1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/pgalloc.h>
30 SCAN_LACK_REFERENCED_PAGE
,
44 SCAN_ALLOC_HUGE_PAGE_FAIL
,
45 SCAN_CGROUP_CHARGE_FAIL
,
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
53 static struct task_struct
*khugepaged_thread __read_mostly
;
54 static DEFINE_MUTEX(khugepaged_mutex
);
56 /* default scan 8*512 pte (or vmas) every 30 second */
57 static unsigned int khugepaged_pages_to_scan __read_mostly
;
58 static unsigned int khugepaged_pages_collapsed
;
59 static unsigned int khugepaged_full_scans
;
60 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
61 /* during fragmentation poll the hugepage allocator once every minute */
62 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
63 static unsigned long khugepaged_sleep_expire
;
64 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
65 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
67 * default collapse hugepages if there is at least one pte mapped like
68 * it would have happened if the vma was large enough during page
71 static unsigned int khugepaged_max_ptes_none __read_mostly
;
72 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
74 #define MM_SLOTS_HASH_BITS 10
75 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
77 static struct kmem_cache
*mm_slot_cache __read_mostly
;
80 * struct mm_slot - hash lookup from mm to mm_slot
81 * @hash: hash collision list
82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83 * @mm: the mm that this information is valid for
86 struct hlist_node hash
;
87 struct list_head mm_node
;
92 * struct khugepaged_scan - cursor for scanning
93 * @mm_head: the head of the mm list to scan
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
97 * There is only the one khugepaged_scan instance of this cursor structure.
99 struct khugepaged_scan
{
100 struct list_head mm_head
;
101 struct mm_slot
*mm_slot
;
102 unsigned long address
;
105 static struct khugepaged_scan khugepaged_scan
= {
106 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
110 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
111 struct kobj_attribute
*attr
,
114 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
117 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
118 struct kobj_attribute
*attr
,
119 const char *buf
, size_t count
)
124 err
= kstrtoul(buf
, 10, &msecs
);
125 if (err
|| msecs
> UINT_MAX
)
128 khugepaged_scan_sleep_millisecs
= msecs
;
129 khugepaged_sleep_expire
= 0;
130 wake_up_interruptible(&khugepaged_wait
);
134 static struct kobj_attribute scan_sleep_millisecs_attr
=
135 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
136 scan_sleep_millisecs_store
);
138 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
139 struct kobj_attribute
*attr
,
142 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
145 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
146 struct kobj_attribute
*attr
,
147 const char *buf
, size_t count
)
152 err
= kstrtoul(buf
, 10, &msecs
);
153 if (err
|| msecs
> UINT_MAX
)
156 khugepaged_alloc_sleep_millisecs
= msecs
;
157 khugepaged_sleep_expire
= 0;
158 wake_up_interruptible(&khugepaged_wait
);
162 static struct kobj_attribute alloc_sleep_millisecs_attr
=
163 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
164 alloc_sleep_millisecs_store
);
166 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
167 struct kobj_attribute
*attr
,
170 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
172 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
173 struct kobj_attribute
*attr
,
174 const char *buf
, size_t count
)
179 err
= kstrtoul(buf
, 10, &pages
);
180 if (err
|| !pages
|| pages
> UINT_MAX
)
183 khugepaged_pages_to_scan
= pages
;
187 static struct kobj_attribute pages_to_scan_attr
=
188 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
189 pages_to_scan_store
);
191 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
192 struct kobj_attribute
*attr
,
195 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
197 static struct kobj_attribute pages_collapsed_attr
=
198 __ATTR_RO(pages_collapsed
);
200 static ssize_t
full_scans_show(struct kobject
*kobj
,
201 struct kobj_attribute
*attr
,
204 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
206 static struct kobj_attribute full_scans_attr
=
207 __ATTR_RO(full_scans
);
209 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
210 struct kobj_attribute
*attr
, char *buf
)
212 return single_hugepage_flag_show(kobj
, attr
, buf
,
213 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
215 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
216 struct kobj_attribute
*attr
,
217 const char *buf
, size_t count
)
219 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
222 static struct kobj_attribute khugepaged_defrag_attr
=
223 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
224 khugepaged_defrag_store
);
227 * max_ptes_none controls if khugepaged should collapse hugepages over
228 * any unmapped ptes in turn potentially increasing the memory
229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
230 * reduce the available free memory in the system as it
231 * runs. Increasing max_ptes_none will instead potentially reduce the
232 * free memory in the system during the khugepaged scan.
234 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
235 struct kobj_attribute
*attr
,
238 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
240 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
241 struct kobj_attribute
*attr
,
242 const char *buf
, size_t count
)
245 unsigned long max_ptes_none
;
247 err
= kstrtoul(buf
, 10, &max_ptes_none
);
248 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
251 khugepaged_max_ptes_none
= max_ptes_none
;
255 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
256 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
257 khugepaged_max_ptes_none_store
);
259 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
260 struct kobj_attribute
*attr
,
263 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
266 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
267 struct kobj_attribute
*attr
,
268 const char *buf
, size_t count
)
271 unsigned long max_ptes_swap
;
273 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
274 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
277 khugepaged_max_ptes_swap
= max_ptes_swap
;
282 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
283 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
284 khugepaged_max_ptes_swap_store
);
286 static struct attribute
*khugepaged_attr
[] = {
287 &khugepaged_defrag_attr
.attr
,
288 &khugepaged_max_ptes_none_attr
.attr
,
289 &pages_to_scan_attr
.attr
,
290 &pages_collapsed_attr
.attr
,
291 &full_scans_attr
.attr
,
292 &scan_sleep_millisecs_attr
.attr
,
293 &alloc_sleep_millisecs_attr
.attr
,
294 &khugepaged_max_ptes_swap_attr
.attr
,
298 struct attribute_group khugepaged_attr_group
= {
299 .attrs
= khugepaged_attr
,
300 .name
= "khugepaged",
302 #endif /* CONFIG_SYSFS */
304 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
306 int hugepage_madvise(struct vm_area_struct
*vma
,
307 unsigned long *vm_flags
, int advice
)
313 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
314 * can't handle this properly after s390_enable_sie, so we simply
315 * ignore the madvise to prevent qemu from causing a SIGSEGV.
317 if (mm_has_pgste(vma
->vm_mm
))
320 *vm_flags
&= ~VM_NOHUGEPAGE
;
321 *vm_flags
|= VM_HUGEPAGE
;
323 * If the vma become good for khugepaged to scan,
324 * register it here without waiting a page fault that
325 * may not happen any time soon.
327 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
328 khugepaged_enter_vma_merge(vma
, *vm_flags
))
331 case MADV_NOHUGEPAGE
:
332 *vm_flags
&= ~VM_HUGEPAGE
;
333 *vm_flags
|= VM_NOHUGEPAGE
;
335 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
336 * this vma even if we leave the mm registered in khugepaged if
337 * it got registered before VM_NOHUGEPAGE was set.
345 int __init
khugepaged_init(void)
347 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
348 sizeof(struct mm_slot
),
349 __alignof__(struct mm_slot
), 0, NULL
);
353 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
354 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
355 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
360 void __init
khugepaged_destroy(void)
362 kmem_cache_destroy(mm_slot_cache
);
365 static inline struct mm_slot
*alloc_mm_slot(void)
367 if (!mm_slot_cache
) /* initialization failed */
369 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
372 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
374 kmem_cache_free(mm_slot_cache
, mm_slot
);
377 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
379 struct mm_slot
*mm_slot
;
381 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
382 if (mm
== mm_slot
->mm
)
388 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
389 struct mm_slot
*mm_slot
)
392 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
395 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
397 return atomic_read(&mm
->mm_users
) == 0 || !mmget_still_valid(mm
);
400 int __khugepaged_enter(struct mm_struct
*mm
)
402 struct mm_slot
*mm_slot
;
405 mm_slot
= alloc_mm_slot();
409 /* __khugepaged_exit() must not run from under us */
410 VM_BUG_ON_MM(atomic_read(&mm
->mm_users
) == 0, mm
);
411 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
412 free_mm_slot(mm_slot
);
416 spin_lock(&khugepaged_mm_lock
);
417 insert_to_mm_slots_hash(mm
, mm_slot
);
419 * Insert just behind the scanning cursor, to let the area settle
422 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
423 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
424 spin_unlock(&khugepaged_mm_lock
);
426 atomic_inc(&mm
->mm_count
);
428 wake_up_interruptible(&khugepaged_wait
);
433 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
434 unsigned long vm_flags
)
436 unsigned long hstart
, hend
;
439 * Not yet faulted in so we will register later in the
440 * page fault if needed.
443 if (vma
->vm_ops
|| (vm_flags
& VM_NO_KHUGEPAGED
))
444 /* khugepaged not yet working on file or special mappings */
446 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
447 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
449 return khugepaged_enter(vma
, vm_flags
);
453 void __khugepaged_exit(struct mm_struct
*mm
)
455 struct mm_slot
*mm_slot
;
458 spin_lock(&khugepaged_mm_lock
);
459 mm_slot
= get_mm_slot(mm
);
460 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
461 hash_del(&mm_slot
->hash
);
462 list_del(&mm_slot
->mm_node
);
465 spin_unlock(&khugepaged_mm_lock
);
468 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
469 free_mm_slot(mm_slot
);
471 } else if (mm_slot
) {
473 * This is required to serialize against
474 * khugepaged_test_exit() (which is guaranteed to run
475 * under mmap sem read mode). Stop here (after we
476 * return all pagetables will be destroyed) until
477 * khugepaged has finished working on the pagetables
478 * under the mmap_sem.
480 down_write(&mm
->mmap_sem
);
481 up_write(&mm
->mmap_sem
);
485 static void release_pte_page(struct page
*page
)
487 /* 0 stands for page_is_file_cache(page) == false */
488 dec_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
490 putback_lru_page(page
);
493 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
495 while (--_pte
>= pte
) {
496 pte_t pteval
= *_pte
;
497 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
498 release_pte_page(pte_page(pteval
));
502 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
503 unsigned long address
,
506 struct page
*page
= NULL
;
508 int none_or_zero
= 0, result
= 0, referenced
= 0;
509 bool writable
= false;
511 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
512 _pte
++, address
+= PAGE_SIZE
) {
513 pte_t pteval
= *_pte
;
514 if (pte_none(pteval
) || (pte_present(pteval
) &&
515 is_zero_pfn(pte_pfn(pteval
)))) {
516 if (!userfaultfd_armed(vma
) &&
517 ++none_or_zero
<= khugepaged_max_ptes_none
) {
520 result
= SCAN_EXCEED_NONE_PTE
;
524 if (!pte_present(pteval
)) {
525 result
= SCAN_PTE_NON_PRESENT
;
528 page
= vm_normal_page(vma
, address
, pteval
);
529 if (unlikely(!page
)) {
530 result
= SCAN_PAGE_NULL
;
534 /* TODO: teach khugepaged to collapse THP mapped with pte */
535 if (PageCompound(page
)) {
536 result
= SCAN_PAGE_COMPOUND
;
540 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
541 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
544 * We can do it before isolate_lru_page because the
545 * page can't be freed from under us. NOTE: PG_lock
546 * is needed to serialize against split_huge_page
547 * when invoked from the VM.
549 if (!trylock_page(page
)) {
550 result
= SCAN_PAGE_LOCK
;
555 * cannot use mapcount: can't collapse if there's a gup pin.
556 * The page must only be referenced by the scanned process
557 * and page swap cache.
559 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
561 result
= SCAN_PAGE_COUNT
;
564 if (pte_write(pteval
)) {
567 if (PageSwapCache(page
) &&
568 !reuse_swap_page(page
, NULL
)) {
570 result
= SCAN_SWAP_CACHE_PAGE
;
574 * Page is not in the swap cache. It can be collapsed
580 * Isolate the page to avoid collapsing an hugepage
581 * currently in use by the VM.
583 if (isolate_lru_page(page
)) {
585 result
= SCAN_DEL_PAGE_LRU
;
588 /* 0 stands for page_is_file_cache(page) == false */
589 inc_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
590 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
591 VM_BUG_ON_PAGE(PageLRU(page
), page
);
593 /* There should be enough young pte to collapse the page */
594 if (pte_young(pteval
) ||
595 page_is_young(page
) || PageReferenced(page
) ||
596 mmu_notifier_test_young(vma
->vm_mm
, address
))
599 if (likely(writable
)) {
600 if (likely(referenced
)) {
601 result
= SCAN_SUCCEED
;
602 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
603 referenced
, writable
, result
);
607 result
= SCAN_PAGE_RO
;
611 release_pte_pages(pte
, _pte
);
612 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
613 referenced
, writable
, result
);
617 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
618 struct vm_area_struct
*vma
,
619 unsigned long address
,
623 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
624 pte_t pteval
= *_pte
;
625 struct page
*src_page
;
627 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
628 clear_user_highpage(page
, address
);
629 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
630 if (is_zero_pfn(pte_pfn(pteval
))) {
632 * ptl mostly unnecessary.
636 * paravirt calls inside pte_clear here are
639 pte_clear(vma
->vm_mm
, address
, _pte
);
643 src_page
= pte_page(pteval
);
644 copy_user_highpage(page
, src_page
, address
, vma
);
645 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
646 release_pte_page(src_page
);
648 * ptl mostly unnecessary, but preempt has to
649 * be disabled to update the per-cpu stats
650 * inside page_remove_rmap().
654 * paravirt calls inside pte_clear here are
657 pte_clear(vma
->vm_mm
, address
, _pte
);
658 page_remove_rmap(src_page
, false);
660 free_page_and_swap_cache(src_page
);
663 address
+= PAGE_SIZE
;
668 static void khugepaged_alloc_sleep(void)
672 add_wait_queue(&khugepaged_wait
, &wait
);
673 freezable_schedule_timeout_interruptible(
674 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
675 remove_wait_queue(&khugepaged_wait
, &wait
);
678 static int khugepaged_node_load
[MAX_NUMNODES
];
680 static bool khugepaged_scan_abort(int nid
)
685 * If node_reclaim_mode is disabled, then no extra effort is made to
686 * allocate memory locally.
688 if (!node_reclaim_mode
)
691 /* If there is a count for this node already, it must be acceptable */
692 if (khugepaged_node_load
[nid
])
695 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
696 if (!khugepaged_node_load
[i
])
698 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
704 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
705 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
707 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
711 static int khugepaged_find_target_node(void)
713 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
714 int nid
, target_node
= 0, max_value
= 0;
716 /* find first node with max normal pages hit */
717 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
718 if (khugepaged_node_load
[nid
] > max_value
) {
719 max_value
= khugepaged_node_load
[nid
];
723 /* do some balance if several nodes have the same hit record */
724 if (target_node
<= last_khugepaged_target_node
)
725 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
727 if (max_value
== khugepaged_node_load
[nid
]) {
732 last_khugepaged_target_node
= target_node
;
736 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
738 if (IS_ERR(*hpage
)) {
744 khugepaged_alloc_sleep();
754 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
756 VM_BUG_ON_PAGE(*hpage
, *hpage
);
758 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
759 if (unlikely(!*hpage
)) {
760 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
761 *hpage
= ERR_PTR(-ENOMEM
);
765 prep_transhuge_page(*hpage
);
766 count_vm_event(THP_COLLAPSE_ALLOC
);
770 static int khugepaged_find_target_node(void)
775 static inline struct page
*alloc_khugepaged_hugepage(void)
779 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
782 prep_transhuge_page(page
);
786 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
791 hpage
= alloc_khugepaged_hugepage();
793 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
798 khugepaged_alloc_sleep();
800 count_vm_event(THP_COLLAPSE_ALLOC
);
801 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
806 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
809 * If the hpage allocated earlier was briefly exposed in page cache
810 * before collapse_file() failed, it is possible that racing lookups
811 * have not yet completed, and would then be unpleasantly surprised by
812 * finding the hpage reused for the same mapping at a different offset.
813 * Just release the previous allocation if there is any danger of that.
815 if (*hpage
&& page_count(*hpage
) > 1) {
821 *hpage
= khugepaged_alloc_hugepage(wait
);
823 if (unlikely(!*hpage
))
830 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
838 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
840 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
841 (vma
->vm_flags
& VM_NOHUGEPAGE
))
843 if (shmem_file(vma
->vm_file
)) {
844 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
846 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
849 if (!vma
->anon_vma
|| vma
->vm_ops
)
851 if (is_vma_temporary_stack(vma
))
853 return !(vma
->vm_flags
& VM_NO_KHUGEPAGED
);
857 * If mmap_sem temporarily dropped, revalidate vma
858 * before taking mmap_sem.
859 * Return 0 if succeeds, otherwise return none-zero
863 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
864 struct vm_area_struct
**vmap
)
866 struct vm_area_struct
*vma
;
867 unsigned long hstart
, hend
;
869 if (unlikely(khugepaged_test_exit(mm
)))
870 return SCAN_ANY_PROCESS
;
872 *vmap
= vma
= find_vma(mm
, address
);
874 return SCAN_VMA_NULL
;
876 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
877 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
878 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
879 return SCAN_ADDRESS_RANGE
;
880 if (!hugepage_vma_check(vma
))
881 return SCAN_VMA_CHECK
;
886 * Bring missing pages in from swap, to complete THP collapse.
887 * Only done if khugepaged_scan_pmd believes it is worthwhile.
889 * Called and returns without pte mapped or spinlocks held,
890 * but with mmap_sem held to protect against vma changes.
893 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
894 struct vm_area_struct
*vma
,
895 unsigned long address
, pmd_t
*pmd
,
899 int swapped_in
= 0, ret
= 0;
900 struct fault_env fe
= {
903 .flags
= FAULT_FLAG_ALLOW_RETRY
,
907 /* we only decide to swapin, if there is enough young ptes */
908 if (referenced
< HPAGE_PMD_NR
/2) {
909 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
912 fe
.pte
= pte_offset_map(pmd
, address
);
913 for (; fe
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
914 fe
.pte
++, fe
.address
+= PAGE_SIZE
) {
916 if (!is_swap_pte(pteval
))
919 ret
= do_swap_page(&fe
, pteval
);
921 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
922 if (ret
& VM_FAULT_RETRY
) {
923 down_read(&mm
->mmap_sem
);
924 if (hugepage_vma_revalidate(mm
, address
, &fe
.vma
)) {
925 /* vma is no longer available, don't continue to swapin */
926 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
929 /* check if the pmd is still valid */
930 if (mm_find_pmd(mm
, address
) != pmd
)
933 if (ret
& VM_FAULT_ERROR
) {
934 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
937 /* pte is unmapped now, we need to map it */
938 fe
.pte
= pte_offset_map(pmd
, fe
.address
);
942 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
946 static void collapse_huge_page(struct mm_struct
*mm
,
947 unsigned long address
,
949 int node
, int referenced
)
954 struct page
*new_page
;
955 spinlock_t
*pmd_ptl
, *pte_ptl
;
956 int isolated
= 0, result
= 0;
957 struct mem_cgroup
*memcg
;
958 struct vm_area_struct
*vma
;
959 unsigned long mmun_start
; /* For mmu_notifiers */
960 unsigned long mmun_end
; /* For mmu_notifiers */
963 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
965 /* Only allocate from the target node */
966 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE
| __GFP_THISNODE
;
969 * Before allocating the hugepage, release the mmap_sem read lock.
970 * The allocation can take potentially a long time if it involves
971 * sync compaction, and we do not need to hold the mmap_sem during
972 * that. We will recheck the vma after taking it again in write mode.
974 up_read(&mm
->mmap_sem
);
975 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
977 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
981 /* Do not oom kill for khugepaged charges */
982 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
| __GFP_NORETRY
,
984 result
= SCAN_CGROUP_CHARGE_FAIL
;
988 down_read(&mm
->mmap_sem
);
989 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
991 mem_cgroup_cancel_charge(new_page
, memcg
, true);
992 up_read(&mm
->mmap_sem
);
996 pmd
= mm_find_pmd(mm
, address
);
998 result
= SCAN_PMD_NULL
;
999 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1000 up_read(&mm
->mmap_sem
);
1005 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1006 * If it fails, we release mmap_sem and jump out_nolock.
1007 * Continuing to collapse causes inconsistency.
1009 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
1010 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1011 up_read(&mm
->mmap_sem
);
1015 up_read(&mm
->mmap_sem
);
1017 * Prevent all access to pagetables with the exception of
1018 * gup_fast later handled by the ptep_clear_flush and the VM
1019 * handled by the anon_vma lock + PG_lock.
1021 down_write(&mm
->mmap_sem
);
1022 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1025 /* check if the pmd is still valid */
1026 if (mm_find_pmd(mm
, address
) != pmd
)
1029 anon_vma_lock_write(vma
->anon_vma
);
1031 pte
= pte_offset_map(pmd
, address
);
1032 pte_ptl
= pte_lockptr(mm
, pmd
);
1034 mmun_start
= address
;
1035 mmun_end
= address
+ HPAGE_PMD_SIZE
;
1036 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1037 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1039 * After this gup_fast can't run anymore. This also removes
1040 * any huge TLB entry from the CPU so we won't allow
1041 * huge and small TLB entries for the same virtual address
1042 * to avoid the risk of CPU bugs in that area.
1044 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1045 spin_unlock(pmd_ptl
);
1046 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1049 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1050 spin_unlock(pte_ptl
);
1052 if (unlikely(!isolated
)) {
1055 BUG_ON(!pmd_none(*pmd
));
1057 * We can only use set_pmd_at when establishing
1058 * hugepmds and never for establishing regular pmds that
1059 * points to regular pagetables. Use pmd_populate for that
1061 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1062 spin_unlock(pmd_ptl
);
1063 anon_vma_unlock_write(vma
->anon_vma
);
1069 * All pages are isolated and locked so anon_vma rmap
1070 * can't run anymore.
1072 anon_vma_unlock_write(vma
->anon_vma
);
1074 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1076 __SetPageUptodate(new_page
);
1077 pgtable
= pmd_pgtable(_pmd
);
1079 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1080 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1083 * spin_lock() below is not the equivalent of smp_wmb(), so
1084 * this is needed to avoid the copy_huge_page writes to become
1085 * visible after the set_pmd_at() write.
1090 BUG_ON(!pmd_none(*pmd
));
1091 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1092 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1093 lru_cache_add_active_or_unevictable(new_page
, vma
);
1094 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1095 set_pmd_at(mm
, address
, pmd
, _pmd
);
1096 update_mmu_cache_pmd(vma
, address
, pmd
);
1097 spin_unlock(pmd_ptl
);
1101 khugepaged_pages_collapsed
++;
1102 result
= SCAN_SUCCEED
;
1104 up_write(&mm
->mmap_sem
);
1106 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1109 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1113 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1114 struct vm_area_struct
*vma
,
1115 unsigned long address
,
1116 struct page
**hpage
)
1120 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1121 struct page
*page
= NULL
;
1122 unsigned long _address
;
1124 int node
= NUMA_NO_NODE
, unmapped
= 0;
1125 bool writable
= false;
1127 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1129 pmd
= mm_find_pmd(mm
, address
);
1131 result
= SCAN_PMD_NULL
;
1135 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1136 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1137 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1138 _pte
++, _address
+= PAGE_SIZE
) {
1139 pte_t pteval
= *_pte
;
1140 if (is_swap_pte(pteval
)) {
1141 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1144 result
= SCAN_EXCEED_SWAP_PTE
;
1148 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1149 if (!userfaultfd_armed(vma
) &&
1150 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1153 result
= SCAN_EXCEED_NONE_PTE
;
1157 if (!pte_present(pteval
)) {
1158 result
= SCAN_PTE_NON_PRESENT
;
1161 if (pte_write(pteval
))
1164 page
= vm_normal_page(vma
, _address
, pteval
);
1165 if (unlikely(!page
)) {
1166 result
= SCAN_PAGE_NULL
;
1170 /* TODO: teach khugepaged to collapse THP mapped with pte */
1171 if (PageCompound(page
)) {
1172 result
= SCAN_PAGE_COMPOUND
;
1177 * Record which node the original page is from and save this
1178 * information to khugepaged_node_load[].
1179 * Khupaged will allocate hugepage from the node has the max
1182 node
= page_to_nid(page
);
1183 if (khugepaged_scan_abort(node
)) {
1184 result
= SCAN_SCAN_ABORT
;
1187 khugepaged_node_load
[node
]++;
1188 if (!PageLRU(page
)) {
1189 result
= SCAN_PAGE_LRU
;
1192 if (PageLocked(page
)) {
1193 result
= SCAN_PAGE_LOCK
;
1196 if (!PageAnon(page
)) {
1197 result
= SCAN_PAGE_ANON
;
1202 * cannot use mapcount: can't collapse if there's a gup pin.
1203 * The page must only be referenced by the scanned process
1204 * and page swap cache.
1206 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
1207 result
= SCAN_PAGE_COUNT
;
1210 if (pte_young(pteval
) ||
1211 page_is_young(page
) || PageReferenced(page
) ||
1212 mmu_notifier_test_young(vma
->vm_mm
, address
))
1217 result
= SCAN_SUCCEED
;
1220 result
= SCAN_LACK_REFERENCED_PAGE
;
1223 result
= SCAN_PAGE_RO
;
1226 pte_unmap_unlock(pte
, ptl
);
1228 node
= khugepaged_find_target_node();
1229 /* collapse_huge_page will return with the mmap_sem released */
1230 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1233 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1234 none_or_zero
, result
, unmapped
);
1238 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1240 struct mm_struct
*mm
= mm_slot
->mm
;
1242 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1244 if (khugepaged_test_exit(mm
)) {
1246 hash_del(&mm_slot
->hash
);
1247 list_del(&mm_slot
->mm_node
);
1250 * Not strictly needed because the mm exited already.
1252 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1255 /* khugepaged_mm_lock actually not necessary for the below */
1256 free_mm_slot(mm_slot
);
1261 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1262 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1264 struct vm_area_struct
*vma
;
1265 struct mm_struct
*mm
;
1269 i_mmap_lock_write(mapping
);
1270 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1271 /* probably overkill */
1274 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1275 if (addr
& ~HPAGE_PMD_MASK
)
1277 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1280 pmd
= mm_find_pmd(mm
, addr
);
1284 * We need exclusive mmap_sem to retract page table.
1285 * If trylock fails we would end up with pte-mapped THP after
1286 * re-fault. Not ideal, but it's more important to not disturb
1287 * the system too much.
1289 if (down_write_trylock(&mm
->mmap_sem
)) {
1290 if (!khugepaged_test_exit(mm
)) {
1291 spinlock_t
*ptl
= pmd_lock(mm
, pmd
);
1292 /* assume page table is clear */
1293 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1295 atomic_long_dec(&mm
->nr_ptes
);
1296 pte_free(mm
, pmd_pgtable(_pmd
));
1298 up_write(&mm
->mmap_sem
);
1301 i_mmap_unlock_write(mapping
);
1305 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1307 * Basic scheme is simple, details are more complex:
1308 * - allocate and lock a new huge page;
1309 * - scan over radix tree replacing old pages the new one
1310 * + swap in pages if necessary;
1312 * + keep old pages around in case if rollback is required;
1313 * - if replacing succeed:
1316 * + unlock huge page;
1317 * - if replacing failed;
1318 * + put all pages back and unfreeze them;
1319 * + restore gaps in the radix-tree;
1320 * + unlock and free huge page;
1322 static void collapse_shmem(struct mm_struct
*mm
,
1323 struct address_space
*mapping
, pgoff_t start
,
1324 struct page
**hpage
, int node
)
1327 struct page
*page
, *new_page
, *tmp
;
1328 struct mem_cgroup
*memcg
;
1329 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1330 LIST_HEAD(pagelist
);
1331 struct radix_tree_iter iter
;
1333 int nr_none
= 0, result
= SCAN_SUCCEED
;
1335 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1337 /* Only allocate from the target node */
1338 gfp
= alloc_hugepage_khugepaged_gfpmask() |
1339 __GFP_OTHER_NODE
| __GFP_THISNODE
;
1341 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1343 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1347 /* Do not oom kill for khugepaged charges */
1348 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
| __GFP_NORETRY
,
1350 result
= SCAN_CGROUP_CHARGE_FAIL
;
1354 __SetPageLocked(new_page
);
1355 __SetPageSwapBacked(new_page
);
1356 new_page
->index
= start
;
1357 new_page
->mapping
= mapping
;
1360 * At this point the new_page is locked and not up-to-date.
1361 * It's safe to insert it into the page cache, because nobody would
1362 * be able to map it or use it in another way until we unlock it.
1366 spin_lock_irq(&mapping
->tree_lock
);
1367 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1368 int n
= min(iter
.index
, end
) - index
;
1371 * Stop if extent has been hole-punched, and is now completely
1372 * empty (the more obvious i_size_read() check would take an
1373 * irq-unsafe seqlock on 32-bit).
1375 if (n
>= HPAGE_PMD_NR
) {
1376 result
= SCAN_TRUNCATED
;
1381 * Handle holes in the radix tree: charge it from shmem and
1382 * insert relevant subpage of new_page into the radix-tree.
1384 if (n
&& !shmem_charge(mapping
->host
, n
)) {
1388 for (; index
< min(iter
.index
, end
); index
++) {
1389 radix_tree_insert(&mapping
->page_tree
, index
,
1390 new_page
+ (index
% HPAGE_PMD_NR
));
1398 page
= radix_tree_deref_slot_protected(slot
,
1399 &mapping
->tree_lock
);
1400 if (radix_tree_exceptional_entry(page
) || !PageUptodate(page
)) {
1401 spin_unlock_irq(&mapping
->tree_lock
);
1402 /* swap in or instantiate fallocated page */
1403 if (shmem_getpage(mapping
->host
, index
, &page
,
1408 } else if (trylock_page(page
)) {
1410 spin_unlock_irq(&mapping
->tree_lock
);
1412 result
= SCAN_PAGE_LOCK
;
1417 * The page must be locked, so we can drop the tree_lock
1418 * without racing with truncate.
1420 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1421 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
1424 * If file was truncated then extended, or hole-punched, before
1425 * we locked the first page, then a THP might be there already.
1427 if (PageTransCompound(page
)) {
1428 result
= SCAN_PAGE_COMPOUND
;
1432 if (page_mapping(page
) != mapping
) {
1433 result
= SCAN_TRUNCATED
;
1437 if (isolate_lru_page(page
)) {
1438 result
= SCAN_DEL_PAGE_LRU
;
1442 if (page_mapped(page
))
1443 unmap_mapping_range(mapping
, index
<< PAGE_SHIFT
,
1446 spin_lock_irq(&mapping
->tree_lock
);
1448 slot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
1449 VM_BUG_ON_PAGE(page
!= radix_tree_deref_slot_protected(slot
,
1450 &mapping
->tree_lock
), page
);
1451 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1454 * The page is expected to have page_count() == 3:
1455 * - we hold a pin on it;
1456 * - one reference from radix tree;
1457 * - one from isolate_lru_page;
1459 if (!page_ref_freeze(page
, 3)) {
1460 result
= SCAN_PAGE_COUNT
;
1461 spin_unlock_irq(&mapping
->tree_lock
);
1462 putback_lru_page(page
);
1467 * Add the page to the list to be able to undo the collapse if
1468 * something go wrong.
1470 list_add_tail(&page
->lru
, &pagelist
);
1472 /* Finally, replace with the new page. */
1473 radix_tree_replace_slot(slot
,
1474 new_page
+ (index
% HPAGE_PMD_NR
));
1476 slot
= radix_tree_iter_next(&iter
);
1486 * Handle hole in radix tree at the end of the range.
1487 * This code only triggers if there's nothing in radix tree
1491 int n
= end
- index
;
1493 /* Stop if extent has been truncated, and is now empty */
1494 if (n
>= HPAGE_PMD_NR
) {
1495 result
= SCAN_TRUNCATED
;
1498 if (!shmem_charge(mapping
->host
, n
)) {
1502 for (; index
< end
; index
++) {
1503 radix_tree_insert(&mapping
->page_tree
, index
,
1504 new_page
+ (index
% HPAGE_PMD_NR
));
1509 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1511 struct zone
*zone
= page_zone(new_page
);
1513 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1514 __mod_node_page_state(zone
->zone_pgdat
, NR_SHMEM
, nr_none
);
1518 spin_unlock_irq(&mapping
->tree_lock
);
1521 if (result
== SCAN_SUCCEED
) {
1523 * Replacing old pages with new one has succeed, now we need to
1524 * copy the content and free old pages.
1527 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1528 while (index
< page
->index
) {
1529 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1532 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1534 list_del(&page
->lru
);
1535 page
->mapping
= NULL
;
1536 page_ref_unfreeze(page
, 1);
1537 ClearPageActive(page
);
1538 ClearPageUnevictable(page
);
1543 while (index
< end
) {
1544 clear_highpage(new_page
+ (index
% HPAGE_PMD_NR
));
1548 SetPageUptodate(new_page
);
1549 page_ref_add(new_page
, HPAGE_PMD_NR
- 1);
1550 set_page_dirty(new_page
);
1551 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1552 lru_cache_add_anon(new_page
);
1555 * Remove pte page tables, so we can re-fault the page as huge.
1557 retract_page_tables(mapping
, start
);
1560 /* Something went wrong: rollback changes to the radix-tree */
1561 spin_lock_irq(&mapping
->tree_lock
);
1562 mapping
->nrpages
-= nr_none
;
1563 shmem_uncharge(mapping
->host
, nr_none
);
1565 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
1567 if (iter
.index
>= end
)
1569 page
= list_first_entry_or_null(&pagelist
,
1571 if (!page
|| iter
.index
< page
->index
) {
1575 /* Put holes back where they were */
1576 radix_tree_delete(&mapping
->page_tree
,
1578 slot
= radix_tree_iter_next(&iter
);
1582 VM_BUG_ON_PAGE(page
->index
!= iter
.index
, page
);
1584 /* Unfreeze the page. */
1585 list_del(&page
->lru
);
1586 page_ref_unfreeze(page
, 2);
1587 radix_tree_replace_slot(slot
, page
);
1588 spin_unlock_irq(&mapping
->tree_lock
);
1590 putback_lru_page(page
);
1591 spin_lock_irq(&mapping
->tree_lock
);
1592 slot
= radix_tree_iter_next(&iter
);
1595 spin_unlock_irq(&mapping
->tree_lock
);
1597 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1598 new_page
->mapping
= NULL
;
1601 unlock_page(new_page
);
1603 VM_BUG_ON(!list_empty(&pagelist
));
1604 /* TODO: tracepoints */
1607 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1608 struct address_space
*mapping
,
1609 pgoff_t start
, struct page
**hpage
)
1611 struct page
*page
= NULL
;
1612 struct radix_tree_iter iter
;
1615 int node
= NUMA_NO_NODE
;
1616 int result
= SCAN_SUCCEED
;
1620 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1622 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1623 if (iter
.index
>= start
+ HPAGE_PMD_NR
)
1626 page
= radix_tree_deref_slot(slot
);
1627 if (radix_tree_deref_retry(page
)) {
1628 slot
= radix_tree_iter_retry(&iter
);
1632 if (radix_tree_exception(page
)) {
1633 if (++swap
> khugepaged_max_ptes_swap
) {
1634 result
= SCAN_EXCEED_SWAP_PTE
;
1640 if (PageTransCompound(page
)) {
1641 result
= SCAN_PAGE_COMPOUND
;
1645 node
= page_to_nid(page
);
1646 if (khugepaged_scan_abort(node
)) {
1647 result
= SCAN_SCAN_ABORT
;
1650 khugepaged_node_load
[node
]++;
1652 if (!PageLRU(page
)) {
1653 result
= SCAN_PAGE_LRU
;
1657 if (page_count(page
) != 1 + page_mapcount(page
)) {
1658 result
= SCAN_PAGE_COUNT
;
1663 * We probably should check if the page is referenced here, but
1664 * nobody would transfer pte_young() to PageReferenced() for us.
1665 * And rmap walk here is just too costly...
1670 if (need_resched()) {
1672 slot
= radix_tree_iter_next(&iter
);
1677 if (result
== SCAN_SUCCEED
) {
1678 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1679 result
= SCAN_EXCEED_NONE_PTE
;
1681 node
= khugepaged_find_target_node();
1682 collapse_shmem(mm
, mapping
, start
, hpage
, node
);
1686 /* TODO: tracepoints */
1689 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1690 struct address_space
*mapping
,
1691 pgoff_t start
, struct page
**hpage
)
1697 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1698 struct page
**hpage
)
1699 __releases(&khugepaged_mm_lock
)
1700 __acquires(&khugepaged_mm_lock
)
1702 struct mm_slot
*mm_slot
;
1703 struct mm_struct
*mm
;
1704 struct vm_area_struct
*vma
;
1708 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1710 if (khugepaged_scan
.mm_slot
)
1711 mm_slot
= khugepaged_scan
.mm_slot
;
1713 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1714 struct mm_slot
, mm_node
);
1715 khugepaged_scan
.address
= 0;
1716 khugepaged_scan
.mm_slot
= mm_slot
;
1718 spin_unlock(&khugepaged_mm_lock
);
1722 * Don't wait for semaphore (to avoid long wait times). Just move to
1723 * the next mm on the list.
1726 if (unlikely(!down_read_trylock(&mm
->mmap_sem
)))
1727 goto breakouterloop_mmap_sem
;
1728 if (likely(!khugepaged_test_exit(mm
)))
1729 vma
= find_vma(mm
, khugepaged_scan
.address
);
1732 for (; vma
; vma
= vma
->vm_next
) {
1733 unsigned long hstart
, hend
;
1736 if (unlikely(khugepaged_test_exit(mm
))) {
1740 if (!hugepage_vma_check(vma
)) {
1745 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1746 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1749 if (khugepaged_scan
.address
> hend
)
1751 if (khugepaged_scan
.address
< hstart
)
1752 khugepaged_scan
.address
= hstart
;
1753 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1755 while (khugepaged_scan
.address
< hend
) {
1758 if (unlikely(khugepaged_test_exit(mm
)))
1759 goto breakouterloop
;
1761 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1762 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1764 if (shmem_file(vma
->vm_file
)) {
1766 pgoff_t pgoff
= linear_page_index(vma
,
1767 khugepaged_scan
.address
);
1768 if (!shmem_huge_enabled(vma
))
1770 file
= get_file(vma
->vm_file
);
1771 up_read(&mm
->mmap_sem
);
1773 khugepaged_scan_shmem(mm
, file
->f_mapping
,
1777 ret
= khugepaged_scan_pmd(mm
, vma
,
1778 khugepaged_scan
.address
,
1781 /* move to next address */
1782 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1783 progress
+= HPAGE_PMD_NR
;
1785 /* we released mmap_sem so break loop */
1786 goto breakouterloop_mmap_sem
;
1787 if (progress
>= pages
)
1788 goto breakouterloop
;
1792 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
1793 breakouterloop_mmap_sem
:
1795 spin_lock(&khugepaged_mm_lock
);
1796 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
1798 * Release the current mm_slot if this mm is about to die, or
1799 * if we scanned all vmas of this mm.
1801 if (khugepaged_test_exit(mm
) || !vma
) {
1803 * Make sure that if mm_users is reaching zero while
1804 * khugepaged runs here, khugepaged_exit will find
1805 * mm_slot not pointing to the exiting mm.
1807 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
1808 khugepaged_scan
.mm_slot
= list_entry(
1809 mm_slot
->mm_node
.next
,
1810 struct mm_slot
, mm_node
);
1811 khugepaged_scan
.address
= 0;
1813 khugepaged_scan
.mm_slot
= NULL
;
1814 khugepaged_full_scans
++;
1817 collect_mm_slot(mm_slot
);
1823 static int khugepaged_has_work(void)
1825 return !list_empty(&khugepaged_scan
.mm_head
) &&
1826 khugepaged_enabled();
1829 static int khugepaged_wait_event(void)
1831 return !list_empty(&khugepaged_scan
.mm_head
) ||
1832 kthread_should_stop();
1835 static void khugepaged_do_scan(void)
1837 struct page
*hpage
= NULL
;
1838 unsigned int progress
= 0, pass_through_head
= 0;
1839 unsigned int pages
= khugepaged_pages_to_scan
;
1842 barrier(); /* write khugepaged_pages_to_scan to local stack */
1844 while (progress
< pages
) {
1845 if (!khugepaged_prealloc_page(&hpage
, &wait
))
1850 if (unlikely(kthread_should_stop() || try_to_freeze()))
1853 spin_lock(&khugepaged_mm_lock
);
1854 if (!khugepaged_scan
.mm_slot
)
1855 pass_through_head
++;
1856 if (khugepaged_has_work() &&
1857 pass_through_head
< 2)
1858 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
1862 spin_unlock(&khugepaged_mm_lock
);
1865 if (!IS_ERR_OR_NULL(hpage
))
1869 static bool khugepaged_should_wakeup(void)
1871 return kthread_should_stop() ||
1872 time_after_eq(jiffies
, khugepaged_sleep_expire
);
1875 static void khugepaged_wait_work(void)
1877 if (khugepaged_has_work()) {
1878 const unsigned long scan_sleep_jiffies
=
1879 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
1881 if (!scan_sleep_jiffies
)
1884 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
1885 wait_event_freezable_timeout(khugepaged_wait
,
1886 khugepaged_should_wakeup(),
1887 scan_sleep_jiffies
);
1891 if (khugepaged_enabled())
1892 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
1895 static int khugepaged(void *none
)
1897 struct mm_slot
*mm_slot
;
1900 set_user_nice(current
, MAX_NICE
);
1902 while (!kthread_should_stop()) {
1903 khugepaged_do_scan();
1904 khugepaged_wait_work();
1907 spin_lock(&khugepaged_mm_lock
);
1908 mm_slot
= khugepaged_scan
.mm_slot
;
1909 khugepaged_scan
.mm_slot
= NULL
;
1911 collect_mm_slot(mm_slot
);
1912 spin_unlock(&khugepaged_mm_lock
);
1916 static void set_recommended_min_free_kbytes(void)
1920 unsigned long recommended_min
;
1922 for_each_populated_zone(zone
)
1925 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1926 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
1929 * Make sure that on average at least two pageblocks are almost free
1930 * of another type, one for a migratetype to fall back to and a
1931 * second to avoid subsequent fallbacks of other types There are 3
1932 * MIGRATE_TYPES we care about.
1934 recommended_min
+= pageblock_nr_pages
* nr_zones
*
1935 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
1937 /* don't ever allow to reserve more than 5% of the lowmem */
1938 recommended_min
= min(recommended_min
,
1939 (unsigned long) nr_free_buffer_pages() / 20);
1940 recommended_min
<<= (PAGE_SHIFT
-10);
1942 if (recommended_min
> min_free_kbytes
) {
1943 if (user_min_free_kbytes
>= 0)
1944 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1945 min_free_kbytes
, recommended_min
);
1947 min_free_kbytes
= recommended_min
;
1949 setup_per_zone_wmarks();
1952 int start_stop_khugepaged(void)
1956 mutex_lock(&khugepaged_mutex
);
1957 if (khugepaged_enabled()) {
1958 if (!khugepaged_thread
)
1959 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
1961 if (IS_ERR(khugepaged_thread
)) {
1962 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1963 err
= PTR_ERR(khugepaged_thread
);
1964 khugepaged_thread
= NULL
;
1968 if (!list_empty(&khugepaged_scan
.mm_head
))
1969 wake_up_interruptible(&khugepaged_wait
);
1971 set_recommended_min_free_kbytes();
1972 } else if (khugepaged_thread
) {
1973 kthread_stop(khugepaged_thread
);
1974 khugepaged_thread
= NULL
;
1977 mutex_unlock(&khugepaged_mutex
);
1981 void khugepaged_min_free_kbytes_update(void)
1983 mutex_lock(&khugepaged_mutex
);
1984 if (khugepaged_enabled() && khugepaged_thread
)
1985 set_recommended_min_free_kbytes();
1986 mutex_unlock(&khugepaged_mutex
);