d_hash_and_lookup
);
2333 * When a file is deleted, we have two options:
2334 * - turn this dentry into a negative dentry
2335 * - unhash this dentry and free it.
2337 * Usually, we want to just turn this into
2338 * a negative dentry, but if anybody else is
2339 * currently using the dentry or the inode
2340 * we can't do that and we fall back on removing
2341 * it from the hash queues and waiting for
2342 * it to be deleted later when it has no users
2346 * d_delete - delete a dentry
2347 * @dentry: The dentry to delete
2349 * Turn the dentry into a negative dentry if possible, otherwise
2350 * remove it from the hash queues so it can be deleted later
2353 void d_delete(struct dentry
* dentry
)
2355 struct inode
*inode
;
2358 * Are we the only user?
2361 spin_lock(&dentry
->d_lock
);
2362 inode
= dentry
->d_inode
;
2363 isdir
= S_ISDIR(inode
->i_mode
);
2364 if (dentry
->d_lockref
.count
== 1) {
2365 if (!spin_trylock(&inode
->i_lock
)) {
2366 spin_unlock(&dentry
->d_lock
);
2370 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2371 dentry_unlink_inode(dentry
);
2372 fsnotify_nameremove(dentry
, isdir
);
2376 if (!d_unhashed(dentry
))
2379 spin_unlock(&dentry
->d_lock
);
2381 fsnotify_nameremove(dentry
, isdir
);
2383 EXPORT_SYMBOL(d_delete
);
2385 static void __d_rehash(struct dentry
*entry
)
2387 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2390 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2395 * d_rehash - add an entry back to the hash
2396 * @entry: dentry to add to the hash
2398 * Adds a dentry to the hash according to its name.
2401 void d_rehash(struct dentry
* entry
)
2403 spin_lock(&entry
->d_lock
);
2405 spin_unlock(&entry
->d_lock
);
2407 EXPORT_SYMBOL(d_rehash
);
2409 static inline unsigned start_dir_add(struct inode
*dir
)
2413 unsigned n
= dir
->i_dir_seq
;
2414 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2420 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2422 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2425 static void d_wait_lookup(struct dentry
*dentry
)
2427 if (d_in_lookup(dentry
)) {
2428 DECLARE_WAITQUEUE(wait
, current
);
2429 add_wait_queue(dentry
->d_wait
, &wait
);
2431 set_current_state(TASK_UNINTERRUPTIBLE
);
2432 spin_unlock(&dentry
->d_lock
);
2434 spin_lock(&dentry
->d_lock
);
2435 } while (d_in_lookup(dentry
));
2439 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2440 const struct qstr
*name
,
2441 wait_queue_head_t
*wq
)
2443 unsigned int hash
= name
->hash
;
2444 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2445 struct hlist_bl_node
*node
;
2446 struct dentry
*new = d_alloc(parent
, name
);
2447 struct dentry
*dentry
;
2448 unsigned seq
, r_seq
, d_seq
;
2451 return ERR_PTR(-ENOMEM
);
2455 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
) & ~1;
2456 r_seq
= read_seqbegin(&rename_lock
);
2457 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2458 if (unlikely(dentry
)) {
2459 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2463 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2472 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2477 if (unlikely(parent
->d_inode
->i_dir_seq
!= seq
)) {
2483 * No changes for the parent since the beginning of d_lookup().
2484 * Since all removals from the chain happen with hlist_bl_lock(),
2485 * any potential in-lookup matches are going to stay here until
2486 * we unlock the chain. All fields are stable in everything
2489 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2490 if (dentry
->d_name
.hash
!= hash
)
2492 if (dentry
->d_parent
!= parent
)
2494 if (!d_same_name(dentry
, parent
, name
))
2497 /* now we can try to grab a reference */
2498 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2505 * somebody is likely to be still doing lookup for it;
2506 * wait for them to finish
2508 spin_lock(&dentry
->d_lock
);
2509 d_wait_lookup(dentry
);
2511 * it's not in-lookup anymore; in principle we should repeat
2512 * everything from dcache lookup, but it's likely to be what
2513 * d_lookup() would've found anyway. If it is, just return it;
2514 * otherwise we really have to repeat the whole thing.
2516 if (unlikely(dentry
->d_name
.hash
!= hash
))
2518 if (unlikely(dentry
->d_parent
!= parent
))
2520 if (unlikely(d_unhashed(dentry
)))
2522 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2524 /* OK, it *is* a hashed match; return it */
2525 spin_unlock(&dentry
->d_lock
);
2530 /* we can't take ->d_lock here; it's OK, though. */
2531 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2533 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2537 spin_unlock(&dentry
->d_lock
);
2541 EXPORT_SYMBOL(d_alloc_parallel
);
2543 void __d_lookup_done(struct dentry
*dentry
)
2545 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2546 dentry
->d_name
.hash
);
2548 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2549 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2550 wake_up_all(dentry
->d_wait
);
2551 dentry
->d_wait
= NULL
;
2553 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2554 INIT_LIST_HEAD(&dentry
->d_lru
);
2556 EXPORT_SYMBOL(__d_lookup_done
);
2558 /* inode->i_lock held if inode is non-NULL */
2560 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2562 struct inode
*dir
= NULL
;
2564 spin_lock(&dentry
->d_lock
);
2565 if (unlikely(d_in_lookup(dentry
))) {
2566 dir
= dentry
->d_parent
->d_inode
;
2567 n
= start_dir_add(dir
);
2568 __d_lookup_done(dentry
);
2571 unsigned add_flags
= d_flags_for_inode(inode
);
2572 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2573 raw_write_seqcount_begin(&dentry
->d_seq
);
2574 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2575 raw_write_seqcount_end(&dentry
->d_seq
);
2576 fsnotify_update_flags(dentry
);
2580 end_dir_add(dir
, n
);
2581 spin_unlock(&dentry
->d_lock
);
2583 spin_unlock(&inode
->i_lock
);
2587 * d_add - add dentry to hash queues
2588 * @entry: dentry to add
2589 * @inode: The inode to attach to this dentry
2591 * This adds the entry to the hash queues and initializes @inode.
2592 * The entry was actually filled in earlier during d_alloc().
2595 void d_add(struct dentry
*entry
, struct inode
*inode
)
2598 security_d_instantiate(entry
, inode
);
2599 spin_lock(&inode
->i_lock
);
2601 __d_add(entry
, inode
);
2603 EXPORT_SYMBOL(d_add
);
2606 * d_exact_alias - find and hash an exact unhashed alias
2607 * @entry: dentry to add
2608 * @inode: The inode to go with this dentry
2610 * If an unhashed dentry with the same name/parent and desired
2611 * inode already exists, hash and return it. Otherwise, return
2614 * Parent directory should be locked.
2616 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2618 struct dentry
*alias
;
2619 unsigned int hash
= entry
->d_name
.hash
;
2621 spin_lock(&inode
->i_lock
);
2622 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2624 * Don't need alias->d_lock here, because aliases with
2625 * d_parent == entry->d_parent are not subject to name or
2626 * parent changes, because the parent inode i_mutex is held.
2628 if (alias
->d_name
.hash
!= hash
)
2630 if (alias
->d_parent
!= entry
->d_parent
)
2632 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2634 spin_lock(&alias
->d_lock
);
2635 if (!d_unhashed(alias
)) {
2636 spin_unlock(&alias
->d_lock
);
2639 __dget_dlock(alias
);
2641 spin_unlock(&alias
->d_lock
);
2643 spin_unlock(&inode
->i_lock
);
2646 spin_unlock(&inode
->i_lock
);
2649 EXPORT_SYMBOL(d_exact_alias
);
2652 * dentry_update_name_case - update case insensitive dentry with a new name
2653 * @dentry: dentry to be updated
2656 * Update a case insensitive dentry with new case of name.
2658 * dentry must have been returned by d_lookup with name @name. Old and new
2659 * name lengths must match (ie. no d_compare which allows mismatched name
2662 * Parent inode i_mutex must be held over d_lookup and into this call (to
2663 * keep renames and concurrent inserts, and readdir(2) away).
2665 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2667 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2668 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2670 spin_lock(&dentry
->d_lock
);
2671 write_seqcount_begin(&dentry
->d_seq
);
2672 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2673 write_seqcount_end(&dentry
->d_seq
);
2674 spin_unlock(&dentry
->d_lock
);
2676 EXPORT_SYMBOL(dentry_update_name_case
);
2678 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2680 if (unlikely(dname_external(target
))) {
2681 if (unlikely(dname_external(dentry
))) {
2683 * Both external: swap the pointers
2685 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2688 * dentry:internal, target:external. Steal target's
2689 * storage and make target internal.
2691 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2692 dentry
->d_name
.len
+ 1);
2693 dentry
->d_name
.name
= target
->d_name
.name
;
2694 target
->d_name
.name
= target
->d_iname
;
2697 if (unlikely(dname_external(dentry
))) {
2699 * dentry:external, target:internal. Give dentry's
2700 * storage to target and make dentry internal
2702 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2703 target
->d_name
.len
+ 1);
2704 target
->d_name
.name
= dentry
->d_name
.name
;
2705 dentry
->d_name
.name
= dentry
->d_iname
;
2708 * Both are internal.
2711 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2712 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2713 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2714 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2715 swap(((long *) &dentry
->d_iname
)[i
],
2716 ((long *) &target
->d_iname
)[i
]);
2720 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2723 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2725 struct external_name
*old_name
= NULL
;
2726 if (unlikely(dname_external(dentry
)))
2727 old_name
= external_name(dentry
);
2728 if (unlikely(dname_external(target
))) {
2729 atomic_inc(&external_name(target
)->u
.count
);
2730 dentry
->d_name
= target
->d_name
;
2732 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2733 target
->d_name
.len
+ 1);
2734 dentry
->d_name
.name
= dentry
->d_iname
;
2735 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2737 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2738 kfree_rcu(old_name
, u
.head
);
2741 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2744 * XXXX: do we really need to take target->d_lock?
2746 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2747 spin_lock(&target
->d_parent
->d_lock
);
2749 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2750 spin_lock(&dentry
->d_parent
->d_lock
);
2751 spin_lock_nested(&target
->d_parent
->d_lock
,
2752 DENTRY_D_LOCK_NESTED
);
2754 spin_lock(&target
->d_parent
->d_lock
);
2755 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2756 DENTRY_D_LOCK_NESTED
);
2759 if (target
< dentry
) {
2760 spin_lock_nested(&target
->d_lock
, 2);
2761 spin_lock_nested(&dentry
->d_lock
, 3);
2763 spin_lock_nested(&dentry
->d_lock
, 2);
2764 spin_lock_nested(&target
->d_lock
, 3);
2768 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2770 if (target
->d_parent
!= dentry
->d_parent
)
2771 spin_unlock(&dentry
->d_parent
->d_lock
);
2772 if (target
->d_parent
!= target
)
2773 spin_unlock(&target
->d_parent
->d_lock
);
2774 spin_unlock(&target
->d_lock
);
2775 spin_unlock(&dentry
->d_lock
);
2779 * When switching names, the actual string doesn't strictly have to
2780 * be preserved in the target - because we're dropping the target
2781 * anyway. As such, we can just do a simple memcpy() to copy over
2782 * the new name before we switch, unless we are going to rehash
2783 * it. Note that if we *do* unhash the target, we are not allowed
2784 * to rehash it without giving it a new name/hash key - whether
2785 * we swap or overwrite the names here, resulting name won't match
2786 * the reality in filesystem; it's only there for d_path() purposes.
2787 * Note that all of this is happening under rename_lock, so the
2788 * any hash lookup seeing it in the middle of manipulations will
2789 * be discarded anyway. So we do not care what happens to the hash
2793 * __d_move - move a dentry
2794 * @dentry: entry to move
2795 * @target: new dentry
2796 * @exchange: exchange the two dentries
2798 * Update the dcache to reflect the move of a file name. Negative
2799 * dcache entries should not be moved in this way. Caller must hold
2800 * rename_lock, the i_mutex of the source and target directories,
2801 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2803 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2806 struct inode
*dir
= NULL
;
2808 if (!dentry
->d_inode
)
2809 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2811 BUG_ON(d_ancestor(dentry
, target
));
2812 BUG_ON(d_ancestor(target
, dentry
));
2814 dentry_lock_for_move(dentry
, target
);
2815 if (unlikely(d_in_lookup(target
))) {
2816 dir
= target
->d_parent
->d_inode
;
2817 n
= start_dir_add(dir
);
2818 __d_lookup_done(target
);
2821 write_seqcount_begin(&dentry
->d_seq
);
2822 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2825 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2829 /* Switch the names.. */
2831 swap_names(dentry
, target
);
2833 copy_name(dentry
, target
);
2835 /* rehash in new place(s) */
2840 target
->d_hash
.pprev
= NULL
;
2842 /* ... and switch them in the tree */
2843 if (IS_ROOT(dentry
)) {
2844 /* splicing a tree */
2845 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2846 dentry
->d_parent
= target
->d_parent
;
2847 target
->d_parent
= target
;
2848 list_del_init(&target
->d_child
);
2849 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2851 /* swapping two dentries */
2852 swap(dentry
->d_parent
, target
->d_parent
);
2853 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2854 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2856 fsnotify_update_flags(target
);
2857 fsnotify_update_flags(dentry
);
2860 write_seqcount_end(&target
->d_seq
);
2861 write_seqcount_end(&dentry
->d_seq
);
2864 end_dir_add(dir
, n
);
2865 dentry_unlock_for_move(dentry
, target
);
2869 * d_move - move a dentry
2870 * @dentry: entry to move
2871 * @target: new dentry
2873 * Update the dcache to reflect the move of a file name. Negative
2874 * dcache entries should not be moved in this way. See the locking
2875 * requirements for __d_move.
2877 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2879 write_seqlock(&rename_lock
);
2880 __d_move(dentry
, target
, false);
2881 write_sequnlock(&rename_lock
);
2883 EXPORT_SYMBOL(d_move
);
2886 * d_exchange - exchange two dentries
2887 * @dentry1: first dentry
2888 * @dentry2: second dentry
2890 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2892 write_seqlock(&rename_lock
);
2894 WARN_ON(!dentry1
->d_inode
);
2895 WARN_ON(!dentry2
->d_inode
);
2896 WARN_ON(IS_ROOT(dentry1
));
2897 WARN_ON(IS_ROOT(dentry2
));
2899 __d_move(dentry1
, dentry2
, true);
2901 write_sequnlock(&rename_lock
);
2905 * d_ancestor - search for an ancestor
2906 * @p1: ancestor dentry
2909 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910 * an ancestor of p2, else NULL.
2912 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2916 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2917 if (p
->d_parent
== p1
)
2924 * This helper attempts to cope with remotely renamed directories
2926 * It assumes that the caller is already holding
2927 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2929 * Note: If ever the locking in lock_rename() changes, then please
2930 * remember to update this too...
2932 static int __d_unalias(struct inode
*inode
,
2933 struct dentry
*dentry
, struct dentry
*alias
)
2935 struct mutex
*m1
= NULL
;
2936 struct rw_semaphore
*m2
= NULL
;
2939 /* If alias and dentry share a parent, then no extra locks required */
2940 if (alias
->d_parent
== dentry
->d_parent
)
2943 /* See lock_rename() */
2944 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2946 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2947 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2949 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2951 __d_move(alias
, dentry
, false);
2962 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963 * @inode: the inode which may have a disconnected dentry
2964 * @dentry: a negative dentry which we want to point to the inode.
2966 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967 * place of the given dentry and return it, else simply d_add the inode
2968 * to the dentry and return NULL.
2970 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971 * we should error out: directories can't have multiple aliases.
2973 * This is needed in the lookup routine of any filesystem that is exportable
2974 * (via knfsd) so that we can build dcache paths to directories effectively.
2976 * If a dentry was found and moved, then it is returned. Otherwise NULL
2977 * is returned. This matches the expected return value of ->lookup.
2979 * Cluster filesystems may call this function with a negative, hashed dentry.
2980 * In that case, we know that the inode will be a regular file, and also this
2981 * will only occur during atomic_open. So we need to check for the dentry
2982 * being already hashed only in the final case.
2984 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2987 return ERR_CAST(inode
);
2989 BUG_ON(!d_unhashed(dentry
));
2994 security_d_instantiate(dentry
, inode
);
2995 spin_lock(&inode
->i_lock
);
2996 if (S_ISDIR(inode
->i_mode
)) {
2997 struct dentry
*new = __d_find_any_alias(inode
);
2998 if (unlikely(new)) {
2999 /* The reference to new ensures it remains an alias */
3000 spin_unlock(&inode
->i_lock
);
3001 write_seqlock(&rename_lock
);
3002 if (unlikely(d_ancestor(new, dentry
))) {
3003 write_sequnlock(&rename_lock
);
3005 new = ERR_PTR(-ELOOP
);
3006 pr_warn_ratelimited(
3007 "VFS: Lookup of '%s' in %s %s"
3008 " would have caused loop\n",
3009 dentry
->d_name
.name
,
3010 inode
->i_sb
->s_type
->name
,
3012 } else if (!IS_ROOT(new)) {
3013 int err
= __d_unalias(inode
, dentry
, new);
3014 write_sequnlock(&rename_lock
);
3020 __d_move(new, dentry
, false);
3021 write_sequnlock(&rename_lock
);
3028 __d_add(dentry
, inode
);
3031 EXPORT_SYMBOL(d_splice_alias
);
3033 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3037 return -ENAMETOOLONG
;
3039 memcpy(*buffer
, str
, namelen
);
3044 * prepend_name - prepend a pathname in front of current buffer pointer
3045 * @buffer: buffer pointer
3046 * @buflen: allocated length of the buffer
3047 * @name: name string and length qstr structure
3049 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3050 * make sure that either the old or the new name pointer and length are
3051 * fetched. However, there may be mismatch between length and pointer.
3052 * The length cannot be trusted, we need to copy it byte-by-byte until
3053 * the length is reached or a null byte is found. It also prepends "/" at
3054 * the beginning of the name. The sequence number check at the caller will
3055 * retry it again when a d_move() does happen. So any garbage in the buffer
3056 * due to mismatched pointer and length will be discarded.
3058 * Data dependency barrier is needed to make sure that we see that terminating
3059 * NUL. Alpha strikes again, film at 11...
3061 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3063 const char *dname
= ACCESS_ONCE(name
->name
);
3064 u32 dlen
= ACCESS_ONCE(name
->len
);
3067 smp_read_barrier_depends();
3069 *buflen
-= dlen
+ 1;
3071 return -ENAMETOOLONG
;
3072 p
= *buffer
-= dlen
+ 1;
3084 * prepend_path - Prepend path string to a buffer
3085 * @path: the dentry/vfsmount to report
3086 * @root: root vfsmnt/dentry
3087 * @buffer: pointer to the end of the buffer
3088 * @buflen: pointer to buffer length
3090 * The function will first try to write out the pathname without taking any
3091 * lock other than the RCU read lock to make sure that dentries won't go away.
3092 * It only checks the sequence number of the global rename_lock as any change
3093 * in the dentry's d_seq will be preceded by changes in the rename_lock
3094 * sequence number. If the sequence number had been changed, it will restart
3095 * the whole pathname back-tracing sequence again by taking the rename_lock.
3096 * In this case, there is no need to take the RCU read lock as the recursive
3097 * parent pointer references will keep the dentry chain alive as long as no
3098 * rename operation is performed.
3100 static int prepend_path(const struct path
*path
,
3101 const struct path
*root
,
3102 char **buffer
, int *buflen
)
3104 struct dentry
*dentry
;
3105 struct vfsmount
*vfsmnt
;
3108 unsigned seq
, m_seq
= 0;
3114 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3121 dentry
= path
->dentry
;
3123 mnt
= real_mount(vfsmnt
);
3124 read_seqbegin_or_lock(&rename_lock
, &seq
);
3125 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3126 struct dentry
* parent
;
3128 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3129 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3131 if (dentry
!= vfsmnt
->mnt_root
) {
3138 if (mnt
!= parent
) {
3139 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3145 error
= is_mounted(vfsmnt
) ? 1 : 2;
3148 parent
= dentry
->d_parent
;
3150 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3158 if (need_seqretry(&rename_lock
, seq
)) {
3162 done_seqretry(&rename_lock
, seq
);
3166 if (need_seqretry(&mount_lock
, m_seq
)) {
3170 done_seqretry(&mount_lock
, m_seq
);
3172 if (error
>= 0 && bptr
== *buffer
) {
3174 error
= -ENAMETOOLONG
;
3184 * __d_path - return the path of a dentry
3185 * @path: the dentry/vfsmount to report
3186 * @root: root vfsmnt/dentry
3187 * @buf: buffer to return value in
3188 * @buflen: buffer length
3190 * Convert a dentry into an ASCII path name.
3192 * Returns a pointer into the buffer or an error code if the
3193 * path was too long.
3195 * "buflen" should be positive.
3197 * If the path is not reachable from the supplied root, return %NULL.
3199 char *__d_path(const struct path
*path
,
3200 const struct path
*root
,
3201 char *buf
, int buflen
)
3203 char *res
= buf
+ buflen
;
3206 prepend(&res
, &buflen
, "\0", 1);
3207 error
= prepend_path(path
, root
, &res
, &buflen
);
3210 return ERR_PTR(error
);
3216 char *d_absolute_path(const struct path
*path
,
3217 char *buf
, int buflen
)
3219 struct path root
= {};
3220 char *res
= buf
+ buflen
;
3223 prepend(&res
, &buflen
, "\0", 1);
3224 error
= prepend_path(path
, &root
, &res
, &buflen
);
3229 return ERR_PTR(error
);
3234 * same as __d_path but appends "(deleted)" for unlinked files.
3236 static int path_with_deleted(const struct path
*path
,
3237 const struct path
*root
,
3238 char **buf
, int *buflen
)
3240 prepend(buf
, buflen
, "\0", 1);
3241 if (d_unlinked(path
->dentry
)) {
3242 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3247 return prepend_path(path
, root
, buf
, buflen
);
3250 static int prepend_unreachable(char **buffer
, int *buflen
)
3252 return prepend(buffer
, buflen
, "(unreachable)", 13);
3255 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3260 seq
= read_seqcount_begin(&fs
->seq
);
3262 } while (read_seqcount_retry(&fs
->seq
, seq
));
3266 * d_path - return the path of a dentry
3267 * @path: path to report
3268 * @buf: buffer to return value in
3269 * @buflen: buffer length
3271 * Convert a dentry into an ASCII path name. If the entry has been deleted
3272 * the string " (deleted)" is appended. Note that this is ambiguous.
3274 * Returns a pointer into the buffer or an error code if the path was
3275 * too long. Note: Callers should use the returned pointer, not the passed
3276 * in buffer, to use the name! The implementation often starts at an offset
3277 * into the buffer, and may leave 0 bytes at the start.
3279 * "buflen" should be positive.
3281 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3283 char *res
= buf
+ buflen
;
3288 * We have various synthetic filesystems that never get mounted. On
3289 * these filesystems dentries are never used for lookup purposes, and
3290 * thus don't need to be hashed. They also don't need a name until a
3291 * user wants to identify the object in /proc/pid/fd/. The little hack
3292 * below allows us to generate a name for these objects on demand:
3294 * Some pseudo inodes are mountable. When they are mounted
3295 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3296 * and instead have d_path return the mounted path.
3298 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3299 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3300 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3303 get_fs_root_rcu(current
->fs
, &root
);
3304 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3308 res
= ERR_PTR(error
);
3311 EXPORT_SYMBOL(d_path
);
3314 * Helper function for dentry_operations.d_dname() members
3316 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3317 const char *fmt
, ...)
3323 va_start(args
, fmt
);
3324 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3327 if (sz
> sizeof(temp
) || sz
> buflen
)
3328 return ERR_PTR(-ENAMETOOLONG
);
3330 buffer
+= buflen
- sz
;
3331 return memcpy(buffer
, temp
, sz
);
3334 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3336 char *end
= buffer
+ buflen
;
3337 /* these dentries are never renamed, so d_lock is not needed */
3338 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3339 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3340 prepend(&end
, &buflen
, "/", 1))
3341 end
= ERR_PTR(-ENAMETOOLONG
);
3344 EXPORT_SYMBOL(simple_dname
);
3347 * Write full pathname from the root of the filesystem into the buffer.
3349 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3351 struct dentry
*dentry
;
3364 prepend(&end
, &len
, "\0", 1);
3368 read_seqbegin_or_lock(&rename_lock
, &seq
);
3369 while (!IS_ROOT(dentry
)) {
3370 struct dentry
*parent
= dentry
->d_parent
;
3373 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3382 if (need_seqretry(&rename_lock
, seq
)) {
3386 done_seqretry(&rename_lock
, seq
);
3391 return ERR_PTR(-ENAMETOOLONG
);
3394 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3396 return __dentry_path(dentry
, buf
, buflen
);
3398 EXPORT_SYMBOL(dentry_path_raw
);
3400 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3405 if (d_unlinked(dentry
)) {
3407 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3411 retval
= __dentry_path(dentry
, buf
, buflen
);
3412 if (!IS_ERR(retval
) && p
)
3413 *p
= '/'; /* restore '/' overriden with '\0' */
3416 return ERR_PTR(-ENAMETOOLONG
);
3419 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3425 seq
= read_seqcount_begin(&fs
->seq
);
3428 } while (read_seqcount_retry(&fs
->seq
, seq
));
3432 * NOTE! The user-level library version returns a
3433 * character pointer. The kernel system call just
3434 * returns the length of the buffer filled (which
3435 * includes the ending '\0' character), or a negative
3436 * error value. So libc would do something like
3438 * char *getcwd(char * buf, size_t size)
3442 * retval = sys_getcwd(buf, size);
3449 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3452 struct path pwd
, root
;
3453 char *page
= __getname();
3459 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3462 if (!d_unlinked(pwd
.dentry
)) {
3464 char *cwd
= page
+ PATH_MAX
;
3465 int buflen
= PATH_MAX
;
3467 prepend(&cwd
, &buflen
, "\0", 1);
3468 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3474 /* Unreachable from current root */
3476 error
= prepend_unreachable(&cwd
, &buflen
);
3482 len
= PATH_MAX
+ page
- cwd
;
3485 if (copy_to_user(buf
, cwd
, len
))
3498 * Test whether new_dentry is a subdirectory of old_dentry.
3500 * Trivially implemented using the dcache structure
3504 * is_subdir - is new dentry a subdirectory of old_dentry
3505 * @new_dentry: new dentry
3506 * @old_dentry: old dentry
3508 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3509 * Returns false otherwise.
3510 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3513 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3518 if (new_dentry
== old_dentry
)
3522 /* for restarting inner loop in case of seq retry */
3523 seq
= read_seqbegin(&rename_lock
);
3525 * Need rcu_readlock to protect against the d_parent trashing
3529 if (d_ancestor(old_dentry
, new_dentry
))
3534 } while (read_seqretry(&rename_lock
, seq
));
3539 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3541 struct dentry
*root
= data
;
3542 if (dentry
!= root
) {
3543 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3546 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3547 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3548 dentry
->d_lockref
.count
--;
3551 return D_WALK_CONTINUE
;
3554 void d_genocide(struct dentry
*parent
)
3556 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3559 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3561 inode_dec_link_count(inode
);
3562 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3563 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3564 !d_unlinked(dentry
));
3565 spin_lock(&dentry
->d_parent
->d_lock
);
3566 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3567 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3568 (unsigned long long)inode
->i_ino
);
3569 spin_unlock(&dentry
->d_lock
);
3570 spin_unlock(&dentry
->d_parent
->d_lock
);
3571 d_instantiate(dentry
, inode
);
3573 EXPORT_SYMBOL(d_tmpfile
);
3575 static __initdata
unsigned long dhash_entries
;
3576 static int __init
set_dhash_entries(char *str
)
3580 dhash_entries
= simple_strtoul(str
, &str
, 0);
3583 __setup("dhash_entries=", set_dhash_entries
);
3585 static void __init
dcache_init_early(void)
3589 /* If hashes are distributed across NUMA nodes, defer
3590 * hash allocation until vmalloc space is available.
3596 alloc_large_system_hash("Dentry cache",
3597 sizeof(struct hlist_bl_head
),
3606 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3607 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3610 static void __init
dcache_init(void)
3615 * A constructor could be added for stable state like the lists,
3616 * but it is probably not worth it because of the cache nature
3619 dentry_cache
= KMEM_CACHE(dentry
,
3620 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
);
3622 /* Hash may have been set up in dcache_init_early */
3627 alloc_large_system_hash("Dentry cache",
3628 sizeof(struct hlist_bl_head
),
3637 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3638 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3641 /* SLAB cache for __getname() consumers */
3642 struct kmem_cache
*names_cachep __read_mostly
;
3643 EXPORT_SYMBOL(names_cachep
);
3645 EXPORT_SYMBOL(d_genocide
);
3647 void __init
vfs_caches_init_early(void)
3649 dcache_init_early();
3653 void __init
vfs_caches_init(void)
3655 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3656 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3661 files_maxfiles_init();