pinctrl: mvebu: update use "nand" function for "rb" pin
[linux/fpc-iii.git] / kernel / audit.c
blob670665c6e2a651648ba55f53879a12501464b5d8
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Audit userspace, documentation, tests, and bug/issue trackers:
42 * https://github.com/linux-audit
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/file.h>
48 #include <linux/init.h>
49 #include <linux/types.h>
50 #include <linux/atomic.h>
51 #include <linux/mm.h>
52 #include <linux/export.h>
53 #include <linux/slab.h>
54 #include <linux/err.h>
55 #include <linux/kthread.h>
56 #include <linux/kernel.h>
57 #include <linux/syscalls.h>
58 #include <linux/spinlock.h>
59 #include <linux/rcupdate.h>
60 #include <linux/mutex.h>
61 #include <linux/gfp.h>
62 #include <linux/pid.h>
63 #include <linux/slab.h>
65 #include <linux/audit.h>
67 #include <net/sock.h>
68 #include <net/netlink.h>
69 #include <linux/skbuff.h>
70 #ifdef CONFIG_SECURITY
71 #include <linux/security.h>
72 #endif
73 #include <linux/freezer.h>
74 #include <linux/pid_namespace.h>
75 #include <net/netns/generic.h>
77 #include "audit.h"
79 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
80 * (Initialization happens after skb_init is called.) */
81 #define AUDIT_DISABLED -1
82 #define AUDIT_UNINITIALIZED 0
83 #define AUDIT_INITIALIZED 1
84 static int audit_initialized;
86 #define AUDIT_OFF 0
87 #define AUDIT_ON 1
88 #define AUDIT_LOCKED 2
89 u32 audit_enabled = AUDIT_OFF;
90 bool audit_ever_enabled = !!AUDIT_OFF;
92 EXPORT_SYMBOL_GPL(audit_enabled);
94 /* Default state when kernel boots without any parameters. */
95 static u32 audit_default = AUDIT_OFF;
97 /* If auditing cannot proceed, audit_failure selects what happens. */
98 static u32 audit_failure = AUDIT_FAIL_PRINTK;
100 /* private audit network namespace index */
101 static unsigned int audit_net_id;
104 * struct audit_net - audit private network namespace data
105 * @sk: communication socket
107 struct audit_net {
108 struct sock *sk;
112 * struct auditd_connection - kernel/auditd connection state
113 * @pid: auditd PID
114 * @portid: netlink portid
115 * @net: the associated network namespace
116 * @rcu: RCU head
118 * Description:
119 * This struct is RCU protected; you must either hold the RCU lock for reading
120 * or the associated spinlock for writing.
122 static struct auditd_connection {
123 struct pid *pid;
124 u32 portid;
125 struct net *net;
126 struct rcu_head rcu;
127 } *auditd_conn = NULL;
128 static DEFINE_SPINLOCK(auditd_conn_lock);
130 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
131 * to that number per second. This prevents DoS attacks, but results in
132 * audit records being dropped. */
133 static u32 audit_rate_limit;
135 /* Number of outstanding audit_buffers allowed.
136 * When set to zero, this means unlimited. */
137 static u32 audit_backlog_limit = 64;
138 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
139 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
141 /* The identity of the user shutting down the audit system. */
142 kuid_t audit_sig_uid = INVALID_UID;
143 pid_t audit_sig_pid = -1;
144 u32 audit_sig_sid = 0;
146 /* Records can be lost in several ways:
147 0) [suppressed in audit_alloc]
148 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
149 2) out of memory in audit_log_move [alloc_skb]
150 3) suppressed due to audit_rate_limit
151 4) suppressed due to audit_backlog_limit
153 static atomic_t audit_lost = ATOMIC_INIT(0);
155 /* Hash for inode-based rules */
156 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
158 static struct kmem_cache *audit_buffer_cache;
160 /* queue msgs to send via kauditd_task */
161 static struct sk_buff_head audit_queue;
162 /* queue msgs due to temporary unicast send problems */
163 static struct sk_buff_head audit_retry_queue;
164 /* queue msgs waiting for new auditd connection */
165 static struct sk_buff_head audit_hold_queue;
167 /* queue servicing thread */
168 static struct task_struct *kauditd_task;
169 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
171 /* waitqueue for callers who are blocked on the audit backlog */
172 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
174 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
175 .mask = -1,
176 .features = 0,
177 .lock = 0,};
179 static char *audit_feature_names[2] = {
180 "only_unset_loginuid",
181 "loginuid_immutable",
185 * struct audit_ctl_mutex - serialize requests from userspace
186 * @lock: the mutex used for locking
187 * @owner: the task which owns the lock
189 * Description:
190 * This is the lock struct used to ensure we only process userspace requests
191 * in an orderly fashion. We can't simply use a mutex/lock here because we
192 * need to track lock ownership so we don't end up blocking the lock owner in
193 * audit_log_start() or similar.
195 static struct audit_ctl_mutex {
196 struct mutex lock;
197 void *owner;
198 } audit_cmd_mutex;
200 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
201 * audit records. Since printk uses a 1024 byte buffer, this buffer
202 * should be at least that large. */
203 #define AUDIT_BUFSIZ 1024
205 /* The audit_buffer is used when formatting an audit record. The caller
206 * locks briefly to get the record off the freelist or to allocate the
207 * buffer, and locks briefly to send the buffer to the netlink layer or
208 * to place it on a transmit queue. Multiple audit_buffers can be in
209 * use simultaneously. */
210 struct audit_buffer {
211 struct sk_buff *skb; /* formatted skb ready to send */
212 struct audit_context *ctx; /* NULL or associated context */
213 gfp_t gfp_mask;
216 struct audit_reply {
217 __u32 portid;
218 struct net *net;
219 struct sk_buff *skb;
223 * auditd_test_task - Check to see if a given task is an audit daemon
224 * @task: the task to check
226 * Description:
227 * Return 1 if the task is a registered audit daemon, 0 otherwise.
229 int auditd_test_task(struct task_struct *task)
231 int rc;
232 struct auditd_connection *ac;
234 rcu_read_lock();
235 ac = rcu_dereference(auditd_conn);
236 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
237 rcu_read_unlock();
239 return rc;
243 * audit_ctl_lock - Take the audit control lock
245 void audit_ctl_lock(void)
247 mutex_lock(&audit_cmd_mutex.lock);
248 audit_cmd_mutex.owner = current;
252 * audit_ctl_unlock - Drop the audit control lock
254 void audit_ctl_unlock(void)
256 audit_cmd_mutex.owner = NULL;
257 mutex_unlock(&audit_cmd_mutex.lock);
261 * audit_ctl_owner_current - Test to see if the current task owns the lock
263 * Description:
264 * Return true if the current task owns the audit control lock, false if it
265 * doesn't own the lock.
267 static bool audit_ctl_owner_current(void)
269 return (current == audit_cmd_mutex.owner);
273 * auditd_pid_vnr - Return the auditd PID relative to the namespace
275 * Description:
276 * Returns the PID in relation to the namespace, 0 on failure.
278 static pid_t auditd_pid_vnr(void)
280 pid_t pid;
281 const struct auditd_connection *ac;
283 rcu_read_lock();
284 ac = rcu_dereference(auditd_conn);
285 if (!ac || !ac->pid)
286 pid = 0;
287 else
288 pid = pid_vnr(ac->pid);
289 rcu_read_unlock();
291 return pid;
295 * audit_get_sk - Return the audit socket for the given network namespace
296 * @net: the destination network namespace
298 * Description:
299 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
300 * that a reference is held for the network namespace while the sock is in use.
302 static struct sock *audit_get_sk(const struct net *net)
304 struct audit_net *aunet;
306 if (!net)
307 return NULL;
309 aunet = net_generic(net, audit_net_id);
310 return aunet->sk;
313 void audit_panic(const char *message)
315 switch (audit_failure) {
316 case AUDIT_FAIL_SILENT:
317 break;
318 case AUDIT_FAIL_PRINTK:
319 if (printk_ratelimit())
320 pr_err("%s\n", message);
321 break;
322 case AUDIT_FAIL_PANIC:
323 panic("audit: %s\n", message);
324 break;
328 static inline int audit_rate_check(void)
330 static unsigned long last_check = 0;
331 static int messages = 0;
332 static DEFINE_SPINLOCK(lock);
333 unsigned long flags;
334 unsigned long now;
335 unsigned long elapsed;
336 int retval = 0;
338 if (!audit_rate_limit) return 1;
340 spin_lock_irqsave(&lock, flags);
341 if (++messages < audit_rate_limit) {
342 retval = 1;
343 } else {
344 now = jiffies;
345 elapsed = now - last_check;
346 if (elapsed > HZ) {
347 last_check = now;
348 messages = 0;
349 retval = 1;
352 spin_unlock_irqrestore(&lock, flags);
354 return retval;
358 * audit_log_lost - conditionally log lost audit message event
359 * @message: the message stating reason for lost audit message
361 * Emit at least 1 message per second, even if audit_rate_check is
362 * throttling.
363 * Always increment the lost messages counter.
365 void audit_log_lost(const char *message)
367 static unsigned long last_msg = 0;
368 static DEFINE_SPINLOCK(lock);
369 unsigned long flags;
370 unsigned long now;
371 int print;
373 atomic_inc(&audit_lost);
375 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
377 if (!print) {
378 spin_lock_irqsave(&lock, flags);
379 now = jiffies;
380 if (now - last_msg > HZ) {
381 print = 1;
382 last_msg = now;
384 spin_unlock_irqrestore(&lock, flags);
387 if (print) {
388 if (printk_ratelimit())
389 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
390 atomic_read(&audit_lost),
391 audit_rate_limit,
392 audit_backlog_limit);
393 audit_panic(message);
397 static int audit_log_config_change(char *function_name, u32 new, u32 old,
398 int allow_changes)
400 struct audit_buffer *ab;
401 int rc = 0;
403 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
404 if (unlikely(!ab))
405 return rc;
406 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
407 audit_log_session_info(ab);
408 rc = audit_log_task_context(ab);
409 if (rc)
410 allow_changes = 0; /* Something weird, deny request */
411 audit_log_format(ab, " res=%d", allow_changes);
412 audit_log_end(ab);
413 return rc;
416 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
418 int allow_changes, rc = 0;
419 u32 old = *to_change;
421 /* check if we are locked */
422 if (audit_enabled == AUDIT_LOCKED)
423 allow_changes = 0;
424 else
425 allow_changes = 1;
427 if (audit_enabled != AUDIT_OFF) {
428 rc = audit_log_config_change(function_name, new, old, allow_changes);
429 if (rc)
430 allow_changes = 0;
433 /* If we are allowed, make the change */
434 if (allow_changes == 1)
435 *to_change = new;
436 /* Not allowed, update reason */
437 else if (rc == 0)
438 rc = -EPERM;
439 return rc;
442 static int audit_set_rate_limit(u32 limit)
444 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
447 static int audit_set_backlog_limit(u32 limit)
449 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
452 static int audit_set_backlog_wait_time(u32 timeout)
454 return audit_do_config_change("audit_backlog_wait_time",
455 &audit_backlog_wait_time, timeout);
458 static int audit_set_enabled(u32 state)
460 int rc;
461 if (state > AUDIT_LOCKED)
462 return -EINVAL;
464 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
465 if (!rc)
466 audit_ever_enabled |= !!state;
468 return rc;
471 static int audit_set_failure(u32 state)
473 if (state != AUDIT_FAIL_SILENT
474 && state != AUDIT_FAIL_PRINTK
475 && state != AUDIT_FAIL_PANIC)
476 return -EINVAL;
478 return audit_do_config_change("audit_failure", &audit_failure, state);
482 * auditd_conn_free - RCU helper to release an auditd connection struct
483 * @rcu: RCU head
485 * Description:
486 * Drop any references inside the auditd connection tracking struct and free
487 * the memory.
489 static void auditd_conn_free(struct rcu_head *rcu)
491 struct auditd_connection *ac;
493 ac = container_of(rcu, struct auditd_connection, rcu);
494 put_pid(ac->pid);
495 put_net(ac->net);
496 kfree(ac);
500 * auditd_set - Set/Reset the auditd connection state
501 * @pid: auditd PID
502 * @portid: auditd netlink portid
503 * @net: auditd network namespace pointer
505 * Description:
506 * This function will obtain and drop network namespace references as
507 * necessary. Returns zero on success, negative values on failure.
509 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
511 unsigned long flags;
512 struct auditd_connection *ac_old, *ac_new;
514 if (!pid || !net)
515 return -EINVAL;
517 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
518 if (!ac_new)
519 return -ENOMEM;
520 ac_new->pid = get_pid(pid);
521 ac_new->portid = portid;
522 ac_new->net = get_net(net);
524 spin_lock_irqsave(&auditd_conn_lock, flags);
525 ac_old = rcu_dereference_protected(auditd_conn,
526 lockdep_is_held(&auditd_conn_lock));
527 rcu_assign_pointer(auditd_conn, ac_new);
528 spin_unlock_irqrestore(&auditd_conn_lock, flags);
530 if (ac_old)
531 call_rcu(&ac_old->rcu, auditd_conn_free);
533 return 0;
537 * kauditd_print_skb - Print the audit record to the ring buffer
538 * @skb: audit record
540 * Whatever the reason, this packet may not make it to the auditd connection
541 * so write it via printk so the information isn't completely lost.
543 static void kauditd_printk_skb(struct sk_buff *skb)
545 struct nlmsghdr *nlh = nlmsg_hdr(skb);
546 char *data = nlmsg_data(nlh);
548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554 * @skb: audit record
556 * Description:
557 * This should only be used by the kauditd_thread when it fails to flush the
558 * hold queue.
560 static void kauditd_rehold_skb(struct sk_buff *skb)
562 /* put the record back in the queue at the same place */
563 skb_queue_head(&audit_hold_queue, skb);
567 * kauditd_hold_skb - Queue an audit record, waiting for auditd
568 * @skb: audit record
570 * Description:
571 * Queue the audit record, waiting for an instance of auditd. When this
572 * function is called we haven't given up yet on sending the record, but things
573 * are not looking good. The first thing we want to do is try to write the
574 * record via printk and then see if we want to try and hold on to the record
575 * and queue it, if we have room. If we want to hold on to the record, but we
576 * don't have room, record a record lost message.
578 static void kauditd_hold_skb(struct sk_buff *skb)
580 /* at this point it is uncertain if we will ever send this to auditd so
581 * try to send the message via printk before we go any further */
582 kauditd_printk_skb(skb);
584 /* can we just silently drop the message? */
585 if (!audit_default) {
586 kfree_skb(skb);
587 return;
590 /* if we have room, queue the message */
591 if (!audit_backlog_limit ||
592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 skb_queue_tail(&audit_hold_queue, skb);
594 return;
597 /* we have no other options - drop the message */
598 audit_log_lost("kauditd hold queue overflow");
599 kfree_skb(skb);
603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
604 * @skb: audit record
606 * Description:
607 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
608 * but for some reason we are having problems sending it audit records so
609 * queue the given record and attempt to resend.
611 static void kauditd_retry_skb(struct sk_buff *skb)
613 /* NOTE: because records should only live in the retry queue for a
614 * short period of time, before either being sent or moved to the hold
615 * queue, we don't currently enforce a limit on this queue */
616 skb_queue_tail(&audit_retry_queue, skb);
620 * auditd_reset - Disconnect the auditd connection
621 * @ac: auditd connection state
623 * Description:
624 * Break the auditd/kauditd connection and move all the queued records into the
625 * hold queue in case auditd reconnects. It is important to note that the @ac
626 * pointer should never be dereferenced inside this function as it may be NULL
627 * or invalid, you can only compare the memory address! If @ac is NULL then
628 * the connection will always be reset.
630 static void auditd_reset(const struct auditd_connection *ac)
632 unsigned long flags;
633 struct sk_buff *skb;
634 struct auditd_connection *ac_old;
636 /* if it isn't already broken, break the connection */
637 spin_lock_irqsave(&auditd_conn_lock, flags);
638 ac_old = rcu_dereference_protected(auditd_conn,
639 lockdep_is_held(&auditd_conn_lock));
640 if (ac && ac != ac_old) {
641 /* someone already registered a new auditd connection */
642 spin_unlock_irqrestore(&auditd_conn_lock, flags);
643 return;
645 rcu_assign_pointer(auditd_conn, NULL);
646 spin_unlock_irqrestore(&auditd_conn_lock, flags);
648 if (ac_old)
649 call_rcu(&ac_old->rcu, auditd_conn_free);
651 /* flush the retry queue to the hold queue, but don't touch the main
652 * queue since we need to process that normally for multicast */
653 while ((skb = skb_dequeue(&audit_retry_queue)))
654 kauditd_hold_skb(skb);
658 * auditd_send_unicast_skb - Send a record via unicast to auditd
659 * @skb: audit record
661 * Description:
662 * Send a skb to the audit daemon, returns positive/zero values on success and
663 * negative values on failure; in all cases the skb will be consumed by this
664 * function. If the send results in -ECONNREFUSED the connection with auditd
665 * will be reset. This function may sleep so callers should not hold any locks
666 * where this would cause a problem.
668 static int auditd_send_unicast_skb(struct sk_buff *skb)
670 int rc;
671 u32 portid;
672 struct net *net;
673 struct sock *sk;
674 struct auditd_connection *ac;
676 /* NOTE: we can't call netlink_unicast while in the RCU section so
677 * take a reference to the network namespace and grab local
678 * copies of the namespace, the sock, and the portid; the
679 * namespace and sock aren't going to go away while we hold a
680 * reference and if the portid does become invalid after the RCU
681 * section netlink_unicast() should safely return an error */
683 rcu_read_lock();
684 ac = rcu_dereference(auditd_conn);
685 if (!ac) {
686 rcu_read_unlock();
687 kfree_skb(skb);
688 rc = -ECONNREFUSED;
689 goto err;
691 net = get_net(ac->net);
692 sk = audit_get_sk(net);
693 portid = ac->portid;
694 rcu_read_unlock();
696 rc = netlink_unicast(sk, skb, portid, 0);
697 put_net(net);
698 if (rc < 0)
699 goto err;
701 return rc;
703 err:
704 if (ac && rc == -ECONNREFUSED)
705 auditd_reset(ac);
706 return rc;
710 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
711 * @sk: the sending sock
712 * @portid: the netlink destination
713 * @queue: the skb queue to process
714 * @retry_limit: limit on number of netlink unicast failures
715 * @skb_hook: per-skb hook for additional processing
716 * @err_hook: hook called if the skb fails the netlink unicast send
718 * Description:
719 * Run through the given queue and attempt to send the audit records to auditd,
720 * returns zero on success, negative values on failure. It is up to the caller
721 * to ensure that the @sk is valid for the duration of this function.
724 static int kauditd_send_queue(struct sock *sk, u32 portid,
725 struct sk_buff_head *queue,
726 unsigned int retry_limit,
727 void (*skb_hook)(struct sk_buff *skb),
728 void (*err_hook)(struct sk_buff *skb))
730 int rc = 0;
731 struct sk_buff *skb;
732 static unsigned int failed = 0;
734 /* NOTE: kauditd_thread takes care of all our locking, we just use
735 * the netlink info passed to us (e.g. sk and portid) */
737 while ((skb = skb_dequeue(queue))) {
738 /* call the skb_hook for each skb we touch */
739 if (skb_hook)
740 (*skb_hook)(skb);
742 /* can we send to anyone via unicast? */
743 if (!sk) {
744 if (err_hook)
745 (*err_hook)(skb);
746 continue;
749 /* grab an extra skb reference in case of error */
750 skb_get(skb);
751 rc = netlink_unicast(sk, skb, portid, 0);
752 if (rc < 0) {
753 /* fatal failure for our queue flush attempt? */
754 if (++failed >= retry_limit ||
755 rc == -ECONNREFUSED || rc == -EPERM) {
756 /* yes - error processing for the queue */
757 sk = NULL;
758 if (err_hook)
759 (*err_hook)(skb);
760 if (!skb_hook)
761 goto out;
762 /* keep processing with the skb_hook */
763 continue;
764 } else
765 /* no - requeue to preserve ordering */
766 skb_queue_head(queue, skb);
767 } else {
768 /* it worked - drop the extra reference and continue */
769 consume_skb(skb);
770 failed = 0;
774 out:
775 return (rc >= 0 ? 0 : rc);
779 * kauditd_send_multicast_skb - Send a record to any multicast listeners
780 * @skb: audit record
782 * Description:
783 * Write a multicast message to anyone listening in the initial network
784 * namespace. This function doesn't consume an skb as might be expected since
785 * it has to copy it anyways.
787 static void kauditd_send_multicast_skb(struct sk_buff *skb)
789 struct sk_buff *copy;
790 struct sock *sock = audit_get_sk(&init_net);
791 struct nlmsghdr *nlh;
793 /* NOTE: we are not taking an additional reference for init_net since
794 * we don't have to worry about it going away */
796 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
797 return;
800 * The seemingly wasteful skb_copy() rather than bumping the refcount
801 * using skb_get() is necessary because non-standard mods are made to
802 * the skb by the original kaudit unicast socket send routine. The
803 * existing auditd daemon assumes this breakage. Fixing this would
804 * require co-ordinating a change in the established protocol between
805 * the kaudit kernel subsystem and the auditd userspace code. There is
806 * no reason for new multicast clients to continue with this
807 * non-compliance.
809 copy = skb_copy(skb, GFP_KERNEL);
810 if (!copy)
811 return;
812 nlh = nlmsg_hdr(copy);
813 nlh->nlmsg_len = skb->len;
815 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
819 * kauditd_thread - Worker thread to send audit records to userspace
820 * @dummy: unused
822 static int kauditd_thread(void *dummy)
824 int rc;
825 u32 portid = 0;
826 struct net *net = NULL;
827 struct sock *sk = NULL;
828 struct auditd_connection *ac;
830 #define UNICAST_RETRIES 5
832 set_freezable();
833 while (!kthread_should_stop()) {
834 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
835 rcu_read_lock();
836 ac = rcu_dereference(auditd_conn);
837 if (!ac) {
838 rcu_read_unlock();
839 goto main_queue;
841 net = get_net(ac->net);
842 sk = audit_get_sk(net);
843 portid = ac->portid;
844 rcu_read_unlock();
846 /* attempt to flush the hold queue */
847 rc = kauditd_send_queue(sk, portid,
848 &audit_hold_queue, UNICAST_RETRIES,
849 NULL, kauditd_rehold_skb);
850 if (ac && rc < 0) {
851 sk = NULL;
852 auditd_reset(ac);
853 goto main_queue;
856 /* attempt to flush the retry queue */
857 rc = kauditd_send_queue(sk, portid,
858 &audit_retry_queue, UNICAST_RETRIES,
859 NULL, kauditd_hold_skb);
860 if (ac && rc < 0) {
861 sk = NULL;
862 auditd_reset(ac);
863 goto main_queue;
866 main_queue:
867 /* process the main queue - do the multicast send and attempt
868 * unicast, dump failed record sends to the retry queue; if
869 * sk == NULL due to previous failures we will just do the
870 * multicast send and move the record to the hold queue */
871 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
872 kauditd_send_multicast_skb,
873 (sk ?
874 kauditd_retry_skb : kauditd_hold_skb));
875 if (ac && rc < 0)
876 auditd_reset(ac);
877 sk = NULL;
879 /* drop our netns reference, no auditd sends past this line */
880 if (net) {
881 put_net(net);
882 net = NULL;
885 /* we have processed all the queues so wake everyone */
886 wake_up(&audit_backlog_wait);
888 /* NOTE: we want to wake up if there is anything on the queue,
889 * regardless of if an auditd is connected, as we need to
890 * do the multicast send and rotate records from the
891 * main queue to the retry/hold queues */
892 wait_event_freezable(kauditd_wait,
893 (skb_queue_len(&audit_queue) ? 1 : 0));
896 return 0;
899 int audit_send_list(void *_dest)
901 struct audit_netlink_list *dest = _dest;
902 struct sk_buff *skb;
903 struct sock *sk = audit_get_sk(dest->net);
905 /* wait for parent to finish and send an ACK */
906 audit_ctl_lock();
907 audit_ctl_unlock();
909 while ((skb = __skb_dequeue(&dest->q)) != NULL)
910 netlink_unicast(sk, skb, dest->portid, 0);
912 put_net(dest->net);
913 kfree(dest);
915 return 0;
918 struct sk_buff *audit_make_reply(int seq, int type, int done,
919 int multi, const void *payload, int size)
921 struct sk_buff *skb;
922 struct nlmsghdr *nlh;
923 void *data;
924 int flags = multi ? NLM_F_MULTI : 0;
925 int t = done ? NLMSG_DONE : type;
927 skb = nlmsg_new(size, GFP_KERNEL);
928 if (!skb)
929 return NULL;
931 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
932 if (!nlh)
933 goto out_kfree_skb;
934 data = nlmsg_data(nlh);
935 memcpy(data, payload, size);
936 return skb;
938 out_kfree_skb:
939 kfree_skb(skb);
940 return NULL;
943 static int audit_send_reply_thread(void *arg)
945 struct audit_reply *reply = (struct audit_reply *)arg;
946 struct sock *sk = audit_get_sk(reply->net);
948 audit_ctl_lock();
949 audit_ctl_unlock();
951 /* Ignore failure. It'll only happen if the sender goes away,
952 because our timeout is set to infinite. */
953 netlink_unicast(sk, reply->skb, reply->portid, 0);
954 put_net(reply->net);
955 kfree(reply);
956 return 0;
960 * audit_send_reply - send an audit reply message via netlink
961 * @request_skb: skb of request we are replying to (used to target the reply)
962 * @seq: sequence number
963 * @type: audit message type
964 * @done: done (last) flag
965 * @multi: multi-part message flag
966 * @payload: payload data
967 * @size: payload size
969 * Allocates an skb, builds the netlink message, and sends it to the port id.
970 * No failure notifications.
972 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
973 int multi, const void *payload, int size)
975 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
976 struct sk_buff *skb;
977 struct task_struct *tsk;
978 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
979 GFP_KERNEL);
981 if (!reply)
982 return;
984 skb = audit_make_reply(seq, type, done, multi, payload, size);
985 if (!skb)
986 goto out;
988 reply->net = get_net(net);
989 reply->portid = NETLINK_CB(request_skb).portid;
990 reply->skb = skb;
992 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
993 if (!IS_ERR(tsk))
994 return;
995 kfree_skb(skb);
996 out:
997 kfree(reply);
1001 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1002 * control messages.
1004 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1006 int err = 0;
1008 /* Only support initial user namespace for now. */
1010 * We return ECONNREFUSED because it tricks userspace into thinking
1011 * that audit was not configured into the kernel. Lots of users
1012 * configure their PAM stack (because that's what the distro does)
1013 * to reject login if unable to send messages to audit. If we return
1014 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1015 * configured in and will let login proceed. If we return EPERM
1016 * userspace will reject all logins. This should be removed when we
1017 * support non init namespaces!!
1019 if (current_user_ns() != &init_user_ns)
1020 return -ECONNREFUSED;
1022 switch (msg_type) {
1023 case AUDIT_LIST:
1024 case AUDIT_ADD:
1025 case AUDIT_DEL:
1026 return -EOPNOTSUPP;
1027 case AUDIT_GET:
1028 case AUDIT_SET:
1029 case AUDIT_GET_FEATURE:
1030 case AUDIT_SET_FEATURE:
1031 case AUDIT_LIST_RULES:
1032 case AUDIT_ADD_RULE:
1033 case AUDIT_DEL_RULE:
1034 case AUDIT_SIGNAL_INFO:
1035 case AUDIT_TTY_GET:
1036 case AUDIT_TTY_SET:
1037 case AUDIT_TRIM:
1038 case AUDIT_MAKE_EQUIV:
1039 /* Only support auditd and auditctl in initial pid namespace
1040 * for now. */
1041 if (task_active_pid_ns(current) != &init_pid_ns)
1042 return -EPERM;
1044 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1045 err = -EPERM;
1046 break;
1047 case AUDIT_USER:
1048 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1049 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1050 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1051 err = -EPERM;
1052 break;
1053 default: /* bad msg */
1054 err = -EINVAL;
1057 return err;
1060 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1062 uid_t uid = from_kuid(&init_user_ns, current_uid());
1063 pid_t pid = task_tgid_nr(current);
1065 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1066 *ab = NULL;
1067 return;
1070 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1071 if (unlikely(!*ab))
1072 return;
1073 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1074 audit_log_session_info(*ab);
1075 audit_log_task_context(*ab);
1078 int is_audit_feature_set(int i)
1080 return af.features & AUDIT_FEATURE_TO_MASK(i);
1084 static int audit_get_feature(struct sk_buff *skb)
1086 u32 seq;
1088 seq = nlmsg_hdr(skb)->nlmsg_seq;
1090 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1092 return 0;
1095 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1096 u32 old_lock, u32 new_lock, int res)
1098 struct audit_buffer *ab;
1100 if (audit_enabled == AUDIT_OFF)
1101 return;
1103 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1104 if (!ab)
1105 return;
1106 audit_log_task_info(ab, current);
1107 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1108 audit_feature_names[which], !!old_feature, !!new_feature,
1109 !!old_lock, !!new_lock, res);
1110 audit_log_end(ab);
1113 static int audit_set_feature(struct sk_buff *skb)
1115 struct audit_features *uaf;
1116 int i;
1118 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1119 uaf = nlmsg_data(nlmsg_hdr(skb));
1121 /* if there is ever a version 2 we should handle that here */
1123 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1124 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1125 u32 old_feature, new_feature, old_lock, new_lock;
1127 /* if we are not changing this feature, move along */
1128 if (!(feature & uaf->mask))
1129 continue;
1131 old_feature = af.features & feature;
1132 new_feature = uaf->features & feature;
1133 new_lock = (uaf->lock | af.lock) & feature;
1134 old_lock = af.lock & feature;
1136 /* are we changing a locked feature? */
1137 if (old_lock && (new_feature != old_feature)) {
1138 audit_log_feature_change(i, old_feature, new_feature,
1139 old_lock, new_lock, 0);
1140 return -EPERM;
1143 /* nothing invalid, do the changes */
1144 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1145 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1146 u32 old_feature, new_feature, old_lock, new_lock;
1148 /* if we are not changing this feature, move along */
1149 if (!(feature & uaf->mask))
1150 continue;
1152 old_feature = af.features & feature;
1153 new_feature = uaf->features & feature;
1154 old_lock = af.lock & feature;
1155 new_lock = (uaf->lock | af.lock) & feature;
1157 if (new_feature != old_feature)
1158 audit_log_feature_change(i, old_feature, new_feature,
1159 old_lock, new_lock, 1);
1161 if (new_feature)
1162 af.features |= feature;
1163 else
1164 af.features &= ~feature;
1165 af.lock |= new_lock;
1168 return 0;
1171 static int audit_replace(struct pid *pid)
1173 pid_t pvnr;
1174 struct sk_buff *skb;
1176 pvnr = pid_vnr(pid);
1177 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1178 if (!skb)
1179 return -ENOMEM;
1180 return auditd_send_unicast_skb(skb);
1183 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1185 u32 seq;
1186 void *data;
1187 int err;
1188 struct audit_buffer *ab;
1189 u16 msg_type = nlh->nlmsg_type;
1190 struct audit_sig_info *sig_data;
1191 char *ctx = NULL;
1192 u32 len;
1194 err = audit_netlink_ok(skb, msg_type);
1195 if (err)
1196 return err;
1198 seq = nlh->nlmsg_seq;
1199 data = nlmsg_data(nlh);
1201 switch (msg_type) {
1202 case AUDIT_GET: {
1203 struct audit_status s;
1204 memset(&s, 0, sizeof(s));
1205 s.enabled = audit_enabled;
1206 s.failure = audit_failure;
1207 /* NOTE: use pid_vnr() so the PID is relative to the current
1208 * namespace */
1209 s.pid = auditd_pid_vnr();
1210 s.rate_limit = audit_rate_limit;
1211 s.backlog_limit = audit_backlog_limit;
1212 s.lost = atomic_read(&audit_lost);
1213 s.backlog = skb_queue_len(&audit_queue);
1214 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1215 s.backlog_wait_time = audit_backlog_wait_time;
1216 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1217 break;
1219 case AUDIT_SET: {
1220 struct audit_status s;
1221 memset(&s, 0, sizeof(s));
1222 /* guard against past and future API changes */
1223 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1224 if (s.mask & AUDIT_STATUS_ENABLED) {
1225 err = audit_set_enabled(s.enabled);
1226 if (err < 0)
1227 return err;
1229 if (s.mask & AUDIT_STATUS_FAILURE) {
1230 err = audit_set_failure(s.failure);
1231 if (err < 0)
1232 return err;
1234 if (s.mask & AUDIT_STATUS_PID) {
1235 /* NOTE: we are using the vnr PID functions below
1236 * because the s.pid value is relative to the
1237 * namespace of the caller; at present this
1238 * doesn't matter much since you can really only
1239 * run auditd from the initial pid namespace, but
1240 * something to keep in mind if this changes */
1241 pid_t new_pid = s.pid;
1242 pid_t auditd_pid;
1243 struct pid *req_pid = task_tgid(current);
1245 /* Sanity check - PID values must match. Setting
1246 * pid to 0 is how auditd ends auditing. */
1247 if (new_pid && (new_pid != pid_vnr(req_pid)))
1248 return -EINVAL;
1250 /* test the auditd connection */
1251 audit_replace(req_pid);
1253 auditd_pid = auditd_pid_vnr();
1254 if (auditd_pid) {
1255 /* replacing a healthy auditd is not allowed */
1256 if (new_pid) {
1257 audit_log_config_change("audit_pid",
1258 new_pid, auditd_pid, 0);
1259 return -EEXIST;
1261 /* only current auditd can unregister itself */
1262 if (pid_vnr(req_pid) != auditd_pid) {
1263 audit_log_config_change("audit_pid",
1264 new_pid, auditd_pid, 0);
1265 return -EACCES;
1269 if (new_pid) {
1270 /* register a new auditd connection */
1271 err = auditd_set(req_pid,
1272 NETLINK_CB(skb).portid,
1273 sock_net(NETLINK_CB(skb).sk));
1274 if (audit_enabled != AUDIT_OFF)
1275 audit_log_config_change("audit_pid",
1276 new_pid,
1277 auditd_pid,
1278 err ? 0 : 1);
1279 if (err)
1280 return err;
1282 /* try to process any backlog */
1283 wake_up_interruptible(&kauditd_wait);
1284 } else {
1285 if (audit_enabled != AUDIT_OFF)
1286 audit_log_config_change("audit_pid",
1287 new_pid,
1288 auditd_pid, 1);
1290 /* unregister the auditd connection */
1291 auditd_reset(NULL);
1294 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1295 err = audit_set_rate_limit(s.rate_limit);
1296 if (err < 0)
1297 return err;
1299 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1300 err = audit_set_backlog_limit(s.backlog_limit);
1301 if (err < 0)
1302 return err;
1304 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1305 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1306 return -EINVAL;
1307 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1308 return -EINVAL;
1309 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1310 if (err < 0)
1311 return err;
1313 if (s.mask == AUDIT_STATUS_LOST) {
1314 u32 lost = atomic_xchg(&audit_lost, 0);
1316 audit_log_config_change("lost", 0, lost, 1);
1317 return lost;
1319 break;
1321 case AUDIT_GET_FEATURE:
1322 err = audit_get_feature(skb);
1323 if (err)
1324 return err;
1325 break;
1326 case AUDIT_SET_FEATURE:
1327 err = audit_set_feature(skb);
1328 if (err)
1329 return err;
1330 break;
1331 case AUDIT_USER:
1332 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1333 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1334 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1335 return 0;
1337 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1338 if (err == 1) { /* match or error */
1339 err = 0;
1340 if (msg_type == AUDIT_USER_TTY) {
1341 err = tty_audit_push();
1342 if (err)
1343 break;
1345 audit_log_common_recv_msg(&ab, msg_type);
1346 if (msg_type != AUDIT_USER_TTY)
1347 audit_log_format(ab, " msg='%.*s'",
1348 AUDIT_MESSAGE_TEXT_MAX,
1349 (char *)data);
1350 else {
1351 int size;
1353 audit_log_format(ab, " data=");
1354 size = nlmsg_len(nlh);
1355 if (size > 0 &&
1356 ((unsigned char *)data)[size - 1] == '\0')
1357 size--;
1358 audit_log_n_untrustedstring(ab, data, size);
1360 audit_log_end(ab);
1362 break;
1363 case AUDIT_ADD_RULE:
1364 case AUDIT_DEL_RULE:
1365 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1366 return -EINVAL;
1367 if (audit_enabled == AUDIT_LOCKED) {
1368 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1369 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1370 audit_log_end(ab);
1371 return -EPERM;
1373 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1374 break;
1375 case AUDIT_LIST_RULES:
1376 err = audit_list_rules_send(skb, seq);
1377 break;
1378 case AUDIT_TRIM:
1379 audit_trim_trees();
1380 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1381 audit_log_format(ab, " op=trim res=1");
1382 audit_log_end(ab);
1383 break;
1384 case AUDIT_MAKE_EQUIV: {
1385 void *bufp = data;
1386 u32 sizes[2];
1387 size_t msglen = nlmsg_len(nlh);
1388 char *old, *new;
1390 err = -EINVAL;
1391 if (msglen < 2 * sizeof(u32))
1392 break;
1393 memcpy(sizes, bufp, 2 * sizeof(u32));
1394 bufp += 2 * sizeof(u32);
1395 msglen -= 2 * sizeof(u32);
1396 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1397 if (IS_ERR(old)) {
1398 err = PTR_ERR(old);
1399 break;
1401 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1402 if (IS_ERR(new)) {
1403 err = PTR_ERR(new);
1404 kfree(old);
1405 break;
1407 /* OK, here comes... */
1408 err = audit_tag_tree(old, new);
1410 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1412 audit_log_format(ab, " op=make_equiv old=");
1413 audit_log_untrustedstring(ab, old);
1414 audit_log_format(ab, " new=");
1415 audit_log_untrustedstring(ab, new);
1416 audit_log_format(ab, " res=%d", !err);
1417 audit_log_end(ab);
1418 kfree(old);
1419 kfree(new);
1420 break;
1422 case AUDIT_SIGNAL_INFO:
1423 len = 0;
1424 if (audit_sig_sid) {
1425 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1426 if (err)
1427 return err;
1429 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1430 if (!sig_data) {
1431 if (audit_sig_sid)
1432 security_release_secctx(ctx, len);
1433 return -ENOMEM;
1435 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1436 sig_data->pid = audit_sig_pid;
1437 if (audit_sig_sid) {
1438 memcpy(sig_data->ctx, ctx, len);
1439 security_release_secctx(ctx, len);
1441 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1442 sig_data, sizeof(*sig_data) + len);
1443 kfree(sig_data);
1444 break;
1445 case AUDIT_TTY_GET: {
1446 struct audit_tty_status s;
1447 unsigned int t;
1449 t = READ_ONCE(current->signal->audit_tty);
1450 s.enabled = t & AUDIT_TTY_ENABLE;
1451 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1453 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1454 break;
1456 case AUDIT_TTY_SET: {
1457 struct audit_tty_status s, old;
1458 struct audit_buffer *ab;
1459 unsigned int t;
1461 memset(&s, 0, sizeof(s));
1462 /* guard against past and future API changes */
1463 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1464 /* check if new data is valid */
1465 if ((s.enabled != 0 && s.enabled != 1) ||
1466 (s.log_passwd != 0 && s.log_passwd != 1))
1467 err = -EINVAL;
1469 if (err)
1470 t = READ_ONCE(current->signal->audit_tty);
1471 else {
1472 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1473 t = xchg(&current->signal->audit_tty, t);
1475 old.enabled = t & AUDIT_TTY_ENABLE;
1476 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1478 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1479 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1480 " old-log_passwd=%d new-log_passwd=%d res=%d",
1481 old.enabled, s.enabled, old.log_passwd,
1482 s.log_passwd, !err);
1483 audit_log_end(ab);
1484 break;
1486 default:
1487 err = -EINVAL;
1488 break;
1491 return err < 0 ? err : 0;
1495 * audit_receive - receive messages from a netlink control socket
1496 * @skb: the message buffer
1498 * Parse the provided skb and deal with any messages that may be present,
1499 * malformed skbs are discarded.
1501 static void audit_receive(struct sk_buff *skb)
1503 struct nlmsghdr *nlh;
1505 * len MUST be signed for nlmsg_next to be able to dec it below 0
1506 * if the nlmsg_len was not aligned
1508 int len;
1509 int err;
1511 nlh = nlmsg_hdr(skb);
1512 len = skb->len;
1514 audit_ctl_lock();
1515 while (nlmsg_ok(nlh, len)) {
1516 err = audit_receive_msg(skb, nlh);
1517 /* if err or if this message says it wants a response */
1518 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1519 netlink_ack(skb, nlh, err, NULL);
1521 nlh = nlmsg_next(nlh, &len);
1523 audit_ctl_unlock();
1526 /* Run custom bind function on netlink socket group connect or bind requests. */
1527 static int audit_bind(struct net *net, int group)
1529 if (!capable(CAP_AUDIT_READ))
1530 return -EPERM;
1532 return 0;
1535 static int __net_init audit_net_init(struct net *net)
1537 struct netlink_kernel_cfg cfg = {
1538 .input = audit_receive,
1539 .bind = audit_bind,
1540 .flags = NL_CFG_F_NONROOT_RECV,
1541 .groups = AUDIT_NLGRP_MAX,
1544 struct audit_net *aunet = net_generic(net, audit_net_id);
1546 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1547 if (aunet->sk == NULL) {
1548 audit_panic("cannot initialize netlink socket in namespace");
1549 return -ENOMEM;
1551 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1553 return 0;
1556 static void __net_exit audit_net_exit(struct net *net)
1558 struct audit_net *aunet = net_generic(net, audit_net_id);
1560 /* NOTE: you would think that we would want to check the auditd
1561 * connection and potentially reset it here if it lives in this
1562 * namespace, but since the auditd connection tracking struct holds a
1563 * reference to this namespace (see auditd_set()) we are only ever
1564 * going to get here after that connection has been released */
1566 netlink_kernel_release(aunet->sk);
1569 static struct pernet_operations audit_net_ops __net_initdata = {
1570 .init = audit_net_init,
1571 .exit = audit_net_exit,
1572 .id = &audit_net_id,
1573 .size = sizeof(struct audit_net),
1576 /* Initialize audit support at boot time. */
1577 static int __init audit_init(void)
1579 int i;
1581 if (audit_initialized == AUDIT_DISABLED)
1582 return 0;
1584 audit_buffer_cache = kmem_cache_create("audit_buffer",
1585 sizeof(struct audit_buffer),
1586 0, SLAB_PANIC, NULL);
1588 skb_queue_head_init(&audit_queue);
1589 skb_queue_head_init(&audit_retry_queue);
1590 skb_queue_head_init(&audit_hold_queue);
1592 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1593 INIT_LIST_HEAD(&audit_inode_hash[i]);
1595 mutex_init(&audit_cmd_mutex.lock);
1596 audit_cmd_mutex.owner = NULL;
1598 pr_info("initializing netlink subsys (%s)\n",
1599 audit_default ? "enabled" : "disabled");
1600 register_pernet_subsys(&audit_net_ops);
1602 audit_initialized = AUDIT_INITIALIZED;
1604 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1605 if (IS_ERR(kauditd_task)) {
1606 int err = PTR_ERR(kauditd_task);
1607 panic("audit: failed to start the kauditd thread (%d)\n", err);
1610 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1611 "state=initialized audit_enabled=%u res=1",
1612 audit_enabled);
1614 return 0;
1616 postcore_initcall(audit_init);
1619 * Process kernel command-line parameter at boot time.
1620 * audit={0|off} or audit={1|on}.
1622 static int __init audit_enable(char *str)
1624 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1625 audit_default = AUDIT_OFF;
1626 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1627 audit_default = AUDIT_ON;
1628 else {
1629 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1630 audit_default = AUDIT_ON;
1633 if (audit_default == AUDIT_OFF)
1634 audit_initialized = AUDIT_DISABLED;
1635 if (audit_set_enabled(audit_default))
1636 pr_err("audit: error setting audit state (%d)\n",
1637 audit_default);
1639 pr_info("%s\n", audit_default ?
1640 "enabled (after initialization)" : "disabled (until reboot)");
1642 return 1;
1644 __setup("audit=", audit_enable);
1646 /* Process kernel command-line parameter at boot time.
1647 * audit_backlog_limit=<n> */
1648 static int __init audit_backlog_limit_set(char *str)
1650 u32 audit_backlog_limit_arg;
1652 pr_info("audit_backlog_limit: ");
1653 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1654 pr_cont("using default of %u, unable to parse %s\n",
1655 audit_backlog_limit, str);
1656 return 1;
1659 audit_backlog_limit = audit_backlog_limit_arg;
1660 pr_cont("%d\n", audit_backlog_limit);
1662 return 1;
1664 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1666 static void audit_buffer_free(struct audit_buffer *ab)
1668 if (!ab)
1669 return;
1671 kfree_skb(ab->skb);
1672 kmem_cache_free(audit_buffer_cache, ab);
1675 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1676 gfp_t gfp_mask, int type)
1678 struct audit_buffer *ab;
1680 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1681 if (!ab)
1682 return NULL;
1684 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1685 if (!ab->skb)
1686 goto err;
1687 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1688 goto err;
1690 ab->ctx = ctx;
1691 ab->gfp_mask = gfp_mask;
1693 return ab;
1695 err:
1696 audit_buffer_free(ab);
1697 return NULL;
1701 * audit_serial - compute a serial number for the audit record
1703 * Compute a serial number for the audit record. Audit records are
1704 * written to user-space as soon as they are generated, so a complete
1705 * audit record may be written in several pieces. The timestamp of the
1706 * record and this serial number are used by the user-space tools to
1707 * determine which pieces belong to the same audit record. The
1708 * (timestamp,serial) tuple is unique for each syscall and is live from
1709 * syscall entry to syscall exit.
1711 * NOTE: Another possibility is to store the formatted records off the
1712 * audit context (for those records that have a context), and emit them
1713 * all at syscall exit. However, this could delay the reporting of
1714 * significant errors until syscall exit (or never, if the system
1715 * halts).
1717 unsigned int audit_serial(void)
1719 static atomic_t serial = ATOMIC_INIT(0);
1721 return atomic_add_return(1, &serial);
1724 static inline void audit_get_stamp(struct audit_context *ctx,
1725 struct timespec64 *t, unsigned int *serial)
1727 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1728 *t = current_kernel_time64();
1729 *serial = audit_serial();
1734 * audit_log_start - obtain an audit buffer
1735 * @ctx: audit_context (may be NULL)
1736 * @gfp_mask: type of allocation
1737 * @type: audit message type
1739 * Returns audit_buffer pointer on success or NULL on error.
1741 * Obtain an audit buffer. This routine does locking to obtain the
1742 * audit buffer, but then no locking is required for calls to
1743 * audit_log_*format. If the task (ctx) is a task that is currently in a
1744 * syscall, then the syscall is marked as auditable and an audit record
1745 * will be written at syscall exit. If there is no associated task, then
1746 * task context (ctx) should be NULL.
1748 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1749 int type)
1751 struct audit_buffer *ab;
1752 struct timespec64 t;
1753 unsigned int uninitialized_var(serial);
1755 if (audit_initialized != AUDIT_INITIALIZED)
1756 return NULL;
1758 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1759 return NULL;
1761 /* NOTE: don't ever fail/sleep on these two conditions:
1762 * 1. auditd generated record - since we need auditd to drain the
1763 * queue; also, when we are checking for auditd, compare PIDs using
1764 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1765 * using a PID anchored in the caller's namespace
1766 * 2. generator holding the audit_cmd_mutex - we don't want to block
1767 * while holding the mutex */
1768 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1769 long stime = audit_backlog_wait_time;
1771 while (audit_backlog_limit &&
1772 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1773 /* wake kauditd to try and flush the queue */
1774 wake_up_interruptible(&kauditd_wait);
1776 /* sleep if we are allowed and we haven't exhausted our
1777 * backlog wait limit */
1778 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1779 DECLARE_WAITQUEUE(wait, current);
1781 add_wait_queue_exclusive(&audit_backlog_wait,
1782 &wait);
1783 set_current_state(TASK_UNINTERRUPTIBLE);
1784 stime = schedule_timeout(stime);
1785 remove_wait_queue(&audit_backlog_wait, &wait);
1786 } else {
1787 if (audit_rate_check() && printk_ratelimit())
1788 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1789 skb_queue_len(&audit_queue),
1790 audit_backlog_limit);
1791 audit_log_lost("backlog limit exceeded");
1792 return NULL;
1797 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1798 if (!ab) {
1799 audit_log_lost("out of memory in audit_log_start");
1800 return NULL;
1803 audit_get_stamp(ab->ctx, &t, &serial);
1804 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1805 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1807 return ab;
1811 * audit_expand - expand skb in the audit buffer
1812 * @ab: audit_buffer
1813 * @extra: space to add at tail of the skb
1815 * Returns 0 (no space) on failed expansion, or available space if
1816 * successful.
1818 static inline int audit_expand(struct audit_buffer *ab, int extra)
1820 struct sk_buff *skb = ab->skb;
1821 int oldtail = skb_tailroom(skb);
1822 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1823 int newtail = skb_tailroom(skb);
1825 if (ret < 0) {
1826 audit_log_lost("out of memory in audit_expand");
1827 return 0;
1830 skb->truesize += newtail - oldtail;
1831 return newtail;
1835 * Format an audit message into the audit buffer. If there isn't enough
1836 * room in the audit buffer, more room will be allocated and vsnprint
1837 * will be called a second time. Currently, we assume that a printk
1838 * can't format message larger than 1024 bytes, so we don't either.
1840 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1841 va_list args)
1843 int len, avail;
1844 struct sk_buff *skb;
1845 va_list args2;
1847 if (!ab)
1848 return;
1850 BUG_ON(!ab->skb);
1851 skb = ab->skb;
1852 avail = skb_tailroom(skb);
1853 if (avail == 0) {
1854 avail = audit_expand(ab, AUDIT_BUFSIZ);
1855 if (!avail)
1856 goto out;
1858 va_copy(args2, args);
1859 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1860 if (len >= avail) {
1861 /* The printk buffer is 1024 bytes long, so if we get
1862 * here and AUDIT_BUFSIZ is at least 1024, then we can
1863 * log everything that printk could have logged. */
1864 avail = audit_expand(ab,
1865 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1866 if (!avail)
1867 goto out_va_end;
1868 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1870 if (len > 0)
1871 skb_put(skb, len);
1872 out_va_end:
1873 va_end(args2);
1874 out:
1875 return;
1879 * audit_log_format - format a message into the audit buffer.
1880 * @ab: audit_buffer
1881 * @fmt: format string
1882 * @...: optional parameters matching @fmt string
1884 * All the work is done in audit_log_vformat.
1886 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1888 va_list args;
1890 if (!ab)
1891 return;
1892 va_start(args, fmt);
1893 audit_log_vformat(ab, fmt, args);
1894 va_end(args);
1898 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1899 * @ab: the audit_buffer
1900 * @buf: buffer to convert to hex
1901 * @len: length of @buf to be converted
1903 * No return value; failure to expand is silently ignored.
1905 * This function will take the passed buf and convert it into a string of
1906 * ascii hex digits. The new string is placed onto the skb.
1908 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1909 size_t len)
1911 int i, avail, new_len;
1912 unsigned char *ptr;
1913 struct sk_buff *skb;
1915 if (!ab)
1916 return;
1918 BUG_ON(!ab->skb);
1919 skb = ab->skb;
1920 avail = skb_tailroom(skb);
1921 new_len = len<<1;
1922 if (new_len >= avail) {
1923 /* Round the buffer request up to the next multiple */
1924 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1925 avail = audit_expand(ab, new_len);
1926 if (!avail)
1927 return;
1930 ptr = skb_tail_pointer(skb);
1931 for (i = 0; i < len; i++)
1932 ptr = hex_byte_pack_upper(ptr, buf[i]);
1933 *ptr = 0;
1934 skb_put(skb, len << 1); /* new string is twice the old string */
1938 * Format a string of no more than slen characters into the audit buffer,
1939 * enclosed in quote marks.
1941 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1942 size_t slen)
1944 int avail, new_len;
1945 unsigned char *ptr;
1946 struct sk_buff *skb;
1948 if (!ab)
1949 return;
1951 BUG_ON(!ab->skb);
1952 skb = ab->skb;
1953 avail = skb_tailroom(skb);
1954 new_len = slen + 3; /* enclosing quotes + null terminator */
1955 if (new_len > avail) {
1956 avail = audit_expand(ab, new_len);
1957 if (!avail)
1958 return;
1960 ptr = skb_tail_pointer(skb);
1961 *ptr++ = '"';
1962 memcpy(ptr, string, slen);
1963 ptr += slen;
1964 *ptr++ = '"';
1965 *ptr = 0;
1966 skb_put(skb, slen + 2); /* don't include null terminator */
1970 * audit_string_contains_control - does a string need to be logged in hex
1971 * @string: string to be checked
1972 * @len: max length of the string to check
1974 bool audit_string_contains_control(const char *string, size_t len)
1976 const unsigned char *p;
1977 for (p = string; p < (const unsigned char *)string + len; p++) {
1978 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1979 return true;
1981 return false;
1985 * audit_log_n_untrustedstring - log a string that may contain random characters
1986 * @ab: audit_buffer
1987 * @len: length of string (not including trailing null)
1988 * @string: string to be logged
1990 * This code will escape a string that is passed to it if the string
1991 * contains a control character, unprintable character, double quote mark,
1992 * or a space. Unescaped strings will start and end with a double quote mark.
1993 * Strings that are escaped are printed in hex (2 digits per char).
1995 * The caller specifies the number of characters in the string to log, which may
1996 * or may not be the entire string.
1998 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1999 size_t len)
2001 if (audit_string_contains_control(string, len))
2002 audit_log_n_hex(ab, string, len);
2003 else
2004 audit_log_n_string(ab, string, len);
2008 * audit_log_untrustedstring - log a string that may contain random characters
2009 * @ab: audit_buffer
2010 * @string: string to be logged
2012 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2013 * determine string length.
2015 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2017 audit_log_n_untrustedstring(ab, string, strlen(string));
2020 /* This is a helper-function to print the escaped d_path */
2021 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2022 const struct path *path)
2024 char *p, *pathname;
2026 if (prefix)
2027 audit_log_format(ab, "%s", prefix);
2029 /* We will allow 11 spaces for ' (deleted)' to be appended */
2030 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2031 if (!pathname) {
2032 audit_log_string(ab, "<no_memory>");
2033 return;
2035 p = d_path(path, pathname, PATH_MAX+11);
2036 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2037 /* FIXME: can we save some information here? */
2038 audit_log_string(ab, "<too_long>");
2039 } else
2040 audit_log_untrustedstring(ab, p);
2041 kfree(pathname);
2044 void audit_log_session_info(struct audit_buffer *ab)
2046 unsigned int sessionid = audit_get_sessionid(current);
2047 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2049 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2052 void audit_log_key(struct audit_buffer *ab, char *key)
2054 audit_log_format(ab, " key=");
2055 if (key)
2056 audit_log_untrustedstring(ab, key);
2057 else
2058 audit_log_format(ab, "(null)");
2061 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2063 int i;
2065 audit_log_format(ab, " %s=", prefix);
2066 CAP_FOR_EACH_U32(i) {
2067 audit_log_format(ab, "%08x",
2068 cap->cap[CAP_LAST_U32 - i]);
2072 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2074 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2075 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2076 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2077 name->fcap.fE, name->fcap_ver);
2080 static inline int audit_copy_fcaps(struct audit_names *name,
2081 const struct dentry *dentry)
2083 struct cpu_vfs_cap_data caps;
2084 int rc;
2086 if (!dentry)
2087 return 0;
2089 rc = get_vfs_caps_from_disk(dentry, &caps);
2090 if (rc)
2091 return rc;
2093 name->fcap.permitted = caps.permitted;
2094 name->fcap.inheritable = caps.inheritable;
2095 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2096 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2097 VFS_CAP_REVISION_SHIFT;
2099 return 0;
2102 /* Copy inode data into an audit_names. */
2103 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2104 struct inode *inode)
2106 name->ino = inode->i_ino;
2107 name->dev = inode->i_sb->s_dev;
2108 name->mode = inode->i_mode;
2109 name->uid = inode->i_uid;
2110 name->gid = inode->i_gid;
2111 name->rdev = inode->i_rdev;
2112 security_inode_getsecid(inode, &name->osid);
2113 audit_copy_fcaps(name, dentry);
2117 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2118 * @context: audit_context for the task
2119 * @n: audit_names structure with reportable details
2120 * @path: optional path to report instead of audit_names->name
2121 * @record_num: record number to report when handling a list of names
2122 * @call_panic: optional pointer to int that will be updated if secid fails
2124 void audit_log_name(struct audit_context *context, struct audit_names *n,
2125 const struct path *path, int record_num, int *call_panic)
2127 struct audit_buffer *ab;
2128 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2129 if (!ab)
2130 return;
2132 audit_log_format(ab, "item=%d", record_num);
2134 if (path)
2135 audit_log_d_path(ab, " name=", path);
2136 else if (n->name) {
2137 switch (n->name_len) {
2138 case AUDIT_NAME_FULL:
2139 /* log the full path */
2140 audit_log_format(ab, " name=");
2141 audit_log_untrustedstring(ab, n->name->name);
2142 break;
2143 case 0:
2144 /* name was specified as a relative path and the
2145 * directory component is the cwd */
2146 audit_log_d_path(ab, " name=", &context->pwd);
2147 break;
2148 default:
2149 /* log the name's directory component */
2150 audit_log_format(ab, " name=");
2151 audit_log_n_untrustedstring(ab, n->name->name,
2152 n->name_len);
2154 } else
2155 audit_log_format(ab, " name=(null)");
2157 if (n->ino != AUDIT_INO_UNSET)
2158 audit_log_format(ab, " inode=%lu"
2159 " dev=%02x:%02x mode=%#ho"
2160 " ouid=%u ogid=%u rdev=%02x:%02x",
2161 n->ino,
2162 MAJOR(n->dev),
2163 MINOR(n->dev),
2164 n->mode,
2165 from_kuid(&init_user_ns, n->uid),
2166 from_kgid(&init_user_ns, n->gid),
2167 MAJOR(n->rdev),
2168 MINOR(n->rdev));
2169 if (n->osid != 0) {
2170 char *ctx = NULL;
2171 u32 len;
2172 if (security_secid_to_secctx(
2173 n->osid, &ctx, &len)) {
2174 audit_log_format(ab, " osid=%u", n->osid);
2175 if (call_panic)
2176 *call_panic = 2;
2177 } else {
2178 audit_log_format(ab, " obj=%s", ctx);
2179 security_release_secctx(ctx, len);
2183 /* log the audit_names record type */
2184 audit_log_format(ab, " nametype=");
2185 switch(n->type) {
2186 case AUDIT_TYPE_NORMAL:
2187 audit_log_format(ab, "NORMAL");
2188 break;
2189 case AUDIT_TYPE_PARENT:
2190 audit_log_format(ab, "PARENT");
2191 break;
2192 case AUDIT_TYPE_CHILD_DELETE:
2193 audit_log_format(ab, "DELETE");
2194 break;
2195 case AUDIT_TYPE_CHILD_CREATE:
2196 audit_log_format(ab, "CREATE");
2197 break;
2198 default:
2199 audit_log_format(ab, "UNKNOWN");
2200 break;
2203 audit_log_fcaps(ab, n);
2204 audit_log_end(ab);
2207 int audit_log_task_context(struct audit_buffer *ab)
2209 char *ctx = NULL;
2210 unsigned len;
2211 int error;
2212 u32 sid;
2214 security_task_getsecid(current, &sid);
2215 if (!sid)
2216 return 0;
2218 error = security_secid_to_secctx(sid, &ctx, &len);
2219 if (error) {
2220 if (error != -EINVAL)
2221 goto error_path;
2222 return 0;
2225 audit_log_format(ab, " subj=%s", ctx);
2226 security_release_secctx(ctx, len);
2227 return 0;
2229 error_path:
2230 audit_panic("error in audit_log_task_context");
2231 return error;
2233 EXPORT_SYMBOL(audit_log_task_context);
2235 void audit_log_d_path_exe(struct audit_buffer *ab,
2236 struct mm_struct *mm)
2238 struct file *exe_file;
2240 if (!mm)
2241 goto out_null;
2243 exe_file = get_mm_exe_file(mm);
2244 if (!exe_file)
2245 goto out_null;
2247 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2248 fput(exe_file);
2249 return;
2250 out_null:
2251 audit_log_format(ab, " exe=(null)");
2254 struct tty_struct *audit_get_tty(struct task_struct *tsk)
2256 struct tty_struct *tty = NULL;
2257 unsigned long flags;
2259 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2260 if (tsk->signal)
2261 tty = tty_kref_get(tsk->signal->tty);
2262 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2263 return tty;
2266 void audit_put_tty(struct tty_struct *tty)
2268 tty_kref_put(tty);
2271 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2273 const struct cred *cred;
2274 char comm[sizeof(tsk->comm)];
2275 struct tty_struct *tty;
2277 if (!ab)
2278 return;
2280 /* tsk == current */
2281 cred = current_cred();
2282 tty = audit_get_tty(tsk);
2283 audit_log_format(ab,
2284 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2285 " euid=%u suid=%u fsuid=%u"
2286 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2287 task_ppid_nr(tsk),
2288 task_tgid_nr(tsk),
2289 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2290 from_kuid(&init_user_ns, cred->uid),
2291 from_kgid(&init_user_ns, cred->gid),
2292 from_kuid(&init_user_ns, cred->euid),
2293 from_kuid(&init_user_ns, cred->suid),
2294 from_kuid(&init_user_ns, cred->fsuid),
2295 from_kgid(&init_user_ns, cred->egid),
2296 from_kgid(&init_user_ns, cred->sgid),
2297 from_kgid(&init_user_ns, cred->fsgid),
2298 tty ? tty_name(tty) : "(none)",
2299 audit_get_sessionid(tsk));
2300 audit_put_tty(tty);
2301 audit_log_format(ab, " comm=");
2302 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2303 audit_log_d_path_exe(ab, tsk->mm);
2304 audit_log_task_context(ab);
2306 EXPORT_SYMBOL(audit_log_task_info);
2309 * audit_log_link_denied - report a link restriction denial
2310 * @operation: specific link operation
2312 void audit_log_link_denied(const char *operation)
2314 struct audit_buffer *ab;
2316 if (!audit_enabled || audit_dummy_context())
2317 return;
2319 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2320 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2321 AUDIT_ANOM_LINK);
2322 if (!ab)
2323 return;
2324 audit_log_format(ab, "op=%s", operation);
2325 audit_log_task_info(ab, current);
2326 audit_log_format(ab, " res=0");
2327 audit_log_end(ab);
2331 * audit_log_end - end one audit record
2332 * @ab: the audit_buffer
2334 * We can not do a netlink send inside an irq context because it blocks (last
2335 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2336 * queue and a tasklet is scheduled to remove them from the queue outside the
2337 * irq context. May be called in any context.
2339 void audit_log_end(struct audit_buffer *ab)
2341 struct sk_buff *skb;
2342 struct nlmsghdr *nlh;
2344 if (!ab)
2345 return;
2347 if (audit_rate_check()) {
2348 skb = ab->skb;
2349 ab->skb = NULL;
2351 /* setup the netlink header, see the comments in
2352 * kauditd_send_multicast_skb() for length quirks */
2353 nlh = nlmsg_hdr(skb);
2354 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2356 /* queue the netlink packet and poke the kauditd thread */
2357 skb_queue_tail(&audit_queue, skb);
2358 wake_up_interruptible(&kauditd_wait);
2359 } else
2360 audit_log_lost("rate limit exceeded");
2362 audit_buffer_free(ab);
2366 * audit_log - Log an audit record
2367 * @ctx: audit context
2368 * @gfp_mask: type of allocation
2369 * @type: audit message type
2370 * @fmt: format string to use
2371 * @...: variable parameters matching the format string
2373 * This is a convenience function that calls audit_log_start,
2374 * audit_log_vformat, and audit_log_end. It may be called
2375 * in any context.
2377 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2378 const char *fmt, ...)
2380 struct audit_buffer *ab;
2381 va_list args;
2383 ab = audit_log_start(ctx, gfp_mask, type);
2384 if (ab) {
2385 va_start(args, fmt);
2386 audit_log_vformat(ab, fmt, args);
2387 va_end(args);
2388 audit_log_end(ab);
2392 EXPORT_SYMBOL(audit_log_start);
2393 EXPORT_SYMBOL(audit_log_end);
2394 EXPORT_SYMBOL(audit_log_format);
2395 EXPORT_SYMBOL(audit_log);