1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn
;
21 EXPORT_SYMBOL(blk_max_low_pfn
);
23 unsigned long blk_max_pfn
;
25 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
27 q
->rq_timeout
= timeout
;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits
*lim
)
40 lim
->max_segments
= BLK_MAX_SEGMENTS
;
41 lim
->max_discard_segments
= 1;
42 lim
->max_integrity_segments
= 0;
43 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
44 lim
->virt_boundary_mask
= 0;
45 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
46 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
47 lim
->max_dev_sectors
= 0;
48 lim
->chunk_sectors
= 0;
49 lim
->max_write_same_sectors
= 0;
50 lim
->max_write_zeroes_sectors
= 0;
51 lim
->max_zone_append_sectors
= 0;
52 lim
->max_discard_sectors
= 0;
53 lim
->max_hw_discard_sectors
= 0;
54 lim
->discard_granularity
= 0;
55 lim
->discard_alignment
= 0;
56 lim
->discard_misaligned
= 0;
57 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
58 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
59 lim
->alignment_offset
= 0;
62 lim
->zoned
= BLK_ZONED_NONE
;
64 EXPORT_SYMBOL(blk_set_default_limits
);
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim: the queue_limits structure to reset
71 * Returns a queue_limit struct to its default state. Should be used
72 * by stacking drivers like DM that have no internal limits.
74 void blk_set_stacking_limits(struct queue_limits
*lim
)
76 blk_set_default_limits(lim
);
78 /* Inherit limits from component devices */
79 lim
->max_segments
= USHRT_MAX
;
80 lim
->max_discard_segments
= USHRT_MAX
;
81 lim
->max_hw_sectors
= UINT_MAX
;
82 lim
->max_segment_size
= UINT_MAX
;
83 lim
->max_sectors
= UINT_MAX
;
84 lim
->max_dev_sectors
= UINT_MAX
;
85 lim
->max_write_same_sectors
= UINT_MAX
;
86 lim
->max_write_zeroes_sectors
= UINT_MAX
;
87 lim
->max_zone_append_sectors
= UINT_MAX
;
89 EXPORT_SYMBOL(blk_set_stacking_limits
);
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
97 * Different hardware can have different requirements as to what pages
98 * it can do I/O directly to. A low level driver can call
99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 * buffers for doing I/O to pages residing above @max_addr.
102 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
104 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
107 q
->bounce_gfp
= GFP_NOIO
;
108 #if BITS_PER_LONG == 64
110 * Assume anything <= 4GB can be handled by IOMMU. Actually
111 * some IOMMUs can handle everything, but I don't know of a
112 * way to test this here.
114 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
116 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
118 if (b_pfn
< blk_max_low_pfn
)
120 q
->limits
.bounce_pfn
= b_pfn
;
123 init_emergency_isa_pool();
124 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
125 q
->limits
.bounce_pfn
= b_pfn
;
128 EXPORT_SYMBOL(blk_queue_bounce_limit
);
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q: the request queue for the device
133 * @max_hw_sectors: max hardware sectors in the usual 512b unit
136 * Enables a low level driver to set a hard upper limit,
137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138 * the device driver based upon the capabilities of the I/O
141 * max_dev_sectors is a hard limit imposed by the storage device for
142 * READ/WRITE requests. It is set by the disk driver.
144 * max_sectors is a soft limit imposed by the block layer for
145 * filesystem type requests. This value can be overridden on a
146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 * The soft limit can not exceed max_hw_sectors.
149 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
151 struct queue_limits
*limits
= &q
->limits
;
152 unsigned int max_sectors
;
154 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
155 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
156 printk(KERN_INFO
"%s: set to minimum %d\n",
157 __func__
, max_hw_sectors
);
160 limits
->max_hw_sectors
= max_hw_sectors
;
161 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
162 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
163 limits
->max_sectors
= max_sectors
;
164 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
166 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q: the request queue for the device
171 * @chunk_sectors: chunk sectors in the usual 512b unit
174 * If a driver doesn't want IOs to cross a given chunk size, it can set
175 * this limit and prevent merging across chunks. Note that the chunk size
176 * must currently be a power-of-2 in sectors. Also note that the block
177 * layer must accept a page worth of data at any offset. So if the
178 * crossing of chunks is a hard limitation in the driver, it must still be
179 * prepared to split single page bios.
181 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
183 BUG_ON(!is_power_of_2(chunk_sectors
));
184 q
->limits
.chunk_sectors
= chunk_sectors
;
186 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
189 * blk_queue_max_discard_sectors - set max sectors for a single discard
190 * @q: the request queue for the device
191 * @max_discard_sectors: maximum number of sectors to discard
193 void blk_queue_max_discard_sectors(struct request_queue
*q
,
194 unsigned int max_discard_sectors
)
196 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
197 q
->limits
.max_discard_sectors
= max_discard_sectors
;
199 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
202 * blk_queue_max_write_same_sectors - set max sectors for a single write same
203 * @q: the request queue for the device
204 * @max_write_same_sectors: maximum number of sectors to write per command
206 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
207 unsigned int max_write_same_sectors
)
209 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
211 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
214 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
216 * @q: the request queue for the device
217 * @max_write_zeroes_sectors: maximum number of sectors to write per command
219 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
220 unsigned int max_write_zeroes_sectors
)
222 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
224 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
227 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
228 * @q: the request queue for the device
229 * @max_zone_append_sectors: maximum number of sectors to write per command
231 void blk_queue_max_zone_append_sectors(struct request_queue
*q
,
232 unsigned int max_zone_append_sectors
)
234 unsigned int max_sectors
;
236 if (WARN_ON(!blk_queue_is_zoned(q
)))
239 max_sectors
= min(q
->limits
.max_hw_sectors
, max_zone_append_sectors
);
240 max_sectors
= min(q
->limits
.chunk_sectors
, max_sectors
);
243 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
244 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
245 * or the max_hw_sectors limit not set.
247 WARN_ON(!max_sectors
);
249 q
->limits
.max_zone_append_sectors
= max_sectors
;
251 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors
);
254 * blk_queue_max_segments - set max hw segments for a request for this queue
255 * @q: the request queue for the device
256 * @max_segments: max number of segments
259 * Enables a low level driver to set an upper limit on the number of
260 * hw data segments in a request.
262 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
266 printk(KERN_INFO
"%s: set to minimum %d\n",
267 __func__
, max_segments
);
270 q
->limits
.max_segments
= max_segments
;
272 EXPORT_SYMBOL(blk_queue_max_segments
);
275 * blk_queue_max_discard_segments - set max segments for discard requests
276 * @q: the request queue for the device
277 * @max_segments: max number of segments
280 * Enables a low level driver to set an upper limit on the number of
281 * segments in a discard request.
283 void blk_queue_max_discard_segments(struct request_queue
*q
,
284 unsigned short max_segments
)
286 q
->limits
.max_discard_segments
= max_segments
;
288 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
291 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
292 * @q: the request queue for the device
293 * @max_size: max size of segment in bytes
296 * Enables a low level driver to set an upper limit on the size of a
299 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
301 if (max_size
< PAGE_SIZE
) {
302 max_size
= PAGE_SIZE
;
303 printk(KERN_INFO
"%s: set to minimum %d\n",
307 /* see blk_queue_virt_boundary() for the explanation */
308 WARN_ON_ONCE(q
->limits
.virt_boundary_mask
);
310 q
->limits
.max_segment_size
= max_size
;
312 EXPORT_SYMBOL(blk_queue_max_segment_size
);
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q: the request queue for the device
317 * @size: the logical block size, in bytes
320 * This should be set to the lowest possible block size that the
321 * storage device can address. The default of 512 covers most
324 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned int size
)
326 q
->limits
.logical_block_size
= size
;
328 if (q
->limits
.physical_block_size
< size
)
329 q
->limits
.physical_block_size
= size
;
331 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
332 q
->limits
.io_min
= q
->limits
.physical_block_size
;
334 EXPORT_SYMBOL(blk_queue_logical_block_size
);
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q: the request queue for the device
339 * @size: the physical block size, in bytes
342 * This should be set to the lowest possible sector size that the
343 * hardware can operate on without reverting to read-modify-write
346 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
348 q
->limits
.physical_block_size
= size
;
350 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
351 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
353 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
354 q
->limits
.io_min
= q
->limits
.physical_block_size
;
356 EXPORT_SYMBOL(blk_queue_physical_block_size
);
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q: the request queue for the device
361 * @offset: alignment offset in bytes
364 * Some devices are naturally misaligned to compensate for things like
365 * the legacy DOS partition table 63-sector offset. Low-level drivers
366 * should call this function for devices whose first sector is not
369 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
371 q
->limits
.alignment_offset
=
372 offset
& (q
->limits
.physical_block_size
- 1);
373 q
->limits
.misaligned
= 0;
375 EXPORT_SYMBOL(blk_queue_alignment_offset
);
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min: smallest I/O size in bytes
383 * Some devices have an internal block size bigger than the reported
384 * hardware sector size. This function can be used to signal the
385 * smallest I/O the device can perform without incurring a performance
388 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
390 limits
->io_min
= min
;
392 if (limits
->io_min
< limits
->logical_block_size
)
393 limits
->io_min
= limits
->logical_block_size
;
395 if (limits
->io_min
< limits
->physical_block_size
)
396 limits
->io_min
= limits
->physical_block_size
;
398 EXPORT_SYMBOL(blk_limits_io_min
);
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q: the request queue for the device
403 * @min: smallest I/O size in bytes
406 * Storage devices may report a granularity or preferred minimum I/O
407 * size which is the smallest request the device can perform without
408 * incurring a performance penalty. For disk drives this is often the
409 * physical block size. For RAID arrays it is often the stripe chunk
410 * size. A properly aligned multiple of minimum_io_size is the
411 * preferred request size for workloads where a high number of I/O
412 * operations is desired.
414 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
416 blk_limits_io_min(&q
->limits
, min
);
418 EXPORT_SYMBOL(blk_queue_io_min
);
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt: smallest I/O size in bytes
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
433 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
435 limits
->io_opt
= opt
;
437 EXPORT_SYMBOL(blk_limits_io_opt
);
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q: the request queue for the device
442 * @opt: optimal request size in bytes
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
452 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
454 blk_limits_io_opt(&q
->limits
, opt
);
456 EXPORT_SYMBOL(blk_queue_io_opt
);
459 * blk_stack_limits - adjust queue_limits for stacked devices
460 * @t: the stacking driver limits (top device)
461 * @b: the underlying queue limits (bottom, component device)
462 * @start: first data sector within component device
465 * This function is used by stacking drivers like MD and DM to ensure
466 * that all component devices have compatible block sizes and
467 * alignments. The stacking driver must provide a queue_limits
468 * struct (top) and then iteratively call the stacking function for
469 * all component (bottom) devices. The stacking function will
470 * attempt to combine the values and ensure proper alignment.
472 * Returns 0 if the top and bottom queue_limits are compatible. The
473 * top device's block sizes and alignment offsets may be adjusted to
474 * ensure alignment with the bottom device. If no compatible sizes
475 * and alignments exist, -1 is returned and the resulting top
476 * queue_limits will have the misaligned flag set to indicate that
477 * the alignment_offset is undefined.
479 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
482 unsigned int top
, bottom
, alignment
, ret
= 0;
484 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
485 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
486 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
487 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
488 b
->max_write_same_sectors
);
489 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
490 b
->max_write_zeroes_sectors
);
491 t
->max_zone_append_sectors
= min(t
->max_zone_append_sectors
,
492 b
->max_zone_append_sectors
);
493 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
495 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
496 b
->seg_boundary_mask
);
497 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
498 b
->virt_boundary_mask
);
500 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
501 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
502 b
->max_discard_segments
);
503 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
504 b
->max_integrity_segments
);
506 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
507 b
->max_segment_size
);
509 t
->misaligned
|= b
->misaligned
;
511 alignment
= queue_limit_alignment_offset(b
, start
);
513 /* Bottom device has different alignment. Check that it is
514 * compatible with the current top alignment.
516 if (t
->alignment_offset
!= alignment
) {
518 top
= max(t
->physical_block_size
, t
->io_min
)
519 + t
->alignment_offset
;
520 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
522 /* Verify that top and bottom intervals line up */
523 if (max(top
, bottom
) % min(top
, bottom
)) {
529 t
->logical_block_size
= max(t
->logical_block_size
,
530 b
->logical_block_size
);
532 t
->physical_block_size
= max(t
->physical_block_size
,
533 b
->physical_block_size
);
535 t
->io_min
= max(t
->io_min
, b
->io_min
);
536 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
538 /* Physical block size a multiple of the logical block size? */
539 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
540 t
->physical_block_size
= t
->logical_block_size
;
545 /* Minimum I/O a multiple of the physical block size? */
546 if (t
->io_min
& (t
->physical_block_size
- 1)) {
547 t
->io_min
= t
->physical_block_size
;
552 /* Optimal I/O a multiple of the physical block size? */
553 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
559 t
->raid_partial_stripes_expensive
=
560 max(t
->raid_partial_stripes_expensive
,
561 b
->raid_partial_stripes_expensive
);
563 /* Find lowest common alignment_offset */
564 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
565 % max(t
->physical_block_size
, t
->io_min
);
567 /* Verify that new alignment_offset is on a logical block boundary */
568 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
573 /* Discard alignment and granularity */
574 if (b
->discard_granularity
) {
575 alignment
= queue_limit_discard_alignment(b
, start
);
577 if (t
->discard_granularity
!= 0 &&
578 t
->discard_alignment
!= alignment
) {
579 top
= t
->discard_granularity
+ t
->discard_alignment
;
580 bottom
= b
->discard_granularity
+ alignment
;
582 /* Verify that top and bottom intervals line up */
583 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
584 t
->discard_misaligned
= 1;
587 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
588 b
->max_discard_sectors
);
589 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
590 b
->max_hw_discard_sectors
);
591 t
->discard_granularity
= max(t
->discard_granularity
,
592 b
->discard_granularity
);
593 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
594 t
->discard_granularity
;
597 if (b
->chunk_sectors
)
598 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
601 t
->zoned
= max(t
->zoned
, b
->zoned
);
604 EXPORT_SYMBOL(blk_stack_limits
);
607 * disk_stack_limits - adjust queue limits for stacked drivers
608 * @disk: MD/DM gendisk (top)
609 * @bdev: the underlying block device (bottom)
610 * @offset: offset to beginning of data within component device
613 * Merges the limits for a top level gendisk and a bottom level
616 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
619 struct request_queue
*t
= disk
->queue
;
621 if (blk_stack_limits(&t
->limits
, &bdev_get_queue(bdev
)->limits
,
622 get_start_sect(bdev
) + (offset
>> 9)) < 0) {
623 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
625 disk_name(disk
, 0, top
);
626 bdevname(bdev
, bottom
);
628 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
632 t
->backing_dev_info
->io_pages
=
633 t
->limits
.max_sectors
>> (PAGE_SHIFT
- 9);
635 EXPORT_SYMBOL(disk_stack_limits
);
638 * blk_queue_update_dma_pad - update pad mask
639 * @q: the request queue for the device
642 * Update dma pad mask.
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
647 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
649 if (mask
> q
->dma_pad_mask
)
650 q
->dma_pad_mask
= mask
;
652 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
655 * blk_queue_segment_boundary - set boundary rules for segment merging
656 * @q: the request queue for the device
657 * @mask: the memory boundary mask
659 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
661 if (mask
< PAGE_SIZE
- 1) {
662 mask
= PAGE_SIZE
- 1;
663 printk(KERN_INFO
"%s: set to minimum %lx\n",
667 q
->limits
.seg_boundary_mask
= mask
;
669 EXPORT_SYMBOL(blk_queue_segment_boundary
);
672 * blk_queue_virt_boundary - set boundary rules for bio merging
673 * @q: the request queue for the device
674 * @mask: the memory boundary mask
676 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
678 q
->limits
.virt_boundary_mask
= mask
;
681 * Devices that require a virtual boundary do not support scatter/gather
682 * I/O natively, but instead require a descriptor list entry for each
683 * page (which might not be idential to the Linux PAGE_SIZE). Because
684 * of that they are not limited by our notion of "segment size".
687 q
->limits
.max_segment_size
= UINT_MAX
;
689 EXPORT_SYMBOL(blk_queue_virt_boundary
);
692 * blk_queue_dma_alignment - set dma length and memory alignment
693 * @q: the request queue for the device
694 * @mask: alignment mask
697 * set required memory and length alignment for direct dma transactions.
698 * this is used when building direct io requests for the queue.
701 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
703 q
->dma_alignment
= mask
;
705 EXPORT_SYMBOL(blk_queue_dma_alignment
);
708 * blk_queue_update_dma_alignment - update dma length and memory alignment
709 * @q: the request queue for the device
710 * @mask: alignment mask
713 * update required memory and length alignment for direct dma transactions.
714 * If the requested alignment is larger than the current alignment, then
715 * the current queue alignment is updated to the new value, otherwise it
716 * is left alone. The design of this is to allow multiple objects
717 * (driver, device, transport etc) to set their respective
718 * alignments without having them interfere.
721 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
723 BUG_ON(mask
> PAGE_SIZE
);
725 if (mask
> q
->dma_alignment
)
726 q
->dma_alignment
= mask
;
728 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
731 * blk_set_queue_depth - tell the block layer about the device queue depth
732 * @q: the request queue for the device
733 * @depth: queue depth
736 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
738 q
->queue_depth
= depth
;
739 rq_qos_queue_depth_changed(q
);
741 EXPORT_SYMBOL(blk_set_queue_depth
);
744 * blk_queue_write_cache - configure queue's write cache
745 * @q: the request queue for the device
746 * @wc: write back cache on or off
747 * @fua: device supports FUA writes, if true
749 * Tell the block layer about the write cache of @q.
751 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
754 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
756 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
758 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
760 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
762 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
764 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
767 * blk_queue_required_elevator_features - Set a queue required elevator features
768 * @q: the request queue for the target device
769 * @features: Required elevator features OR'ed together
771 * Tell the block layer that for the device controlled through @q, only the
772 * only elevators that can be used are those that implement at least the set of
773 * features specified by @features.
775 void blk_queue_required_elevator_features(struct request_queue
*q
,
776 unsigned int features
)
778 q
->required_elevator_features
= features
;
780 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features
);
783 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
784 * @q: the request queue for the device
785 * @dev: the device pointer for dma
787 * Tell the block layer about merging the segments by dma map of @q.
789 bool blk_queue_can_use_dma_map_merging(struct request_queue
*q
,
792 unsigned long boundary
= dma_get_merge_boundary(dev
);
797 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
798 blk_queue_virt_boundary(q
, boundary
);
802 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging
);
804 static int __init
blk_settings_init(void)
806 blk_max_low_pfn
= max_low_pfn
- 1;
807 blk_max_pfn
= max_pfn
- 1;
810 subsys_initcall(blk_settings_init
);