USB: serial: option: add LongSung M5710 module support
[linux/fpc-iii.git] / mm / memory.c
blob47248dc0b9e1a92e272f517ef76ec2c8b4ac0cb9
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
76 #include "internal.h"
78 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
98 void * high_memory;
100 EXPORT_SYMBOL(high_memory);
103 * Randomize the address space (stacks, mmaps, brk, etc.).
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
111 #else
113 #endif
115 static int __init disable_randmaps(char *s)
117 randomize_va_space = 0;
118 return 1;
120 __setup("norandmaps", disable_randmaps);
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
125 EXPORT_SYMBOL(zero_pfn);
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130 static int __init init_zero_pfn(void)
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
135 core_initcall(init_zero_pfn);
138 #if defined(SPLIT_RSS_COUNTING)
140 void sync_mm_rss(struct mm_struct *mm)
142 int i;
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
150 current->rss_stat.events = 0;
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
155 struct task_struct *task = current;
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH (64)
167 static void check_sync_rss_stat(struct task_struct *task)
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172 sync_mm_rss(task->mm);
174 #else /* SPLIT_RSS_COUNTING */
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179 static void check_sync_rss_stat(struct task_struct *task)
183 #endif /* SPLIT_RSS_COUNTING */
185 #ifdef HAVE_GENERIC_MMU_GATHER
187 static bool tlb_next_batch(struct mmu_gather *tlb)
189 struct mmu_gather_batch *batch;
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
194 return true;
197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198 return false;
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
202 return false;
204 tlb->batch_count++;
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
209 tlb->active->next = batch;
210 tlb->active = batch;
212 return true;
215 /* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
222 tlb->mm = mm;
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
238 __tlb_reset_range(tlb);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 if (!tlb->end)
244 return;
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 struct mmu_gather_batch *batch;
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
262 tlb->active = &tlb->local;
265 void tlb_flush_mmu(struct mmu_gather *tlb)
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 struct mmu_gather_batch *batch, *next;
279 tlb_flush_mmu(tlb);
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
288 tlb->local.next = NULL;
291 /* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
296 *returns true if the caller should flush.
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
300 struct mmu_gather_batch *batch;
302 VM_BUG_ON(!tlb->end);
304 if (!tlb->page_size)
305 tlb->page_size = page_size;
306 else {
307 if (page_size != tlb->page_size)
308 return true;
311 batch = tlb->active;
312 if (batch->nr == batch->max) {
313 if (!tlb_next_batch(tlb))
314 return true;
315 batch = tlb->active;
317 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
319 batch->pages[batch->nr++] = page;
320 return false;
323 #endif /* HAVE_GENERIC_MMU_GATHER */
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 * See the comment near struct mmu_table_batch.
331 static void tlb_remove_table_smp_sync(void *arg)
333 /* Simply deliver the interrupt */
336 static void tlb_remove_table_one(void *table)
339 * This isn't an RCU grace period and hence the page-tables cannot be
340 * assumed to be actually RCU-freed.
342 * It is however sufficient for software page-table walkers that rely on
343 * IRQ disabling. See the comment near struct mmu_table_batch.
345 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346 __tlb_remove_table(table);
349 static void tlb_remove_table_rcu(struct rcu_head *head)
351 struct mmu_table_batch *batch;
352 int i;
354 batch = container_of(head, struct mmu_table_batch, rcu);
356 for (i = 0; i < batch->nr; i++)
357 __tlb_remove_table(batch->tables[i]);
359 free_page((unsigned long)batch);
362 void tlb_table_flush(struct mmu_gather *tlb)
364 struct mmu_table_batch **batch = &tlb->batch;
366 if (*batch) {
367 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368 *batch = NULL;
372 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 struct mmu_table_batch **batch = &tlb->batch;
376 if (*batch == NULL) {
377 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
378 if (*batch == NULL) {
379 tlb_remove_table_one(table);
380 return;
382 (*batch)->nr = 0;
384 (*batch)->tables[(*batch)->nr++] = table;
385 if ((*batch)->nr == MAX_TABLE_BATCH)
386 tlb_table_flush(tlb);
389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
392 * Note: this doesn't free the actual pages themselves. That
393 * has been handled earlier when unmapping all the memory regions.
395 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
396 unsigned long addr)
398 pgtable_t token = pmd_pgtable(*pmd);
399 pmd_clear(pmd);
400 pte_free_tlb(tlb, token, addr);
401 atomic_long_dec(&tlb->mm->nr_ptes);
404 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
405 unsigned long addr, unsigned long end,
406 unsigned long floor, unsigned long ceiling)
408 pmd_t *pmd;
409 unsigned long next;
410 unsigned long start;
412 start = addr;
413 pmd = pmd_offset(pud, addr);
414 do {
415 next = pmd_addr_end(addr, end);
416 if (pmd_none_or_clear_bad(pmd))
417 continue;
418 free_pte_range(tlb, pmd, addr);
419 } while (pmd++, addr = next, addr != end);
421 start &= PUD_MASK;
422 if (start < floor)
423 return;
424 if (ceiling) {
425 ceiling &= PUD_MASK;
426 if (!ceiling)
427 return;
429 if (end - 1 > ceiling - 1)
430 return;
432 pmd = pmd_offset(pud, start);
433 pud_clear(pud);
434 pmd_free_tlb(tlb, pmd, start);
435 mm_dec_nr_pmds(tlb->mm);
438 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
439 unsigned long addr, unsigned long end,
440 unsigned long floor, unsigned long ceiling)
442 pud_t *pud;
443 unsigned long next;
444 unsigned long start;
446 start = addr;
447 pud = pud_offset(pgd, addr);
448 do {
449 next = pud_addr_end(addr, end);
450 if (pud_none_or_clear_bad(pud))
451 continue;
452 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
453 } while (pud++, addr = next, addr != end);
455 start &= PGDIR_MASK;
456 if (start < floor)
457 return;
458 if (ceiling) {
459 ceiling &= PGDIR_MASK;
460 if (!ceiling)
461 return;
463 if (end - 1 > ceiling - 1)
464 return;
466 pud = pud_offset(pgd, start);
467 pgd_clear(pgd);
468 pud_free_tlb(tlb, pud, start);
472 * This function frees user-level page tables of a process.
474 void free_pgd_range(struct mmu_gather *tlb,
475 unsigned long addr, unsigned long end,
476 unsigned long floor, unsigned long ceiling)
478 pgd_t *pgd;
479 unsigned long next;
482 * The next few lines have given us lots of grief...
484 * Why are we testing PMD* at this top level? Because often
485 * there will be no work to do at all, and we'd prefer not to
486 * go all the way down to the bottom just to discover that.
488 * Why all these "- 1"s? Because 0 represents both the bottom
489 * of the address space and the top of it (using -1 for the
490 * top wouldn't help much: the masks would do the wrong thing).
491 * The rule is that addr 0 and floor 0 refer to the bottom of
492 * the address space, but end 0 and ceiling 0 refer to the top
493 * Comparisons need to use "end - 1" and "ceiling - 1" (though
494 * that end 0 case should be mythical).
496 * Wherever addr is brought up or ceiling brought down, we must
497 * be careful to reject "the opposite 0" before it confuses the
498 * subsequent tests. But what about where end is brought down
499 * by PMD_SIZE below? no, end can't go down to 0 there.
501 * Whereas we round start (addr) and ceiling down, by different
502 * masks at different levels, in order to test whether a table
503 * now has no other vmas using it, so can be freed, we don't
504 * bother to round floor or end up - the tests don't need that.
507 addr &= PMD_MASK;
508 if (addr < floor) {
509 addr += PMD_SIZE;
510 if (!addr)
511 return;
513 if (ceiling) {
514 ceiling &= PMD_MASK;
515 if (!ceiling)
516 return;
518 if (end - 1 > ceiling - 1)
519 end -= PMD_SIZE;
520 if (addr > end - 1)
521 return;
523 pgd = pgd_offset(tlb->mm, addr);
524 do {
525 next = pgd_addr_end(addr, end);
526 if (pgd_none_or_clear_bad(pgd))
527 continue;
528 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
529 } while (pgd++, addr = next, addr != end);
532 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
533 unsigned long floor, unsigned long ceiling)
535 while (vma) {
536 struct vm_area_struct *next = vma->vm_next;
537 unsigned long addr = vma->vm_start;
540 * Hide vma from rmap and truncate_pagecache before freeing
541 * pgtables
543 unlink_anon_vmas(vma);
544 unlink_file_vma(vma);
546 if (is_vm_hugetlb_page(vma)) {
547 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
548 floor, next? next->vm_start: ceiling);
549 } else {
551 * Optimization: gather nearby vmas into one call down
553 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
554 && !is_vm_hugetlb_page(next)) {
555 vma = next;
556 next = vma->vm_next;
557 unlink_anon_vmas(vma);
558 unlink_file_vma(vma);
560 free_pgd_range(tlb, addr, vma->vm_end,
561 floor, next? next->vm_start: ceiling);
563 vma = next;
567 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
569 spinlock_t *ptl;
570 pgtable_t new = pte_alloc_one(mm, address);
571 if (!new)
572 return -ENOMEM;
575 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 * visible before the pte is made visible to other CPUs by being
577 * put into page tables.
579 * The other side of the story is the pointer chasing in the page
580 * table walking code (when walking the page table without locking;
581 * ie. most of the time). Fortunately, these data accesses consist
582 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 * being the notable exception) will already guarantee loads are
584 * seen in-order. See the alpha page table accessors for the
585 * smp_read_barrier_depends() barriers in page table walking code.
587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
589 ptl = pmd_lock(mm, pmd);
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
591 atomic_long_inc(&mm->nr_ptes);
592 pmd_populate(mm, pmd, new);
593 new = NULL;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 return 0;
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
614 spin_unlock(&init_mm.page_table_lock);
615 if (new)
616 pte_free_kernel(&init_mm, new);
617 return 0;
620 static inline void init_rss_vec(int *rss)
622 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 int i;
629 if (current->mm == mm)
630 sync_mm_rss(mm);
631 for (i = 0; i < NR_MM_COUNTERS; i++)
632 if (rss[i])
633 add_mm_counter(mm, i, rss[i]);
637 * This function is called to print an error when a bad pte
638 * is found. For example, we might have a PFN-mapped pte in
639 * a region that doesn't allow it.
641 * The calling function must still handle the error.
643 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644 pte_t pte, struct page *page)
646 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647 pud_t *pud = pud_offset(pgd, addr);
648 pmd_t *pmd = pmd_offset(pud, addr);
649 struct address_space *mapping;
650 pgoff_t index;
651 static unsigned long resume;
652 static unsigned long nr_shown;
653 static unsigned long nr_unshown;
656 * Allow a burst of 60 reports, then keep quiet for that minute;
657 * or allow a steady drip of one report per second.
659 if (nr_shown == 60) {
660 if (time_before(jiffies, resume)) {
661 nr_unshown++;
662 return;
664 if (nr_unshown) {
665 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
666 nr_unshown);
667 nr_unshown = 0;
669 nr_shown = 0;
671 if (nr_shown++ == 0)
672 resume = jiffies + 60 * HZ;
674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 index = linear_page_index(vma, addr);
677 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
678 current->comm,
679 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680 if (page)
681 dump_page(page, "bad pte");
682 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
688 vma->vm_file,
689 vma->vm_ops ? vma->vm_ops->fault : NULL,
690 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
691 mapping ? mapping->a_ops->readpage : NULL);
692 dump_stack();
693 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 * And for normal mappings this is false.
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
746 unsigned long pfn = pte_pfn(pte);
748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
751 if (vma->vm_ops && vma->vm_ops->find_special_page)
752 return vma->vm_ops->find_special_page(vma, addr);
753 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
754 return NULL;
755 if (!is_zero_pfn(pfn))
756 print_bad_pte(vma, addr, pte, NULL);
757 return NULL;
760 /* !HAVE_PTE_SPECIAL case follows: */
762 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
763 if (vma->vm_flags & VM_MIXEDMAP) {
764 if (!pfn_valid(pfn))
765 return NULL;
766 goto out;
767 } else {
768 unsigned long off;
769 off = (addr - vma->vm_start) >> PAGE_SHIFT;
770 if (pfn == vma->vm_pgoff + off)
771 return NULL;
772 if (!is_cow_mapping(vma->vm_flags))
773 return NULL;
777 if (is_zero_pfn(pfn))
778 return NULL;
779 check_pfn:
780 if (unlikely(pfn > highest_memmap_pfn)) {
781 print_bad_pte(vma, addr, pte, NULL);
782 return NULL;
786 * NOTE! We still have PageReserved() pages in the page tables.
787 * eg. VDSO mappings can cause them to exist.
789 out:
790 return pfn_to_page(pfn);
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
795 pmd_t pmd)
797 unsigned long pfn = pmd_pfn(pmd);
800 * There is no pmd_special() but there may be special pmds, e.g.
801 * in a direct-access (dax) mapping, so let's just replicate the
802 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
804 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
805 if (vma->vm_flags & VM_MIXEDMAP) {
806 if (!pfn_valid(pfn))
807 return NULL;
808 goto out;
809 } else {
810 unsigned long off;
811 off = (addr - vma->vm_start) >> PAGE_SHIFT;
812 if (pfn == vma->vm_pgoff + off)
813 return NULL;
814 if (!is_cow_mapping(vma->vm_flags))
815 return NULL;
819 if (is_zero_pfn(pfn))
820 return NULL;
821 if (unlikely(pfn > highest_memmap_pfn))
822 return NULL;
825 * NOTE! We still have PageReserved() pages in the page tables.
826 * eg. VDSO mappings can cause them to exist.
828 out:
829 return pfn_to_page(pfn);
831 #endif
834 * copy one vm_area from one task to the other. Assumes the page tables
835 * already present in the new task to be cleared in the whole range
836 * covered by this vma.
839 static inline unsigned long
840 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
842 unsigned long addr, int *rss)
844 unsigned long vm_flags = vma->vm_flags;
845 pte_t pte = *src_pte;
846 struct page *page;
848 /* pte contains position in swap or file, so copy. */
849 if (unlikely(!pte_present(pte))) {
850 swp_entry_t entry = pte_to_swp_entry(pte);
852 if (likely(!non_swap_entry(entry))) {
853 if (swap_duplicate(entry) < 0)
854 return entry.val;
856 /* make sure dst_mm is on swapoff's mmlist. */
857 if (unlikely(list_empty(&dst_mm->mmlist))) {
858 spin_lock(&mmlist_lock);
859 if (list_empty(&dst_mm->mmlist))
860 list_add(&dst_mm->mmlist,
861 &src_mm->mmlist);
862 spin_unlock(&mmlist_lock);
864 rss[MM_SWAPENTS]++;
865 } else if (is_migration_entry(entry)) {
866 page = migration_entry_to_page(entry);
868 rss[mm_counter(page)]++;
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
873 * COW mappings require pages in both
874 * parent and child to be set to read.
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 if (pte_swp_soft_dirty(*src_pte))
879 pte = pte_swp_mksoft_dirty(pte);
880 set_pte_at(src_mm, addr, src_pte, pte);
883 goto out_set_pte;
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
896 * If it's a shared mapping, mark it clean in
897 * the child
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
906 page_dup_rmap(page, false);
907 rss[mm_counter(page)]++;
910 out_set_pte:
911 set_pte_at(dst_mm, addr, dst_pte, pte);
912 return 0;
915 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
919 pte_t *orig_src_pte, *orig_dst_pte;
920 pte_t *src_pte, *dst_pte;
921 spinlock_t *src_ptl, *dst_ptl;
922 int progress = 0;
923 int rss[NR_MM_COUNTERS];
924 swp_entry_t entry = (swp_entry_t){0};
926 again:
927 init_rss_vec(rss);
929 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930 if (!dst_pte)
931 return -ENOMEM;
932 src_pte = pte_offset_map(src_pmd, addr);
933 src_ptl = pte_lockptr(src_mm, src_pmd);
934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935 orig_src_pte = src_pte;
936 orig_dst_pte = dst_pte;
937 arch_enter_lazy_mmu_mode();
939 do {
941 * We are holding two locks at this point - either of them
942 * could generate latencies in another task on another CPU.
944 if (progress >= 32) {
945 progress = 0;
946 if (need_resched() ||
947 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948 break;
950 if (pte_none(*src_pte)) {
951 progress++;
952 continue;
954 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 vma, addr, rss);
956 if (entry.val)
957 break;
958 progress += 8;
959 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
961 arch_leave_lazy_mmu_mode();
962 spin_unlock(src_ptl);
963 pte_unmap(orig_src_pte);
964 add_mm_rss_vec(dst_mm, rss);
965 pte_unmap_unlock(orig_dst_pte, dst_ptl);
966 cond_resched();
968 if (entry.val) {
969 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 return -ENOMEM;
971 progress = 0;
973 if (addr != end)
974 goto again;
975 return 0;
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
982 pmd_t *src_pmd, *dst_pmd;
983 unsigned long next;
985 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 if (!dst_pmd)
987 return -ENOMEM;
988 src_pmd = pmd_offset(src_pud, addr);
989 do {
990 next = pmd_addr_end(addr, end);
991 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
992 int err;
993 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994 err = copy_huge_pmd(dst_mm, src_mm,
995 dst_pmd, src_pmd, addr, vma);
996 if (err == -ENOMEM)
997 return -ENOMEM;
998 if (!err)
999 continue;
1000 /* fall through */
1002 if (pmd_none_or_clear_bad(src_pmd))
1003 continue;
1004 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 vma, addr, next))
1006 return -ENOMEM;
1007 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 return 0;
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 unsigned long addr, unsigned long end)
1015 pud_t *src_pud, *dst_pud;
1016 unsigned long next;
1018 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 if (!dst_pud)
1020 return -ENOMEM;
1021 src_pud = pud_offset(src_pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(src_pud))
1025 continue;
1026 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 vma, addr, next))
1028 return -ENOMEM;
1029 } while (dst_pud++, src_pud++, addr = next, addr != end);
1030 return 0;
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 struct vm_area_struct *vma)
1036 pgd_t *src_pgd, *dst_pgd;
1037 unsigned long next;
1038 unsigned long addr = vma->vm_start;
1039 unsigned long end = vma->vm_end;
1040 unsigned long mmun_start; /* For mmu_notifiers */
1041 unsigned long mmun_end; /* For mmu_notifiers */
1042 bool is_cow;
1043 int ret;
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1051 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1052 !vma->anon_vma)
1053 return 0;
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1063 ret = track_pfn_copy(vma);
1064 if (ret)
1065 return ret;
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1074 is_cow = is_cow_mapping(vma->vm_flags);
1075 mmun_start = addr;
1076 mmun_end = end;
1077 if (is_cow)
1078 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1079 mmun_end);
1081 ret = 0;
1082 dst_pgd = pgd_offset(dst_mm, addr);
1083 src_pgd = pgd_offset(src_mm, addr);
1084 do {
1085 next = pgd_addr_end(addr, end);
1086 if (pgd_none_or_clear_bad(src_pgd))
1087 continue;
1088 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1089 vma, addr, next))) {
1090 ret = -ENOMEM;
1091 break;
1093 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1095 if (is_cow)
1096 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1097 return ret;
1100 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1101 struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, unsigned long end,
1103 struct zap_details *details)
1105 struct mm_struct *mm = tlb->mm;
1106 int force_flush = 0;
1107 int rss[NR_MM_COUNTERS];
1108 spinlock_t *ptl;
1109 pte_t *start_pte;
1110 pte_t *pte;
1111 swp_entry_t entry;
1112 struct page *pending_page = NULL;
1114 again:
1115 init_rss_vec(rss);
1116 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117 pte = start_pte;
1118 flush_tlb_batched_pending(mm);
1119 arch_enter_lazy_mmu_mode();
1120 do {
1121 pte_t ptent = *pte;
1122 if (pte_none(ptent)) {
1123 continue;
1126 if (pte_present(ptent)) {
1127 struct page *page;
1129 page = vm_normal_page(vma, addr, ptent);
1130 if (unlikely(details) && page) {
1132 * unmap_shared_mapping_pages() wants to
1133 * invalidate cache without truncating:
1134 * unmap shared but keep private pages.
1136 if (details->check_mapping &&
1137 details->check_mapping != page_rmapping(page))
1138 continue;
1140 ptent = ptep_get_and_clear_full(mm, addr, pte,
1141 tlb->fullmm);
1142 tlb_remove_tlb_entry(tlb, pte, addr);
1143 if (unlikely(!page))
1144 continue;
1146 if (!PageAnon(page)) {
1147 if (pte_dirty(ptent)) {
1149 * oom_reaper cannot tear down dirty
1150 * pages
1152 if (unlikely(details && details->ignore_dirty))
1153 continue;
1154 force_flush = 1;
1155 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!(vma->vm_flags & VM_SEQ_READ)))
1159 mark_page_accessed(page);
1161 rss[mm_counter(page)]--;
1162 page_remove_rmap(page, false);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 if (unlikely(__tlb_remove_page(tlb, page))) {
1166 force_flush = 1;
1167 pending_page = page;
1168 addr += PAGE_SIZE;
1169 break;
1171 continue;
1173 /* only check swap_entries if explicitly asked for in details */
1174 if (unlikely(details && !details->check_swap_entries))
1175 continue;
1177 entry = pte_to_swp_entry(ptent);
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1183 page = migration_entry_to_page(entry);
1184 rss[mm_counter(page)]--;
1186 if (unlikely(!free_swap_and_cache(entry)))
1187 print_bad_pte(vma, addr, ptent, NULL);
1188 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1189 } while (pte++, addr += PAGE_SIZE, addr != end);
1191 add_mm_rss_vec(mm, rss);
1192 arch_leave_lazy_mmu_mode();
1194 /* Do the actual TLB flush before dropping ptl */
1195 if (force_flush)
1196 tlb_flush_mmu_tlbonly(tlb);
1197 pte_unmap_unlock(start_pte, ptl);
1200 * If we forced a TLB flush (either due to running out of
1201 * batch buffers or because we needed to flush dirty TLB
1202 * entries before releasing the ptl), free the batched
1203 * memory too. Restart if we didn't do everything.
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu_free(tlb);
1208 if (pending_page) {
1209 /* remove the page with new size */
1210 __tlb_remove_pte_page(tlb, pending_page);
1211 pending_page = NULL;
1213 if (addr != end)
1214 goto again;
1217 return addr;
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 struct vm_area_struct *vma, pud_t *pud,
1222 unsigned long addr, unsigned long end,
1223 struct zap_details *details)
1225 pmd_t *pmd;
1226 unsigned long next;
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1232 if (next - addr != HPAGE_PMD_SIZE) {
1233 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1234 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1235 split_huge_pmd(vma, pmd, addr);
1236 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1237 goto next;
1238 /* fall through */
1241 * Here there can be other concurrent MADV_DONTNEED or
1242 * trans huge page faults running, and if the pmd is
1243 * none or trans huge it can change under us. This is
1244 * because MADV_DONTNEED holds the mmap_sem in read
1245 * mode.
1247 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1248 goto next;
1249 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1250 next:
1251 cond_resched();
1252 } while (pmd++, addr = next, addr != end);
1254 return addr;
1257 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1258 struct vm_area_struct *vma, pgd_t *pgd,
1259 unsigned long addr, unsigned long end,
1260 struct zap_details *details)
1262 pud_t *pud;
1263 unsigned long next;
1265 pud = pud_offset(pgd, addr);
1266 do {
1267 next = pud_addr_end(addr, end);
1268 if (pud_none_or_clear_bad(pud))
1269 continue;
1270 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1271 } while (pud++, addr = next, addr != end);
1273 return addr;
1276 void unmap_page_range(struct mmu_gather *tlb,
1277 struct vm_area_struct *vma,
1278 unsigned long addr, unsigned long end,
1279 struct zap_details *details)
1281 pgd_t *pgd;
1282 unsigned long next;
1284 BUG_ON(addr >= end);
1285 tlb_start_vma(tlb, vma);
1286 pgd = pgd_offset(vma->vm_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(pgd))
1290 continue;
1291 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292 } while (pgd++, addr = next, addr != end);
1293 tlb_end_vma(tlb, vma);
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
1299 unsigned long end_addr,
1300 struct zap_details *details)
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 untrack_pfn(vma, 0, 0);
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of mmap_region. When
1324 * hugetlbfs ->mmap method fails,
1325 * mmap_region() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1330 if (vma->vm_file) {
1331 i_mmap_lock_write(vma->vm_file->f_mapping);
1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 i_mmap_unlock_write(vma->vm_file->f_mapping);
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1347 * Unmap all pages in the vma list.
1349 * Only addresses between `start' and `end' will be unmapped.
1351 * The VMA list must be sorted in ascending virtual address order.
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1358 void unmap_vmas(struct mmu_gather *tlb,
1359 struct vm_area_struct *vma, unsigned long start_addr,
1360 unsigned long end_addr)
1362 struct mm_struct *mm = vma->vm_mm;
1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of shared cache invalidation
1377 * Caller must protect the VMA list
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long size, struct zap_details *details)
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb;
1384 unsigned long end = start + size;
1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, start, end);
1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 unmap_single_vma(&tlb, vma, start, end, details);
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of shared cache invalidation
1403 * The range must fit into one VMA.
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size, struct zap_details *details)
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb;
1410 unsigned long end = address + size;
1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, address, end);
1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, address, end);
1416 unmap_single_vma(&tlb, vma, address, end, details);
1417 mmu_notifier_invalidate_range_end(mm, address, end);
1418 tlb_finish_mmu(&tlb, address, end);
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429 * The entire address range must be fully contained within the vma.
1431 * Returns 0 if successful.
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
1439 zap_page_range_single(vma, address, size, NULL);
1440 return 0;
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1444 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1445 spinlock_t **ptl)
1447 pgd_t * pgd = pgd_offset(mm, addr);
1448 pud_t * pud = pud_alloc(mm, pgd, addr);
1449 if (pud) {
1450 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1451 if (pmd) {
1452 VM_BUG_ON(pmd_trans_huge(*pmd));
1453 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1456 return NULL;
1460 * This is the old fallback for page remapping.
1462 * For historical reasons, it only allows reserved pages. Only
1463 * old drivers should use this, and they needed to mark their
1464 * pages reserved for the old functions anyway.
1466 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1467 struct page *page, pgprot_t prot)
1469 struct mm_struct *mm = vma->vm_mm;
1470 int retval;
1471 pte_t *pte;
1472 spinlock_t *ptl;
1474 retval = -EINVAL;
1475 if (PageAnon(page))
1476 goto out;
1477 retval = -ENOMEM;
1478 flush_dcache_page(page);
1479 pte = get_locked_pte(mm, addr, &ptl);
1480 if (!pte)
1481 goto out;
1482 retval = -EBUSY;
1483 if (!pte_none(*pte))
1484 goto out_unlock;
1486 /* Ok, finally just insert the thing.. */
1487 get_page(page);
1488 inc_mm_counter_fast(mm, mm_counter_file(page));
1489 page_add_file_rmap(page, false);
1490 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1492 retval = 0;
1493 pte_unmap_unlock(pte, ptl);
1494 return retval;
1495 out_unlock:
1496 pte_unmap_unlock(pte, ptl);
1497 out:
1498 return retval;
1502 * vm_insert_page - insert single page into user vma
1503 * @vma: user vma to map to
1504 * @addr: target user address of this page
1505 * @page: source kernel page
1507 * This allows drivers to insert individual pages they've allocated
1508 * into a user vma.
1510 * The page has to be a nice clean _individual_ kernel allocation.
1511 * If you allocate a compound page, you need to have marked it as
1512 * such (__GFP_COMP), or manually just split the page up yourself
1513 * (see split_page()).
1515 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1516 * took an arbitrary page protection parameter. This doesn't allow
1517 * that. Your vma protection will have to be set up correctly, which
1518 * means that if you want a shared writable mapping, you'd better
1519 * ask for a shared writable mapping!
1521 * The page does not need to be reserved.
1523 * Usually this function is called from f_op->mmap() handler
1524 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1525 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1526 * function from other places, for example from page-fault handler.
1528 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1529 struct page *page)
1531 if (addr < vma->vm_start || addr >= vma->vm_end)
1532 return -EFAULT;
1533 if (!page_count(page))
1534 return -EINVAL;
1535 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1536 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1537 BUG_ON(vma->vm_flags & VM_PFNMAP);
1538 vma->vm_flags |= VM_MIXEDMAP;
1540 return insert_page(vma, addr, page, vma->vm_page_prot);
1542 EXPORT_SYMBOL(vm_insert_page);
1544 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1545 pfn_t pfn, pgprot_t prot)
1547 struct mm_struct *mm = vma->vm_mm;
1548 int retval;
1549 pte_t *pte, entry;
1550 spinlock_t *ptl;
1552 retval = -ENOMEM;
1553 pte = get_locked_pte(mm, addr, &ptl);
1554 if (!pte)
1555 goto out;
1556 retval = -EBUSY;
1557 if (!pte_none(*pte))
1558 goto out_unlock;
1560 /* Ok, finally just insert the thing.. */
1561 if (pfn_t_devmap(pfn))
1562 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1563 else
1564 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1565 set_pte_at(mm, addr, pte, entry);
1566 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1568 retval = 0;
1569 out_unlock:
1570 pte_unmap_unlock(pte, ptl);
1571 out:
1572 return retval;
1576 * vm_insert_pfn - insert single pfn into user vma
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1581 * Similar to vm_insert_page, this allows drivers to insert individual pages
1582 * they've allocated into a user vma. Same comments apply.
1584 * This function should only be called from a vm_ops->fault handler, and
1585 * in that case the handler should return NULL.
1587 * vma cannot be a COW mapping.
1589 * As this is called only for pages that do not currently exist, we
1590 * do not need to flush old virtual caches or the TLB.
1592 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1593 unsigned long pfn)
1595 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1597 EXPORT_SYMBOL(vm_insert_pfn);
1600 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601 * @vma: user vma to map to
1602 * @addr: target user address of this page
1603 * @pfn: source kernel pfn
1604 * @pgprot: pgprot flags for the inserted page
1606 * This is exactly like vm_insert_pfn, except that it allows drivers to
1607 * to override pgprot on a per-page basis.
1609 * This only makes sense for IO mappings, and it makes no sense for
1610 * cow mappings. In general, using multiple vmas is preferable;
1611 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612 * impractical.
1614 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615 unsigned long pfn, pgprot_t pgprot)
1617 int ret;
1619 * Technically, architectures with pte_special can avoid all these
1620 * restrictions (same for remap_pfn_range). However we would like
1621 * consistency in testing and feature parity among all, so we should
1622 * try to keep these invariants in place for everybody.
1624 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626 (VM_PFNMAP|VM_MIXEDMAP));
1627 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1630 if (addr < vma->vm_start || addr >= vma->vm_end)
1631 return -EFAULT;
1632 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1633 return -EINVAL;
1635 if (!pfn_modify_allowed(pfn, pgprot))
1636 return -EACCES;
1638 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1640 return ret;
1642 EXPORT_SYMBOL(vm_insert_pfn_prot);
1644 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1645 pfn_t pfn)
1647 pgprot_t pgprot = vma->vm_page_prot;
1649 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1651 if (addr < vma->vm_start || addr >= vma->vm_end)
1652 return -EFAULT;
1653 if (track_pfn_insert(vma, &pgprot, pfn))
1654 return -EINVAL;
1656 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1657 return -EACCES;
1660 * If we don't have pte special, then we have to use the pfn_valid()
1661 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1662 * refcount the page if pfn_valid is true (hence insert_page rather
1663 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1664 * without pte special, it would there be refcounted as a normal page.
1666 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1667 struct page *page;
1670 * At this point we are committed to insert_page()
1671 * regardless of whether the caller specified flags that
1672 * result in pfn_t_has_page() == false.
1674 page = pfn_to_page(pfn_t_to_pfn(pfn));
1675 return insert_page(vma, addr, page, pgprot);
1677 return insert_pfn(vma, addr, pfn, pgprot);
1679 EXPORT_SYMBOL(vm_insert_mixed);
1682 * maps a range of physical memory into the requested pages. the old
1683 * mappings are removed. any references to nonexistent pages results
1684 * in null mappings (currently treated as "copy-on-access")
1686 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1687 unsigned long addr, unsigned long end,
1688 unsigned long pfn, pgprot_t prot)
1690 pte_t *pte;
1691 spinlock_t *ptl;
1692 int err = 0;
1694 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1695 if (!pte)
1696 return -ENOMEM;
1697 arch_enter_lazy_mmu_mode();
1698 do {
1699 BUG_ON(!pte_none(*pte));
1700 if (!pfn_modify_allowed(pfn, prot)) {
1701 err = -EACCES;
1702 break;
1704 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1705 pfn++;
1706 } while (pte++, addr += PAGE_SIZE, addr != end);
1707 arch_leave_lazy_mmu_mode();
1708 pte_unmap_unlock(pte - 1, ptl);
1709 return err;
1712 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1713 unsigned long addr, unsigned long end,
1714 unsigned long pfn, pgprot_t prot)
1716 pmd_t *pmd;
1717 unsigned long next;
1718 int err;
1720 pfn -= addr >> PAGE_SHIFT;
1721 pmd = pmd_alloc(mm, pud, addr);
1722 if (!pmd)
1723 return -ENOMEM;
1724 VM_BUG_ON(pmd_trans_huge(*pmd));
1725 do {
1726 next = pmd_addr_end(addr, end);
1727 err = remap_pte_range(mm, pmd, addr, next,
1728 pfn + (addr >> PAGE_SHIFT), prot);
1729 if (err)
1730 return err;
1731 } while (pmd++, addr = next, addr != end);
1732 return 0;
1735 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1736 unsigned long addr, unsigned long end,
1737 unsigned long pfn, pgprot_t prot)
1739 pud_t *pud;
1740 unsigned long next;
1741 int err;
1743 pfn -= addr >> PAGE_SHIFT;
1744 pud = pud_alloc(mm, pgd, addr);
1745 if (!pud)
1746 return -ENOMEM;
1747 do {
1748 next = pud_addr_end(addr, end);
1749 err = remap_pmd_range(mm, pud, addr, next,
1750 pfn + (addr >> PAGE_SHIFT), prot);
1751 if (err)
1752 return err;
1753 } while (pud++, addr = next, addr != end);
1754 return 0;
1758 * remap_pfn_range - remap kernel memory to userspace
1759 * @vma: user vma to map to
1760 * @addr: target user address to start at
1761 * @pfn: physical address of kernel memory
1762 * @size: size of map area
1763 * @prot: page protection flags for this mapping
1765 * Note: this is only safe if the mm semaphore is held when called.
1767 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1768 unsigned long pfn, unsigned long size, pgprot_t prot)
1770 pgd_t *pgd;
1771 unsigned long next;
1772 unsigned long end = addr + PAGE_ALIGN(size);
1773 struct mm_struct *mm = vma->vm_mm;
1774 unsigned long remap_pfn = pfn;
1775 int err;
1778 * Physically remapped pages are special. Tell the
1779 * rest of the world about it:
1780 * VM_IO tells people not to look at these pages
1781 * (accesses can have side effects).
1782 * VM_PFNMAP tells the core MM that the base pages are just
1783 * raw PFN mappings, and do not have a "struct page" associated
1784 * with them.
1785 * VM_DONTEXPAND
1786 * Disable vma merging and expanding with mremap().
1787 * VM_DONTDUMP
1788 * Omit vma from core dump, even when VM_IO turned off.
1790 * There's a horrible special case to handle copy-on-write
1791 * behaviour that some programs depend on. We mark the "original"
1792 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1793 * See vm_normal_page() for details.
1795 if (is_cow_mapping(vma->vm_flags)) {
1796 if (addr != vma->vm_start || end != vma->vm_end)
1797 return -EINVAL;
1798 vma->vm_pgoff = pfn;
1801 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1802 if (err)
1803 return -EINVAL;
1805 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1807 BUG_ON(addr >= end);
1808 pfn -= addr >> PAGE_SHIFT;
1809 pgd = pgd_offset(mm, addr);
1810 flush_cache_range(vma, addr, end);
1811 do {
1812 next = pgd_addr_end(addr, end);
1813 err = remap_pud_range(mm, pgd, addr, next,
1814 pfn + (addr >> PAGE_SHIFT), prot);
1815 if (err)
1816 break;
1817 } while (pgd++, addr = next, addr != end);
1819 if (err)
1820 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1822 return err;
1824 EXPORT_SYMBOL(remap_pfn_range);
1827 * vm_iomap_memory - remap memory to userspace
1828 * @vma: user vma to map to
1829 * @start: start of area
1830 * @len: size of area
1832 * This is a simplified io_remap_pfn_range() for common driver use. The
1833 * driver just needs to give us the physical memory range to be mapped,
1834 * we'll figure out the rest from the vma information.
1836 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1837 * whatever write-combining details or similar.
1839 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1841 unsigned long vm_len, pfn, pages;
1843 /* Check that the physical memory area passed in looks valid */
1844 if (start + len < start)
1845 return -EINVAL;
1847 * You *really* shouldn't map things that aren't page-aligned,
1848 * but we've historically allowed it because IO memory might
1849 * just have smaller alignment.
1851 len += start & ~PAGE_MASK;
1852 pfn = start >> PAGE_SHIFT;
1853 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1854 if (pfn + pages < pfn)
1855 return -EINVAL;
1857 /* We start the mapping 'vm_pgoff' pages into the area */
1858 if (vma->vm_pgoff > pages)
1859 return -EINVAL;
1860 pfn += vma->vm_pgoff;
1861 pages -= vma->vm_pgoff;
1863 /* Can we fit all of the mapping? */
1864 vm_len = vma->vm_end - vma->vm_start;
1865 if (vm_len >> PAGE_SHIFT > pages)
1866 return -EINVAL;
1868 /* Ok, let it rip */
1869 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1871 EXPORT_SYMBOL(vm_iomap_memory);
1873 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1874 unsigned long addr, unsigned long end,
1875 pte_fn_t fn, void *data)
1877 pte_t *pte;
1878 int err;
1879 pgtable_t token;
1880 spinlock_t *uninitialized_var(ptl);
1882 pte = (mm == &init_mm) ?
1883 pte_alloc_kernel(pmd, addr) :
1884 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1885 if (!pte)
1886 return -ENOMEM;
1888 BUG_ON(pmd_huge(*pmd));
1890 arch_enter_lazy_mmu_mode();
1892 token = pmd_pgtable(*pmd);
1894 do {
1895 err = fn(pte++, token, addr, data);
1896 if (err)
1897 break;
1898 } while (addr += PAGE_SIZE, addr != end);
1900 arch_leave_lazy_mmu_mode();
1902 if (mm != &init_mm)
1903 pte_unmap_unlock(pte-1, ptl);
1904 return err;
1907 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1908 unsigned long addr, unsigned long end,
1909 pte_fn_t fn, void *data)
1911 pmd_t *pmd;
1912 unsigned long next;
1913 int err;
1915 BUG_ON(pud_huge(*pud));
1917 pmd = pmd_alloc(mm, pud, addr);
1918 if (!pmd)
1919 return -ENOMEM;
1920 do {
1921 next = pmd_addr_end(addr, end);
1922 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1923 if (err)
1924 break;
1925 } while (pmd++, addr = next, addr != end);
1926 return err;
1929 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1930 unsigned long addr, unsigned long end,
1931 pte_fn_t fn, void *data)
1933 pud_t *pud;
1934 unsigned long next;
1935 int err;
1937 pud = pud_alloc(mm, pgd, addr);
1938 if (!pud)
1939 return -ENOMEM;
1940 do {
1941 next = pud_addr_end(addr, end);
1942 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1943 if (err)
1944 break;
1945 } while (pud++, addr = next, addr != end);
1946 return err;
1950 * Scan a region of virtual memory, filling in page tables as necessary
1951 * and calling a provided function on each leaf page table.
1953 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1954 unsigned long size, pte_fn_t fn, void *data)
1956 pgd_t *pgd;
1957 unsigned long next;
1958 unsigned long end = addr + size;
1959 int err;
1961 if (WARN_ON(addr >= end))
1962 return -EINVAL;
1964 pgd = pgd_offset(mm, addr);
1965 do {
1966 next = pgd_addr_end(addr, end);
1967 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1968 if (err)
1969 break;
1970 } while (pgd++, addr = next, addr != end);
1972 return err;
1974 EXPORT_SYMBOL_GPL(apply_to_page_range);
1977 * handle_pte_fault chooses page fault handler according to an entry which was
1978 * read non-atomically. Before making any commitment, on those architectures
1979 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1980 * parts, do_swap_page must check under lock before unmapping the pte and
1981 * proceeding (but do_wp_page is only called after already making such a check;
1982 * and do_anonymous_page can safely check later on).
1984 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1985 pte_t *page_table, pte_t orig_pte)
1987 int same = 1;
1988 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1989 if (sizeof(pte_t) > sizeof(unsigned long)) {
1990 spinlock_t *ptl = pte_lockptr(mm, pmd);
1991 spin_lock(ptl);
1992 same = pte_same(*page_table, orig_pte);
1993 spin_unlock(ptl);
1995 #endif
1996 pte_unmap(page_table);
1997 return same;
2000 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2002 debug_dma_assert_idle(src);
2005 * If the source page was a PFN mapping, we don't have
2006 * a "struct page" for it. We do a best-effort copy by
2007 * just copying from the original user address. If that
2008 * fails, we just zero-fill it. Live with it.
2010 if (unlikely(!src)) {
2011 void *kaddr = kmap_atomic(dst);
2012 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2015 * This really shouldn't fail, because the page is there
2016 * in the page tables. But it might just be unreadable,
2017 * in which case we just give up and fill the result with
2018 * zeroes.
2020 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2021 clear_page(kaddr);
2022 kunmap_atomic(kaddr);
2023 flush_dcache_page(dst);
2024 } else
2025 copy_user_highpage(dst, src, va, vma);
2028 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2030 struct file *vm_file = vma->vm_file;
2032 if (vm_file)
2033 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2036 * Special mappings (e.g. VDSO) do not have any file so fake
2037 * a default GFP_KERNEL for them.
2039 return GFP_KERNEL;
2043 * Notify the address space that the page is about to become writable so that
2044 * it can prohibit this or wait for the page to get into an appropriate state.
2046 * We do this without the lock held, so that it can sleep if it needs to.
2048 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2049 unsigned long address)
2051 struct vm_fault vmf;
2052 int ret;
2054 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2055 vmf.pgoff = page->index;
2056 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2057 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2058 vmf.page = page;
2059 vmf.cow_page = NULL;
2061 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2062 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2063 return ret;
2064 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2065 lock_page(page);
2066 if (!page->mapping) {
2067 unlock_page(page);
2068 return 0; /* retry */
2070 ret |= VM_FAULT_LOCKED;
2071 } else
2072 VM_BUG_ON_PAGE(!PageLocked(page), page);
2073 return ret;
2077 * Handle write page faults for pages that can be reused in the current vma
2079 * This can happen either due to the mapping being with the VM_SHARED flag,
2080 * or due to us being the last reference standing to the page. In either
2081 * case, all we need to do here is to mark the page as writable and update
2082 * any related book-keeping.
2084 static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2085 struct page *page, int page_mkwrite, int dirty_shared)
2086 __releases(fe->ptl)
2088 struct vm_area_struct *vma = fe->vma;
2089 pte_t entry;
2091 * Clear the pages cpupid information as the existing
2092 * information potentially belongs to a now completely
2093 * unrelated process.
2095 if (page)
2096 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2098 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2099 entry = pte_mkyoung(orig_pte);
2100 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2101 if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2102 update_mmu_cache(vma, fe->address, fe->pte);
2103 pte_unmap_unlock(fe->pte, fe->ptl);
2105 if (dirty_shared) {
2106 struct address_space *mapping;
2107 int dirtied;
2109 if (!page_mkwrite)
2110 lock_page(page);
2112 dirtied = set_page_dirty(page);
2113 VM_BUG_ON_PAGE(PageAnon(page), page);
2114 mapping = page->mapping;
2115 unlock_page(page);
2116 put_page(page);
2118 if ((dirtied || page_mkwrite) && mapping) {
2120 * Some device drivers do not set page.mapping
2121 * but still dirty their pages
2123 balance_dirty_pages_ratelimited(mapping);
2126 if (!page_mkwrite)
2127 file_update_time(vma->vm_file);
2130 return VM_FAULT_WRITE;
2134 * Handle the case of a page which we actually need to copy to a new page.
2136 * Called with mmap_sem locked and the old page referenced, but
2137 * without the ptl held.
2139 * High level logic flow:
2141 * - Allocate a page, copy the content of the old page to the new one.
2142 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2143 * - Take the PTL. If the pte changed, bail out and release the allocated page
2144 * - If the pte is still the way we remember it, update the page table and all
2145 * relevant references. This includes dropping the reference the page-table
2146 * held to the old page, as well as updating the rmap.
2147 * - In any case, unlock the PTL and drop the reference we took to the old page.
2149 static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2150 struct page *old_page)
2152 struct vm_area_struct *vma = fe->vma;
2153 struct mm_struct *mm = vma->vm_mm;
2154 struct page *new_page = NULL;
2155 pte_t entry;
2156 int page_copied = 0;
2157 const unsigned long mmun_start = fe->address & PAGE_MASK;
2158 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2159 struct mem_cgroup *memcg;
2161 if (unlikely(anon_vma_prepare(vma)))
2162 goto oom;
2164 if (is_zero_pfn(pte_pfn(orig_pte))) {
2165 new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2166 if (!new_page)
2167 goto oom;
2168 } else {
2169 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2170 fe->address);
2171 if (!new_page)
2172 goto oom;
2173 cow_user_page(new_page, old_page, fe->address, vma);
2176 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2177 goto oom_free_new;
2179 __SetPageUptodate(new_page);
2181 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2184 * Re-check the pte - we dropped the lock
2186 fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2187 if (likely(pte_same(*fe->pte, orig_pte))) {
2188 if (old_page) {
2189 if (!PageAnon(old_page)) {
2190 dec_mm_counter_fast(mm,
2191 mm_counter_file(old_page));
2192 inc_mm_counter_fast(mm, MM_ANONPAGES);
2194 } else {
2195 inc_mm_counter_fast(mm, MM_ANONPAGES);
2197 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2198 entry = mk_pte(new_page, vma->vm_page_prot);
2199 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2201 * Clear the pte entry and flush it first, before updating the
2202 * pte with the new entry. This will avoid a race condition
2203 * seen in the presence of one thread doing SMC and another
2204 * thread doing COW.
2206 ptep_clear_flush_notify(vma, fe->address, fe->pte);
2207 page_add_new_anon_rmap(new_page, vma, fe->address, false);
2208 mem_cgroup_commit_charge(new_page, memcg, false, false);
2209 lru_cache_add_active_or_unevictable(new_page, vma);
2211 * We call the notify macro here because, when using secondary
2212 * mmu page tables (such as kvm shadow page tables), we want the
2213 * new page to be mapped directly into the secondary page table.
2215 set_pte_at_notify(mm, fe->address, fe->pte, entry);
2216 update_mmu_cache(vma, fe->address, fe->pte);
2217 if (old_page) {
2219 * Only after switching the pte to the new page may
2220 * we remove the mapcount here. Otherwise another
2221 * process may come and find the rmap count decremented
2222 * before the pte is switched to the new page, and
2223 * "reuse" the old page writing into it while our pte
2224 * here still points into it and can be read by other
2225 * threads.
2227 * The critical issue is to order this
2228 * page_remove_rmap with the ptp_clear_flush above.
2229 * Those stores are ordered by (if nothing else,)
2230 * the barrier present in the atomic_add_negative
2231 * in page_remove_rmap.
2233 * Then the TLB flush in ptep_clear_flush ensures that
2234 * no process can access the old page before the
2235 * decremented mapcount is visible. And the old page
2236 * cannot be reused until after the decremented
2237 * mapcount is visible. So transitively, TLBs to
2238 * old page will be flushed before it can be reused.
2240 page_remove_rmap(old_page, false);
2243 /* Free the old page.. */
2244 new_page = old_page;
2245 page_copied = 1;
2246 } else {
2247 mem_cgroup_cancel_charge(new_page, memcg, false);
2250 if (new_page)
2251 put_page(new_page);
2253 pte_unmap_unlock(fe->pte, fe->ptl);
2254 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2255 if (old_page) {
2257 * Don't let another task, with possibly unlocked vma,
2258 * keep the mlocked page.
2260 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2261 lock_page(old_page); /* LRU manipulation */
2262 if (PageMlocked(old_page))
2263 munlock_vma_page(old_page);
2264 unlock_page(old_page);
2266 put_page(old_page);
2268 return page_copied ? VM_FAULT_WRITE : 0;
2269 oom_free_new:
2270 put_page(new_page);
2271 oom:
2272 if (old_page)
2273 put_page(old_page);
2274 return VM_FAULT_OOM;
2278 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2279 * mapping
2281 static int wp_pfn_shared(struct fault_env *fe, pte_t orig_pte)
2283 struct vm_area_struct *vma = fe->vma;
2285 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2286 struct vm_fault vmf = {
2287 .page = NULL,
2288 .pgoff = linear_page_index(vma, fe->address),
2289 .virtual_address =
2290 (void __user *)(fe->address & PAGE_MASK),
2291 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2293 int ret;
2295 pte_unmap_unlock(fe->pte, fe->ptl);
2296 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2297 if (ret & VM_FAULT_ERROR)
2298 return ret;
2299 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2300 &fe->ptl);
2302 * We might have raced with another page fault while we
2303 * released the pte_offset_map_lock.
2305 if (!pte_same(*fe->pte, orig_pte)) {
2306 pte_unmap_unlock(fe->pte, fe->ptl);
2307 return 0;
2310 return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
2313 static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2314 struct page *old_page)
2315 __releases(fe->ptl)
2317 struct vm_area_struct *vma = fe->vma;
2318 int page_mkwrite = 0;
2320 get_page(old_page);
2322 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2323 int tmp;
2325 pte_unmap_unlock(fe->pte, fe->ptl);
2326 tmp = do_page_mkwrite(vma, old_page, fe->address);
2327 if (unlikely(!tmp || (tmp &
2328 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2329 put_page(old_page);
2330 return tmp;
2333 * Since we dropped the lock we need to revalidate
2334 * the PTE as someone else may have changed it. If
2335 * they did, we just return, as we can count on the
2336 * MMU to tell us if they didn't also make it writable.
2338 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2339 &fe->ptl);
2340 if (!pte_same(*fe->pte, orig_pte)) {
2341 unlock_page(old_page);
2342 pte_unmap_unlock(fe->pte, fe->ptl);
2343 put_page(old_page);
2344 return 0;
2346 page_mkwrite = 1;
2349 return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
2353 * This routine handles present pages, when users try to write
2354 * to a shared page. It is done by copying the page to a new address
2355 * and decrementing the shared-page counter for the old page.
2357 * Note that this routine assumes that the protection checks have been
2358 * done by the caller (the low-level page fault routine in most cases).
2359 * Thus we can safely just mark it writable once we've done any necessary
2360 * COW.
2362 * We also mark the page dirty at this point even though the page will
2363 * change only once the write actually happens. This avoids a few races,
2364 * and potentially makes it more efficient.
2366 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367 * but allow concurrent faults), with pte both mapped and locked.
2368 * We return with mmap_sem still held, but pte unmapped and unlocked.
2370 static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2371 __releases(fe->ptl)
2373 struct vm_area_struct *vma = fe->vma;
2374 struct page *old_page;
2376 old_page = vm_normal_page(vma, fe->address, orig_pte);
2377 if (!old_page) {
2379 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2380 * VM_PFNMAP VMA.
2382 * We should not cow pages in a shared writeable mapping.
2383 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2385 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2386 (VM_WRITE|VM_SHARED))
2387 return wp_pfn_shared(fe, orig_pte);
2389 pte_unmap_unlock(fe->pte, fe->ptl);
2390 return wp_page_copy(fe, orig_pte, old_page);
2394 * Take out anonymous pages first, anonymous shared vmas are
2395 * not dirty accountable.
2397 if (PageAnon(old_page) && !PageKsm(old_page)) {
2398 int total_mapcount;
2399 if (!trylock_page(old_page)) {
2400 get_page(old_page);
2401 pte_unmap_unlock(fe->pte, fe->ptl);
2402 lock_page(old_page);
2403 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2404 fe->address, &fe->ptl);
2405 if (!pte_same(*fe->pte, orig_pte)) {
2406 unlock_page(old_page);
2407 pte_unmap_unlock(fe->pte, fe->ptl);
2408 put_page(old_page);
2409 return 0;
2411 put_page(old_page);
2413 if (reuse_swap_page(old_page, &total_mapcount)) {
2414 if (total_mapcount == 1) {
2416 * The page is all ours. Move it to
2417 * our anon_vma so the rmap code will
2418 * not search our parent or siblings.
2419 * Protected against the rmap code by
2420 * the page lock.
2422 page_move_anon_rmap(old_page, vma);
2424 unlock_page(old_page);
2425 return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
2427 unlock_page(old_page);
2428 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2429 (VM_WRITE|VM_SHARED))) {
2430 return wp_page_shared(fe, orig_pte, old_page);
2434 * Ok, we need to copy. Oh, well..
2436 get_page(old_page);
2438 pte_unmap_unlock(fe->pte, fe->ptl);
2439 return wp_page_copy(fe, orig_pte, old_page);
2442 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2443 unsigned long start_addr, unsigned long end_addr,
2444 struct zap_details *details)
2446 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2449 static inline void unmap_mapping_range_tree(struct rb_root *root,
2450 struct zap_details *details)
2452 struct vm_area_struct *vma;
2453 pgoff_t vba, vea, zba, zea;
2455 vma_interval_tree_foreach(vma, root,
2456 details->first_index, details->last_index) {
2458 vba = vma->vm_pgoff;
2459 vea = vba + vma_pages(vma) - 1;
2460 zba = details->first_index;
2461 if (zba < vba)
2462 zba = vba;
2463 zea = details->last_index;
2464 if (zea > vea)
2465 zea = vea;
2467 unmap_mapping_range_vma(vma,
2468 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2469 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2470 details);
2475 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2476 * address_space corresponding to the specified page range in the underlying
2477 * file.
2479 * @mapping: the address space containing mmaps to be unmapped.
2480 * @holebegin: byte in first page to unmap, relative to the start of
2481 * the underlying file. This will be rounded down to a PAGE_SIZE
2482 * boundary. Note that this is different from truncate_pagecache(), which
2483 * must keep the partial page. In contrast, we must get rid of
2484 * partial pages.
2485 * @holelen: size of prospective hole in bytes. This will be rounded
2486 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2487 * end of the file.
2488 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2489 * but 0 when invalidating pagecache, don't throw away private data.
2491 void unmap_mapping_range(struct address_space *mapping,
2492 loff_t const holebegin, loff_t const holelen, int even_cows)
2494 struct zap_details details = { };
2495 pgoff_t hba = holebegin >> PAGE_SHIFT;
2496 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2498 /* Check for overflow. */
2499 if (sizeof(holelen) > sizeof(hlen)) {
2500 long long holeend =
2501 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2502 if (holeend & ~(long long)ULONG_MAX)
2503 hlen = ULONG_MAX - hba + 1;
2506 details.check_mapping = even_cows? NULL: mapping;
2507 details.first_index = hba;
2508 details.last_index = hba + hlen - 1;
2509 if (details.last_index < details.first_index)
2510 details.last_index = ULONG_MAX;
2512 i_mmap_lock_write(mapping);
2513 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2514 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2515 i_mmap_unlock_write(mapping);
2517 EXPORT_SYMBOL(unmap_mapping_range);
2520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521 * but allow concurrent faults), and pte mapped but not yet locked.
2522 * We return with pte unmapped and unlocked.
2524 * We return with the mmap_sem locked or unlocked in the same cases
2525 * as does filemap_fault().
2527 int do_swap_page(struct fault_env *fe, pte_t orig_pte)
2529 struct vm_area_struct *vma = fe->vma;
2530 struct page *page, *swapcache;
2531 struct mem_cgroup *memcg;
2532 swp_entry_t entry;
2533 pte_t pte;
2534 int locked;
2535 int exclusive = 0;
2536 int ret = 0;
2538 if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
2539 goto out;
2541 entry = pte_to_swp_entry(orig_pte);
2542 if (unlikely(non_swap_entry(entry))) {
2543 if (is_migration_entry(entry)) {
2544 migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
2545 } else if (is_hwpoison_entry(entry)) {
2546 ret = VM_FAULT_HWPOISON;
2547 } else {
2548 print_bad_pte(vma, fe->address, orig_pte, NULL);
2549 ret = VM_FAULT_SIGBUS;
2551 goto out;
2553 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2554 page = lookup_swap_cache(entry);
2555 if (!page) {
2556 page = swapin_readahead(entry,
2557 GFP_HIGHUSER_MOVABLE, vma, fe->address);
2558 if (!page) {
2560 * Back out if somebody else faulted in this pte
2561 * while we released the pte lock.
2563 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2564 fe->address, &fe->ptl);
2565 if (likely(pte_same(*fe->pte, orig_pte)))
2566 ret = VM_FAULT_OOM;
2567 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2568 goto unlock;
2571 /* Had to read the page from swap area: Major fault */
2572 ret = VM_FAULT_MAJOR;
2573 count_vm_event(PGMAJFAULT);
2574 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2575 } else if (PageHWPoison(page)) {
2577 * hwpoisoned dirty swapcache pages are kept for killing
2578 * owner processes (which may be unknown at hwpoison time)
2580 ret = VM_FAULT_HWPOISON;
2581 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2582 swapcache = page;
2583 goto out_release;
2586 swapcache = page;
2587 locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
2589 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590 if (!locked) {
2591 ret |= VM_FAULT_RETRY;
2592 goto out_release;
2596 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2597 * release the swapcache from under us. The page pin, and pte_same
2598 * test below, are not enough to exclude that. Even if it is still
2599 * swapcache, we need to check that the page's swap has not changed.
2601 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2602 goto out_page;
2604 page = ksm_might_need_to_copy(page, vma, fe->address);
2605 if (unlikely(!page)) {
2606 ret = VM_FAULT_OOM;
2607 page = swapcache;
2608 goto out_page;
2611 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2612 &memcg, false)) {
2613 ret = VM_FAULT_OOM;
2614 goto out_page;
2618 * Back out if somebody else already faulted in this pte.
2620 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2621 &fe->ptl);
2622 if (unlikely(!pte_same(*fe->pte, orig_pte)))
2623 goto out_nomap;
2625 if (unlikely(!PageUptodate(page))) {
2626 ret = VM_FAULT_SIGBUS;
2627 goto out_nomap;
2631 * The page isn't present yet, go ahead with the fault.
2633 * Be careful about the sequence of operations here.
2634 * To get its accounting right, reuse_swap_page() must be called
2635 * while the page is counted on swap but not yet in mapcount i.e.
2636 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2637 * must be called after the swap_free(), or it will never succeed.
2640 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2641 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2642 pte = mk_pte(page, vma->vm_page_prot);
2643 if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2644 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2645 fe->flags &= ~FAULT_FLAG_WRITE;
2646 ret |= VM_FAULT_WRITE;
2647 exclusive = RMAP_EXCLUSIVE;
2649 flush_icache_page(vma, page);
2650 if (pte_swp_soft_dirty(orig_pte))
2651 pte = pte_mksoft_dirty(pte);
2652 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
2653 if (page == swapcache) {
2654 do_page_add_anon_rmap(page, vma, fe->address, exclusive);
2655 mem_cgroup_commit_charge(page, memcg, true, false);
2656 activate_page(page);
2657 } else { /* ksm created a completely new copy */
2658 page_add_new_anon_rmap(page, vma, fe->address, false);
2659 mem_cgroup_commit_charge(page, memcg, false, false);
2660 lru_cache_add_active_or_unevictable(page, vma);
2663 swap_free(entry);
2664 if (mem_cgroup_swap_full(page) ||
2665 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2666 try_to_free_swap(page);
2667 unlock_page(page);
2668 if (page != swapcache) {
2670 * Hold the lock to avoid the swap entry to be reused
2671 * until we take the PT lock for the pte_same() check
2672 * (to avoid false positives from pte_same). For
2673 * further safety release the lock after the swap_free
2674 * so that the swap count won't change under a
2675 * parallel locked swapcache.
2677 unlock_page(swapcache);
2678 put_page(swapcache);
2681 if (fe->flags & FAULT_FLAG_WRITE) {
2682 ret |= do_wp_page(fe, pte);
2683 if (ret & VM_FAULT_ERROR)
2684 ret &= VM_FAULT_ERROR;
2685 goto out;
2688 /* No need to invalidate - it was non-present before */
2689 update_mmu_cache(vma, fe->address, fe->pte);
2690 unlock:
2691 pte_unmap_unlock(fe->pte, fe->ptl);
2692 out:
2693 return ret;
2694 out_nomap:
2695 mem_cgroup_cancel_charge(page, memcg, false);
2696 pte_unmap_unlock(fe->pte, fe->ptl);
2697 out_page:
2698 unlock_page(page);
2699 out_release:
2700 put_page(page);
2701 if (page != swapcache) {
2702 unlock_page(swapcache);
2703 put_page(swapcache);
2705 return ret;
2709 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2710 * but allow concurrent faults), and pte mapped but not yet locked.
2711 * We return with mmap_sem still held, but pte unmapped and unlocked.
2713 static int do_anonymous_page(struct fault_env *fe)
2715 struct vm_area_struct *vma = fe->vma;
2716 struct mem_cgroup *memcg;
2717 struct page *page;
2718 pte_t entry;
2720 /* File mapping without ->vm_ops ? */
2721 if (vma->vm_flags & VM_SHARED)
2722 return VM_FAULT_SIGBUS;
2725 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2726 * pte_offset_map() on pmds where a huge pmd might be created
2727 * from a different thread.
2729 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2730 * parallel threads are excluded by other means.
2732 * Here we only have down_read(mmap_sem).
2734 if (pte_alloc(vma->vm_mm, fe->pmd, fe->address))
2735 return VM_FAULT_OOM;
2737 /* See the comment in pte_alloc_one_map() */
2738 if (unlikely(pmd_trans_unstable(fe->pmd)))
2739 return 0;
2741 /* Use the zero-page for reads */
2742 if (!(fe->flags & FAULT_FLAG_WRITE) &&
2743 !mm_forbids_zeropage(vma->vm_mm)) {
2744 entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
2745 vma->vm_page_prot));
2746 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2747 &fe->ptl);
2748 if (!pte_none(*fe->pte))
2749 goto unlock;
2750 /* Deliver the page fault to userland, check inside PT lock */
2751 if (userfaultfd_missing(vma)) {
2752 pte_unmap_unlock(fe->pte, fe->ptl);
2753 return handle_userfault(fe, VM_UFFD_MISSING);
2755 goto setpte;
2758 /* Allocate our own private page. */
2759 if (unlikely(anon_vma_prepare(vma)))
2760 goto oom;
2761 page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2762 if (!page)
2763 goto oom;
2765 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2766 goto oom_free_page;
2769 * The memory barrier inside __SetPageUptodate makes sure that
2770 * preceeding stores to the page contents become visible before
2771 * the set_pte_at() write.
2773 __SetPageUptodate(page);
2775 entry = mk_pte(page, vma->vm_page_prot);
2776 if (vma->vm_flags & VM_WRITE)
2777 entry = pte_mkwrite(pte_mkdirty(entry));
2779 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2780 &fe->ptl);
2781 if (!pte_none(*fe->pte))
2782 goto release;
2784 /* Deliver the page fault to userland, check inside PT lock */
2785 if (userfaultfd_missing(vma)) {
2786 pte_unmap_unlock(fe->pte, fe->ptl);
2787 mem_cgroup_cancel_charge(page, memcg, false);
2788 put_page(page);
2789 return handle_userfault(fe, VM_UFFD_MISSING);
2792 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2793 page_add_new_anon_rmap(page, vma, fe->address, false);
2794 mem_cgroup_commit_charge(page, memcg, false, false);
2795 lru_cache_add_active_or_unevictable(page, vma);
2796 setpte:
2797 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
2799 /* No need to invalidate - it was non-present before */
2800 update_mmu_cache(vma, fe->address, fe->pte);
2801 unlock:
2802 pte_unmap_unlock(fe->pte, fe->ptl);
2803 return 0;
2804 release:
2805 mem_cgroup_cancel_charge(page, memcg, false);
2806 put_page(page);
2807 goto unlock;
2808 oom_free_page:
2809 put_page(page);
2810 oom:
2811 return VM_FAULT_OOM;
2815 * The mmap_sem must have been held on entry, and may have been
2816 * released depending on flags and vma->vm_ops->fault() return value.
2817 * See filemap_fault() and __lock_page_retry().
2819 static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2820 struct page *cow_page, struct page **page, void **entry)
2822 struct vm_area_struct *vma = fe->vma;
2823 struct vm_fault vmf;
2824 int ret;
2827 * Preallocate pte before we take page_lock because this might lead to
2828 * deadlocks for memcg reclaim which waits for pages under writeback:
2829 * lock_page(A)
2830 * SetPageWriteback(A)
2831 * unlock_page(A)
2832 * lock_page(B)
2833 * lock_page(B)
2834 * pte_alloc_pne
2835 * shrink_page_list
2836 * wait_on_page_writeback(A)
2837 * SetPageWriteback(B)
2838 * unlock_page(B)
2839 * # flush A, B to clear the writeback
2841 if (pmd_none(*fe->pmd) && !fe->prealloc_pte) {
2842 fe->prealloc_pte = pte_alloc_one(vma->vm_mm, fe->address);
2843 if (!fe->prealloc_pte)
2844 return VM_FAULT_OOM;
2845 smp_wmb(); /* See comment in __pte_alloc() */
2848 vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
2849 vmf.pgoff = pgoff;
2850 vmf.flags = fe->flags;
2851 vmf.page = NULL;
2852 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2853 vmf.cow_page = cow_page;
2855 ret = vma->vm_ops->fault(vma, &vmf);
2856 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2857 return ret;
2858 if (ret & VM_FAULT_DAX_LOCKED) {
2859 *entry = vmf.entry;
2860 return ret;
2863 if (unlikely(PageHWPoison(vmf.page))) {
2864 if (ret & VM_FAULT_LOCKED)
2865 unlock_page(vmf.page);
2866 put_page(vmf.page);
2867 return VM_FAULT_HWPOISON;
2870 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2871 lock_page(vmf.page);
2872 else
2873 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2875 *page = vmf.page;
2876 return ret;
2880 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2881 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2882 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2883 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2885 static int pmd_devmap_trans_unstable(pmd_t *pmd)
2887 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
2890 static int pte_alloc_one_map(struct fault_env *fe)
2892 struct vm_area_struct *vma = fe->vma;
2894 if (!pmd_none(*fe->pmd))
2895 goto map_pte;
2896 if (fe->prealloc_pte) {
2897 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2898 if (unlikely(!pmd_none(*fe->pmd))) {
2899 spin_unlock(fe->ptl);
2900 goto map_pte;
2903 atomic_long_inc(&vma->vm_mm->nr_ptes);
2904 pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte);
2905 spin_unlock(fe->ptl);
2906 fe->prealloc_pte = 0;
2907 } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) {
2908 return VM_FAULT_OOM;
2910 map_pte:
2912 * If a huge pmd materialized under us just retry later. Use
2913 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
2914 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
2915 * under us and then back to pmd_none, as a result of MADV_DONTNEED
2916 * running immediately after a huge pmd fault in a different thread of
2917 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
2918 * All we have to ensure is that it is a regular pmd that we can walk
2919 * with pte_offset_map() and we can do that through an atomic read in
2920 * C, which is what pmd_trans_unstable() provides.
2922 if (pmd_devmap_trans_unstable(fe->pmd))
2923 return VM_FAULT_NOPAGE;
2926 * At this point we know that our vmf->pmd points to a page of ptes
2927 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
2928 * for the duration of the fault. If a racing MADV_DONTNEED runs and
2929 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
2930 * be valid and we will re-check to make sure the vmf->pte isn't
2931 * pte_none() under vmf->ptl protection when we return to
2932 * alloc_set_pte().
2934 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2935 &fe->ptl);
2936 return 0;
2939 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2941 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2942 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2943 unsigned long haddr)
2945 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2946 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2947 return false;
2948 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2949 return false;
2950 return true;
2953 static int do_set_pmd(struct fault_env *fe, struct page *page)
2955 struct vm_area_struct *vma = fe->vma;
2956 bool write = fe->flags & FAULT_FLAG_WRITE;
2957 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2958 pmd_t entry;
2959 int i, ret;
2961 if (!transhuge_vma_suitable(vma, haddr))
2962 return VM_FAULT_FALLBACK;
2964 ret = VM_FAULT_FALLBACK;
2965 page = compound_head(page);
2967 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2968 if (unlikely(!pmd_none(*fe->pmd)))
2969 goto out;
2971 for (i = 0; i < HPAGE_PMD_NR; i++)
2972 flush_icache_page(vma, page + i);
2974 entry = mk_huge_pmd(page, vma->vm_page_prot);
2975 if (write)
2976 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2978 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2979 page_add_file_rmap(page, true);
2981 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
2983 update_mmu_cache_pmd(vma, haddr, fe->pmd);
2985 /* fault is handled */
2986 ret = 0;
2987 count_vm_event(THP_FILE_MAPPED);
2988 out:
2989 spin_unlock(fe->ptl);
2990 return ret;
2992 #else
2993 static int do_set_pmd(struct fault_env *fe, struct page *page)
2995 BUILD_BUG();
2996 return 0;
2998 #endif
3001 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3002 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3004 * @fe: fault environment
3005 * @memcg: memcg to charge page (only for private mappings)
3006 * @page: page to map
3008 * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
3010 * Target users are page handler itself and implementations of
3011 * vm_ops->map_pages.
3013 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
3014 struct page *page)
3016 struct vm_area_struct *vma = fe->vma;
3017 bool write = fe->flags & FAULT_FLAG_WRITE;
3018 pte_t entry;
3019 int ret;
3021 if (pmd_none(*fe->pmd) && PageTransCompound(page) &&
3022 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3023 /* THP on COW? */
3024 VM_BUG_ON_PAGE(memcg, page);
3026 ret = do_set_pmd(fe, page);
3027 if (ret != VM_FAULT_FALLBACK)
3028 return ret;
3031 if (!fe->pte) {
3032 ret = pte_alloc_one_map(fe);
3033 if (ret)
3034 return ret;
3037 /* Re-check under ptl */
3038 if (unlikely(!pte_none(*fe->pte)))
3039 return VM_FAULT_NOPAGE;
3041 flush_icache_page(vma, page);
3042 entry = mk_pte(page, vma->vm_page_prot);
3043 if (write)
3044 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3045 /* copy-on-write page */
3046 if (write && !(vma->vm_flags & VM_SHARED)) {
3047 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3048 page_add_new_anon_rmap(page, vma, fe->address, false);
3049 mem_cgroup_commit_charge(page, memcg, false, false);
3050 lru_cache_add_active_or_unevictable(page, vma);
3051 } else {
3052 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3053 page_add_file_rmap(page, false);
3055 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3057 /* no need to invalidate: a not-present page won't be cached */
3058 update_mmu_cache(vma, fe->address, fe->pte);
3060 return 0;
3063 static unsigned long fault_around_bytes __read_mostly =
3064 rounddown_pow_of_two(65536);
3066 #ifdef CONFIG_DEBUG_FS
3067 static int fault_around_bytes_get(void *data, u64 *val)
3069 *val = fault_around_bytes;
3070 return 0;
3074 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3075 * rounded down to nearest page order. It's what do_fault_around() expects to
3076 * see.
3078 static int fault_around_bytes_set(void *data, u64 val)
3080 if (val / PAGE_SIZE > PTRS_PER_PTE)
3081 return -EINVAL;
3082 if (val > PAGE_SIZE)
3083 fault_around_bytes = rounddown_pow_of_two(val);
3084 else
3085 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3086 return 0;
3088 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3089 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3091 static int __init fault_around_debugfs(void)
3093 void *ret;
3095 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3096 &fault_around_bytes_fops);
3097 if (!ret)
3098 pr_warn("Failed to create fault_around_bytes in debugfs");
3099 return 0;
3101 late_initcall(fault_around_debugfs);
3102 #endif
3105 * do_fault_around() tries to map few pages around the fault address. The hope
3106 * is that the pages will be needed soon and this will lower the number of
3107 * faults to handle.
3109 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3110 * not ready to be mapped: not up-to-date, locked, etc.
3112 * This function is called with the page table lock taken. In the split ptlock
3113 * case the page table lock only protects only those entries which belong to
3114 * the page table corresponding to the fault address.
3116 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3117 * only once.
3119 * fault_around_pages() defines how many pages we'll try to map.
3120 * do_fault_around() expects it to return a power of two less than or equal to
3121 * PTRS_PER_PTE.
3123 * The virtual address of the area that we map is naturally aligned to the
3124 * fault_around_pages() value (and therefore to page order). This way it's
3125 * easier to guarantee that we don't cross page table boundaries.
3127 static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
3129 unsigned long address = fe->address, nr_pages, mask;
3130 pgoff_t end_pgoff;
3131 int off, ret = 0;
3133 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3134 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3136 fe->address = max(address & mask, fe->vma->vm_start);
3137 off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3138 start_pgoff -= off;
3141 * end_pgoff is either end of page table or end of vma
3142 * or fault_around_pages() from start_pgoff, depending what is nearest.
3144 end_pgoff = start_pgoff -
3145 ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3146 PTRS_PER_PTE - 1;
3147 end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
3148 start_pgoff + nr_pages - 1);
3150 if (pmd_none(*fe->pmd)) {
3151 fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address);
3152 if (!fe->prealloc_pte)
3153 goto out;
3154 smp_wmb(); /* See comment in __pte_alloc() */
3157 fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3159 /* preallocated pagetable is unused: free it */
3160 if (fe->prealloc_pte) {
3161 pte_free(fe->vma->vm_mm, fe->prealloc_pte);
3162 fe->prealloc_pte = 0;
3164 /* Huge page is mapped? Page fault is solved */
3165 if (pmd_trans_huge(*fe->pmd)) {
3166 ret = VM_FAULT_NOPAGE;
3167 goto out;
3170 /* ->map_pages() haven't done anything useful. Cold page cache? */
3171 if (!fe->pte)
3172 goto out;
3174 /* check if the page fault is solved */
3175 fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3176 if (!pte_none(*fe->pte))
3177 ret = VM_FAULT_NOPAGE;
3178 pte_unmap_unlock(fe->pte, fe->ptl);
3179 out:
3180 fe->address = address;
3181 fe->pte = NULL;
3182 return ret;
3185 static int do_read_fault(struct fault_env *fe, pgoff_t pgoff)
3187 struct vm_area_struct *vma = fe->vma;
3188 struct page *fault_page;
3189 int ret = 0;
3192 * Let's call ->map_pages() first and use ->fault() as fallback
3193 * if page by the offset is not ready to be mapped (cold cache or
3194 * something).
3196 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3197 ret = do_fault_around(fe, pgoff);
3198 if (ret)
3199 return ret;
3202 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3204 return ret;
3206 ret |= alloc_set_pte(fe, NULL, fault_page);
3207 if (fe->pte)
3208 pte_unmap_unlock(fe->pte, fe->ptl);
3209 unlock_page(fault_page);
3210 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3211 put_page(fault_page);
3212 return ret;
3215 static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff)
3217 struct vm_area_struct *vma = fe->vma;
3218 struct page *fault_page, *new_page;
3219 void *fault_entry;
3220 struct mem_cgroup *memcg;
3221 int ret;
3223 if (unlikely(anon_vma_prepare(vma)))
3224 return VM_FAULT_OOM;
3226 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
3227 if (!new_page)
3228 return VM_FAULT_OOM;
3230 if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3231 &memcg, false)) {
3232 put_page(new_page);
3233 return VM_FAULT_OOM;
3236 ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
3237 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3238 goto uncharge_out;
3240 if (!(ret & VM_FAULT_DAX_LOCKED))
3241 copy_user_highpage(new_page, fault_page, fe->address, vma);
3242 __SetPageUptodate(new_page);
3244 ret |= alloc_set_pte(fe, memcg, new_page);
3245 if (fe->pte)
3246 pte_unmap_unlock(fe->pte, fe->ptl);
3247 if (!(ret & VM_FAULT_DAX_LOCKED)) {
3248 unlock_page(fault_page);
3249 put_page(fault_page);
3250 } else {
3251 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3253 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3254 goto uncharge_out;
3255 return ret;
3256 uncharge_out:
3257 mem_cgroup_cancel_charge(new_page, memcg, false);
3258 put_page(new_page);
3259 return ret;
3262 static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff)
3264 struct vm_area_struct *vma = fe->vma;
3265 struct page *fault_page;
3266 struct address_space *mapping;
3267 int dirtied = 0;
3268 int ret, tmp;
3270 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3271 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3272 return ret;
3275 * Check if the backing address space wants to know that the page is
3276 * about to become writable
3278 if (vma->vm_ops->page_mkwrite) {
3279 unlock_page(fault_page);
3280 tmp = do_page_mkwrite(vma, fault_page, fe->address);
3281 if (unlikely(!tmp ||
3282 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283 put_page(fault_page);
3284 return tmp;
3288 ret |= alloc_set_pte(fe, NULL, fault_page);
3289 if (fe->pte)
3290 pte_unmap_unlock(fe->pte, fe->ptl);
3291 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3292 VM_FAULT_RETRY))) {
3293 unlock_page(fault_page);
3294 put_page(fault_page);
3295 return ret;
3298 if (set_page_dirty(fault_page))
3299 dirtied = 1;
3301 * Take a local copy of the address_space - page.mapping may be zeroed
3302 * by truncate after unlock_page(). The address_space itself remains
3303 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3304 * release semantics to prevent the compiler from undoing this copying.
3306 mapping = page_rmapping(fault_page);
3307 unlock_page(fault_page);
3308 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3310 * Some device drivers do not set page.mapping but still
3311 * dirty their pages
3313 balance_dirty_pages_ratelimited(mapping);
3316 if (!vma->vm_ops->page_mkwrite)
3317 file_update_time(vma->vm_file);
3319 return ret;
3323 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3324 * but allow concurrent faults).
3325 * The mmap_sem may have been released depending on flags and our
3326 * return value. See filemap_fault() and __lock_page_or_retry().
3328 static int do_fault(struct fault_env *fe)
3330 struct vm_area_struct *vma = fe->vma;
3331 pgoff_t pgoff = linear_page_index(vma, fe->address);
3332 int ret;
3334 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3335 if (!vma->vm_ops->fault)
3336 ret = VM_FAULT_SIGBUS;
3337 else if (!(fe->flags & FAULT_FLAG_WRITE))
3338 ret = do_read_fault(fe, pgoff);
3339 else if (!(vma->vm_flags & VM_SHARED))
3340 ret = do_cow_fault(fe, pgoff);
3341 else
3342 ret = do_shared_fault(fe, pgoff);
3344 /* preallocated pagetable is unused: free it */
3345 if (fe->prealloc_pte) {
3346 pte_free(vma->vm_mm, fe->prealloc_pte);
3347 fe->prealloc_pte = 0;
3349 return ret;
3352 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3353 unsigned long addr, int page_nid,
3354 int *flags)
3356 get_page(page);
3358 count_vm_numa_event(NUMA_HINT_FAULTS);
3359 if (page_nid == numa_node_id()) {
3360 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3361 *flags |= TNF_FAULT_LOCAL;
3364 return mpol_misplaced(page, vma, addr);
3367 static int do_numa_page(struct fault_env *fe, pte_t pte)
3369 struct vm_area_struct *vma = fe->vma;
3370 struct page *page = NULL;
3371 int page_nid = -1;
3372 int last_cpupid;
3373 int target_nid;
3374 bool migrated = false;
3375 bool was_writable = pte_write(pte);
3376 int flags = 0;
3379 * The "pte" at this point cannot be used safely without
3380 * validation through pte_unmap_same(). It's of NUMA type but
3381 * the pfn may be screwed if the read is non atomic.
3383 * We can safely just do a "set_pte_at()", because the old
3384 * page table entry is not accessible, so there would be no
3385 * concurrent hardware modifications to the PTE.
3387 fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3388 spin_lock(fe->ptl);
3389 if (unlikely(!pte_same(*fe->pte, pte))) {
3390 pte_unmap_unlock(fe->pte, fe->ptl);
3391 goto out;
3394 /* Make it present again */
3395 pte = pte_modify(pte, vma->vm_page_prot);
3396 pte = pte_mkyoung(pte);
3397 if (was_writable)
3398 pte = pte_mkwrite(pte);
3399 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3400 update_mmu_cache(vma, fe->address, fe->pte);
3402 page = vm_normal_page(vma, fe->address, pte);
3403 if (!page) {
3404 pte_unmap_unlock(fe->pte, fe->ptl);
3405 return 0;
3408 /* TODO: handle PTE-mapped THP */
3409 if (PageCompound(page)) {
3410 pte_unmap_unlock(fe->pte, fe->ptl);
3411 return 0;
3415 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3416 * much anyway since they can be in shared cache state. This misses
3417 * the case where a mapping is writable but the process never writes
3418 * to it but pte_write gets cleared during protection updates and
3419 * pte_dirty has unpredictable behaviour between PTE scan updates,
3420 * background writeback, dirty balancing and application behaviour.
3422 if (!pte_write(pte))
3423 flags |= TNF_NO_GROUP;
3426 * Flag if the page is shared between multiple address spaces. This
3427 * is later used when determining whether to group tasks together
3429 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3430 flags |= TNF_SHARED;
3432 last_cpupid = page_cpupid_last(page);
3433 page_nid = page_to_nid(page);
3434 target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3435 &flags);
3436 pte_unmap_unlock(fe->pte, fe->ptl);
3437 if (target_nid == -1) {
3438 put_page(page);
3439 goto out;
3442 /* Migrate to the requested node */
3443 migrated = migrate_misplaced_page(page, vma, target_nid);
3444 if (migrated) {
3445 page_nid = target_nid;
3446 flags |= TNF_MIGRATED;
3447 } else
3448 flags |= TNF_MIGRATE_FAIL;
3450 out:
3451 if (page_nid != -1)
3452 task_numa_fault(last_cpupid, page_nid, 1, flags);
3453 return 0;
3456 static int create_huge_pmd(struct fault_env *fe)
3458 struct vm_area_struct *vma = fe->vma;
3459 if (vma_is_anonymous(vma))
3460 return do_huge_pmd_anonymous_page(fe);
3461 if (vma->vm_ops->pmd_fault)
3462 return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3463 fe->flags);
3464 return VM_FAULT_FALLBACK;
3467 static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
3469 if (vma_is_anonymous(fe->vma))
3470 return do_huge_pmd_wp_page(fe, orig_pmd);
3471 if (fe->vma->vm_ops->pmd_fault)
3472 return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3473 fe->flags);
3475 /* COW handled on pte level: split pmd */
3476 VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma);
3477 split_huge_pmd(fe->vma, fe->pmd, fe->address);
3479 return VM_FAULT_FALLBACK;
3482 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3484 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3488 * These routines also need to handle stuff like marking pages dirty
3489 * and/or accessed for architectures that don't do it in hardware (most
3490 * RISC architectures). The early dirtying is also good on the i386.
3492 * There is also a hook called "update_mmu_cache()" that architectures
3493 * with external mmu caches can use to update those (ie the Sparc or
3494 * PowerPC hashed page tables that act as extended TLBs).
3496 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3497 * concurrent faults).
3499 * The mmap_sem may have been released depending on flags and our return value.
3500 * See filemap_fault() and __lock_page_or_retry().
3502 static int handle_pte_fault(struct fault_env *fe)
3504 pte_t entry;
3506 if (unlikely(pmd_none(*fe->pmd))) {
3508 * Leave __pte_alloc() until later: because vm_ops->fault may
3509 * want to allocate huge page, and if we expose page table
3510 * for an instant, it will be difficult to retract from
3511 * concurrent faults and from rmap lookups.
3513 fe->pte = NULL;
3514 } else {
3515 /* See comment in pte_alloc_one_map() */
3516 if (pmd_devmap_trans_unstable(fe->pmd))
3517 return 0;
3519 * A regular pmd is established and it can't morph into a huge
3520 * pmd from under us anymore at this point because we hold the
3521 * mmap_sem read mode and khugepaged takes it in write mode.
3522 * So now it's safe to run pte_offset_map().
3524 fe->pte = pte_offset_map(fe->pmd, fe->address);
3526 entry = *fe->pte;
3529 * some architectures can have larger ptes than wordsize,
3530 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3531 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3532 * atomic accesses. The code below just needs a consistent
3533 * view for the ifs and we later double check anyway with the
3534 * ptl lock held. So here a barrier will do.
3536 barrier();
3537 if (pte_none(entry)) {
3538 pte_unmap(fe->pte);
3539 fe->pte = NULL;
3543 if (!fe->pte) {
3544 if (vma_is_anonymous(fe->vma))
3545 return do_anonymous_page(fe);
3546 else
3547 return do_fault(fe);
3550 if (!pte_present(entry))
3551 return do_swap_page(fe, entry);
3553 if (pte_protnone(entry) && vma_is_accessible(fe->vma))
3554 return do_numa_page(fe, entry);
3556 fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3557 spin_lock(fe->ptl);
3558 if (unlikely(!pte_same(*fe->pte, entry)))
3559 goto unlock;
3560 if (fe->flags & FAULT_FLAG_WRITE) {
3561 if (!pte_write(entry))
3562 return do_wp_page(fe, entry);
3563 entry = pte_mkdirty(entry);
3565 entry = pte_mkyoung(entry);
3566 if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3567 fe->flags & FAULT_FLAG_WRITE)) {
3568 update_mmu_cache(fe->vma, fe->address, fe->pte);
3569 } else {
3571 * This is needed only for protection faults but the arch code
3572 * is not yet telling us if this is a protection fault or not.
3573 * This still avoids useless tlb flushes for .text page faults
3574 * with threads.
3576 if (fe->flags & FAULT_FLAG_WRITE)
3577 flush_tlb_fix_spurious_fault(fe->vma, fe->address);
3579 unlock:
3580 pte_unmap_unlock(fe->pte, fe->ptl);
3581 return 0;
3585 * By the time we get here, we already hold the mm semaphore
3587 * The mmap_sem may have been released depending on flags and our
3588 * return value. See filemap_fault() and __lock_page_or_retry().
3590 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3591 unsigned int flags)
3593 struct fault_env fe = {
3594 .vma = vma,
3595 .address = address,
3596 .flags = flags,
3598 struct mm_struct *mm = vma->vm_mm;
3599 pgd_t *pgd;
3600 pud_t *pud;
3602 pgd = pgd_offset(mm, address);
3603 pud = pud_alloc(mm, pgd, address);
3604 if (!pud)
3605 return VM_FAULT_OOM;
3606 fe.pmd = pmd_alloc(mm, pud, address);
3607 if (!fe.pmd)
3608 return VM_FAULT_OOM;
3609 if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3610 int ret = create_huge_pmd(&fe);
3611 if (!(ret & VM_FAULT_FALLBACK))
3612 return ret;
3613 } else {
3614 pmd_t orig_pmd = *fe.pmd;
3615 int ret;
3617 barrier();
3618 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3619 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3620 return do_huge_pmd_numa_page(&fe, orig_pmd);
3622 if ((fe.flags & FAULT_FLAG_WRITE) &&
3623 !pmd_write(orig_pmd)) {
3624 ret = wp_huge_pmd(&fe, orig_pmd);
3625 if (!(ret & VM_FAULT_FALLBACK))
3626 return ret;
3627 } else {
3628 huge_pmd_set_accessed(&fe, orig_pmd);
3629 return 0;
3634 return handle_pte_fault(&fe);
3638 * By the time we get here, we already hold the mm semaphore
3640 * The mmap_sem may have been released depending on flags and our
3641 * return value. See filemap_fault() and __lock_page_or_retry().
3643 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3644 unsigned int flags)
3646 int ret;
3648 __set_current_state(TASK_RUNNING);
3650 count_vm_event(PGFAULT);
3651 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3653 /* do counter updates before entering really critical section. */
3654 check_sync_rss_stat(current);
3656 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3657 flags & FAULT_FLAG_INSTRUCTION,
3658 flags & FAULT_FLAG_REMOTE))
3659 return VM_FAULT_SIGSEGV;
3662 * Enable the memcg OOM handling for faults triggered in user
3663 * space. Kernel faults are handled more gracefully.
3665 if (flags & FAULT_FLAG_USER)
3666 mem_cgroup_oom_enable();
3668 if (unlikely(is_vm_hugetlb_page(vma)))
3669 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3670 else
3671 ret = __handle_mm_fault(vma, address, flags);
3673 if (flags & FAULT_FLAG_USER) {
3674 mem_cgroup_oom_disable();
3676 * The task may have entered a memcg OOM situation but
3677 * if the allocation error was handled gracefully (no
3678 * VM_FAULT_OOM), there is no need to kill anything.
3679 * Just clean up the OOM state peacefully.
3681 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3682 mem_cgroup_oom_synchronize(false);
3686 * This mm has been already reaped by the oom reaper and so the
3687 * refault cannot be trusted in general. Anonymous refaults would
3688 * lose data and give a zero page instead e.g. This is especially
3689 * problem for use_mm() because regular tasks will just die and
3690 * the corrupted data will not be visible anywhere while kthread
3691 * will outlive the oom victim and potentially propagate the date
3692 * further.
3694 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3695 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) {
3698 * We are going to enforce SIGBUS but the PF path might have
3699 * dropped the mmap_sem already so take it again so that
3700 * we do not break expectations of all arch specific PF paths
3701 * and g-u-p
3703 if (ret & VM_FAULT_RETRY)
3704 down_read(&vma->vm_mm->mmap_sem);
3705 ret = VM_FAULT_SIGBUS;
3708 return ret;
3710 EXPORT_SYMBOL_GPL(handle_mm_fault);
3712 #ifndef __PAGETABLE_PUD_FOLDED
3714 * Allocate page upper directory.
3715 * We've already handled the fast-path in-line.
3717 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3719 pud_t *new = pud_alloc_one(mm, address);
3720 if (!new)
3721 return -ENOMEM;
3723 smp_wmb(); /* See comment in __pte_alloc */
3725 spin_lock(&mm->page_table_lock);
3726 if (pgd_present(*pgd)) /* Another has populated it */
3727 pud_free(mm, new);
3728 else
3729 pgd_populate(mm, pgd, new);
3730 spin_unlock(&mm->page_table_lock);
3731 return 0;
3733 #endif /* __PAGETABLE_PUD_FOLDED */
3735 #ifndef __PAGETABLE_PMD_FOLDED
3737 * Allocate page middle directory.
3738 * We've already handled the fast-path in-line.
3740 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3742 pmd_t *new = pmd_alloc_one(mm, address);
3743 if (!new)
3744 return -ENOMEM;
3746 smp_wmb(); /* See comment in __pte_alloc */
3748 spin_lock(&mm->page_table_lock);
3749 #ifndef __ARCH_HAS_4LEVEL_HACK
3750 if (!pud_present(*pud)) {
3751 mm_inc_nr_pmds(mm);
3752 pud_populate(mm, pud, new);
3753 } else /* Another has populated it */
3754 pmd_free(mm, new);
3755 #else
3756 if (!pgd_present(*pud)) {
3757 mm_inc_nr_pmds(mm);
3758 pgd_populate(mm, pud, new);
3759 } else /* Another has populated it */
3760 pmd_free(mm, new);
3761 #endif /* __ARCH_HAS_4LEVEL_HACK */
3762 spin_unlock(&mm->page_table_lock);
3763 return 0;
3765 #endif /* __PAGETABLE_PMD_FOLDED */
3767 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3768 pte_t **ptepp, spinlock_t **ptlp)
3770 pgd_t *pgd;
3771 pud_t *pud;
3772 pmd_t *pmd;
3773 pte_t *ptep;
3775 pgd = pgd_offset(mm, address);
3776 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3777 goto out;
3779 pud = pud_offset(pgd, address);
3780 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3781 goto out;
3783 pmd = pmd_offset(pud, address);
3784 VM_BUG_ON(pmd_trans_huge(*pmd));
3785 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3786 goto out;
3788 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3789 if (pmd_huge(*pmd))
3790 goto out;
3792 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3793 if (!ptep)
3794 goto out;
3795 if (!pte_present(*ptep))
3796 goto unlock;
3797 *ptepp = ptep;
3798 return 0;
3799 unlock:
3800 pte_unmap_unlock(ptep, *ptlp);
3801 out:
3802 return -EINVAL;
3805 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3806 pte_t **ptepp, spinlock_t **ptlp)
3808 int res;
3810 /* (void) is needed to make gcc happy */
3811 (void) __cond_lock(*ptlp,
3812 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3813 return res;
3817 * follow_pfn - look up PFN at a user virtual address
3818 * @vma: memory mapping
3819 * @address: user virtual address
3820 * @pfn: location to store found PFN
3822 * Only IO mappings and raw PFN mappings are allowed.
3824 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3826 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3827 unsigned long *pfn)
3829 int ret = -EINVAL;
3830 spinlock_t *ptl;
3831 pte_t *ptep;
3833 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3834 return ret;
3836 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3837 if (ret)
3838 return ret;
3839 *pfn = pte_pfn(*ptep);
3840 pte_unmap_unlock(ptep, ptl);
3841 return 0;
3843 EXPORT_SYMBOL(follow_pfn);
3845 #ifdef CONFIG_HAVE_IOREMAP_PROT
3846 int follow_phys(struct vm_area_struct *vma,
3847 unsigned long address, unsigned int flags,
3848 unsigned long *prot, resource_size_t *phys)
3850 int ret = -EINVAL;
3851 pte_t *ptep, pte;
3852 spinlock_t *ptl;
3854 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3855 goto out;
3857 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3858 goto out;
3859 pte = *ptep;
3861 if ((flags & FOLL_WRITE) && !pte_write(pte))
3862 goto unlock;
3864 *prot = pgprot_val(pte_pgprot(pte));
3865 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3867 ret = 0;
3868 unlock:
3869 pte_unmap_unlock(ptep, ptl);
3870 out:
3871 return ret;
3874 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3875 void *buf, int len, int write)
3877 resource_size_t phys_addr;
3878 unsigned long prot = 0;
3879 void __iomem *maddr;
3880 int offset = addr & (PAGE_SIZE-1);
3882 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3883 return -EINVAL;
3885 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3886 if (!maddr)
3887 return -ENOMEM;
3889 if (write)
3890 memcpy_toio(maddr + offset, buf, len);
3891 else
3892 memcpy_fromio(buf, maddr + offset, len);
3893 iounmap(maddr);
3895 return len;
3897 EXPORT_SYMBOL_GPL(generic_access_phys);
3898 #endif
3901 * Access another process' address space as given in mm. If non-NULL, use the
3902 * given task for page fault accounting.
3904 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3905 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3907 struct vm_area_struct *vma;
3908 void *old_buf = buf;
3909 int write = gup_flags & FOLL_WRITE;
3911 down_read(&mm->mmap_sem);
3912 /* ignore errors, just check how much was successfully transferred */
3913 while (len) {
3914 int bytes, ret, offset;
3915 void *maddr;
3916 struct page *page = NULL;
3918 ret = get_user_pages_remote(tsk, mm, addr, 1,
3919 gup_flags, &page, &vma);
3920 if (ret <= 0) {
3921 #ifndef CONFIG_HAVE_IOREMAP_PROT
3922 break;
3923 #else
3925 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3926 * we can access using slightly different code.
3928 vma = find_vma(mm, addr);
3929 if (!vma || vma->vm_start > addr)
3930 break;
3931 if (vma->vm_ops && vma->vm_ops->access)
3932 ret = vma->vm_ops->access(vma, addr, buf,
3933 len, write);
3934 if (ret <= 0)
3935 break;
3936 bytes = ret;
3937 #endif
3938 } else {
3939 bytes = len;
3940 offset = addr & (PAGE_SIZE-1);
3941 if (bytes > PAGE_SIZE-offset)
3942 bytes = PAGE_SIZE-offset;
3944 maddr = kmap(page);
3945 if (write) {
3946 copy_to_user_page(vma, page, addr,
3947 maddr + offset, buf, bytes);
3948 set_page_dirty_lock(page);
3949 } else {
3950 copy_from_user_page(vma, page, addr,
3951 buf, maddr + offset, bytes);
3953 kunmap(page);
3954 put_page(page);
3956 len -= bytes;
3957 buf += bytes;
3958 addr += bytes;
3960 up_read(&mm->mmap_sem);
3962 return buf - old_buf;
3966 * access_remote_vm - access another process' address space
3967 * @mm: the mm_struct of the target address space
3968 * @addr: start address to access
3969 * @buf: source or destination buffer
3970 * @len: number of bytes to transfer
3971 * @gup_flags: flags modifying lookup behaviour
3973 * The caller must hold a reference on @mm.
3975 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3976 void *buf, int len, unsigned int gup_flags)
3978 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3982 * Access another process' address space.
3983 * Source/target buffer must be kernel space,
3984 * Do not walk the page table directly, use get_user_pages
3986 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3987 void *buf, int len, unsigned int gup_flags)
3989 struct mm_struct *mm;
3990 int ret;
3992 mm = get_task_mm(tsk);
3993 if (!mm)
3994 return 0;
3996 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
3998 mmput(mm);
4000 return ret;
4004 * Print the name of a VMA.
4006 void print_vma_addr(char *prefix, unsigned long ip)
4008 struct mm_struct *mm = current->mm;
4009 struct vm_area_struct *vma;
4012 * Do not print if we are in atomic
4013 * contexts (in exception stacks, etc.):
4015 if (preempt_count())
4016 return;
4018 down_read(&mm->mmap_sem);
4019 vma = find_vma(mm, ip);
4020 if (vma && vma->vm_file) {
4021 struct file *f = vma->vm_file;
4022 char *buf = (char *)__get_free_page(GFP_KERNEL);
4023 if (buf) {
4024 char *p;
4026 p = file_path(f, buf, PAGE_SIZE);
4027 if (IS_ERR(p))
4028 p = "?";
4029 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4030 vma->vm_start,
4031 vma->vm_end - vma->vm_start);
4032 free_page((unsigned long)buf);
4035 up_read(&mm->mmap_sem);
4038 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4039 void __might_fault(const char *file, int line)
4042 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4043 * holding the mmap_sem, this is safe because kernel memory doesn't
4044 * get paged out, therefore we'll never actually fault, and the
4045 * below annotations will generate false positives.
4047 if (segment_eq(get_fs(), KERNEL_DS))
4048 return;
4049 if (pagefault_disabled())
4050 return;
4051 __might_sleep(file, line, 0);
4052 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4053 if (current->mm)
4054 might_lock_read(&current->mm->mmap_sem);
4055 #endif
4057 EXPORT_SYMBOL(__might_fault);
4058 #endif
4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4061 static void clear_gigantic_page(struct page *page,
4062 unsigned long addr,
4063 unsigned int pages_per_huge_page)
4065 int i;
4066 struct page *p = page;
4068 might_sleep();
4069 for (i = 0; i < pages_per_huge_page;
4070 i++, p = mem_map_next(p, page, i)) {
4071 cond_resched();
4072 clear_user_highpage(p, addr + i * PAGE_SIZE);
4075 void clear_huge_page(struct page *page,
4076 unsigned long addr, unsigned int pages_per_huge_page)
4078 int i;
4080 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4081 clear_gigantic_page(page, addr, pages_per_huge_page);
4082 return;
4085 might_sleep();
4086 for (i = 0; i < pages_per_huge_page; i++) {
4087 cond_resched();
4088 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4092 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4093 unsigned long addr,
4094 struct vm_area_struct *vma,
4095 unsigned int pages_per_huge_page)
4097 int i;
4098 struct page *dst_base = dst;
4099 struct page *src_base = src;
4101 for (i = 0; i < pages_per_huge_page; ) {
4102 cond_resched();
4103 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4105 i++;
4106 dst = mem_map_next(dst, dst_base, i);
4107 src = mem_map_next(src, src_base, i);
4111 void copy_user_huge_page(struct page *dst, struct page *src,
4112 unsigned long addr, struct vm_area_struct *vma,
4113 unsigned int pages_per_huge_page)
4115 int i;
4117 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4118 copy_user_gigantic_page(dst, src, addr, vma,
4119 pages_per_huge_page);
4120 return;
4123 might_sleep();
4124 for (i = 0; i < pages_per_huge_page; i++) {
4125 cond_resched();
4126 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4129 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4131 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4133 static struct kmem_cache *page_ptl_cachep;
4135 void __init ptlock_cache_init(void)
4137 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4138 SLAB_PANIC, NULL);
4141 bool ptlock_alloc(struct page *page)
4143 spinlock_t *ptl;
4145 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4146 if (!ptl)
4147 return false;
4148 page->ptl = ptl;
4149 return true;
4152 void ptlock_free(struct page *page)
4154 kmem_cache_free(page_ptl_cachep, page->ptl);
4156 #endif