1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
32 #include "lock_events.h"
35 * The least significant 3 bits of the owner value has the following
37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38 * - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
39 * - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
41 * When the rwsem is either owned by an anonymous writer, or it is
42 * reader-owned, but a spinning writer has timed out, both nonspinnable
43 * bits will be set to disable optimistic spinning by readers and writers.
44 * In the later case, the last unlocking reader should then check the
45 * writer nonspinnable bit and clear it only to give writers preference
46 * to acquire the lock via optimistic spinning, but not readers. Similar
47 * action is also done in the reader slowpath.
49 * When a writer acquires a rwsem, it puts its task_struct pointer
50 * into the owner field. It is cleared after an unlock.
52 * When a reader acquires a rwsem, it will also puts its task_struct
53 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
54 * On unlock, the owner field will largely be left untouched. So
55 * for a free or reader-owned rwsem, the owner value may contain
56 * information about the last reader that acquires the rwsem.
58 * That information may be helpful in debugging cases where the system
59 * seems to hang on a reader owned rwsem especially if only one reader
60 * is involved. Ideally we would like to track all the readers that own
61 * a rwsem, but the overhead is simply too big.
63 * Reader optimistic spinning is helpful when the reader critical section
64 * is short and there aren't that many readers around. It makes readers
65 * relatively more preferred than writers. When a writer times out spinning
66 * on a reader-owned lock and set the nospinnable bits, there are two main
69 * 1) The reader critical section is long, perhaps the task sleeps after
70 * acquiring the read lock.
71 * 2) There are just too many readers contending the lock causing it to
72 * take a while to service all of them.
74 * In the former case, long reader critical section will impede the progress
75 * of writers which is usually more important for system performance. In
76 * the later case, reader optimistic spinning tends to make the reader
77 * groups that contain readers that acquire the lock together smaller
78 * leading to more of them. That may hurt performance in some cases. In
79 * other words, the setting of nonspinnable bits indicates that reader
80 * optimistic spinning may not be helpful for those workloads that cause
83 * Therefore, any writers that had observed the setting of the writer
84 * nonspinnable bit for a given rwsem after they fail to acquire the lock
85 * via optimistic spinning will set the reader nonspinnable bit once they
86 * acquire the write lock. Similarly, readers that observe the setting
87 * of reader nonspinnable bit at slowpath entry will set the reader
88 * nonspinnable bits when they acquire the read lock via the wakeup path.
90 * Once the reader nonspinnable bit is on, it will only be reset when
91 * a writer is able to acquire the rwsem in the fast path or somehow a
92 * reader or writer in the slowpath doesn't observe the nonspinable bit.
94 * This is to discourage reader optmistic spinning on that particular
95 * rwsem and make writers more preferred. This adaptive disabling of reader
96 * optimistic spinning will alleviate the negative side effect of this
99 #define RWSEM_READER_OWNED (1UL << 0)
100 #define RWSEM_RD_NONSPINNABLE (1UL << 1)
101 #define RWSEM_WR_NONSPINNABLE (1UL << 2)
102 #define RWSEM_NONSPINNABLE (RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
103 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
105 #ifdef CONFIG_DEBUG_RWSEMS
106 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
107 if (!debug_locks_silent && \
108 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
109 #c, atomic_long_read(&(sem)->count), \
110 atomic_long_read(&(sem)->owner), (long)current, \
111 list_empty(&(sem)->wait_list) ? "" : "not ")) \
115 # define DEBUG_RWSEMS_WARN_ON(c, sem)
119 * On 64-bit architectures, the bit definitions of the count are:
121 * Bit 0 - writer locked bit
122 * Bit 1 - waiters present bit
123 * Bit 2 - lock handoff bit
124 * Bits 3-7 - reserved
125 * Bits 8-62 - 55-bit reader count
126 * Bit 63 - read fail bit
128 * On 32-bit architectures, the bit definitions of the count are:
130 * Bit 0 - writer locked bit
131 * Bit 1 - waiters present bit
132 * Bit 2 - lock handoff bit
133 * Bits 3-7 - reserved
134 * Bits 8-30 - 23-bit reader count
135 * Bit 31 - read fail bit
137 * It is not likely that the most significant bit (read fail bit) will ever
138 * be set. This guard bit is still checked anyway in the down_read() fastpath
139 * just in case we need to use up more of the reader bits for other purpose
142 * atomic_long_fetch_add() is used to obtain reader lock, whereas
143 * atomic_long_cmpxchg() will be used to obtain writer lock.
145 * There are three places where the lock handoff bit may be set or cleared.
146 * 1) rwsem_mark_wake() for readers.
147 * 2) rwsem_try_write_lock() for writers.
148 * 3) Error path of rwsem_down_write_slowpath().
150 * For all the above cases, wait_lock will be held. A writer must also
151 * be the first one in the wait_list to be eligible for setting the handoff
152 * bit. So concurrent setting/clearing of handoff bit is not possible.
154 #define RWSEM_WRITER_LOCKED (1UL << 0)
155 #define RWSEM_FLAG_WAITERS (1UL << 1)
156 #define RWSEM_FLAG_HANDOFF (1UL << 2)
157 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
159 #define RWSEM_READER_SHIFT 8
160 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
161 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
162 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
163 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
164 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
165 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
168 * All writes to owner are protected by WRITE_ONCE() to make sure that
169 * store tearing can't happen as optimistic spinners may read and use
170 * the owner value concurrently without lock. Read from owner, however,
171 * may not need READ_ONCE() as long as the pointer value is only used
172 * for comparison and isn't being dereferenced.
174 static inline void rwsem_set_owner(struct rw_semaphore
*sem
)
176 atomic_long_set(&sem
->owner
, (long)current
);
179 static inline void rwsem_clear_owner(struct rw_semaphore
*sem
)
181 atomic_long_set(&sem
->owner
, 0);
185 * Test the flags in the owner field.
187 static inline bool rwsem_test_oflags(struct rw_semaphore
*sem
, long flags
)
189 return atomic_long_read(&sem
->owner
) & flags
;
193 * The task_struct pointer of the last owning reader will be left in
196 * Note that the owner value just indicates the task has owned the rwsem
197 * previously, it may not be the real owner or one of the real owners
198 * anymore when that field is examined, so take it with a grain of salt.
200 * The reader non-spinnable bit is preserved.
202 static inline void __rwsem_set_reader_owned(struct rw_semaphore
*sem
,
203 struct task_struct
*owner
)
205 unsigned long val
= (unsigned long)owner
| RWSEM_READER_OWNED
|
206 (atomic_long_read(&sem
->owner
) & RWSEM_RD_NONSPINNABLE
);
208 atomic_long_set(&sem
->owner
, val
);
211 static inline void rwsem_set_reader_owned(struct rw_semaphore
*sem
)
213 __rwsem_set_reader_owned(sem
, current
);
217 * Return true if the rwsem is owned by a reader.
219 static inline bool is_rwsem_reader_owned(struct rw_semaphore
*sem
)
221 #ifdef CONFIG_DEBUG_RWSEMS
223 * Check the count to see if it is write-locked.
225 long count
= atomic_long_read(&sem
->count
);
227 if (count
& RWSEM_WRITER_MASK
)
230 return rwsem_test_oflags(sem
, RWSEM_READER_OWNED
);
233 #ifdef CONFIG_DEBUG_RWSEMS
235 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
236 * is a task pointer in owner of a reader-owned rwsem, it will be the
237 * real owner or one of the real owners. The only exception is when the
238 * unlock is done by up_read_non_owner().
240 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
242 unsigned long val
= atomic_long_read(&sem
->owner
);
244 while ((val
& ~RWSEM_OWNER_FLAGS_MASK
) == (unsigned long)current
) {
245 if (atomic_long_try_cmpxchg(&sem
->owner
, &val
,
246 val
& RWSEM_OWNER_FLAGS_MASK
))
251 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
257 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
258 * remains set. Otherwise, the operation will be aborted.
260 static inline void rwsem_set_nonspinnable(struct rw_semaphore
*sem
)
262 unsigned long owner
= atomic_long_read(&sem
->owner
);
265 if (!(owner
& RWSEM_READER_OWNED
))
267 if (owner
& RWSEM_NONSPINNABLE
)
269 } while (!atomic_long_try_cmpxchg(&sem
->owner
, &owner
,
270 owner
| RWSEM_NONSPINNABLE
));
273 static inline bool rwsem_read_trylock(struct rw_semaphore
*sem
)
275 long cnt
= atomic_long_add_return_acquire(RWSEM_READER_BIAS
, &sem
->count
);
276 if (WARN_ON_ONCE(cnt
< 0))
277 rwsem_set_nonspinnable(sem
);
278 return !(cnt
& RWSEM_READ_FAILED_MASK
);
282 * Return just the real task structure pointer of the owner
284 static inline struct task_struct
*rwsem_owner(struct rw_semaphore
*sem
)
286 return (struct task_struct
*)
287 (atomic_long_read(&sem
->owner
) & ~RWSEM_OWNER_FLAGS_MASK
);
291 * Return the real task structure pointer of the owner and the embedded
292 * flags in the owner. pflags must be non-NULL.
294 static inline struct task_struct
*
295 rwsem_owner_flags(struct rw_semaphore
*sem
, unsigned long *pflags
)
297 unsigned long owner
= atomic_long_read(&sem
->owner
);
299 *pflags
= owner
& RWSEM_OWNER_FLAGS_MASK
;
300 return (struct task_struct
*)(owner
& ~RWSEM_OWNER_FLAGS_MASK
);
304 * Guide to the rw_semaphore's count field.
306 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
309 * The lock is owned by readers when
310 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
311 * (2) some of the reader bits are set in count, and
312 * (3) the owner field has RWSEM_READ_OWNED bit set.
314 * Having some reader bits set is not enough to guarantee a readers owned
315 * lock as the readers may be in the process of backing out from the count
316 * and a writer has just released the lock. So another writer may steal
317 * the lock immediately after that.
321 * Initialize an rwsem:
323 void __init_rwsem(struct rw_semaphore
*sem
, const char *name
,
324 struct lock_class_key
*key
)
326 #ifdef CONFIG_DEBUG_LOCK_ALLOC
328 * Make sure we are not reinitializing a held semaphore:
330 debug_check_no_locks_freed((void *)sem
, sizeof(*sem
));
331 lockdep_init_map(&sem
->dep_map
, name
, key
, 0);
333 atomic_long_set(&sem
->count
, RWSEM_UNLOCKED_VALUE
);
334 raw_spin_lock_init(&sem
->wait_lock
);
335 INIT_LIST_HEAD(&sem
->wait_list
);
336 atomic_long_set(&sem
->owner
, 0L);
337 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
338 osq_lock_init(&sem
->osq
);
341 EXPORT_SYMBOL(__init_rwsem
);
343 enum rwsem_waiter_type
{
344 RWSEM_WAITING_FOR_WRITE
,
345 RWSEM_WAITING_FOR_READ
348 struct rwsem_waiter
{
349 struct list_head list
;
350 struct task_struct
*task
;
351 enum rwsem_waiter_type type
;
352 unsigned long timeout
;
353 unsigned long last_rowner
;
355 #define rwsem_first_waiter(sem) \
356 list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
358 enum rwsem_wake_type
{
359 RWSEM_WAKE_ANY
, /* Wake whatever's at head of wait list */
360 RWSEM_WAKE_READERS
, /* Wake readers only */
361 RWSEM_WAKE_READ_OWNED
/* Waker thread holds the read lock */
364 enum writer_wait_state
{
365 WRITER_NOT_FIRST
, /* Writer is not first in wait list */
366 WRITER_FIRST
, /* Writer is first in wait list */
367 WRITER_HANDOFF
/* Writer is first & handoff needed */
371 * The typical HZ value is either 250 or 1000. So set the minimum waiting
372 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
373 * queue before initiating the handoff protocol.
375 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
378 * Magic number to batch-wakeup waiting readers, even when writers are
379 * also present in the queue. This both limits the amount of work the
380 * waking thread must do and also prevents any potential counter overflow,
383 #define MAX_READERS_WAKEUP 0x100
386 * handle the lock release when processes blocked on it that can now run
387 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
389 * - there must be someone on the queue
390 * - the wait_lock must be held by the caller
391 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
392 * to actually wakeup the blocked task(s) and drop the reference count,
393 * preferably when the wait_lock is released
394 * - woken process blocks are discarded from the list after having task zeroed
395 * - writers are only marked woken if downgrading is false
397 static void rwsem_mark_wake(struct rw_semaphore
*sem
,
398 enum rwsem_wake_type wake_type
,
399 struct wake_q_head
*wake_q
)
401 struct rwsem_waiter
*waiter
, *tmp
;
402 long oldcount
, woken
= 0, adjustment
= 0;
403 struct list_head wlist
;
405 lockdep_assert_held(&sem
->wait_lock
);
408 * Take a peek at the queue head waiter such that we can determine
409 * the wakeup(s) to perform.
411 waiter
= rwsem_first_waiter(sem
);
413 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
) {
414 if (wake_type
== RWSEM_WAKE_ANY
) {
416 * Mark writer at the front of the queue for wakeup.
417 * Until the task is actually later awoken later by
418 * the caller, other writers are able to steal it.
419 * Readers, on the other hand, will block as they
420 * will notice the queued writer.
422 wake_q_add(wake_q
, waiter
->task
);
423 lockevent_inc(rwsem_wake_writer
);
430 * No reader wakeup if there are too many of them already.
432 if (unlikely(atomic_long_read(&sem
->count
) < 0))
436 * Writers might steal the lock before we grant it to the next reader.
437 * We prefer to do the first reader grant before counting readers
438 * so we can bail out early if a writer stole the lock.
440 if (wake_type
!= RWSEM_WAKE_READ_OWNED
) {
441 struct task_struct
*owner
;
443 adjustment
= RWSEM_READER_BIAS
;
444 oldcount
= atomic_long_fetch_add(adjustment
, &sem
->count
);
445 if (unlikely(oldcount
& RWSEM_WRITER_MASK
)) {
447 * When we've been waiting "too" long (for writers
448 * to give up the lock), request a HANDOFF to
451 if (!(oldcount
& RWSEM_FLAG_HANDOFF
) &&
452 time_after(jiffies
, waiter
->timeout
)) {
453 adjustment
-= RWSEM_FLAG_HANDOFF
;
454 lockevent_inc(rwsem_rlock_handoff
);
457 atomic_long_add(-adjustment
, &sem
->count
);
461 * Set it to reader-owned to give spinners an early
462 * indication that readers now have the lock.
463 * The reader nonspinnable bit seen at slowpath entry of
464 * the reader is copied over.
466 owner
= waiter
->task
;
467 if (waiter
->last_rowner
& RWSEM_RD_NONSPINNABLE
) {
468 owner
= (void *)((unsigned long)owner
| RWSEM_RD_NONSPINNABLE
);
469 lockevent_inc(rwsem_opt_norspin
);
471 __rwsem_set_reader_owned(sem
, owner
);
475 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
476 * queue. We know that the woken will be at least 1 as we accounted
477 * for above. Note we increment the 'active part' of the count by the
478 * number of readers before waking any processes up.
480 * This is an adaptation of the phase-fair R/W locks where at the
481 * reader phase (first waiter is a reader), all readers are eligible
482 * to acquire the lock at the same time irrespective of their order
483 * in the queue. The writers acquire the lock according to their
484 * order in the queue.
486 * We have to do wakeup in 2 passes to prevent the possibility that
487 * the reader count may be decremented before it is incremented. It
488 * is because the to-be-woken waiter may not have slept yet. So it
489 * may see waiter->task got cleared, finish its critical section and
490 * do an unlock before the reader count increment.
492 * 1) Collect the read-waiters in a separate list, count them and
493 * fully increment the reader count in rwsem.
494 * 2) For each waiters in the new list, clear waiter->task and
495 * put them into wake_q to be woken up later.
497 INIT_LIST_HEAD(&wlist
);
498 list_for_each_entry_safe(waiter
, tmp
, &sem
->wait_list
, list
) {
499 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
)
503 list_move_tail(&waiter
->list
, &wlist
);
506 * Limit # of readers that can be woken up per wakeup call.
508 if (woken
>= MAX_READERS_WAKEUP
)
512 adjustment
= woken
* RWSEM_READER_BIAS
- adjustment
;
513 lockevent_cond_inc(rwsem_wake_reader
, woken
);
514 if (list_empty(&sem
->wait_list
)) {
515 /* hit end of list above */
516 adjustment
-= RWSEM_FLAG_WAITERS
;
520 * When we've woken a reader, we no longer need to force writers
521 * to give up the lock and we can clear HANDOFF.
523 if (woken
&& (atomic_long_read(&sem
->count
) & RWSEM_FLAG_HANDOFF
))
524 adjustment
-= RWSEM_FLAG_HANDOFF
;
527 atomic_long_add(adjustment
, &sem
->count
);
530 list_for_each_entry_safe(waiter
, tmp
, &wlist
, list
) {
531 struct task_struct
*tsk
;
534 get_task_struct(tsk
);
537 * Ensure calling get_task_struct() before setting the reader
538 * waiter to nil such that rwsem_down_read_slowpath() cannot
539 * race with do_exit() by always holding a reference count
540 * to the task to wakeup.
542 smp_store_release(&waiter
->task
, NULL
);
544 * Ensure issuing the wakeup (either by us or someone else)
545 * after setting the reader waiter to nil.
547 wake_q_add_safe(wake_q
, tsk
);
552 * This function must be called with the sem->wait_lock held to prevent
553 * race conditions between checking the rwsem wait list and setting the
554 * sem->count accordingly.
556 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
557 * bit is set or the lock is acquired with handoff bit cleared.
559 static inline bool rwsem_try_write_lock(struct rw_semaphore
*sem
,
560 enum writer_wait_state wstate
)
564 lockdep_assert_held(&sem
->wait_lock
);
566 count
= atomic_long_read(&sem
->count
);
568 bool has_handoff
= !!(count
& RWSEM_FLAG_HANDOFF
);
570 if (has_handoff
&& wstate
== WRITER_NOT_FIRST
)
575 if (count
& RWSEM_LOCK_MASK
) {
576 if (has_handoff
|| (wstate
!= WRITER_HANDOFF
))
579 new |= RWSEM_FLAG_HANDOFF
;
581 new |= RWSEM_WRITER_LOCKED
;
582 new &= ~RWSEM_FLAG_HANDOFF
;
584 if (list_is_singular(&sem
->wait_list
))
585 new &= ~RWSEM_FLAG_WAITERS
;
587 } while (!atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
, new));
590 * We have either acquired the lock with handoff bit cleared or
591 * set the handoff bit.
593 if (new & RWSEM_FLAG_HANDOFF
)
596 rwsem_set_owner(sem
);
600 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
602 * Try to acquire read lock before the reader is put on wait queue.
603 * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
606 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore
*sem
)
608 long count
= atomic_long_read(&sem
->count
);
610 if (count
& (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))
613 count
= atomic_long_fetch_add_acquire(RWSEM_READER_BIAS
, &sem
->count
);
614 if (!(count
& (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))) {
615 rwsem_set_reader_owned(sem
);
616 lockevent_inc(rwsem_opt_rlock
);
620 /* Back out the change */
621 atomic_long_add(-RWSEM_READER_BIAS
, &sem
->count
);
626 * Try to acquire write lock before the writer has been put on wait queue.
628 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore
*sem
)
630 long count
= atomic_long_read(&sem
->count
);
632 while (!(count
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_HANDOFF
))) {
633 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
,
634 count
| RWSEM_WRITER_LOCKED
)) {
635 rwsem_set_owner(sem
);
636 lockevent_inc(rwsem_opt_wlock
);
643 static inline bool owner_on_cpu(struct task_struct
*owner
)
646 * As lock holder preemption issue, we both skip spinning if
647 * task is not on cpu or its cpu is preempted
649 return owner
->on_cpu
&& !vcpu_is_preempted(task_cpu(owner
));
652 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
,
653 unsigned long nonspinnable
)
655 struct task_struct
*owner
;
659 BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN
& RWSEM_NONSPINNABLE
));
661 if (need_resched()) {
662 lockevent_inc(rwsem_opt_fail
);
668 owner
= rwsem_owner_flags(sem
, &flags
);
669 if ((flags
& nonspinnable
) || (owner
&& !owner_on_cpu(owner
)))
674 lockevent_cond_inc(rwsem_opt_fail
, !ret
);
679 * The rwsem_spin_on_owner() function returns the folowing 4 values
680 * depending on the lock owner state.
681 * OWNER_NULL : owner is currently NULL
682 * OWNER_WRITER: when owner changes and is a writer
683 * OWNER_READER: when owner changes and the new owner may be a reader.
684 * OWNER_NONSPINNABLE:
685 * when optimistic spinning has to stop because either the
686 * owner stops running, is unknown, or its timeslice has
691 OWNER_WRITER
= 1 << 1,
692 OWNER_READER
= 1 << 2,
693 OWNER_NONSPINNABLE
= 1 << 3,
695 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
697 static inline enum owner_state
698 rwsem_owner_state(struct task_struct
*owner
, unsigned long flags
, unsigned long nonspinnable
)
700 if (flags
& nonspinnable
)
701 return OWNER_NONSPINNABLE
;
703 if (flags
& RWSEM_READER_OWNED
)
706 return owner
? OWNER_WRITER
: OWNER_NULL
;
709 static noinline
enum owner_state
710 rwsem_spin_on_owner(struct rw_semaphore
*sem
, unsigned long nonspinnable
)
712 struct task_struct
*new, *owner
;
713 unsigned long flags
, new_flags
;
714 enum owner_state state
;
716 owner
= rwsem_owner_flags(sem
, &flags
);
717 state
= rwsem_owner_state(owner
, flags
, nonspinnable
);
718 if (state
!= OWNER_WRITER
)
723 if (atomic_long_read(&sem
->count
) & RWSEM_FLAG_HANDOFF
) {
724 state
= OWNER_NONSPINNABLE
;
728 new = rwsem_owner_flags(sem
, &new_flags
);
729 if ((new != owner
) || (new_flags
!= flags
)) {
730 state
= rwsem_owner_state(new, new_flags
, nonspinnable
);
735 * Ensure we emit the owner->on_cpu, dereference _after_
736 * checking sem->owner still matches owner, if that fails,
737 * owner might point to free()d memory, if it still matches,
738 * the rcu_read_lock() ensures the memory stays valid.
742 if (need_resched() || !owner_on_cpu(owner
)) {
743 state
= OWNER_NONSPINNABLE
;
755 * Calculate reader-owned rwsem spinning threshold for writer
757 * The more readers own the rwsem, the longer it will take for them to
758 * wind down and free the rwsem. So the empirical formula used to
759 * determine the actual spinning time limit here is:
761 * Spinning threshold = (10 + nr_readers/2)us
763 * The limit is capped to a maximum of 25us (30 readers). This is just
764 * a heuristic and is subjected to change in the future.
766 static inline u64
rwsem_rspin_threshold(struct rw_semaphore
*sem
)
768 long count
= atomic_long_read(&sem
->count
);
769 int readers
= count
>> RWSEM_READER_SHIFT
;
774 delta
= (20 + readers
) * NSEC_PER_USEC
/ 2;
776 return sched_clock() + delta
;
779 static bool rwsem_optimistic_spin(struct rw_semaphore
*sem
, bool wlock
)
782 int prev_owner_state
= OWNER_NULL
;
784 u64 rspin_threshold
= 0;
785 unsigned long nonspinnable
= wlock
? RWSEM_WR_NONSPINNABLE
786 : RWSEM_RD_NONSPINNABLE
;
790 /* sem->wait_lock should not be held when doing optimistic spinning */
791 if (!osq_lock(&sem
->osq
))
795 * Optimistically spin on the owner field and attempt to acquire the
796 * lock whenever the owner changes. Spinning will be stopped when:
797 * 1) the owning writer isn't running; or
798 * 2) readers own the lock and spinning time has exceeded limit.
801 enum owner_state owner_state
;
803 owner_state
= rwsem_spin_on_owner(sem
, nonspinnable
);
804 if (!(owner_state
& OWNER_SPINNABLE
))
808 * Try to acquire the lock
810 taken
= wlock
? rwsem_try_write_lock_unqueued(sem
)
811 : rwsem_try_read_lock_unqueued(sem
);
817 * Time-based reader-owned rwsem optimistic spinning
819 if (wlock
&& (owner_state
== OWNER_READER
)) {
821 * Re-initialize rspin_threshold every time when
822 * the owner state changes from non-reader to reader.
823 * This allows a writer to steal the lock in between
824 * 2 reader phases and have the threshold reset at
825 * the beginning of the 2nd reader phase.
827 if (prev_owner_state
!= OWNER_READER
) {
828 if (rwsem_test_oflags(sem
, nonspinnable
))
830 rspin_threshold
= rwsem_rspin_threshold(sem
);
835 * Check time threshold once every 16 iterations to
836 * avoid calling sched_clock() too frequently so
837 * as to reduce the average latency between the times
838 * when the lock becomes free and when the spinner
839 * is ready to do a trylock.
841 else if (!(++loop
& 0xf) && (sched_clock() > rspin_threshold
)) {
842 rwsem_set_nonspinnable(sem
);
843 lockevent_inc(rwsem_opt_nospin
);
849 * An RT task cannot do optimistic spinning if it cannot
850 * be sure the lock holder is running or live-lock may
851 * happen if the current task and the lock holder happen
852 * to run in the same CPU. However, aborting optimistic
853 * spinning while a NULL owner is detected may miss some
854 * opportunity where spinning can continue without causing
857 * There are 2 possible cases where an RT task may be able
858 * to continue spinning.
860 * 1) The lock owner is in the process of releasing the
861 * lock, sem->owner is cleared but the lock has not
863 * 2) The lock was free and owner cleared, but another
864 * task just comes in and acquire the lock before
865 * we try to get it. The new owner may be a spinnable
868 * To take advantage of two scenarios listed agove, the RT
869 * task is made to retry one more time to see if it can
870 * acquire the lock or continue spinning on the new owning
871 * writer. Of course, if the time lag is long enough or the
872 * new owner is not a writer or spinnable, the RT task will
875 * If the owner is a writer, the need_resched() check is
876 * done inside rwsem_spin_on_owner(). If the owner is not
877 * a writer, need_resched() check needs to be done here.
879 if (owner_state
!= OWNER_WRITER
) {
882 if (rt_task(current
) &&
883 (prev_owner_state
!= OWNER_WRITER
))
886 prev_owner_state
= owner_state
;
889 * The cpu_relax() call is a compiler barrier which forces
890 * everything in this loop to be re-loaded. We don't need
891 * memory barriers as we'll eventually observe the right
892 * values at the cost of a few extra spins.
896 osq_unlock(&sem
->osq
);
899 lockevent_cond_inc(rwsem_opt_fail
, !taken
);
904 * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
905 * only be called when the reader count reaches 0.
907 * This give writers better chance to acquire the rwsem first before
908 * readers when the rwsem was being held by readers for a relatively long
909 * period of time. Race can happen that an optimistic spinner may have
910 * just stolen the rwsem and set the owner, but just clearing the
911 * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
913 static inline void clear_wr_nonspinnable(struct rw_semaphore
*sem
)
915 if (rwsem_test_oflags(sem
, RWSEM_WR_NONSPINNABLE
))
916 atomic_long_andnot(RWSEM_WR_NONSPINNABLE
, &sem
->owner
);
920 * This function is called when the reader fails to acquire the lock via
921 * optimistic spinning. In this case we will still attempt to do a trylock
922 * when comparing the rwsem state right now with the state when entering
923 * the slowpath indicates that the reader is still in a valid reader phase.
924 * This happens when the following conditions are true:
926 * 1) The lock is currently reader owned, and
927 * 2) The lock is previously not reader-owned or the last read owner changes.
929 * In the former case, we have transitioned from a writer phase to a
930 * reader-phase while spinning. In the latter case, it means the reader
931 * phase hasn't ended when we entered the optimistic spinning loop. In
932 * both cases, the reader is eligible to acquire the lock. This is the
933 * secondary path where a read lock is acquired optimistically.
935 * The reader non-spinnable bit wasn't set at time of entry or it will
936 * not be here at all.
938 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore
*sem
,
939 unsigned long last_rowner
)
941 unsigned long owner
= atomic_long_read(&sem
->owner
);
943 if (!(owner
& RWSEM_READER_OWNED
))
946 if (((owner
^ last_rowner
) & ~RWSEM_OWNER_FLAGS_MASK
) &&
947 rwsem_try_read_lock_unqueued(sem
)) {
948 lockevent_inc(rwsem_opt_rlock2
);
949 lockevent_add(rwsem_opt_fail
, -1);
955 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
,
956 unsigned long nonspinnable
)
961 static inline bool rwsem_optimistic_spin(struct rw_semaphore
*sem
, bool wlock
)
966 static inline void clear_wr_nonspinnable(struct rw_semaphore
*sem
) { }
968 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore
*sem
,
969 unsigned long last_rowner
)
976 * Wait for the read lock to be granted
978 static struct rw_semaphore __sched
*
979 rwsem_down_read_slowpath(struct rw_semaphore
*sem
, int state
)
981 long count
, adjustment
= -RWSEM_READER_BIAS
;
982 struct rwsem_waiter waiter
;
983 DEFINE_WAKE_Q(wake_q
);
987 * Save the current read-owner of rwsem, if available, and the
988 * reader nonspinnable bit.
990 waiter
.last_rowner
= atomic_long_read(&sem
->owner
);
991 if (!(waiter
.last_rowner
& RWSEM_READER_OWNED
))
992 waiter
.last_rowner
&= RWSEM_RD_NONSPINNABLE
;
994 if (!rwsem_can_spin_on_owner(sem
, RWSEM_RD_NONSPINNABLE
))
998 * Undo read bias from down_read() and do optimistic spinning.
1000 atomic_long_add(-RWSEM_READER_BIAS
, &sem
->count
);
1002 if (rwsem_optimistic_spin(sem
, false)) {
1004 * Wake up other readers in the wait list if the front
1005 * waiter is a reader.
1007 if ((atomic_long_read(&sem
->count
) & RWSEM_FLAG_WAITERS
)) {
1008 raw_spin_lock_irq(&sem
->wait_lock
);
1009 if (!list_empty(&sem
->wait_list
))
1010 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
,
1012 raw_spin_unlock_irq(&sem
->wait_lock
);
1016 } else if (rwsem_reader_phase_trylock(sem
, waiter
.last_rowner
)) {
1021 waiter
.task
= current
;
1022 waiter
.type
= RWSEM_WAITING_FOR_READ
;
1023 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1025 raw_spin_lock_irq(&sem
->wait_lock
);
1026 if (list_empty(&sem
->wait_list
)) {
1028 * In case the wait queue is empty and the lock isn't owned
1029 * by a writer or has the handoff bit set, this reader can
1030 * exit the slowpath and return immediately as its
1031 * RWSEM_READER_BIAS has already been set in the count.
1033 if (adjustment
&& !(atomic_long_read(&sem
->count
) &
1034 (RWSEM_WRITER_MASK
| RWSEM_FLAG_HANDOFF
))) {
1035 raw_spin_unlock_irq(&sem
->wait_lock
);
1036 rwsem_set_reader_owned(sem
);
1037 lockevent_inc(rwsem_rlock_fast
);
1040 adjustment
+= RWSEM_FLAG_WAITERS
;
1042 list_add_tail(&waiter
.list
, &sem
->wait_list
);
1044 /* we're now waiting on the lock, but no longer actively locking */
1046 count
= atomic_long_add_return(adjustment
, &sem
->count
);
1048 count
= atomic_long_read(&sem
->count
);
1051 * If there are no active locks, wake the front queued process(es).
1053 * If there are no writers and we are first in the queue,
1054 * wake our own waiter to join the existing active readers !
1056 if (!(count
& RWSEM_LOCK_MASK
)) {
1057 clear_wr_nonspinnable(sem
);
1060 if (wake
|| (!(count
& RWSEM_WRITER_MASK
) &&
1061 (adjustment
& RWSEM_FLAG_WAITERS
)))
1062 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1064 raw_spin_unlock_irq(&sem
->wait_lock
);
1067 /* wait to be given the lock */
1069 set_current_state(state
);
1072 if (signal_pending_state(state
, current
)) {
1073 raw_spin_lock_irq(&sem
->wait_lock
);
1076 raw_spin_unlock_irq(&sem
->wait_lock
);
1080 lockevent_inc(rwsem_sleep_reader
);
1083 __set_current_state(TASK_RUNNING
);
1084 lockevent_inc(rwsem_rlock
);
1087 list_del(&waiter
.list
);
1088 if (list_empty(&sem
->wait_list
)) {
1089 atomic_long_andnot(RWSEM_FLAG_WAITERS
|RWSEM_FLAG_HANDOFF
,
1092 raw_spin_unlock_irq(&sem
->wait_lock
);
1093 __set_current_state(TASK_RUNNING
);
1094 lockevent_inc(rwsem_rlock_fail
);
1095 return ERR_PTR(-EINTR
);
1099 * This function is called by the a write lock owner. So the owner value
1100 * won't get changed by others.
1102 static inline void rwsem_disable_reader_optspin(struct rw_semaphore
*sem
,
1105 if (unlikely(disable
)) {
1106 atomic_long_or(RWSEM_RD_NONSPINNABLE
, &sem
->owner
);
1107 lockevent_inc(rwsem_opt_norspin
);
1112 * Wait until we successfully acquire the write lock
1114 static struct rw_semaphore
*
1115 rwsem_down_write_slowpath(struct rw_semaphore
*sem
, int state
)
1119 enum writer_wait_state wstate
;
1120 struct rwsem_waiter waiter
;
1121 struct rw_semaphore
*ret
= sem
;
1122 DEFINE_WAKE_Q(wake_q
);
1124 /* do optimistic spinning and steal lock if possible */
1125 if (rwsem_can_spin_on_owner(sem
, RWSEM_WR_NONSPINNABLE
) &&
1126 rwsem_optimistic_spin(sem
, true))
1130 * Disable reader optimistic spinning for this rwsem after
1131 * acquiring the write lock when the setting of the nonspinnable
1132 * bits are observed.
1134 disable_rspin
= atomic_long_read(&sem
->owner
) & RWSEM_NONSPINNABLE
;
1137 * Optimistic spinning failed, proceed to the slowpath
1138 * and block until we can acquire the sem.
1140 waiter
.task
= current
;
1141 waiter
.type
= RWSEM_WAITING_FOR_WRITE
;
1142 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1144 raw_spin_lock_irq(&sem
->wait_lock
);
1146 /* account for this before adding a new element to the list */
1147 wstate
= list_empty(&sem
->wait_list
) ? WRITER_FIRST
: WRITER_NOT_FIRST
;
1149 list_add_tail(&waiter
.list
, &sem
->wait_list
);
1151 /* we're now waiting on the lock */
1152 if (wstate
== WRITER_NOT_FIRST
) {
1153 count
= atomic_long_read(&sem
->count
);
1156 * If there were already threads queued before us and:
1157 * 1) there are no no active locks, wake the front
1158 * queued process(es) as the handoff bit might be set.
1159 * 2) there are no active writers and some readers, the lock
1160 * must be read owned; so we try to wake any read lock
1161 * waiters that were queued ahead of us.
1163 if (count
& RWSEM_WRITER_MASK
)
1166 rwsem_mark_wake(sem
, (count
& RWSEM_READER_MASK
)
1167 ? RWSEM_WAKE_READERS
1168 : RWSEM_WAKE_ANY
, &wake_q
);
1170 if (!wake_q_empty(&wake_q
)) {
1172 * We want to minimize wait_lock hold time especially
1173 * when a large number of readers are to be woken up.
1175 raw_spin_unlock_irq(&sem
->wait_lock
);
1177 wake_q_init(&wake_q
); /* Used again, reinit */
1178 raw_spin_lock_irq(&sem
->wait_lock
);
1181 atomic_long_or(RWSEM_FLAG_WAITERS
, &sem
->count
);
1185 /* wait until we successfully acquire the lock */
1186 set_current_state(state
);
1188 if (rwsem_try_write_lock(sem
, wstate
))
1191 raw_spin_unlock_irq(&sem
->wait_lock
);
1193 /* Block until there are no active lockers. */
1195 if (signal_pending_state(state
, current
))
1199 lockevent_inc(rwsem_sleep_writer
);
1200 set_current_state(state
);
1202 * If HANDOFF bit is set, unconditionally do
1205 if (wstate
== WRITER_HANDOFF
)
1208 if ((wstate
== WRITER_NOT_FIRST
) &&
1209 (rwsem_first_waiter(sem
) == &waiter
))
1210 wstate
= WRITER_FIRST
;
1212 count
= atomic_long_read(&sem
->count
);
1213 if (!(count
& RWSEM_LOCK_MASK
))
1217 * The setting of the handoff bit is deferred
1218 * until rwsem_try_write_lock() is called.
1220 if ((wstate
== WRITER_FIRST
) && (rt_task(current
) ||
1221 time_after(jiffies
, waiter
.timeout
))) {
1222 wstate
= WRITER_HANDOFF
;
1223 lockevent_inc(rwsem_wlock_handoff
);
1228 raw_spin_lock_irq(&sem
->wait_lock
);
1230 __set_current_state(TASK_RUNNING
);
1231 list_del(&waiter
.list
);
1232 rwsem_disable_reader_optspin(sem
, disable_rspin
);
1233 raw_spin_unlock_irq(&sem
->wait_lock
);
1234 lockevent_inc(rwsem_wlock
);
1239 __set_current_state(TASK_RUNNING
);
1240 raw_spin_lock_irq(&sem
->wait_lock
);
1241 list_del(&waiter
.list
);
1243 if (unlikely(wstate
== WRITER_HANDOFF
))
1244 atomic_long_add(-RWSEM_FLAG_HANDOFF
, &sem
->count
);
1246 if (list_empty(&sem
->wait_list
))
1247 atomic_long_andnot(RWSEM_FLAG_WAITERS
, &sem
->count
);
1249 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1250 raw_spin_unlock_irq(&sem
->wait_lock
);
1252 lockevent_inc(rwsem_wlock_fail
);
1254 return ERR_PTR(-EINTR
);
1258 * handle waking up a waiter on the semaphore
1259 * - up_read/up_write has decremented the active part of count if we come here
1261 static struct rw_semaphore
*rwsem_wake(struct rw_semaphore
*sem
, long count
)
1263 unsigned long flags
;
1264 DEFINE_WAKE_Q(wake_q
);
1266 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1268 if (!list_empty(&sem
->wait_list
))
1269 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1271 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1278 * downgrade a write lock into a read lock
1279 * - caller incremented waiting part of count and discovered it still negative
1280 * - just wake up any readers at the front of the queue
1282 static struct rw_semaphore
*rwsem_downgrade_wake(struct rw_semaphore
*sem
)
1284 unsigned long flags
;
1285 DEFINE_WAKE_Q(wake_q
);
1287 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1289 if (!list_empty(&sem
->wait_list
))
1290 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
, &wake_q
);
1292 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1301 inline void __down_read(struct rw_semaphore
*sem
)
1303 if (!rwsem_read_trylock(sem
)) {
1304 rwsem_down_read_slowpath(sem
, TASK_UNINTERRUPTIBLE
);
1305 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1307 rwsem_set_reader_owned(sem
);
1311 static inline int __down_read_killable(struct rw_semaphore
*sem
)
1313 if (!rwsem_read_trylock(sem
)) {
1314 if (IS_ERR(rwsem_down_read_slowpath(sem
, TASK_KILLABLE
)))
1316 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1318 rwsem_set_reader_owned(sem
);
1323 static inline int __down_read_trylock(struct rw_semaphore
*sem
)
1326 * Optimize for the case when the rwsem is not locked at all.
1328 long tmp
= RWSEM_UNLOCKED_VALUE
;
1331 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1332 tmp
+ RWSEM_READER_BIAS
)) {
1333 rwsem_set_reader_owned(sem
);
1336 } while (!(tmp
& RWSEM_READ_FAILED_MASK
));
1343 static inline void __down_write(struct rw_semaphore
*sem
)
1345 long tmp
= RWSEM_UNLOCKED_VALUE
;
1347 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1348 RWSEM_WRITER_LOCKED
)))
1349 rwsem_down_write_slowpath(sem
, TASK_UNINTERRUPTIBLE
);
1351 rwsem_set_owner(sem
);
1354 static inline int __down_write_killable(struct rw_semaphore
*sem
)
1356 long tmp
= RWSEM_UNLOCKED_VALUE
;
1358 if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1359 RWSEM_WRITER_LOCKED
))) {
1360 if (IS_ERR(rwsem_down_write_slowpath(sem
, TASK_KILLABLE
)))
1363 rwsem_set_owner(sem
);
1368 static inline int __down_write_trylock(struct rw_semaphore
*sem
)
1370 long tmp
= RWSEM_UNLOCKED_VALUE
;
1372 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1373 RWSEM_WRITER_LOCKED
)) {
1374 rwsem_set_owner(sem
);
1381 * unlock after reading
1383 inline void __up_read(struct rw_semaphore
*sem
)
1387 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1388 rwsem_clear_reader_owned(sem
);
1389 tmp
= atomic_long_add_return_release(-RWSEM_READER_BIAS
, &sem
->count
);
1390 DEBUG_RWSEMS_WARN_ON(tmp
< 0, sem
);
1391 if (unlikely((tmp
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_WAITERS
)) ==
1392 RWSEM_FLAG_WAITERS
)) {
1393 clear_wr_nonspinnable(sem
);
1394 rwsem_wake(sem
, tmp
);
1399 * unlock after writing
1401 static inline void __up_write(struct rw_semaphore
*sem
)
1406 * sem->owner may differ from current if the ownership is transferred
1407 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1409 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem
) != current
) &&
1410 !rwsem_test_oflags(sem
, RWSEM_NONSPINNABLE
), sem
);
1411 rwsem_clear_owner(sem
);
1412 tmp
= atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED
, &sem
->count
);
1413 if (unlikely(tmp
& RWSEM_FLAG_WAITERS
))
1414 rwsem_wake(sem
, tmp
);
1418 * downgrade write lock to read lock
1420 static inline void __downgrade_write(struct rw_semaphore
*sem
)
1425 * When downgrading from exclusive to shared ownership,
1426 * anything inside the write-locked region cannot leak
1427 * into the read side. In contrast, anything in the
1428 * read-locked region is ok to be re-ordered into the
1429 * write side. As such, rely on RELEASE semantics.
1431 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem
) != current
, sem
);
1432 tmp
= atomic_long_fetch_add_release(
1433 -RWSEM_WRITER_LOCKED
+RWSEM_READER_BIAS
, &sem
->count
);
1434 rwsem_set_reader_owned(sem
);
1435 if (tmp
& RWSEM_FLAG_WAITERS
)
1436 rwsem_downgrade_wake(sem
);
1442 void __sched
down_read(struct rw_semaphore
*sem
)
1445 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1447 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1449 EXPORT_SYMBOL(down_read
);
1451 int __sched
down_read_killable(struct rw_semaphore
*sem
)
1454 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1456 if (LOCK_CONTENDED_RETURN(sem
, __down_read_trylock
, __down_read_killable
)) {
1457 rwsem_release(&sem
->dep_map
, 1, _RET_IP_
);
1463 EXPORT_SYMBOL(down_read_killable
);
1466 * trylock for reading -- returns 1 if successful, 0 if contention
1468 int down_read_trylock(struct rw_semaphore
*sem
)
1470 int ret
= __down_read_trylock(sem
);
1473 rwsem_acquire_read(&sem
->dep_map
, 0, 1, _RET_IP_
);
1476 EXPORT_SYMBOL(down_read_trylock
);
1481 void __sched
down_write(struct rw_semaphore
*sem
)
1484 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1485 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1487 EXPORT_SYMBOL(down_write
);
1492 int __sched
down_write_killable(struct rw_semaphore
*sem
)
1495 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1497 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1498 __down_write_killable
)) {
1499 rwsem_release(&sem
->dep_map
, 1, _RET_IP_
);
1505 EXPORT_SYMBOL(down_write_killable
);
1508 * trylock for writing -- returns 1 if successful, 0 if contention
1510 int down_write_trylock(struct rw_semaphore
*sem
)
1512 int ret
= __down_write_trylock(sem
);
1515 rwsem_acquire(&sem
->dep_map
, 0, 1, _RET_IP_
);
1519 EXPORT_SYMBOL(down_write_trylock
);
1522 * release a read lock
1524 void up_read(struct rw_semaphore
*sem
)
1526 rwsem_release(&sem
->dep_map
, 1, _RET_IP_
);
1529 EXPORT_SYMBOL(up_read
);
1532 * release a write lock
1534 void up_write(struct rw_semaphore
*sem
)
1536 rwsem_release(&sem
->dep_map
, 1, _RET_IP_
);
1539 EXPORT_SYMBOL(up_write
);
1542 * downgrade write lock to read lock
1544 void downgrade_write(struct rw_semaphore
*sem
)
1546 lock_downgrade(&sem
->dep_map
, _RET_IP_
);
1547 __downgrade_write(sem
);
1549 EXPORT_SYMBOL(downgrade_write
);
1551 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1553 void down_read_nested(struct rw_semaphore
*sem
, int subclass
)
1556 rwsem_acquire_read(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1557 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1559 EXPORT_SYMBOL(down_read_nested
);
1561 void _down_write_nest_lock(struct rw_semaphore
*sem
, struct lockdep_map
*nest
)
1564 rwsem_acquire_nest(&sem
->dep_map
, 0, 0, nest
, _RET_IP_
);
1565 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1567 EXPORT_SYMBOL(_down_write_nest_lock
);
1569 void down_read_non_owner(struct rw_semaphore
*sem
)
1573 __rwsem_set_reader_owned(sem
, NULL
);
1575 EXPORT_SYMBOL(down_read_non_owner
);
1577 void down_write_nested(struct rw_semaphore
*sem
, int subclass
)
1580 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1581 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1583 EXPORT_SYMBOL(down_write_nested
);
1585 int __sched
down_write_killable_nested(struct rw_semaphore
*sem
, int subclass
)
1588 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1590 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1591 __down_write_killable
)) {
1592 rwsem_release(&sem
->dep_map
, 1, _RET_IP_
);
1598 EXPORT_SYMBOL(down_write_killable_nested
);
1600 void up_read_non_owner(struct rw_semaphore
*sem
)
1602 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1605 EXPORT_SYMBOL(up_read_non_owner
);