4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
78 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr
;
87 EXPORT_SYMBOL(max_mapnr
);
88 EXPORT_SYMBOL(mem_map
);
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 EXPORT_SYMBOL(high_memory
);
103 * Randomize the address space (stacks, mmaps, brk, etc.).
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
108 int randomize_va_space __read_mostly
=
109 #ifdef CONFIG_COMPAT_BRK
115 static int __init
disable_randmaps(char *s
)
117 randomize_va_space
= 0;
120 __setup("norandmaps", disable_randmaps
);
122 unsigned long zero_pfn __read_mostly
;
123 unsigned long highest_memmap_pfn __read_mostly
;
125 EXPORT_SYMBOL(zero_pfn
);
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130 static int __init
init_zero_pfn(void)
132 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
135 core_initcall(init_zero_pfn
);
138 #if defined(SPLIT_RSS_COUNTING)
140 void sync_mm_rss(struct mm_struct
*mm
)
144 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
145 if (current
->rss_stat
.count
[i
]) {
146 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
147 current
->rss_stat
.count
[i
] = 0;
150 current
->rss_stat
.events
= 0;
153 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
155 struct task_struct
*task
= current
;
157 if (likely(task
->mm
== mm
))
158 task
->rss_stat
.count
[member
] += val
;
160 add_mm_counter(mm
, member
, val
);
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH (64)
167 static void check_sync_rss_stat(struct task_struct
*task
)
169 if (unlikely(task
!= current
))
171 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
172 sync_mm_rss(task
->mm
);
174 #else /* SPLIT_RSS_COUNTING */
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179 static void check_sync_rss_stat(struct task_struct
*task
)
183 #endif /* SPLIT_RSS_COUNTING */
185 #ifdef HAVE_GENERIC_MMU_GATHER
187 static bool tlb_next_batch(struct mmu_gather
*tlb
)
189 struct mmu_gather_batch
*batch
;
193 tlb
->active
= batch
->next
;
197 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
200 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
207 batch
->max
= MAX_GATHER_BATCH
;
209 tlb
->active
->next
= batch
;
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
220 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
224 /* Is it from 0 to ~0? */
225 tlb
->fullmm
= !(start
| (end
+1));
226 tlb
->need_flush_all
= 0;
227 tlb
->local
.next
= NULL
;
229 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
230 tlb
->active
= &tlb
->local
;
231 tlb
->batch_count
= 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238 __tlb_reset_range(tlb
);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
247 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb
);
251 __tlb_reset_range(tlb
);
254 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
256 struct mmu_gather_batch
*batch
;
258 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
259 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
262 tlb
->active
= &tlb
->local
;
265 void tlb_flush_mmu(struct mmu_gather
*tlb
)
267 tlb_flush_mmu_tlbonly(tlb
);
268 tlb_flush_mmu_free(tlb
);
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
277 struct mmu_gather_batch
*batch
, *next
;
281 /* keep the page table cache within bounds */
284 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
286 free_pages((unsigned long)batch
, 0);
288 tlb
->local
.next
= NULL
;
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
296 *returns true if the caller should flush.
298 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
300 struct mmu_gather_batch
*batch
;
302 VM_BUG_ON(!tlb
->end
);
305 tlb
->page_size
= page_size
;
307 if (page_size
!= tlb
->page_size
)
312 if (batch
->nr
== batch
->max
) {
313 if (!tlb_next_batch(tlb
))
317 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
319 batch
->pages
[batch
->nr
++] = page
;
323 #endif /* HAVE_GENERIC_MMU_GATHER */
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 * See the comment near struct mmu_table_batch.
331 static void tlb_remove_table_smp_sync(void *arg
)
333 /* Simply deliver the interrupt */
336 static void tlb_remove_table_one(void *table
)
339 * This isn't an RCU grace period and hence the page-tables cannot be
340 * assumed to be actually RCU-freed.
342 * It is however sufficient for software page-table walkers that rely on
343 * IRQ disabling. See the comment near struct mmu_table_batch.
345 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
346 __tlb_remove_table(table
);
349 static void tlb_remove_table_rcu(struct rcu_head
*head
)
351 struct mmu_table_batch
*batch
;
354 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
356 for (i
= 0; i
< batch
->nr
; i
++)
357 __tlb_remove_table(batch
->tables
[i
]);
359 free_page((unsigned long)batch
);
362 void tlb_table_flush(struct mmu_gather
*tlb
)
364 struct mmu_table_batch
**batch
= &tlb
->batch
;
367 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
372 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
374 struct mmu_table_batch
**batch
= &tlb
->batch
;
376 if (*batch
== NULL
) {
377 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
378 if (*batch
== NULL
) {
379 tlb_remove_table_one(table
);
384 (*batch
)->tables
[(*batch
)->nr
++] = table
;
385 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
386 tlb_table_flush(tlb
);
389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
392 * Note: this doesn't free the actual pages themselves. That
393 * has been handled earlier when unmapping all the memory regions.
395 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
398 pgtable_t token
= pmd_pgtable(*pmd
);
400 pte_free_tlb(tlb
, token
, addr
);
401 atomic_long_dec(&tlb
->mm
->nr_ptes
);
404 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
405 unsigned long addr
, unsigned long end
,
406 unsigned long floor
, unsigned long ceiling
)
413 pmd
= pmd_offset(pud
, addr
);
415 next
= pmd_addr_end(addr
, end
);
416 if (pmd_none_or_clear_bad(pmd
))
418 free_pte_range(tlb
, pmd
, addr
);
419 } while (pmd
++, addr
= next
, addr
!= end
);
429 if (end
- 1 > ceiling
- 1)
432 pmd
= pmd_offset(pud
, start
);
434 pmd_free_tlb(tlb
, pmd
, start
);
435 mm_dec_nr_pmds(tlb
->mm
);
438 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
439 unsigned long addr
, unsigned long end
,
440 unsigned long floor
, unsigned long ceiling
)
447 pud
= pud_offset(pgd
, addr
);
449 next
= pud_addr_end(addr
, end
);
450 if (pud_none_or_clear_bad(pud
))
452 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
453 } while (pud
++, addr
= next
, addr
!= end
);
459 ceiling
&= PGDIR_MASK
;
463 if (end
- 1 > ceiling
- 1)
466 pud
= pud_offset(pgd
, start
);
468 pud_free_tlb(tlb
, pud
, start
);
472 * This function frees user-level page tables of a process.
474 void free_pgd_range(struct mmu_gather
*tlb
,
475 unsigned long addr
, unsigned long end
,
476 unsigned long floor
, unsigned long ceiling
)
482 * The next few lines have given us lots of grief...
484 * Why are we testing PMD* at this top level? Because often
485 * there will be no work to do at all, and we'd prefer not to
486 * go all the way down to the bottom just to discover that.
488 * Why all these "- 1"s? Because 0 represents both the bottom
489 * of the address space and the top of it (using -1 for the
490 * top wouldn't help much: the masks would do the wrong thing).
491 * The rule is that addr 0 and floor 0 refer to the bottom of
492 * the address space, but end 0 and ceiling 0 refer to the top
493 * Comparisons need to use "end - 1" and "ceiling - 1" (though
494 * that end 0 case should be mythical).
496 * Wherever addr is brought up or ceiling brought down, we must
497 * be careful to reject "the opposite 0" before it confuses the
498 * subsequent tests. But what about where end is brought down
499 * by PMD_SIZE below? no, end can't go down to 0 there.
501 * Whereas we round start (addr) and ceiling down, by different
502 * masks at different levels, in order to test whether a table
503 * now has no other vmas using it, so can be freed, we don't
504 * bother to round floor or end up - the tests don't need that.
518 if (end
- 1 > ceiling
- 1)
523 pgd
= pgd_offset(tlb
->mm
, addr
);
525 next
= pgd_addr_end(addr
, end
);
526 if (pgd_none_or_clear_bad(pgd
))
528 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
529 } while (pgd
++, addr
= next
, addr
!= end
);
532 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
533 unsigned long floor
, unsigned long ceiling
)
536 struct vm_area_struct
*next
= vma
->vm_next
;
537 unsigned long addr
= vma
->vm_start
;
540 * Hide vma from rmap and truncate_pagecache before freeing
543 unlink_anon_vmas(vma
);
544 unlink_file_vma(vma
);
546 if (is_vm_hugetlb_page(vma
)) {
547 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
548 floor
, next
? next
->vm_start
: ceiling
);
551 * Optimization: gather nearby vmas into one call down
553 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
554 && !is_vm_hugetlb_page(next
)) {
557 unlink_anon_vmas(vma
);
558 unlink_file_vma(vma
);
560 free_pgd_range(tlb
, addr
, vma
->vm_end
,
561 floor
, next
? next
->vm_start
: ceiling
);
567 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
570 pgtable_t
new = pte_alloc_one(mm
, address
);
575 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 * visible before the pte is made visible to other CPUs by being
577 * put into page tables.
579 * The other side of the story is the pointer chasing in the page
580 * table walking code (when walking the page table without locking;
581 * ie. most of the time). Fortunately, these data accesses consist
582 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 * being the notable exception) will already guarantee loads are
584 * seen in-order. See the alpha page table accessors for the
585 * smp_read_barrier_depends() barriers in page table walking code.
587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
589 ptl
= pmd_lock(mm
, pmd
);
590 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
591 atomic_long_inc(&mm
->nr_ptes
);
592 pmd_populate(mm
, pmd
, new);
601 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
603 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm
.page_table_lock
);
610 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm
, pmd
, new);
614 spin_unlock(&init_mm
.page_table_lock
);
616 pte_free_kernel(&init_mm
, new);
620 static inline void init_rss_vec(int *rss
)
622 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
625 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
629 if (current
->mm
== mm
)
631 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
633 add_mm_counter(mm
, i
, rss
[i
]);
637 * This function is called to print an error when a bad pte
638 * is found. For example, we might have a PFN-mapped pte in
639 * a region that doesn't allow it.
641 * The calling function must still handle the error.
643 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
644 pte_t pte
, struct page
*page
)
646 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
647 pud_t
*pud
= pud_offset(pgd
, addr
);
648 pmd_t
*pmd
= pmd_offset(pud
, addr
);
649 struct address_space
*mapping
;
651 static unsigned long resume
;
652 static unsigned long nr_shown
;
653 static unsigned long nr_unshown
;
656 * Allow a burst of 60 reports, then keep quiet for that minute;
657 * or allow a steady drip of one report per second.
659 if (nr_shown
== 60) {
660 if (time_before(jiffies
, resume
)) {
665 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
672 resume
= jiffies
+ 60 * HZ
;
674 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
675 index
= linear_page_index(vma
, addr
);
677 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
679 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
681 dump_page(page
, "bad pte");
682 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
685 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
690 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
691 mapping
? mapping
->a_ops
->readpage
: NULL
);
693 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 * And for normal mappings this is false.
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
741 # define HAVE_PTE_SPECIAL 0
743 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
746 unsigned long pfn
= pte_pfn(pte
);
748 if (HAVE_PTE_SPECIAL
) {
749 if (likely(!pte_special(pte
)))
751 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
752 return vma
->vm_ops
->find_special_page(vma
, addr
);
753 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
755 if (!is_zero_pfn(pfn
))
756 print_bad_pte(vma
, addr
, pte
, NULL
);
760 /* !HAVE_PTE_SPECIAL case follows: */
762 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
763 if (vma
->vm_flags
& VM_MIXEDMAP
) {
769 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
770 if (pfn
== vma
->vm_pgoff
+ off
)
772 if (!is_cow_mapping(vma
->vm_flags
))
777 if (is_zero_pfn(pfn
))
780 if (unlikely(pfn
> highest_memmap_pfn
)) {
781 print_bad_pte(vma
, addr
, pte
, NULL
);
786 * NOTE! We still have PageReserved() pages in the page tables.
787 * eg. VDSO mappings can cause them to exist.
790 return pfn_to_page(pfn
);
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
797 unsigned long pfn
= pmd_pfn(pmd
);
800 * There is no pmd_special() but there may be special pmds, e.g.
801 * in a direct-access (dax) mapping, so let's just replicate the
802 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
804 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
805 if (vma
->vm_flags
& VM_MIXEDMAP
) {
811 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
812 if (pfn
== vma
->vm_pgoff
+ off
)
814 if (!is_cow_mapping(vma
->vm_flags
))
819 if (is_zero_pfn(pfn
))
821 if (unlikely(pfn
> highest_memmap_pfn
))
825 * NOTE! We still have PageReserved() pages in the page tables.
826 * eg. VDSO mappings can cause them to exist.
829 return pfn_to_page(pfn
);
834 * copy one vm_area from one task to the other. Assumes the page tables
835 * already present in the new task to be cleared in the whole range
836 * covered by this vma.
839 static inline unsigned long
840 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
841 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
842 unsigned long addr
, int *rss
)
844 unsigned long vm_flags
= vma
->vm_flags
;
845 pte_t pte
= *src_pte
;
848 /* pte contains position in swap or file, so copy. */
849 if (unlikely(!pte_present(pte
))) {
850 swp_entry_t entry
= pte_to_swp_entry(pte
);
852 if (likely(!non_swap_entry(entry
))) {
853 if (swap_duplicate(entry
) < 0)
856 /* make sure dst_mm is on swapoff's mmlist. */
857 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
858 spin_lock(&mmlist_lock
);
859 if (list_empty(&dst_mm
->mmlist
))
860 list_add(&dst_mm
->mmlist
,
862 spin_unlock(&mmlist_lock
);
865 } else if (is_migration_entry(entry
)) {
866 page
= migration_entry_to_page(entry
);
868 rss
[mm_counter(page
)]++;
870 if (is_write_migration_entry(entry
) &&
871 is_cow_mapping(vm_flags
)) {
873 * COW mappings require pages in both
874 * parent and child to be set to read.
876 make_migration_entry_read(&entry
);
877 pte
= swp_entry_to_pte(entry
);
878 if (pte_swp_soft_dirty(*src_pte
))
879 pte
= pte_swp_mksoft_dirty(pte
);
880 set_pte_at(src_mm
, addr
, src_pte
, pte
);
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
890 if (is_cow_mapping(vm_flags
)) {
891 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
892 pte
= pte_wrprotect(pte
);
896 * If it's a shared mapping, mark it clean in
899 if (vm_flags
& VM_SHARED
)
900 pte
= pte_mkclean(pte
);
901 pte
= pte_mkold(pte
);
903 page
= vm_normal_page(vma
, addr
, pte
);
906 page_dup_rmap(page
, false);
907 rss
[mm_counter(page
)]++;
911 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
915 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
916 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
917 unsigned long addr
, unsigned long end
)
919 pte_t
*orig_src_pte
, *orig_dst_pte
;
920 pte_t
*src_pte
, *dst_pte
;
921 spinlock_t
*src_ptl
, *dst_ptl
;
923 int rss
[NR_MM_COUNTERS
];
924 swp_entry_t entry
= (swp_entry_t
){0};
929 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
932 src_pte
= pte_offset_map(src_pmd
, addr
);
933 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
934 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
935 orig_src_pte
= src_pte
;
936 orig_dst_pte
= dst_pte
;
937 arch_enter_lazy_mmu_mode();
941 * We are holding two locks at this point - either of them
942 * could generate latencies in another task on another CPU.
944 if (progress
>= 32) {
946 if (need_resched() ||
947 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
950 if (pte_none(*src_pte
)) {
954 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
959 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
961 arch_leave_lazy_mmu_mode();
962 spin_unlock(src_ptl
);
963 pte_unmap(orig_src_pte
);
964 add_mm_rss_vec(dst_mm
, rss
);
965 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
969 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
978 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
979 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
980 unsigned long addr
, unsigned long end
)
982 pmd_t
*src_pmd
, *dst_pmd
;
985 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
988 src_pmd
= pmd_offset(src_pud
, addr
);
990 next
= pmd_addr_end(addr
, end
);
991 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
993 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
994 err
= copy_huge_pmd(dst_mm
, src_mm
,
995 dst_pmd
, src_pmd
, addr
, vma
);
1002 if (pmd_none_or_clear_bad(src_pmd
))
1004 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1007 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1011 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1012 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1013 unsigned long addr
, unsigned long end
)
1015 pud_t
*src_pud
, *dst_pud
;
1018 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1021 src_pud
= pud_offset(src_pgd
, addr
);
1023 next
= pud_addr_end(addr
, end
);
1024 if (pud_none_or_clear_bad(src_pud
))
1026 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1029 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1033 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1034 struct vm_area_struct
*vma
)
1036 pgd_t
*src_pgd
, *dst_pgd
;
1038 unsigned long addr
= vma
->vm_start
;
1039 unsigned long end
= vma
->vm_end
;
1040 unsigned long mmun_start
; /* For mmu_notifiers */
1041 unsigned long mmun_end
; /* For mmu_notifiers */
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1051 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1055 if (is_vm_hugetlb_page(vma
))
1056 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1058 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1063 ret
= track_pfn_copy(vma
);
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1074 is_cow
= is_cow_mapping(vma
->vm_flags
);
1078 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1082 dst_pgd
= pgd_offset(dst_mm
, addr
);
1083 src_pgd
= pgd_offset(src_mm
, addr
);
1085 next
= pgd_addr_end(addr
, end
);
1086 if (pgd_none_or_clear_bad(src_pgd
))
1088 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1089 vma
, addr
, next
))) {
1093 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1096 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1100 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1101 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1102 unsigned long addr
, unsigned long end
,
1103 struct zap_details
*details
)
1105 struct mm_struct
*mm
= tlb
->mm
;
1106 int force_flush
= 0;
1107 int rss
[NR_MM_COUNTERS
];
1112 struct page
*pending_page
= NULL
;
1116 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1118 flush_tlb_batched_pending(mm
);
1119 arch_enter_lazy_mmu_mode();
1122 if (pte_none(ptent
)) {
1126 if (pte_present(ptent
)) {
1129 page
= vm_normal_page(vma
, addr
, ptent
);
1130 if (unlikely(details
) && page
) {
1132 * unmap_shared_mapping_pages() wants to
1133 * invalidate cache without truncating:
1134 * unmap shared but keep private pages.
1136 if (details
->check_mapping
&&
1137 details
->check_mapping
!= page_rmapping(page
))
1140 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1142 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1143 if (unlikely(!page
))
1146 if (!PageAnon(page
)) {
1147 if (pte_dirty(ptent
)) {
1149 * oom_reaper cannot tear down dirty
1152 if (unlikely(details
&& details
->ignore_dirty
))
1155 set_page_dirty(page
);
1157 if (pte_young(ptent
) &&
1158 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1159 mark_page_accessed(page
);
1161 rss
[mm_counter(page
)]--;
1162 page_remove_rmap(page
, false);
1163 if (unlikely(page_mapcount(page
) < 0))
1164 print_bad_pte(vma
, addr
, ptent
, page
);
1165 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1167 pending_page
= page
;
1173 /* only check swap_entries if explicitly asked for in details */
1174 if (unlikely(details
&& !details
->check_swap_entries
))
1177 entry
= pte_to_swp_entry(ptent
);
1178 if (!non_swap_entry(entry
))
1180 else if (is_migration_entry(entry
)) {
1183 page
= migration_entry_to_page(entry
);
1184 rss
[mm_counter(page
)]--;
1186 if (unlikely(!free_swap_and_cache(entry
)))
1187 print_bad_pte(vma
, addr
, ptent
, NULL
);
1188 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1189 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1191 add_mm_rss_vec(mm
, rss
);
1192 arch_leave_lazy_mmu_mode();
1194 /* Do the actual TLB flush before dropping ptl */
1196 tlb_flush_mmu_tlbonly(tlb
);
1197 pte_unmap_unlock(start_pte
, ptl
);
1200 * If we forced a TLB flush (either due to running out of
1201 * batch buffers or because we needed to flush dirty TLB
1202 * entries before releasing the ptl), free the batched
1203 * memory too. Restart if we didn't do everything.
1207 tlb_flush_mmu_free(tlb
);
1209 /* remove the page with new size */
1210 __tlb_remove_pte_page(tlb
, pending_page
);
1211 pending_page
= NULL
;
1220 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1221 struct vm_area_struct
*vma
, pud_t
*pud
,
1222 unsigned long addr
, unsigned long end
,
1223 struct zap_details
*details
)
1228 pmd
= pmd_offset(pud
, addr
);
1230 next
= pmd_addr_end(addr
, end
);
1231 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1232 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1233 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1234 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1235 split_huge_pmd(vma
, pmd
, addr
);
1236 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1241 * Here there can be other concurrent MADV_DONTNEED or
1242 * trans huge page faults running, and if the pmd is
1243 * none or trans huge it can change under us. This is
1244 * because MADV_DONTNEED holds the mmap_sem in read
1247 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1249 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1252 } while (pmd
++, addr
= next
, addr
!= end
);
1257 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1258 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1259 unsigned long addr
, unsigned long end
,
1260 struct zap_details
*details
)
1265 pud
= pud_offset(pgd
, addr
);
1267 next
= pud_addr_end(addr
, end
);
1268 if (pud_none_or_clear_bad(pud
))
1270 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1271 } while (pud
++, addr
= next
, addr
!= end
);
1276 void unmap_page_range(struct mmu_gather
*tlb
,
1277 struct vm_area_struct
*vma
,
1278 unsigned long addr
, unsigned long end
,
1279 struct zap_details
*details
)
1284 BUG_ON(addr
>= end
);
1285 tlb_start_vma(tlb
, vma
);
1286 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1288 next
= pgd_addr_end(addr
, end
);
1289 if (pgd_none_or_clear_bad(pgd
))
1291 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1292 } while (pgd
++, addr
= next
, addr
!= end
);
1293 tlb_end_vma(tlb
, vma
);
1297 static void unmap_single_vma(struct mmu_gather
*tlb
,
1298 struct vm_area_struct
*vma
, unsigned long start_addr
,
1299 unsigned long end_addr
,
1300 struct zap_details
*details
)
1302 unsigned long start
= max(vma
->vm_start
, start_addr
);
1305 if (start
>= vma
->vm_end
)
1307 end
= min(vma
->vm_end
, end_addr
);
1308 if (end
<= vma
->vm_start
)
1312 uprobe_munmap(vma
, start
, end
);
1314 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1315 untrack_pfn(vma
, 0, 0);
1318 if (unlikely(is_vm_hugetlb_page(vma
))) {
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of mmap_region. When
1324 * hugetlbfs ->mmap method fails,
1325 * mmap_region() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1331 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1332 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1333 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1336 unmap_page_range(tlb
, vma
, start
, end
, details
);
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1347 * Unmap all pages in the vma list.
1349 * Only addresses between `start' and `end' will be unmapped.
1351 * The VMA list must be sorted in ascending virtual address order.
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1358 void unmap_vmas(struct mmu_gather
*tlb
,
1359 struct vm_area_struct
*vma
, unsigned long start_addr
,
1360 unsigned long end_addr
)
1362 struct mm_struct
*mm
= vma
->vm_mm
;
1364 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1365 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1366 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1367 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of shared cache invalidation
1377 * Caller must protect the VMA list
1379 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1380 unsigned long size
, struct zap_details
*details
)
1382 struct mm_struct
*mm
= vma
->vm_mm
;
1383 struct mmu_gather tlb
;
1384 unsigned long end
= start
+ size
;
1387 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1388 update_hiwater_rss(mm
);
1389 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1390 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1391 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1392 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1393 tlb_finish_mmu(&tlb
, start
, end
);
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of shared cache invalidation
1403 * The range must fit into one VMA.
1405 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1406 unsigned long size
, struct zap_details
*details
)
1408 struct mm_struct
*mm
= vma
->vm_mm
;
1409 struct mmu_gather tlb
;
1410 unsigned long end
= address
+ size
;
1413 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1414 update_hiwater_rss(mm
);
1415 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1416 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1417 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1418 tlb_finish_mmu(&tlb
, address
, end
);
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1429 * The entire address range must be fully contained within the vma.
1431 * Returns 0 if successful.
1433 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1436 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1437 !(vma
->vm_flags
& VM_PFNMAP
))
1439 zap_page_range_single(vma
, address
, size
, NULL
);
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1444 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1447 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1448 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1450 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1452 VM_BUG_ON(pmd_trans_huge(*pmd
));
1453 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1460 * This is the old fallback for page remapping.
1462 * For historical reasons, it only allows reserved pages. Only
1463 * old drivers should use this, and they needed to mark their
1464 * pages reserved for the old functions anyway.
1466 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1467 struct page
*page
, pgprot_t prot
)
1469 struct mm_struct
*mm
= vma
->vm_mm
;
1478 flush_dcache_page(page
);
1479 pte
= get_locked_pte(mm
, addr
, &ptl
);
1483 if (!pte_none(*pte
))
1486 /* Ok, finally just insert the thing.. */
1488 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1489 page_add_file_rmap(page
, false);
1490 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1493 pte_unmap_unlock(pte
, ptl
);
1496 pte_unmap_unlock(pte
, ptl
);
1502 * vm_insert_page - insert single page into user vma
1503 * @vma: user vma to map to
1504 * @addr: target user address of this page
1505 * @page: source kernel page
1507 * This allows drivers to insert individual pages they've allocated
1510 * The page has to be a nice clean _individual_ kernel allocation.
1511 * If you allocate a compound page, you need to have marked it as
1512 * such (__GFP_COMP), or manually just split the page up yourself
1513 * (see split_page()).
1515 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1516 * took an arbitrary page protection parameter. This doesn't allow
1517 * that. Your vma protection will have to be set up correctly, which
1518 * means that if you want a shared writable mapping, you'd better
1519 * ask for a shared writable mapping!
1521 * The page does not need to be reserved.
1523 * Usually this function is called from f_op->mmap() handler
1524 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1525 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1526 * function from other places, for example from page-fault handler.
1528 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1531 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1533 if (!page_count(page
))
1535 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1536 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1537 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1538 vma
->vm_flags
|= VM_MIXEDMAP
;
1540 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1542 EXPORT_SYMBOL(vm_insert_page
);
1544 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1545 pfn_t pfn
, pgprot_t prot
)
1547 struct mm_struct
*mm
= vma
->vm_mm
;
1553 pte
= get_locked_pte(mm
, addr
, &ptl
);
1557 if (!pte_none(*pte
))
1560 /* Ok, finally just insert the thing.. */
1561 if (pfn_t_devmap(pfn
))
1562 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1564 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1565 set_pte_at(mm
, addr
, pte
, entry
);
1566 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1570 pte_unmap_unlock(pte
, ptl
);
1576 * vm_insert_pfn - insert single pfn into user vma
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1581 * Similar to vm_insert_page, this allows drivers to insert individual pages
1582 * they've allocated into a user vma. Same comments apply.
1584 * This function should only be called from a vm_ops->fault handler, and
1585 * in that case the handler should return NULL.
1587 * vma cannot be a COW mapping.
1589 * As this is called only for pages that do not currently exist, we
1590 * do not need to flush old virtual caches or the TLB.
1592 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1595 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1597 EXPORT_SYMBOL(vm_insert_pfn
);
1600 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601 * @vma: user vma to map to
1602 * @addr: target user address of this page
1603 * @pfn: source kernel pfn
1604 * @pgprot: pgprot flags for the inserted page
1606 * This is exactly like vm_insert_pfn, except that it allows drivers to
1607 * to override pgprot on a per-page basis.
1609 * This only makes sense for IO mappings, and it makes no sense for
1610 * cow mappings. In general, using multiple vmas is preferable;
1611 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1614 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1615 unsigned long pfn
, pgprot_t pgprot
)
1619 * Technically, architectures with pte_special can avoid all these
1620 * restrictions (same for remap_pfn_range). However we would like
1621 * consistency in testing and feature parity among all, so we should
1622 * try to keep these invariants in place for everybody.
1624 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1625 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1626 (VM_PFNMAP
|VM_MIXEDMAP
));
1627 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1628 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1630 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1632 if (track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
)))
1635 if (!pfn_modify_allowed(pfn
, pgprot
))
1638 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1642 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1644 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1647 pgprot_t pgprot
= vma
->vm_page_prot
;
1649 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1651 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1653 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1656 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1660 * If we don't have pte special, then we have to use the pfn_valid()
1661 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1662 * refcount the page if pfn_valid is true (hence insert_page rather
1663 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1664 * without pte special, it would there be refcounted as a normal page.
1666 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1670 * At this point we are committed to insert_page()
1671 * regardless of whether the caller specified flags that
1672 * result in pfn_t_has_page() == false.
1674 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1675 return insert_page(vma
, addr
, page
, pgprot
);
1677 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1679 EXPORT_SYMBOL(vm_insert_mixed
);
1682 * maps a range of physical memory into the requested pages. the old
1683 * mappings are removed. any references to nonexistent pages results
1684 * in null mappings (currently treated as "copy-on-access")
1686 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1687 unsigned long addr
, unsigned long end
,
1688 unsigned long pfn
, pgprot_t prot
)
1694 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1697 arch_enter_lazy_mmu_mode();
1699 BUG_ON(!pte_none(*pte
));
1700 if (!pfn_modify_allowed(pfn
, prot
)) {
1704 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1706 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1707 arch_leave_lazy_mmu_mode();
1708 pte_unmap_unlock(pte
- 1, ptl
);
1712 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1713 unsigned long addr
, unsigned long end
,
1714 unsigned long pfn
, pgprot_t prot
)
1720 pfn
-= addr
>> PAGE_SHIFT
;
1721 pmd
= pmd_alloc(mm
, pud
, addr
);
1724 VM_BUG_ON(pmd_trans_huge(*pmd
));
1726 next
= pmd_addr_end(addr
, end
);
1727 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1728 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1731 } while (pmd
++, addr
= next
, addr
!= end
);
1735 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1736 unsigned long addr
, unsigned long end
,
1737 unsigned long pfn
, pgprot_t prot
)
1743 pfn
-= addr
>> PAGE_SHIFT
;
1744 pud
= pud_alloc(mm
, pgd
, addr
);
1748 next
= pud_addr_end(addr
, end
);
1749 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1750 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1753 } while (pud
++, addr
= next
, addr
!= end
);
1758 * remap_pfn_range - remap kernel memory to userspace
1759 * @vma: user vma to map to
1760 * @addr: target user address to start at
1761 * @pfn: physical address of kernel memory
1762 * @size: size of map area
1763 * @prot: page protection flags for this mapping
1765 * Note: this is only safe if the mm semaphore is held when called.
1767 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1768 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1772 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1773 struct mm_struct
*mm
= vma
->vm_mm
;
1774 unsigned long remap_pfn
= pfn
;
1778 * Physically remapped pages are special. Tell the
1779 * rest of the world about it:
1780 * VM_IO tells people not to look at these pages
1781 * (accesses can have side effects).
1782 * VM_PFNMAP tells the core MM that the base pages are just
1783 * raw PFN mappings, and do not have a "struct page" associated
1786 * Disable vma merging and expanding with mremap().
1788 * Omit vma from core dump, even when VM_IO turned off.
1790 * There's a horrible special case to handle copy-on-write
1791 * behaviour that some programs depend on. We mark the "original"
1792 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1793 * See vm_normal_page() for details.
1795 if (is_cow_mapping(vma
->vm_flags
)) {
1796 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1798 vma
->vm_pgoff
= pfn
;
1801 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1805 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1807 BUG_ON(addr
>= end
);
1808 pfn
-= addr
>> PAGE_SHIFT
;
1809 pgd
= pgd_offset(mm
, addr
);
1810 flush_cache_range(vma
, addr
, end
);
1812 next
= pgd_addr_end(addr
, end
);
1813 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1814 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1817 } while (pgd
++, addr
= next
, addr
!= end
);
1820 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1824 EXPORT_SYMBOL(remap_pfn_range
);
1827 * vm_iomap_memory - remap memory to userspace
1828 * @vma: user vma to map to
1829 * @start: start of area
1830 * @len: size of area
1832 * This is a simplified io_remap_pfn_range() for common driver use. The
1833 * driver just needs to give us the physical memory range to be mapped,
1834 * we'll figure out the rest from the vma information.
1836 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1837 * whatever write-combining details or similar.
1839 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1841 unsigned long vm_len
, pfn
, pages
;
1843 /* Check that the physical memory area passed in looks valid */
1844 if (start
+ len
< start
)
1847 * You *really* shouldn't map things that aren't page-aligned,
1848 * but we've historically allowed it because IO memory might
1849 * just have smaller alignment.
1851 len
+= start
& ~PAGE_MASK
;
1852 pfn
= start
>> PAGE_SHIFT
;
1853 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1854 if (pfn
+ pages
< pfn
)
1857 /* We start the mapping 'vm_pgoff' pages into the area */
1858 if (vma
->vm_pgoff
> pages
)
1860 pfn
+= vma
->vm_pgoff
;
1861 pages
-= vma
->vm_pgoff
;
1863 /* Can we fit all of the mapping? */
1864 vm_len
= vma
->vm_end
- vma
->vm_start
;
1865 if (vm_len
>> PAGE_SHIFT
> pages
)
1868 /* Ok, let it rip */
1869 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1871 EXPORT_SYMBOL(vm_iomap_memory
);
1873 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1874 unsigned long addr
, unsigned long end
,
1875 pte_fn_t fn
, void *data
)
1880 spinlock_t
*uninitialized_var(ptl
);
1882 pte
= (mm
== &init_mm
) ?
1883 pte_alloc_kernel(pmd
, addr
) :
1884 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1888 BUG_ON(pmd_huge(*pmd
));
1890 arch_enter_lazy_mmu_mode();
1892 token
= pmd_pgtable(*pmd
);
1895 err
= fn(pte
++, token
, addr
, data
);
1898 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1900 arch_leave_lazy_mmu_mode();
1903 pte_unmap_unlock(pte
-1, ptl
);
1907 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1908 unsigned long addr
, unsigned long end
,
1909 pte_fn_t fn
, void *data
)
1915 BUG_ON(pud_huge(*pud
));
1917 pmd
= pmd_alloc(mm
, pud
, addr
);
1921 next
= pmd_addr_end(addr
, end
);
1922 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1925 } while (pmd
++, addr
= next
, addr
!= end
);
1929 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1930 unsigned long addr
, unsigned long end
,
1931 pte_fn_t fn
, void *data
)
1937 pud
= pud_alloc(mm
, pgd
, addr
);
1941 next
= pud_addr_end(addr
, end
);
1942 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1945 } while (pud
++, addr
= next
, addr
!= end
);
1950 * Scan a region of virtual memory, filling in page tables as necessary
1951 * and calling a provided function on each leaf page table.
1953 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1954 unsigned long size
, pte_fn_t fn
, void *data
)
1958 unsigned long end
= addr
+ size
;
1961 if (WARN_ON(addr
>= end
))
1964 pgd
= pgd_offset(mm
, addr
);
1966 next
= pgd_addr_end(addr
, end
);
1967 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1970 } while (pgd
++, addr
= next
, addr
!= end
);
1974 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1977 * handle_pte_fault chooses page fault handler according to an entry which was
1978 * read non-atomically. Before making any commitment, on those architectures
1979 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1980 * parts, do_swap_page must check under lock before unmapping the pte and
1981 * proceeding (but do_wp_page is only called after already making such a check;
1982 * and do_anonymous_page can safely check later on).
1984 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1985 pte_t
*page_table
, pte_t orig_pte
)
1988 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1989 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1990 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1992 same
= pte_same(*page_table
, orig_pte
);
1996 pte_unmap(page_table
);
2000 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2002 debug_dma_assert_idle(src
);
2005 * If the source page was a PFN mapping, we don't have
2006 * a "struct page" for it. We do a best-effort copy by
2007 * just copying from the original user address. If that
2008 * fails, we just zero-fill it. Live with it.
2010 if (unlikely(!src
)) {
2011 void *kaddr
= kmap_atomic(dst
);
2012 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2015 * This really shouldn't fail, because the page is there
2016 * in the page tables. But it might just be unreadable,
2017 * in which case we just give up and fill the result with
2020 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2022 kunmap_atomic(kaddr
);
2023 flush_dcache_page(dst
);
2025 copy_user_highpage(dst
, src
, va
, vma
);
2028 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2030 struct file
*vm_file
= vma
->vm_file
;
2033 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2036 * Special mappings (e.g. VDSO) do not have any file so fake
2037 * a default GFP_KERNEL for them.
2043 * Notify the address space that the page is about to become writable so that
2044 * it can prohibit this or wait for the page to get into an appropriate state.
2046 * We do this without the lock held, so that it can sleep if it needs to.
2048 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2049 unsigned long address
)
2051 struct vm_fault vmf
;
2054 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2055 vmf
.pgoff
= page
->index
;
2056 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2057 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2059 vmf
.cow_page
= NULL
;
2061 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2062 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2064 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2066 if (!page
->mapping
) {
2068 return 0; /* retry */
2070 ret
|= VM_FAULT_LOCKED
;
2072 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2077 * Handle write page faults for pages that can be reused in the current vma
2079 * This can happen either due to the mapping being with the VM_SHARED flag,
2080 * or due to us being the last reference standing to the page. In either
2081 * case, all we need to do here is to mark the page as writable and update
2082 * any related book-keeping.
2084 static inline int wp_page_reuse(struct fault_env
*fe
, pte_t orig_pte
,
2085 struct page
*page
, int page_mkwrite
, int dirty_shared
)
2088 struct vm_area_struct
*vma
= fe
->vma
;
2091 * Clear the pages cpupid information as the existing
2092 * information potentially belongs to a now completely
2093 * unrelated process.
2096 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2098 flush_cache_page(vma
, fe
->address
, pte_pfn(orig_pte
));
2099 entry
= pte_mkyoung(orig_pte
);
2100 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2101 if (ptep_set_access_flags(vma
, fe
->address
, fe
->pte
, entry
, 1))
2102 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2103 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2106 struct address_space
*mapping
;
2112 dirtied
= set_page_dirty(page
);
2113 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2114 mapping
= page
->mapping
;
2118 if ((dirtied
|| page_mkwrite
) && mapping
) {
2120 * Some device drivers do not set page.mapping
2121 * but still dirty their pages
2123 balance_dirty_pages_ratelimited(mapping
);
2127 file_update_time(vma
->vm_file
);
2130 return VM_FAULT_WRITE
;
2134 * Handle the case of a page which we actually need to copy to a new page.
2136 * Called with mmap_sem locked and the old page referenced, but
2137 * without the ptl held.
2139 * High level logic flow:
2141 * - Allocate a page, copy the content of the old page to the new one.
2142 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2143 * - Take the PTL. If the pte changed, bail out and release the allocated page
2144 * - If the pte is still the way we remember it, update the page table and all
2145 * relevant references. This includes dropping the reference the page-table
2146 * held to the old page, as well as updating the rmap.
2147 * - In any case, unlock the PTL and drop the reference we took to the old page.
2149 static int wp_page_copy(struct fault_env
*fe
, pte_t orig_pte
,
2150 struct page
*old_page
)
2152 struct vm_area_struct
*vma
= fe
->vma
;
2153 struct mm_struct
*mm
= vma
->vm_mm
;
2154 struct page
*new_page
= NULL
;
2156 int page_copied
= 0;
2157 const unsigned long mmun_start
= fe
->address
& PAGE_MASK
;
2158 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2159 struct mem_cgroup
*memcg
;
2161 if (unlikely(anon_vma_prepare(vma
)))
2164 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2165 new_page
= alloc_zeroed_user_highpage_movable(vma
, fe
->address
);
2169 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2173 cow_user_page(new_page
, old_page
, fe
->address
, vma
);
2176 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2179 __SetPageUptodate(new_page
);
2181 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2184 * Re-check the pte - we dropped the lock
2186 fe
->pte
= pte_offset_map_lock(mm
, fe
->pmd
, fe
->address
, &fe
->ptl
);
2187 if (likely(pte_same(*fe
->pte
, orig_pte
))) {
2189 if (!PageAnon(old_page
)) {
2190 dec_mm_counter_fast(mm
,
2191 mm_counter_file(old_page
));
2192 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2195 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2197 flush_cache_page(vma
, fe
->address
, pte_pfn(orig_pte
));
2198 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2199 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2201 * Clear the pte entry and flush it first, before updating the
2202 * pte with the new entry. This will avoid a race condition
2203 * seen in the presence of one thread doing SMC and another
2206 ptep_clear_flush_notify(vma
, fe
->address
, fe
->pte
);
2207 page_add_new_anon_rmap(new_page
, vma
, fe
->address
, false);
2208 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2209 lru_cache_add_active_or_unevictable(new_page
, vma
);
2211 * We call the notify macro here because, when using secondary
2212 * mmu page tables (such as kvm shadow page tables), we want the
2213 * new page to be mapped directly into the secondary page table.
2215 set_pte_at_notify(mm
, fe
->address
, fe
->pte
, entry
);
2216 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2219 * Only after switching the pte to the new page may
2220 * we remove the mapcount here. Otherwise another
2221 * process may come and find the rmap count decremented
2222 * before the pte is switched to the new page, and
2223 * "reuse" the old page writing into it while our pte
2224 * here still points into it and can be read by other
2227 * The critical issue is to order this
2228 * page_remove_rmap with the ptp_clear_flush above.
2229 * Those stores are ordered by (if nothing else,)
2230 * the barrier present in the atomic_add_negative
2231 * in page_remove_rmap.
2233 * Then the TLB flush in ptep_clear_flush ensures that
2234 * no process can access the old page before the
2235 * decremented mapcount is visible. And the old page
2236 * cannot be reused until after the decremented
2237 * mapcount is visible. So transitively, TLBs to
2238 * old page will be flushed before it can be reused.
2240 page_remove_rmap(old_page
, false);
2243 /* Free the old page.. */
2244 new_page
= old_page
;
2247 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2253 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2254 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2257 * Don't let another task, with possibly unlocked vma,
2258 * keep the mlocked page.
2260 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2261 lock_page(old_page
); /* LRU manipulation */
2262 if (PageMlocked(old_page
))
2263 munlock_vma_page(old_page
);
2264 unlock_page(old_page
);
2268 return page_copied
? VM_FAULT_WRITE
: 0;
2274 return VM_FAULT_OOM
;
2278 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2281 static int wp_pfn_shared(struct fault_env
*fe
, pte_t orig_pte
)
2283 struct vm_area_struct
*vma
= fe
->vma
;
2285 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2286 struct vm_fault vmf
= {
2288 .pgoff
= linear_page_index(vma
, fe
->address
),
2290 (void __user
*)(fe
->address
& PAGE_MASK
),
2291 .flags
= FAULT_FLAG_WRITE
| FAULT_FLAG_MKWRITE
,
2295 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2296 ret
= vma
->vm_ops
->pfn_mkwrite(vma
, &vmf
);
2297 if (ret
& VM_FAULT_ERROR
)
2299 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2302 * We might have raced with another page fault while we
2303 * released the pte_offset_map_lock.
2305 if (!pte_same(*fe
->pte
, orig_pte
)) {
2306 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2310 return wp_page_reuse(fe
, orig_pte
, NULL
, 0, 0);
2313 static int wp_page_shared(struct fault_env
*fe
, pte_t orig_pte
,
2314 struct page
*old_page
)
2317 struct vm_area_struct
*vma
= fe
->vma
;
2318 int page_mkwrite
= 0;
2322 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2325 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2326 tmp
= do_page_mkwrite(vma
, old_page
, fe
->address
);
2327 if (unlikely(!tmp
|| (tmp
&
2328 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2333 * Since we dropped the lock we need to revalidate
2334 * the PTE as someone else may have changed it. If
2335 * they did, we just return, as we can count on the
2336 * MMU to tell us if they didn't also make it writable.
2338 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2340 if (!pte_same(*fe
->pte
, orig_pte
)) {
2341 unlock_page(old_page
);
2342 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2349 return wp_page_reuse(fe
, orig_pte
, old_page
, page_mkwrite
, 1);
2353 * This routine handles present pages, when users try to write
2354 * to a shared page. It is done by copying the page to a new address
2355 * and decrementing the shared-page counter for the old page.
2357 * Note that this routine assumes that the protection checks have been
2358 * done by the caller (the low-level page fault routine in most cases).
2359 * Thus we can safely just mark it writable once we've done any necessary
2362 * We also mark the page dirty at this point even though the page will
2363 * change only once the write actually happens. This avoids a few races,
2364 * and potentially makes it more efficient.
2366 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367 * but allow concurrent faults), with pte both mapped and locked.
2368 * We return with mmap_sem still held, but pte unmapped and unlocked.
2370 static int do_wp_page(struct fault_env
*fe
, pte_t orig_pte
)
2373 struct vm_area_struct
*vma
= fe
->vma
;
2374 struct page
*old_page
;
2376 old_page
= vm_normal_page(vma
, fe
->address
, orig_pte
);
2379 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2382 * We should not cow pages in a shared writeable mapping.
2383 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2385 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2386 (VM_WRITE
|VM_SHARED
))
2387 return wp_pfn_shared(fe
, orig_pte
);
2389 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2390 return wp_page_copy(fe
, orig_pte
, old_page
);
2394 * Take out anonymous pages first, anonymous shared vmas are
2395 * not dirty accountable.
2397 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2399 if (!trylock_page(old_page
)) {
2401 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2402 lock_page(old_page
);
2403 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
,
2404 fe
->address
, &fe
->ptl
);
2405 if (!pte_same(*fe
->pte
, orig_pte
)) {
2406 unlock_page(old_page
);
2407 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2413 if (reuse_swap_page(old_page
, &total_mapcount
)) {
2414 if (total_mapcount
== 1) {
2416 * The page is all ours. Move it to
2417 * our anon_vma so the rmap code will
2418 * not search our parent or siblings.
2419 * Protected against the rmap code by
2422 page_move_anon_rmap(old_page
, vma
);
2424 unlock_page(old_page
);
2425 return wp_page_reuse(fe
, orig_pte
, old_page
, 0, 0);
2427 unlock_page(old_page
);
2428 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2429 (VM_WRITE
|VM_SHARED
))) {
2430 return wp_page_shared(fe
, orig_pte
, old_page
);
2434 * Ok, we need to copy. Oh, well..
2438 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2439 return wp_page_copy(fe
, orig_pte
, old_page
);
2442 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2443 unsigned long start_addr
, unsigned long end_addr
,
2444 struct zap_details
*details
)
2446 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2449 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2450 struct zap_details
*details
)
2452 struct vm_area_struct
*vma
;
2453 pgoff_t vba
, vea
, zba
, zea
;
2455 vma_interval_tree_foreach(vma
, root
,
2456 details
->first_index
, details
->last_index
) {
2458 vba
= vma
->vm_pgoff
;
2459 vea
= vba
+ vma_pages(vma
) - 1;
2460 zba
= details
->first_index
;
2463 zea
= details
->last_index
;
2467 unmap_mapping_range_vma(vma
,
2468 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2469 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2475 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2476 * address_space corresponding to the specified page range in the underlying
2479 * @mapping: the address space containing mmaps to be unmapped.
2480 * @holebegin: byte in first page to unmap, relative to the start of
2481 * the underlying file. This will be rounded down to a PAGE_SIZE
2482 * boundary. Note that this is different from truncate_pagecache(), which
2483 * must keep the partial page. In contrast, we must get rid of
2485 * @holelen: size of prospective hole in bytes. This will be rounded
2486 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2488 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2489 * but 0 when invalidating pagecache, don't throw away private data.
2491 void unmap_mapping_range(struct address_space
*mapping
,
2492 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2494 struct zap_details details
= { };
2495 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2496 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2498 /* Check for overflow. */
2499 if (sizeof(holelen
) > sizeof(hlen
)) {
2501 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2502 if (holeend
& ~(long long)ULONG_MAX
)
2503 hlen
= ULONG_MAX
- hba
+ 1;
2506 details
.check_mapping
= even_cows
? NULL
: mapping
;
2507 details
.first_index
= hba
;
2508 details
.last_index
= hba
+ hlen
- 1;
2509 if (details
.last_index
< details
.first_index
)
2510 details
.last_index
= ULONG_MAX
;
2512 i_mmap_lock_write(mapping
);
2513 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2514 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2515 i_mmap_unlock_write(mapping
);
2517 EXPORT_SYMBOL(unmap_mapping_range
);
2520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521 * but allow concurrent faults), and pte mapped but not yet locked.
2522 * We return with pte unmapped and unlocked.
2524 * We return with the mmap_sem locked or unlocked in the same cases
2525 * as does filemap_fault().
2527 int do_swap_page(struct fault_env
*fe
, pte_t orig_pte
)
2529 struct vm_area_struct
*vma
= fe
->vma
;
2530 struct page
*page
, *swapcache
;
2531 struct mem_cgroup
*memcg
;
2538 if (!pte_unmap_same(vma
->vm_mm
, fe
->pmd
, fe
->pte
, orig_pte
))
2541 entry
= pte_to_swp_entry(orig_pte
);
2542 if (unlikely(non_swap_entry(entry
))) {
2543 if (is_migration_entry(entry
)) {
2544 migration_entry_wait(vma
->vm_mm
, fe
->pmd
, fe
->address
);
2545 } else if (is_hwpoison_entry(entry
)) {
2546 ret
= VM_FAULT_HWPOISON
;
2548 print_bad_pte(vma
, fe
->address
, orig_pte
, NULL
);
2549 ret
= VM_FAULT_SIGBUS
;
2553 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2554 page
= lookup_swap_cache(entry
);
2556 page
= swapin_readahead(entry
,
2557 GFP_HIGHUSER_MOVABLE
, vma
, fe
->address
);
2560 * Back out if somebody else faulted in this pte
2561 * while we released the pte lock.
2563 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
,
2564 fe
->address
, &fe
->ptl
);
2565 if (likely(pte_same(*fe
->pte
, orig_pte
)))
2567 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2571 /* Had to read the page from swap area: Major fault */
2572 ret
= VM_FAULT_MAJOR
;
2573 count_vm_event(PGMAJFAULT
);
2574 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2575 } else if (PageHWPoison(page
)) {
2577 * hwpoisoned dirty swapcache pages are kept for killing
2578 * owner processes (which may be unknown at hwpoison time)
2580 ret
= VM_FAULT_HWPOISON
;
2581 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2587 locked
= lock_page_or_retry(page
, vma
->vm_mm
, fe
->flags
);
2589 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2591 ret
|= VM_FAULT_RETRY
;
2596 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2597 * release the swapcache from under us. The page pin, and pte_same
2598 * test below, are not enough to exclude that. Even if it is still
2599 * swapcache, we need to check that the page's swap has not changed.
2601 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2604 page
= ksm_might_need_to_copy(page
, vma
, fe
->address
);
2605 if (unlikely(!page
)) {
2611 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2618 * Back out if somebody else already faulted in this pte.
2620 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2622 if (unlikely(!pte_same(*fe
->pte
, orig_pte
)))
2625 if (unlikely(!PageUptodate(page
))) {
2626 ret
= VM_FAULT_SIGBUS
;
2631 * The page isn't present yet, go ahead with the fault.
2633 * Be careful about the sequence of operations here.
2634 * To get its accounting right, reuse_swap_page() must be called
2635 * while the page is counted on swap but not yet in mapcount i.e.
2636 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2637 * must be called after the swap_free(), or it will never succeed.
2640 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2641 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2642 pte
= mk_pte(page
, vma
->vm_page_prot
);
2643 if ((fe
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2644 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2645 fe
->flags
&= ~FAULT_FLAG_WRITE
;
2646 ret
|= VM_FAULT_WRITE
;
2647 exclusive
= RMAP_EXCLUSIVE
;
2649 flush_icache_page(vma
, page
);
2650 if (pte_swp_soft_dirty(orig_pte
))
2651 pte
= pte_mksoft_dirty(pte
);
2652 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, pte
);
2653 if (page
== swapcache
) {
2654 do_page_add_anon_rmap(page
, vma
, fe
->address
, exclusive
);
2655 mem_cgroup_commit_charge(page
, memcg
, true, false);
2656 activate_page(page
);
2657 } else { /* ksm created a completely new copy */
2658 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
2659 mem_cgroup_commit_charge(page
, memcg
, false, false);
2660 lru_cache_add_active_or_unevictable(page
, vma
);
2664 if (mem_cgroup_swap_full(page
) ||
2665 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2666 try_to_free_swap(page
);
2668 if (page
!= swapcache
) {
2670 * Hold the lock to avoid the swap entry to be reused
2671 * until we take the PT lock for the pte_same() check
2672 * (to avoid false positives from pte_same). For
2673 * further safety release the lock after the swap_free
2674 * so that the swap count won't change under a
2675 * parallel locked swapcache.
2677 unlock_page(swapcache
);
2678 put_page(swapcache
);
2681 if (fe
->flags
& FAULT_FLAG_WRITE
) {
2682 ret
|= do_wp_page(fe
, pte
);
2683 if (ret
& VM_FAULT_ERROR
)
2684 ret
&= VM_FAULT_ERROR
;
2688 /* No need to invalidate - it was non-present before */
2689 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2691 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2695 mem_cgroup_cancel_charge(page
, memcg
, false);
2696 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2701 if (page
!= swapcache
) {
2702 unlock_page(swapcache
);
2703 put_page(swapcache
);
2709 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2710 * but allow concurrent faults), and pte mapped but not yet locked.
2711 * We return with mmap_sem still held, but pte unmapped and unlocked.
2713 static int do_anonymous_page(struct fault_env
*fe
)
2715 struct vm_area_struct
*vma
= fe
->vma
;
2716 struct mem_cgroup
*memcg
;
2720 /* File mapping without ->vm_ops ? */
2721 if (vma
->vm_flags
& VM_SHARED
)
2722 return VM_FAULT_SIGBUS
;
2725 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2726 * pte_offset_map() on pmds where a huge pmd might be created
2727 * from a different thread.
2729 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2730 * parallel threads are excluded by other means.
2732 * Here we only have down_read(mmap_sem).
2734 if (pte_alloc(vma
->vm_mm
, fe
->pmd
, fe
->address
))
2735 return VM_FAULT_OOM
;
2737 /* See the comment in pte_alloc_one_map() */
2738 if (unlikely(pmd_trans_unstable(fe
->pmd
)))
2741 /* Use the zero-page for reads */
2742 if (!(fe
->flags
& FAULT_FLAG_WRITE
) &&
2743 !mm_forbids_zeropage(vma
->vm_mm
)) {
2744 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(fe
->address
),
2745 vma
->vm_page_prot
));
2746 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2748 if (!pte_none(*fe
->pte
))
2750 /* Deliver the page fault to userland, check inside PT lock */
2751 if (userfaultfd_missing(vma
)) {
2752 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2753 return handle_userfault(fe
, VM_UFFD_MISSING
);
2758 /* Allocate our own private page. */
2759 if (unlikely(anon_vma_prepare(vma
)))
2761 page
= alloc_zeroed_user_highpage_movable(vma
, fe
->address
);
2765 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2769 * The memory barrier inside __SetPageUptodate makes sure that
2770 * preceeding stores to the page contents become visible before
2771 * the set_pte_at() write.
2773 __SetPageUptodate(page
);
2775 entry
= mk_pte(page
, vma
->vm_page_prot
);
2776 if (vma
->vm_flags
& VM_WRITE
)
2777 entry
= pte_mkwrite(pte_mkdirty(entry
));
2779 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2781 if (!pte_none(*fe
->pte
))
2784 /* Deliver the page fault to userland, check inside PT lock */
2785 if (userfaultfd_missing(vma
)) {
2786 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2787 mem_cgroup_cancel_charge(page
, memcg
, false);
2789 return handle_userfault(fe
, VM_UFFD_MISSING
);
2792 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2793 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
2794 mem_cgroup_commit_charge(page
, memcg
, false, false);
2795 lru_cache_add_active_or_unevictable(page
, vma
);
2797 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, entry
);
2799 /* No need to invalidate - it was non-present before */
2800 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
2802 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
2805 mem_cgroup_cancel_charge(page
, memcg
, false);
2811 return VM_FAULT_OOM
;
2815 * The mmap_sem must have been held on entry, and may have been
2816 * released depending on flags and vma->vm_ops->fault() return value.
2817 * See filemap_fault() and __lock_page_retry().
2819 static int __do_fault(struct fault_env
*fe
, pgoff_t pgoff
,
2820 struct page
*cow_page
, struct page
**page
, void **entry
)
2822 struct vm_area_struct
*vma
= fe
->vma
;
2823 struct vm_fault vmf
;
2827 * Preallocate pte before we take page_lock because this might lead to
2828 * deadlocks for memcg reclaim which waits for pages under writeback:
2830 * SetPageWriteback(A)
2836 * wait_on_page_writeback(A)
2837 * SetPageWriteback(B)
2839 * # flush A, B to clear the writeback
2841 if (pmd_none(*fe
->pmd
) && !fe
->prealloc_pte
) {
2842 fe
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, fe
->address
);
2843 if (!fe
->prealloc_pte
)
2844 return VM_FAULT_OOM
;
2845 smp_wmb(); /* See comment in __pte_alloc() */
2848 vmf
.virtual_address
= (void __user
*)(fe
->address
& PAGE_MASK
);
2850 vmf
.flags
= fe
->flags
;
2852 vmf
.gfp_mask
= __get_fault_gfp_mask(vma
);
2853 vmf
.cow_page
= cow_page
;
2855 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2856 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2858 if (ret
& VM_FAULT_DAX_LOCKED
) {
2863 if (unlikely(PageHWPoison(vmf
.page
))) {
2864 if (ret
& VM_FAULT_LOCKED
)
2865 unlock_page(vmf
.page
);
2867 return VM_FAULT_HWPOISON
;
2870 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2871 lock_page(vmf
.page
);
2873 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2880 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2881 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2882 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2883 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2885 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
2887 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
2890 static int pte_alloc_one_map(struct fault_env
*fe
)
2892 struct vm_area_struct
*vma
= fe
->vma
;
2894 if (!pmd_none(*fe
->pmd
))
2896 if (fe
->prealloc_pte
) {
2897 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
2898 if (unlikely(!pmd_none(*fe
->pmd
))) {
2899 spin_unlock(fe
->ptl
);
2903 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2904 pmd_populate(vma
->vm_mm
, fe
->pmd
, fe
->prealloc_pte
);
2905 spin_unlock(fe
->ptl
);
2906 fe
->prealloc_pte
= 0;
2907 } else if (unlikely(pte_alloc(vma
->vm_mm
, fe
->pmd
, fe
->address
))) {
2908 return VM_FAULT_OOM
;
2912 * If a huge pmd materialized under us just retry later. Use
2913 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
2914 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
2915 * under us and then back to pmd_none, as a result of MADV_DONTNEED
2916 * running immediately after a huge pmd fault in a different thread of
2917 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
2918 * All we have to ensure is that it is a regular pmd that we can walk
2919 * with pte_offset_map() and we can do that through an atomic read in
2920 * C, which is what pmd_trans_unstable() provides.
2922 if (pmd_devmap_trans_unstable(fe
->pmd
))
2923 return VM_FAULT_NOPAGE
;
2926 * At this point we know that our vmf->pmd points to a page of ptes
2927 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
2928 * for the duration of the fault. If a racing MADV_DONTNEED runs and
2929 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
2930 * be valid and we will re-check to make sure the vmf->pte isn't
2931 * pte_none() under vmf->ptl protection when we return to
2934 fe
->pte
= pte_offset_map_lock(vma
->vm_mm
, fe
->pmd
, fe
->address
,
2939 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2941 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2942 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
2943 unsigned long haddr
)
2945 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
2946 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
2948 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
2953 static int do_set_pmd(struct fault_env
*fe
, struct page
*page
)
2955 struct vm_area_struct
*vma
= fe
->vma
;
2956 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
2957 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
2961 if (!transhuge_vma_suitable(vma
, haddr
))
2962 return VM_FAULT_FALLBACK
;
2964 ret
= VM_FAULT_FALLBACK
;
2965 page
= compound_head(page
);
2967 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
2968 if (unlikely(!pmd_none(*fe
->pmd
)))
2971 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2972 flush_icache_page(vma
, page
+ i
);
2974 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
2976 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2978 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
2979 page_add_file_rmap(page
, true);
2981 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
2983 update_mmu_cache_pmd(vma
, haddr
, fe
->pmd
);
2985 /* fault is handled */
2987 count_vm_event(THP_FILE_MAPPED
);
2989 spin_unlock(fe
->ptl
);
2993 static int do_set_pmd(struct fault_env
*fe
, struct page
*page
)
3001 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3002 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3004 * @fe: fault environment
3005 * @memcg: memcg to charge page (only for private mappings)
3006 * @page: page to map
3008 * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
3010 * Target users are page handler itself and implementations of
3011 * vm_ops->map_pages.
3013 int alloc_set_pte(struct fault_env
*fe
, struct mem_cgroup
*memcg
,
3016 struct vm_area_struct
*vma
= fe
->vma
;
3017 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
3021 if (pmd_none(*fe
->pmd
) && PageTransCompound(page
) &&
3022 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3024 VM_BUG_ON_PAGE(memcg
, page
);
3026 ret
= do_set_pmd(fe
, page
);
3027 if (ret
!= VM_FAULT_FALLBACK
)
3032 ret
= pte_alloc_one_map(fe
);
3037 /* Re-check under ptl */
3038 if (unlikely(!pte_none(*fe
->pte
)))
3039 return VM_FAULT_NOPAGE
;
3041 flush_icache_page(vma
, page
);
3042 entry
= mk_pte(page
, vma
->vm_page_prot
);
3044 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3045 /* copy-on-write page */
3046 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3047 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3048 page_add_new_anon_rmap(page
, vma
, fe
->address
, false);
3049 mem_cgroup_commit_charge(page
, memcg
, false, false);
3050 lru_cache_add_active_or_unevictable(page
, vma
);
3052 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3053 page_add_file_rmap(page
, false);
3055 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, entry
);
3057 /* no need to invalidate: a not-present page won't be cached */
3058 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
3063 static unsigned long fault_around_bytes __read_mostly
=
3064 rounddown_pow_of_two(65536);
3066 #ifdef CONFIG_DEBUG_FS
3067 static int fault_around_bytes_get(void *data
, u64
*val
)
3069 *val
= fault_around_bytes
;
3074 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3075 * rounded down to nearest page order. It's what do_fault_around() expects to
3078 static int fault_around_bytes_set(void *data
, u64 val
)
3080 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3082 if (val
> PAGE_SIZE
)
3083 fault_around_bytes
= rounddown_pow_of_two(val
);
3085 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3088 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
3089 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3091 static int __init
fault_around_debugfs(void)
3095 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
3096 &fault_around_bytes_fops
);
3098 pr_warn("Failed to create fault_around_bytes in debugfs");
3101 late_initcall(fault_around_debugfs
);
3105 * do_fault_around() tries to map few pages around the fault address. The hope
3106 * is that the pages will be needed soon and this will lower the number of
3109 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3110 * not ready to be mapped: not up-to-date, locked, etc.
3112 * This function is called with the page table lock taken. In the split ptlock
3113 * case the page table lock only protects only those entries which belong to
3114 * the page table corresponding to the fault address.
3116 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3119 * fault_around_pages() defines how many pages we'll try to map.
3120 * do_fault_around() expects it to return a power of two less than or equal to
3123 * The virtual address of the area that we map is naturally aligned to the
3124 * fault_around_pages() value (and therefore to page order). This way it's
3125 * easier to guarantee that we don't cross page table boundaries.
3127 static int do_fault_around(struct fault_env
*fe
, pgoff_t start_pgoff
)
3129 unsigned long address
= fe
->address
, nr_pages
, mask
;
3133 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3134 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3136 fe
->address
= max(address
& mask
, fe
->vma
->vm_start
);
3137 off
= ((address
- fe
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3141 * end_pgoff is either end of page table or end of vma
3142 * or fault_around_pages() from start_pgoff, depending what is nearest.
3144 end_pgoff
= start_pgoff
-
3145 ((fe
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3147 end_pgoff
= min3(end_pgoff
, vma_pages(fe
->vma
) + fe
->vma
->vm_pgoff
- 1,
3148 start_pgoff
+ nr_pages
- 1);
3150 if (pmd_none(*fe
->pmd
)) {
3151 fe
->prealloc_pte
= pte_alloc_one(fe
->vma
->vm_mm
, fe
->address
);
3152 if (!fe
->prealloc_pte
)
3154 smp_wmb(); /* See comment in __pte_alloc() */
3157 fe
->vma
->vm_ops
->map_pages(fe
, start_pgoff
, end_pgoff
);
3159 /* preallocated pagetable is unused: free it */
3160 if (fe
->prealloc_pte
) {
3161 pte_free(fe
->vma
->vm_mm
, fe
->prealloc_pte
);
3162 fe
->prealloc_pte
= 0;
3164 /* Huge page is mapped? Page fault is solved */
3165 if (pmd_trans_huge(*fe
->pmd
)) {
3166 ret
= VM_FAULT_NOPAGE
;
3170 /* ->map_pages() haven't done anything useful. Cold page cache? */
3174 /* check if the page fault is solved */
3175 fe
->pte
-= (fe
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3176 if (!pte_none(*fe
->pte
))
3177 ret
= VM_FAULT_NOPAGE
;
3178 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3180 fe
->address
= address
;
3185 static int do_read_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3187 struct vm_area_struct
*vma
= fe
->vma
;
3188 struct page
*fault_page
;
3192 * Let's call ->map_pages() first and use ->fault() as fallback
3193 * if page by the offset is not ready to be mapped (cold cache or
3196 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3197 ret
= do_fault_around(fe
, pgoff
);
3202 ret
= __do_fault(fe
, pgoff
, NULL
, &fault_page
, NULL
);
3203 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3206 ret
|= alloc_set_pte(fe
, NULL
, fault_page
);
3208 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3209 unlock_page(fault_page
);
3210 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3211 put_page(fault_page
);
3215 static int do_cow_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3217 struct vm_area_struct
*vma
= fe
->vma
;
3218 struct page
*fault_page
, *new_page
;
3220 struct mem_cgroup
*memcg
;
3223 if (unlikely(anon_vma_prepare(vma
)))
3224 return VM_FAULT_OOM
;
3226 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, fe
->address
);
3228 return VM_FAULT_OOM
;
3230 if (mem_cgroup_try_charge(new_page
, vma
->vm_mm
, GFP_KERNEL
,
3233 return VM_FAULT_OOM
;
3236 ret
= __do_fault(fe
, pgoff
, new_page
, &fault_page
, &fault_entry
);
3237 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3240 if (!(ret
& VM_FAULT_DAX_LOCKED
))
3241 copy_user_highpage(new_page
, fault_page
, fe
->address
, vma
);
3242 __SetPageUptodate(new_page
);
3244 ret
|= alloc_set_pte(fe
, memcg
, new_page
);
3246 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3247 if (!(ret
& VM_FAULT_DAX_LOCKED
)) {
3248 unlock_page(fault_page
);
3249 put_page(fault_page
);
3251 dax_unlock_mapping_entry(vma
->vm_file
->f_mapping
, pgoff
);
3253 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3257 mem_cgroup_cancel_charge(new_page
, memcg
, false);
3262 static int do_shared_fault(struct fault_env
*fe
, pgoff_t pgoff
)
3264 struct vm_area_struct
*vma
= fe
->vma
;
3265 struct page
*fault_page
;
3266 struct address_space
*mapping
;
3270 ret
= __do_fault(fe
, pgoff
, NULL
, &fault_page
, NULL
);
3271 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3275 * Check if the backing address space wants to know that the page is
3276 * about to become writable
3278 if (vma
->vm_ops
->page_mkwrite
) {
3279 unlock_page(fault_page
);
3280 tmp
= do_page_mkwrite(vma
, fault_page
, fe
->address
);
3281 if (unlikely(!tmp
||
3282 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3283 put_page(fault_page
);
3288 ret
|= alloc_set_pte(fe
, NULL
, fault_page
);
3290 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3291 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3293 unlock_page(fault_page
);
3294 put_page(fault_page
);
3298 if (set_page_dirty(fault_page
))
3301 * Take a local copy of the address_space - page.mapping may be zeroed
3302 * by truncate after unlock_page(). The address_space itself remains
3303 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3304 * release semantics to prevent the compiler from undoing this copying.
3306 mapping
= page_rmapping(fault_page
);
3307 unlock_page(fault_page
);
3308 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3310 * Some device drivers do not set page.mapping but still
3313 balance_dirty_pages_ratelimited(mapping
);
3316 if (!vma
->vm_ops
->page_mkwrite
)
3317 file_update_time(vma
->vm_file
);
3323 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3324 * but allow concurrent faults).
3325 * The mmap_sem may have been released depending on flags and our
3326 * return value. See filemap_fault() and __lock_page_or_retry().
3328 static int do_fault(struct fault_env
*fe
)
3330 struct vm_area_struct
*vma
= fe
->vma
;
3331 pgoff_t pgoff
= linear_page_index(vma
, fe
->address
);
3334 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3335 if (!vma
->vm_ops
->fault
)
3336 ret
= VM_FAULT_SIGBUS
;
3337 else if (!(fe
->flags
& FAULT_FLAG_WRITE
))
3338 ret
= do_read_fault(fe
, pgoff
);
3339 else if (!(vma
->vm_flags
& VM_SHARED
))
3340 ret
= do_cow_fault(fe
, pgoff
);
3342 ret
= do_shared_fault(fe
, pgoff
);
3344 /* preallocated pagetable is unused: free it */
3345 if (fe
->prealloc_pte
) {
3346 pte_free(vma
->vm_mm
, fe
->prealloc_pte
);
3347 fe
->prealloc_pte
= 0;
3352 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3353 unsigned long addr
, int page_nid
,
3358 count_vm_numa_event(NUMA_HINT_FAULTS
);
3359 if (page_nid
== numa_node_id()) {
3360 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3361 *flags
|= TNF_FAULT_LOCAL
;
3364 return mpol_misplaced(page
, vma
, addr
);
3367 static int do_numa_page(struct fault_env
*fe
, pte_t pte
)
3369 struct vm_area_struct
*vma
= fe
->vma
;
3370 struct page
*page
= NULL
;
3374 bool migrated
= false;
3375 bool was_writable
= pte_write(pte
);
3379 * The "pte" at this point cannot be used safely without
3380 * validation through pte_unmap_same(). It's of NUMA type but
3381 * the pfn may be screwed if the read is non atomic.
3383 * We can safely just do a "set_pte_at()", because the old
3384 * page table entry is not accessible, so there would be no
3385 * concurrent hardware modifications to the PTE.
3387 fe
->ptl
= pte_lockptr(vma
->vm_mm
, fe
->pmd
);
3389 if (unlikely(!pte_same(*fe
->pte
, pte
))) {
3390 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3394 /* Make it present again */
3395 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3396 pte
= pte_mkyoung(pte
);
3398 pte
= pte_mkwrite(pte
);
3399 set_pte_at(vma
->vm_mm
, fe
->address
, fe
->pte
, pte
);
3400 update_mmu_cache(vma
, fe
->address
, fe
->pte
);
3402 page
= vm_normal_page(vma
, fe
->address
, pte
);
3404 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3408 /* TODO: handle PTE-mapped THP */
3409 if (PageCompound(page
)) {
3410 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3415 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3416 * much anyway since they can be in shared cache state. This misses
3417 * the case where a mapping is writable but the process never writes
3418 * to it but pte_write gets cleared during protection updates and
3419 * pte_dirty has unpredictable behaviour between PTE scan updates,
3420 * background writeback, dirty balancing and application behaviour.
3422 if (!pte_write(pte
))
3423 flags
|= TNF_NO_GROUP
;
3426 * Flag if the page is shared between multiple address spaces. This
3427 * is later used when determining whether to group tasks together
3429 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3430 flags
|= TNF_SHARED
;
3432 last_cpupid
= page_cpupid_last(page
);
3433 page_nid
= page_to_nid(page
);
3434 target_nid
= numa_migrate_prep(page
, vma
, fe
->address
, page_nid
,
3436 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3437 if (target_nid
== -1) {
3442 /* Migrate to the requested node */
3443 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3445 page_nid
= target_nid
;
3446 flags
|= TNF_MIGRATED
;
3448 flags
|= TNF_MIGRATE_FAIL
;
3452 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3456 static int create_huge_pmd(struct fault_env
*fe
)
3458 struct vm_area_struct
*vma
= fe
->vma
;
3459 if (vma_is_anonymous(vma
))
3460 return do_huge_pmd_anonymous_page(fe
);
3461 if (vma
->vm_ops
->pmd_fault
)
3462 return vma
->vm_ops
->pmd_fault(vma
, fe
->address
, fe
->pmd
,
3464 return VM_FAULT_FALLBACK
;
3467 static int wp_huge_pmd(struct fault_env
*fe
, pmd_t orig_pmd
)
3469 if (vma_is_anonymous(fe
->vma
))
3470 return do_huge_pmd_wp_page(fe
, orig_pmd
);
3471 if (fe
->vma
->vm_ops
->pmd_fault
)
3472 return fe
->vma
->vm_ops
->pmd_fault(fe
->vma
, fe
->address
, fe
->pmd
,
3475 /* COW handled on pte level: split pmd */
3476 VM_BUG_ON_VMA(fe
->vma
->vm_flags
& VM_SHARED
, fe
->vma
);
3477 split_huge_pmd(fe
->vma
, fe
->pmd
, fe
->address
);
3479 return VM_FAULT_FALLBACK
;
3482 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3484 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3488 * These routines also need to handle stuff like marking pages dirty
3489 * and/or accessed for architectures that don't do it in hardware (most
3490 * RISC architectures). The early dirtying is also good on the i386.
3492 * There is also a hook called "update_mmu_cache()" that architectures
3493 * with external mmu caches can use to update those (ie the Sparc or
3494 * PowerPC hashed page tables that act as extended TLBs).
3496 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3497 * concurrent faults).
3499 * The mmap_sem may have been released depending on flags and our return value.
3500 * See filemap_fault() and __lock_page_or_retry().
3502 static int handle_pte_fault(struct fault_env
*fe
)
3506 if (unlikely(pmd_none(*fe
->pmd
))) {
3508 * Leave __pte_alloc() until later: because vm_ops->fault may
3509 * want to allocate huge page, and if we expose page table
3510 * for an instant, it will be difficult to retract from
3511 * concurrent faults and from rmap lookups.
3515 /* See comment in pte_alloc_one_map() */
3516 if (pmd_devmap_trans_unstable(fe
->pmd
))
3519 * A regular pmd is established and it can't morph into a huge
3520 * pmd from under us anymore at this point because we hold the
3521 * mmap_sem read mode and khugepaged takes it in write mode.
3522 * So now it's safe to run pte_offset_map().
3524 fe
->pte
= pte_offset_map(fe
->pmd
, fe
->address
);
3529 * some architectures can have larger ptes than wordsize,
3530 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3531 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3532 * atomic accesses. The code below just needs a consistent
3533 * view for the ifs and we later double check anyway with the
3534 * ptl lock held. So here a barrier will do.
3537 if (pte_none(entry
)) {
3544 if (vma_is_anonymous(fe
->vma
))
3545 return do_anonymous_page(fe
);
3547 return do_fault(fe
);
3550 if (!pte_present(entry
))
3551 return do_swap_page(fe
, entry
);
3553 if (pte_protnone(entry
) && vma_is_accessible(fe
->vma
))
3554 return do_numa_page(fe
, entry
);
3556 fe
->ptl
= pte_lockptr(fe
->vma
->vm_mm
, fe
->pmd
);
3558 if (unlikely(!pte_same(*fe
->pte
, entry
)))
3560 if (fe
->flags
& FAULT_FLAG_WRITE
) {
3561 if (!pte_write(entry
))
3562 return do_wp_page(fe
, entry
);
3563 entry
= pte_mkdirty(entry
);
3565 entry
= pte_mkyoung(entry
);
3566 if (ptep_set_access_flags(fe
->vma
, fe
->address
, fe
->pte
, entry
,
3567 fe
->flags
& FAULT_FLAG_WRITE
)) {
3568 update_mmu_cache(fe
->vma
, fe
->address
, fe
->pte
);
3571 * This is needed only for protection faults but the arch code
3572 * is not yet telling us if this is a protection fault or not.
3573 * This still avoids useless tlb flushes for .text page faults
3576 if (fe
->flags
& FAULT_FLAG_WRITE
)
3577 flush_tlb_fix_spurious_fault(fe
->vma
, fe
->address
);
3580 pte_unmap_unlock(fe
->pte
, fe
->ptl
);
3585 * By the time we get here, we already hold the mm semaphore
3587 * The mmap_sem may have been released depending on flags and our
3588 * return value. See filemap_fault() and __lock_page_or_retry().
3590 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3593 struct fault_env fe
= {
3598 struct mm_struct
*mm
= vma
->vm_mm
;
3602 pgd
= pgd_offset(mm
, address
);
3603 pud
= pud_alloc(mm
, pgd
, address
);
3605 return VM_FAULT_OOM
;
3606 fe
.pmd
= pmd_alloc(mm
, pud
, address
);
3608 return VM_FAULT_OOM
;
3609 if (pmd_none(*fe
.pmd
) && transparent_hugepage_enabled(vma
)) {
3610 int ret
= create_huge_pmd(&fe
);
3611 if (!(ret
& VM_FAULT_FALLBACK
))
3614 pmd_t orig_pmd
= *fe
.pmd
;
3618 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3619 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3620 return do_huge_pmd_numa_page(&fe
, orig_pmd
);
3622 if ((fe
.flags
& FAULT_FLAG_WRITE
) &&
3623 !pmd_write(orig_pmd
)) {
3624 ret
= wp_huge_pmd(&fe
, orig_pmd
);
3625 if (!(ret
& VM_FAULT_FALLBACK
))
3628 huge_pmd_set_accessed(&fe
, orig_pmd
);
3634 return handle_pte_fault(&fe
);
3638 * By the time we get here, we already hold the mm semaphore
3640 * The mmap_sem may have been released depending on flags and our
3641 * return value. See filemap_fault() and __lock_page_or_retry().
3643 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3648 __set_current_state(TASK_RUNNING
);
3650 count_vm_event(PGFAULT
);
3651 mem_cgroup_count_vm_event(vma
->vm_mm
, PGFAULT
);
3653 /* do counter updates before entering really critical section. */
3654 check_sync_rss_stat(current
);
3656 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3657 flags
& FAULT_FLAG_INSTRUCTION
,
3658 flags
& FAULT_FLAG_REMOTE
))
3659 return VM_FAULT_SIGSEGV
;
3662 * Enable the memcg OOM handling for faults triggered in user
3663 * space. Kernel faults are handled more gracefully.
3665 if (flags
& FAULT_FLAG_USER
)
3666 mem_cgroup_oom_enable();
3668 if (unlikely(is_vm_hugetlb_page(vma
)))
3669 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3671 ret
= __handle_mm_fault(vma
, address
, flags
);
3673 if (flags
& FAULT_FLAG_USER
) {
3674 mem_cgroup_oom_disable();
3676 * The task may have entered a memcg OOM situation but
3677 * if the allocation error was handled gracefully (no
3678 * VM_FAULT_OOM), there is no need to kill anything.
3679 * Just clean up the OOM state peacefully.
3681 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3682 mem_cgroup_oom_synchronize(false);
3686 * This mm has been already reaped by the oom reaper and so the
3687 * refault cannot be trusted in general. Anonymous refaults would
3688 * lose data and give a zero page instead e.g. This is especially
3689 * problem for use_mm() because regular tasks will just die and
3690 * the corrupted data will not be visible anywhere while kthread
3691 * will outlive the oom victim and potentially propagate the date
3694 if (unlikely((current
->flags
& PF_KTHREAD
) && !(ret
& VM_FAULT_ERROR
)
3695 && test_bit(MMF_UNSTABLE
, &vma
->vm_mm
->flags
))) {
3698 * We are going to enforce SIGBUS but the PF path might have
3699 * dropped the mmap_sem already so take it again so that
3700 * we do not break expectations of all arch specific PF paths
3703 if (ret
& VM_FAULT_RETRY
)
3704 down_read(&vma
->vm_mm
->mmap_sem
);
3705 ret
= VM_FAULT_SIGBUS
;
3710 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3712 #ifndef __PAGETABLE_PUD_FOLDED
3714 * Allocate page upper directory.
3715 * We've already handled the fast-path in-line.
3717 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3719 pud_t
*new = pud_alloc_one(mm
, address
);
3723 smp_wmb(); /* See comment in __pte_alloc */
3725 spin_lock(&mm
->page_table_lock
);
3726 if (pgd_present(*pgd
)) /* Another has populated it */
3729 pgd_populate(mm
, pgd
, new);
3730 spin_unlock(&mm
->page_table_lock
);
3733 #endif /* __PAGETABLE_PUD_FOLDED */
3735 #ifndef __PAGETABLE_PMD_FOLDED
3737 * Allocate page middle directory.
3738 * We've already handled the fast-path in-line.
3740 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3742 pmd_t
*new = pmd_alloc_one(mm
, address
);
3746 smp_wmb(); /* See comment in __pte_alloc */
3748 spin_lock(&mm
->page_table_lock
);
3749 #ifndef __ARCH_HAS_4LEVEL_HACK
3750 if (!pud_present(*pud
)) {
3752 pud_populate(mm
, pud
, new);
3753 } else /* Another has populated it */
3756 if (!pgd_present(*pud
)) {
3758 pgd_populate(mm
, pud
, new);
3759 } else /* Another has populated it */
3761 #endif /* __ARCH_HAS_4LEVEL_HACK */
3762 spin_unlock(&mm
->page_table_lock
);
3765 #endif /* __PAGETABLE_PMD_FOLDED */
3767 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3768 pte_t
**ptepp
, spinlock_t
**ptlp
)
3775 pgd
= pgd_offset(mm
, address
);
3776 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3779 pud
= pud_offset(pgd
, address
);
3780 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3783 pmd
= pmd_offset(pud
, address
);
3784 VM_BUG_ON(pmd_trans_huge(*pmd
));
3785 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3788 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3792 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3795 if (!pte_present(*ptep
))
3800 pte_unmap_unlock(ptep
, *ptlp
);
3805 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3806 pte_t
**ptepp
, spinlock_t
**ptlp
)
3810 /* (void) is needed to make gcc happy */
3811 (void) __cond_lock(*ptlp
,
3812 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3817 * follow_pfn - look up PFN at a user virtual address
3818 * @vma: memory mapping
3819 * @address: user virtual address
3820 * @pfn: location to store found PFN
3822 * Only IO mappings and raw PFN mappings are allowed.
3824 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3826 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3833 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3836 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3839 *pfn
= pte_pfn(*ptep
);
3840 pte_unmap_unlock(ptep
, ptl
);
3843 EXPORT_SYMBOL(follow_pfn
);
3845 #ifdef CONFIG_HAVE_IOREMAP_PROT
3846 int follow_phys(struct vm_area_struct
*vma
,
3847 unsigned long address
, unsigned int flags
,
3848 unsigned long *prot
, resource_size_t
*phys
)
3854 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3857 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3861 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3864 *prot
= pgprot_val(pte_pgprot(pte
));
3865 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3869 pte_unmap_unlock(ptep
, ptl
);
3874 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3875 void *buf
, int len
, int write
)
3877 resource_size_t phys_addr
;
3878 unsigned long prot
= 0;
3879 void __iomem
*maddr
;
3880 int offset
= addr
& (PAGE_SIZE
-1);
3882 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3885 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3890 memcpy_toio(maddr
+ offset
, buf
, len
);
3892 memcpy_fromio(buf
, maddr
+ offset
, len
);
3897 EXPORT_SYMBOL_GPL(generic_access_phys
);
3901 * Access another process' address space as given in mm. If non-NULL, use the
3902 * given task for page fault accounting.
3904 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3905 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
3907 struct vm_area_struct
*vma
;
3908 void *old_buf
= buf
;
3909 int write
= gup_flags
& FOLL_WRITE
;
3911 down_read(&mm
->mmap_sem
);
3912 /* ignore errors, just check how much was successfully transferred */
3914 int bytes
, ret
, offset
;
3916 struct page
*page
= NULL
;
3918 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
3919 gup_flags
, &page
, &vma
);
3921 #ifndef CONFIG_HAVE_IOREMAP_PROT
3925 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3926 * we can access using slightly different code.
3928 vma
= find_vma(mm
, addr
);
3929 if (!vma
|| vma
->vm_start
> addr
)
3931 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3932 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3940 offset
= addr
& (PAGE_SIZE
-1);
3941 if (bytes
> PAGE_SIZE
-offset
)
3942 bytes
= PAGE_SIZE
-offset
;
3946 copy_to_user_page(vma
, page
, addr
,
3947 maddr
+ offset
, buf
, bytes
);
3948 set_page_dirty_lock(page
);
3950 copy_from_user_page(vma
, page
, addr
,
3951 buf
, maddr
+ offset
, bytes
);
3960 up_read(&mm
->mmap_sem
);
3962 return buf
- old_buf
;
3966 * access_remote_vm - access another process' address space
3967 * @mm: the mm_struct of the target address space
3968 * @addr: start address to access
3969 * @buf: source or destination buffer
3970 * @len: number of bytes to transfer
3971 * @gup_flags: flags modifying lookup behaviour
3973 * The caller must hold a reference on @mm.
3975 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3976 void *buf
, int len
, unsigned int gup_flags
)
3978 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
3982 * Access another process' address space.
3983 * Source/target buffer must be kernel space,
3984 * Do not walk the page table directly, use get_user_pages
3986 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3987 void *buf
, int len
, unsigned int gup_flags
)
3989 struct mm_struct
*mm
;
3992 mm
= get_task_mm(tsk
);
3996 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4004 * Print the name of a VMA.
4006 void print_vma_addr(char *prefix
, unsigned long ip
)
4008 struct mm_struct
*mm
= current
->mm
;
4009 struct vm_area_struct
*vma
;
4012 * Do not print if we are in atomic
4013 * contexts (in exception stacks, etc.):
4015 if (preempt_count())
4018 down_read(&mm
->mmap_sem
);
4019 vma
= find_vma(mm
, ip
);
4020 if (vma
&& vma
->vm_file
) {
4021 struct file
*f
= vma
->vm_file
;
4022 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4026 p
= file_path(f
, buf
, PAGE_SIZE
);
4029 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4031 vma
->vm_end
- vma
->vm_start
);
4032 free_page((unsigned long)buf
);
4035 up_read(&mm
->mmap_sem
);
4038 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4039 void __might_fault(const char *file
, int line
)
4042 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4043 * holding the mmap_sem, this is safe because kernel memory doesn't
4044 * get paged out, therefore we'll never actually fault, and the
4045 * below annotations will generate false positives.
4047 if (segment_eq(get_fs(), KERNEL_DS
))
4049 if (pagefault_disabled())
4051 __might_sleep(file
, line
, 0);
4052 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4054 might_lock_read(¤t
->mm
->mmap_sem
);
4057 EXPORT_SYMBOL(__might_fault
);
4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4061 static void clear_gigantic_page(struct page
*page
,
4063 unsigned int pages_per_huge_page
)
4066 struct page
*p
= page
;
4069 for (i
= 0; i
< pages_per_huge_page
;
4070 i
++, p
= mem_map_next(p
, page
, i
)) {
4072 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4075 void clear_huge_page(struct page
*page
,
4076 unsigned long addr
, unsigned int pages_per_huge_page
)
4080 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4081 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4086 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4088 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4092 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4094 struct vm_area_struct
*vma
,
4095 unsigned int pages_per_huge_page
)
4098 struct page
*dst_base
= dst
;
4099 struct page
*src_base
= src
;
4101 for (i
= 0; i
< pages_per_huge_page
; ) {
4103 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4106 dst
= mem_map_next(dst
, dst_base
, i
);
4107 src
= mem_map_next(src
, src_base
, i
);
4111 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4112 unsigned long addr
, struct vm_area_struct
*vma
,
4113 unsigned int pages_per_huge_page
)
4117 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4118 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4119 pages_per_huge_page
);
4124 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4126 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4129 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4131 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4133 static struct kmem_cache
*page_ptl_cachep
;
4135 void __init
ptlock_cache_init(void)
4137 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4141 bool ptlock_alloc(struct page
*page
)
4145 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4152 void ptlock_free(struct page
*page
)
4154 kmem_cache_free(page_ptl_cachep
, page
->ptl
);