1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "amd64_edac.h"
3 #include <asm/amd_nb.h>
5 static struct edac_pci_ctl_info
*pci_ctl
;
8 * Set by command line parameter. If BIOS has enabled the ECC, this override is
9 * cleared to prevent re-enabling the hardware by this driver.
11 static int ecc_enable_override
;
12 module_param(ecc_enable_override
, int, 0644);
14 static struct msr __percpu
*msrs
;
16 static struct amd64_family_type
*fam_type
;
19 static struct ecc_settings
**ecc_stngs
;
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
26 *FIXME: Produce a better mapping/linearisation.
28 static const struct scrubrate
{
29 u32 scrubval
; /* bit pattern for scrub rate */
30 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
32 { 0x01, 1600000000UL},
54 { 0x00, 0UL}, /* scrubbing off */
57 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
58 u32
*val
, const char *func
)
62 err
= pci_read_config_dword(pdev
, offset
, val
);
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func
, PCI_FUNC(pdev
->devfn
), offset
);
70 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
71 u32 val
, const char *func
)
75 err
= pci_write_config_dword(pdev
, offset
, val
);
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func
, PCI_FUNC(pdev
->devfn
), offset
);
84 * Select DCT to which PCI cfg accesses are routed
86 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
90 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
91 reg
&= (pvt
->model
== 0x30) ? ~3 : ~1;
93 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
98 * Depending on the family, F2 DCT reads need special handling:
100 * K8: has a single DCT only and no address offsets >= 0x100
102 * F10h: each DCT has its own set of regs
106 * F16h: has only 1 DCT
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt
*pvt
, u8 dct
,
111 int offset
, u32
*val
)
115 if (dct
|| offset
>= 0x100)
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
126 if (dct_ganging_enabled(pvt
))
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
138 dct
= (dct
&& pvt
->model
== 0x30) ? 3 : dct
;
139 f15h_select_dct(pvt
, dct
);
150 return amd64_read_pci_cfg(pvt
->F2
, offset
, val
);
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
167 static inline void __f17h_set_scrubval(struct amd64_pvt
*pvt
, u32 scrubval
)
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
174 if (scrubval
>= 0x5 && scrubval
<= 0x14) {
176 pci_write_bits32(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, scrubval
, 0xF);
177 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 1, 0x1);
179 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 0, 0x1);
183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 * issue. If requested is too big, then use last maximum value found.
186 static int __set_scrub_rate(struct amd64_pvt
*pvt
, u32 new_bw
, u32 min_rate
)
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
200 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
205 if (scrubrates
[i
].scrubval
< min_rate
)
208 if (scrubrates
[i
].bandwidth
<= new_bw
)
212 scrubval
= scrubrates
[i
].scrubval
;
215 __f17h_set_scrubval(pvt
, scrubval
);
216 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x60) {
217 f15h_select_dct(pvt
, 0);
218 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
219 f15h_select_dct(pvt
, 1);
220 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
222 pci_write_bits32(pvt
->F3
, SCRCTRL
, scrubval
, 0x001F);
226 return scrubrates
[i
].bandwidth
;
231 static int set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
233 struct amd64_pvt
*pvt
= mci
->pvt_info
;
234 u32 min_scrubrate
= 0x5;
239 if (pvt
->fam
== 0x15) {
241 if (pvt
->model
< 0x10)
242 f15h_select_dct(pvt
, 0);
244 if (pvt
->model
== 0x60)
247 return __set_scrub_rate(pvt
, bw
, min_scrubrate
);
250 static int get_scrub_rate(struct mem_ctl_info
*mci
)
252 struct amd64_pvt
*pvt
= mci
->pvt_info
;
253 int i
, retval
= -EINVAL
;
257 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_BASE_ADDR
, &scrubval
);
258 if (scrubval
& BIT(0)) {
259 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, &scrubval
);
265 } else if (pvt
->fam
== 0x15) {
267 if (pvt
->model
< 0x10)
268 f15h_select_dct(pvt
, 0);
270 if (pvt
->model
== 0x60)
271 amd64_read_pci_cfg(pvt
->F2
, F15H_M60H_SCRCTRL
, &scrubval
);
273 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
275 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
278 scrubval
= scrubval
& 0x001F;
280 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
281 if (scrubrates
[i
].scrubval
== scrubval
) {
282 retval
= scrubrates
[i
].bandwidth
;
290 * returns true if the SysAddr given by sys_addr matches the
291 * DRAM base/limit associated with node_id
293 static bool base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
, u8 nid
)
297 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
298 * all ones if the most significant implemented address bit is 1.
299 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
300 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
301 * Application Programming.
303 addr
= sys_addr
& 0x000000ffffffffffull
;
305 return ((addr
>= get_dram_base(pvt
, nid
)) &&
306 (addr
<= get_dram_limit(pvt
, nid
)));
310 * Attempt to map a SysAddr to a node. On success, return a pointer to the
311 * mem_ctl_info structure for the node that the SysAddr maps to.
313 * On failure, return NULL.
315 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
318 struct amd64_pvt
*pvt
;
323 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
324 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 * The value of this field should be the same for all DRAM Base
330 * registers. Therefore we arbitrarily choose to read it from the
331 * register for node 0.
333 intlv_en
= dram_intlv_en(pvt
, 0);
336 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
337 if (base_limit_match(pvt
, sys_addr
, node_id
))
343 if (unlikely((intlv_en
!= 0x01) &&
344 (intlv_en
!= 0x03) &&
345 (intlv_en
!= 0x07))) {
346 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
350 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
352 for (node_id
= 0; ; ) {
353 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
354 break; /* intlv_sel field matches */
356 if (++node_id
>= DRAM_RANGES
)
360 /* sanity test for sys_addr */
361 if (unlikely(!base_limit_match(pvt
, sys_addr
, node_id
))) {
362 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
363 "range for node %d with node interleaving enabled.\n",
364 __func__
, sys_addr
, node_id
);
369 return edac_mc_find((int)node_id
);
372 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
373 (unsigned long)sys_addr
);
379 * compute the CS base address of the @csrow on the DRAM controller @dct.
380 * For details see F2x[5C:40] in the processor's BKDG
382 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
383 u64
*base
, u64
*mask
)
385 u64 csbase
, csmask
, base_bits
, mask_bits
;
388 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
389 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
390 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
391 base_bits
= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
392 mask_bits
= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
396 * F16h and F15h, models 30h and later need two addr_shift values:
397 * 8 for high and 6 for low (cf. F16h BKDG).
399 } else if (pvt
->fam
== 0x16 ||
400 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
401 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
402 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
404 *base
= (csbase
& GENMASK_ULL(15, 5)) << 6;
405 *base
|= (csbase
& GENMASK_ULL(30, 19)) << 8;
408 /* poke holes for the csmask */
409 *mask
&= ~((GENMASK_ULL(15, 5) << 6) |
410 (GENMASK_ULL(30, 19) << 8));
412 *mask
|= (csmask
& GENMASK_ULL(15, 5)) << 6;
413 *mask
|= (csmask
& GENMASK_ULL(30, 19)) << 8;
417 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
418 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
421 if (pvt
->fam
== 0x15)
422 base_bits
= mask_bits
=
423 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
425 base_bits
= mask_bits
=
426 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
429 *base
= (csbase
& base_bits
) << addr_shift
;
432 /* poke holes for the csmask */
433 *mask
&= ~(mask_bits
<< addr_shift
);
435 *mask
|= (csmask
& mask_bits
) << addr_shift
;
438 #define for_each_chip_select(i, dct, pvt) \
439 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
441 #define chip_select_base(i, dct, pvt) \
442 pvt->csels[dct].csbases[i]
444 #define for_each_chip_select_mask(i, dct, pvt) \
445 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
447 #define for_each_umc(i) \
448 for (i = 0; i < fam_type->max_mcs; i++)
451 * @input_addr is an InputAddr associated with the node given by mci. Return the
452 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
456 struct amd64_pvt
*pvt
;
462 for_each_chip_select(csrow
, 0, pvt
) {
463 if (!csrow_enabled(csrow
, 0, pvt
))
466 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
470 if ((input_addr
& mask
) == (base
& mask
)) {
471 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
472 (unsigned long)input_addr
, csrow
,
478 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
479 (unsigned long)input_addr
, pvt
->mc_node_id
);
485 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
486 * for the node represented by mci. Info is passed back in *hole_base,
487 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
488 * info is invalid. Info may be invalid for either of the following reasons:
490 * - The revision of the node is not E or greater. In this case, the DRAM Hole
491 * Address Register does not exist.
493 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
494 * indicating that its contents are not valid.
496 * The values passed back in *hole_base, *hole_offset, and *hole_size are
497 * complete 32-bit values despite the fact that the bitfields in the DHAR
498 * only represent bits 31-24 of the base and offset values.
500 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
501 u64
*hole_offset
, u64
*hole_size
)
503 struct amd64_pvt
*pvt
= mci
->pvt_info
;
505 /* only revE and later have the DRAM Hole Address Register */
506 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
507 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
508 pvt
->ext_model
, pvt
->mc_node_id
);
512 /* valid for Fam10h and above */
513 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
514 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
518 if (!dhar_valid(pvt
)) {
519 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
524 /* This node has Memory Hoisting */
526 /* +------------------+--------------------+--------------------+-----
527 * | memory | DRAM hole | relocated |
528 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
530 * | | | [0x100000000, |
531 * | | | (0x100000000+ |
532 * | | | (0xffffffff-x))] |
533 * +------------------+--------------------+--------------------+-----
535 * Above is a diagram of physical memory showing the DRAM hole and the
536 * relocated addresses from the DRAM hole. As shown, the DRAM hole
537 * starts at address x (the base address) and extends through address
538 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
539 * addresses in the hole so that they start at 0x100000000.
542 *hole_base
= dhar_base(pvt
);
543 *hole_size
= (1ULL << 32) - *hole_base
;
545 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
546 : k8_dhar_offset(pvt
);
548 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
549 pvt
->mc_node_id
, (unsigned long)*hole_base
,
550 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
554 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
557 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
558 * assumed that sys_addr maps to the node given by mci.
560 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
561 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
562 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
563 * then it is also involved in translating a SysAddr to a DramAddr. Sections
564 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
565 * These parts of the documentation are unclear. I interpret them as follows:
567 * When node n receives a SysAddr, it processes the SysAddr as follows:
569 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
570 * Limit registers for node n. If the SysAddr is not within the range
571 * specified by the base and limit values, then node n ignores the Sysaddr
572 * (since it does not map to node n). Otherwise continue to step 2 below.
574 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
575 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
576 * the range of relocated addresses (starting at 0x100000000) from the DRAM
577 * hole. If not, skip to step 3 below. Else get the value of the
578 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
579 * offset defined by this value from the SysAddr.
581 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
582 * Base register for node n. To obtain the DramAddr, subtract the base
583 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
587 struct amd64_pvt
*pvt
= mci
->pvt_info
;
588 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
591 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
593 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
596 if ((sys_addr
>= (1ULL << 32)) &&
597 (sys_addr
< ((1ULL << 32) + hole_size
))) {
598 /* use DHAR to translate SysAddr to DramAddr */
599 dram_addr
= sys_addr
- hole_offset
;
601 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
602 (unsigned long)sys_addr
,
603 (unsigned long)dram_addr
);
610 * Translate the SysAddr to a DramAddr as shown near the start of
611 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
612 * only deals with 40-bit values. Therefore we discard bits 63-40 of
613 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
614 * discard are all 1s. Otherwise the bits we discard are all 0s. See
615 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
616 * Programmer's Manual Volume 1 Application Programming.
618 dram_addr
= (sys_addr
& GENMASK_ULL(39, 0)) - dram_base
;
620 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
621 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
626 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
627 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
628 * for node interleaving.
630 static int num_node_interleave_bits(unsigned intlv_en
)
632 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
635 BUG_ON(intlv_en
> 7);
636 n
= intlv_shift_table
[intlv_en
];
640 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
641 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
643 struct amd64_pvt
*pvt
;
650 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
651 * concerning translating a DramAddr to an InputAddr.
653 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
654 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK_ULL(35, 12)) +
657 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
658 intlv_shift
, (unsigned long)dram_addr
,
659 (unsigned long)input_addr
);
665 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
666 * assumed that @sys_addr maps to the node given by mci.
668 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
673 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
675 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
676 (unsigned long)sys_addr
, (unsigned long)input_addr
);
681 /* Map the Error address to a PAGE and PAGE OFFSET. */
682 static inline void error_address_to_page_and_offset(u64 error_address
,
683 struct err_info
*err
)
685 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
686 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
690 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
691 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
692 * of a node that detected an ECC memory error. mci represents the node that
693 * the error address maps to (possibly different from the node that detected
694 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
697 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
701 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
704 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
705 "address 0x%lx\n", (unsigned long)sys_addr
);
709 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
712 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
715 static unsigned long determine_edac_cap(struct amd64_pvt
*pvt
)
717 unsigned long edac_cap
= EDAC_FLAG_NONE
;
721 u8 i
, umc_en_mask
= 0, dimm_ecc_en_mask
= 0;
724 if (!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
))
727 umc_en_mask
|= BIT(i
);
729 /* UMC Configuration bit 12 (DimmEccEn) */
730 if (pvt
->umc
[i
].umc_cfg
& BIT(12))
731 dimm_ecc_en_mask
|= BIT(i
);
734 if (umc_en_mask
== dimm_ecc_en_mask
)
735 edac_cap
= EDAC_FLAG_SECDED
;
737 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
741 if (pvt
->dclr0
& BIT(bit
))
742 edac_cap
= EDAC_FLAG_SECDED
;
748 static void debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
750 static void debug_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
752 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
754 if (pvt
->dram_type
== MEM_LRDDR3
) {
755 u32 dcsm
= pvt
->csels
[chan
].csmasks
[0];
757 * It's assumed all LRDIMMs in a DCT are going to be of
758 * same 'type' until proven otherwise. So, use a cs
759 * value of '0' here to get dcsm value.
761 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm
& 0x3));
764 edac_dbg(1, "All DIMMs support ECC:%s\n",
765 (dclr
& BIT(19)) ? "yes" : "no");
768 edac_dbg(1, " PAR/ERR parity: %s\n",
769 (dclr
& BIT(8)) ? "enabled" : "disabled");
771 if (pvt
->fam
== 0x10)
772 edac_dbg(1, " DCT 128bit mode width: %s\n",
773 (dclr
& BIT(11)) ? "128b" : "64b");
775 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
776 (dclr
& BIT(12)) ? "yes" : "no",
777 (dclr
& BIT(13)) ? "yes" : "no",
778 (dclr
& BIT(14)) ? "yes" : "no",
779 (dclr
& BIT(15)) ? "yes" : "no");
782 #define CS_EVEN_PRIMARY BIT(0)
783 #define CS_ODD_PRIMARY BIT(1)
784 #define CS_EVEN_SECONDARY BIT(2)
785 #define CS_ODD_SECONDARY BIT(3)
787 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
788 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY)
790 static int f17_get_cs_mode(int dimm
, u8 ctrl
, struct amd64_pvt
*pvt
)
794 if (csrow_enabled(2 * dimm
, ctrl
, pvt
))
795 cs_mode
|= CS_EVEN_PRIMARY
;
797 if (csrow_enabled(2 * dimm
+ 1, ctrl
, pvt
))
798 cs_mode
|= CS_ODD_PRIMARY
;
800 /* Asymmetric dual-rank DIMM support. */
801 if (csrow_sec_enabled(2 * dimm
+ 1, ctrl
, pvt
))
802 cs_mode
|= CS_ODD_SECONDARY
;
807 static void debug_display_dimm_sizes_df(struct amd64_pvt
*pvt
, u8 ctrl
)
809 int dimm
, size0
, size1
, cs0
, cs1
, cs_mode
;
811 edac_printk(KERN_DEBUG
, EDAC_MC
, "UMC%d chip selects:\n", ctrl
);
813 for (dimm
= 0; dimm
< 2; dimm
++) {
817 cs_mode
= f17_get_cs_mode(dimm
, ctrl
, pvt
);
819 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, cs_mode
, cs0
);
820 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, cs_mode
, cs1
);
822 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
828 static void __dump_misc_regs_df(struct amd64_pvt
*pvt
)
830 struct amd64_umc
*umc
;
831 u32 i
, tmp
, umc_base
;
834 umc_base
= get_umc_base(i
);
837 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i
, umc
->dimm_cfg
);
838 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i
, umc
->umc_cfg
);
839 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i
, umc
->sdp_ctrl
);
840 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i
, umc
->ecc_ctrl
);
842 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ECC_BAD_SYMBOL
, &tmp
);
843 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i
, tmp
);
845 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_UMC_CAP
, &tmp
);
846 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i
, tmp
);
847 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i
, umc
->umc_cap_hi
);
849 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
850 i
, (umc
->umc_cap_hi
& BIT(30)) ? "yes" : "no",
851 (umc
->umc_cap_hi
& BIT(31)) ? "yes" : "no");
852 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
853 i
, (umc
->umc_cfg
& BIT(12)) ? "yes" : "no");
854 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
855 i
, (umc
->dimm_cfg
& BIT(6)) ? "yes" : "no");
856 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
857 i
, (umc
->dimm_cfg
& BIT(7)) ? "yes" : "no");
859 if (pvt
->dram_type
== MEM_LRDDR4
) {
860 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ADDR_CFG
, &tmp
);
861 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
862 i
, 1 << ((tmp
>> 4) & 0x3));
865 debug_display_dimm_sizes_df(pvt
, i
);
868 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
869 pvt
->dhar
, dhar_base(pvt
));
872 /* Display and decode various NB registers for debug purposes. */
873 static void __dump_misc_regs(struct amd64_pvt
*pvt
)
875 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
877 edac_dbg(1, " NB two channel DRAM capable: %s\n",
878 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
880 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
881 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
882 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
884 debug_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
886 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
888 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
889 pvt
->dhar
, dhar_base(pvt
),
890 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
891 : f10_dhar_offset(pvt
));
893 debug_display_dimm_sizes(pvt
, 0);
895 /* everything below this point is Fam10h and above */
899 debug_display_dimm_sizes(pvt
, 1);
901 /* Only if NOT ganged does dclr1 have valid info */
902 if (!dct_ganging_enabled(pvt
))
903 debug_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
906 /* Display and decode various NB registers for debug purposes. */
907 static void dump_misc_regs(struct amd64_pvt
*pvt
)
910 __dump_misc_regs_df(pvt
);
912 __dump_misc_regs(pvt
);
914 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
916 amd64_info("using x%u syndromes.\n", pvt
->ecc_sym_sz
);
920 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
922 static void prep_chip_selects(struct amd64_pvt
*pvt
)
924 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
925 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
926 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
927 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x30) {
928 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
929 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
930 } else if (pvt
->fam
>= 0x17) {
934 pvt
->csels
[umc
].b_cnt
= 4;
935 pvt
->csels
[umc
].m_cnt
= 2;
939 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
940 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
944 static void read_umc_base_mask(struct amd64_pvt
*pvt
)
946 u32 umc_base_reg
, umc_base_reg_sec
;
947 u32 umc_mask_reg
, umc_mask_reg_sec
;
948 u32 base_reg
, base_reg_sec
;
949 u32 mask_reg
, mask_reg_sec
;
950 u32
*base
, *base_sec
;
951 u32
*mask
, *mask_sec
;
955 umc_base_reg
= get_umc_base(umc
) + UMCCH_BASE_ADDR
;
956 umc_base_reg_sec
= get_umc_base(umc
) + UMCCH_BASE_ADDR_SEC
;
958 for_each_chip_select(cs
, umc
, pvt
) {
959 base
= &pvt
->csels
[umc
].csbases
[cs
];
960 base_sec
= &pvt
->csels
[umc
].csbases_sec
[cs
];
962 base_reg
= umc_base_reg
+ (cs
* 4);
963 base_reg_sec
= umc_base_reg_sec
+ (cs
* 4);
965 if (!amd_smn_read(pvt
->mc_node_id
, base_reg
, base
))
966 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n",
967 umc
, cs
, *base
, base_reg
);
969 if (!amd_smn_read(pvt
->mc_node_id
, base_reg_sec
, base_sec
))
970 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
971 umc
, cs
, *base_sec
, base_reg_sec
);
974 umc_mask_reg
= get_umc_base(umc
) + UMCCH_ADDR_MASK
;
975 umc_mask_reg_sec
= get_umc_base(umc
) + UMCCH_ADDR_MASK_SEC
;
977 for_each_chip_select_mask(cs
, umc
, pvt
) {
978 mask
= &pvt
->csels
[umc
].csmasks
[cs
];
979 mask_sec
= &pvt
->csels
[umc
].csmasks_sec
[cs
];
981 mask_reg
= umc_mask_reg
+ (cs
* 4);
982 mask_reg_sec
= umc_mask_reg_sec
+ (cs
* 4);
984 if (!amd_smn_read(pvt
->mc_node_id
, mask_reg
, mask
))
985 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n",
986 umc
, cs
, *mask
, mask_reg
);
988 if (!amd_smn_read(pvt
->mc_node_id
, mask_reg_sec
, mask_sec
))
989 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
990 umc
, cs
, *mask_sec
, mask_reg_sec
);
996 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
998 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
1002 prep_chip_selects(pvt
);
1005 return read_umc_base_mask(pvt
);
1007 for_each_chip_select(cs
, 0, pvt
) {
1008 int reg0
= DCSB0
+ (cs
* 4);
1009 int reg1
= DCSB1
+ (cs
* 4);
1010 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
1011 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
1013 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, base0
))
1014 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
1017 if (pvt
->fam
== 0xf)
1020 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, base1
))
1021 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
1022 cs
, *base1
, (pvt
->fam
== 0x10) ? reg1
1026 for_each_chip_select_mask(cs
, 0, pvt
) {
1027 int reg0
= DCSM0
+ (cs
* 4);
1028 int reg1
= DCSM1
+ (cs
* 4);
1029 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
1030 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
1032 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, mask0
))
1033 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
1036 if (pvt
->fam
== 0xf)
1039 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, mask1
))
1040 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
1041 cs
, *mask1
, (pvt
->fam
== 0x10) ? reg1
1046 static void determine_memory_type(struct amd64_pvt
*pvt
)
1048 u32 dram_ctrl
, dcsm
;
1051 if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(5))
1052 pvt
->dram_type
= MEM_LRDDR4
;
1053 else if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(4))
1054 pvt
->dram_type
= MEM_RDDR4
;
1056 pvt
->dram_type
= MEM_DDR4
;
1062 if (pvt
->ext_model
>= K8_REV_F
)
1065 pvt
->dram_type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
1069 if (pvt
->dchr0
& DDR3_MODE
)
1072 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
1076 if (pvt
->model
< 0x60)
1080 * Model 0x60h needs special handling:
1082 * We use a Chip Select value of '0' to obtain dcsm.
1083 * Theoretically, it is possible to populate LRDIMMs of different
1084 * 'Rank' value on a DCT. But this is not the common case. So,
1085 * it's reasonable to assume all DIMMs are going to be of same
1086 * 'type' until proven otherwise.
1088 amd64_read_dct_pci_cfg(pvt
, 0, DRAM_CONTROL
, &dram_ctrl
);
1089 dcsm
= pvt
->csels
[0].csmasks
[0];
1091 if (((dram_ctrl
>> 8) & 0x7) == 0x2)
1092 pvt
->dram_type
= MEM_DDR4
;
1093 else if (pvt
->dclr0
& BIT(16))
1094 pvt
->dram_type
= MEM_DDR3
;
1095 else if (dcsm
& 0x3)
1096 pvt
->dram_type
= MEM_LRDDR3
;
1098 pvt
->dram_type
= MEM_RDDR3
;
1106 WARN(1, KERN_ERR
"%s: Family??? 0x%x\n", __func__
, pvt
->fam
);
1107 pvt
->dram_type
= MEM_EMPTY
;
1112 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
1115 /* Get the number of DCT channels the memory controller is using. */
1116 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
1120 if (pvt
->ext_model
>= K8_REV_F
)
1121 /* RevF (NPT) and later */
1122 flag
= pvt
->dclr0
& WIDTH_128
;
1124 /* RevE and earlier */
1125 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
1130 return (flag
) ? 2 : 1;
1133 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1134 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
1136 u16 mce_nid
= amd_get_nb_id(m
->extcpu
);
1137 struct mem_ctl_info
*mci
;
1142 mci
= edac_mc_find(mce_nid
);
1146 pvt
= mci
->pvt_info
;
1148 if (pvt
->fam
== 0xf) {
1153 addr
= m
->addr
& GENMASK_ULL(end_bit
, start_bit
);
1156 * Erratum 637 workaround
1158 if (pvt
->fam
== 0x15) {
1159 u64 cc6_base
, tmp_addr
;
1163 if ((addr
& GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1167 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
1168 intlv_en
= tmp
>> 21 & 0x7;
1170 /* add [47:27] + 3 trailing bits */
1171 cc6_base
= (tmp
& GENMASK_ULL(20, 0)) << 3;
1173 /* reverse and add DramIntlvEn */
1174 cc6_base
|= intlv_en
^ 0x7;
1176 /* pin at [47:24] */
1180 return cc6_base
| (addr
& GENMASK_ULL(23, 0));
1182 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
1185 tmp_addr
= (addr
& GENMASK_ULL(23, 12)) << __fls(intlv_en
+ 1);
1187 /* OR DramIntlvSel into bits [14:12] */
1188 tmp_addr
|= (tmp
& GENMASK_ULL(23, 21)) >> 9;
1190 /* add remaining [11:0] bits from original MC4_ADDR */
1191 tmp_addr
|= addr
& GENMASK_ULL(11, 0);
1193 return cc6_base
| tmp_addr
;
1199 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
1200 unsigned int device
,
1201 struct pci_dev
*related
)
1203 struct pci_dev
*dev
= NULL
;
1205 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
1206 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
1207 (dev
->bus
->number
== related
->bus
->number
) &&
1208 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
1215 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
1217 struct amd_northbridge
*nb
;
1218 struct pci_dev
*f1
= NULL
;
1219 unsigned int pci_func
;
1220 int off
= range
<< 3;
1223 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
1224 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
1226 if (pvt
->fam
== 0xf)
1229 if (!dram_rw(pvt
, range
))
1232 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
1233 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1235 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1236 if (pvt
->fam
!= 0x15)
1239 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
1243 if (pvt
->model
== 0x60)
1244 pci_func
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
;
1245 else if (pvt
->model
== 0x30)
1246 pci_func
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
;
1248 pci_func
= PCI_DEVICE_ID_AMD_15H_NB_F1
;
1250 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
1254 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1256 pvt
->ranges
[range
].lim
.lo
&= GENMASK_ULL(15, 0);
1258 /* {[39:27],111b} */
1259 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1261 pvt
->ranges
[range
].lim
.hi
&= GENMASK_ULL(7, 0);
1264 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1269 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1270 struct err_info
*err
)
1272 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1274 error_address_to_page_and_offset(sys_addr
, err
);
1277 * Find out which node the error address belongs to. This may be
1278 * different from the node that detected the error.
1280 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1281 if (!err
->src_mci
) {
1282 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1283 (unsigned long)sys_addr
);
1284 err
->err_code
= ERR_NODE
;
1288 /* Now map the sys_addr to a CSROW */
1289 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
1290 if (err
->csrow
< 0) {
1291 err
->err_code
= ERR_CSROW
;
1295 /* CHIPKILL enabled */
1296 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1297 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1298 if (err
->channel
< 0) {
1300 * Syndrome didn't map, so we don't know which of the
1301 * 2 DIMMs is in error. So we need to ID 'both' of them
1304 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1305 "possible error reporting race\n",
1307 err
->err_code
= ERR_CHANNEL
;
1312 * non-chipkill ecc mode
1314 * The k8 documentation is unclear about how to determine the
1315 * channel number when using non-chipkill memory. This method
1316 * was obtained from email communication with someone at AMD.
1317 * (Wish the email was placed in this comment - norsk)
1319 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1323 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1329 else if (!(i
& 0x1))
1332 shift
= (i
+ 1) >> 1;
1334 return 128 << (shift
+ !!dct_width
);
1337 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1338 unsigned cs_mode
, int cs_mask_nr
)
1340 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1342 if (pvt
->ext_model
>= K8_REV_F
) {
1343 WARN_ON(cs_mode
> 11);
1344 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1346 else if (pvt
->ext_model
>= K8_REV_D
) {
1348 WARN_ON(cs_mode
> 10);
1351 * the below calculation, besides trying to win an obfuscated C
1352 * contest, maps cs_mode values to DIMM chip select sizes. The
1355 * cs_mode CS size (mb)
1356 * ======= ============
1369 * Basically, it calculates a value with which to shift the
1370 * smallest CS size of 32MB.
1372 * ddr[23]_cs_size have a similar purpose.
1374 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1376 return 32 << (cs_mode
- diff
);
1379 WARN_ON(cs_mode
> 6);
1380 return 32 << cs_mode
;
1385 * Get the number of DCT channels in use.
1388 * number of Memory Channels in operation
1390 * contents of the DCL0_LOW register
1392 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1394 int i
, j
, channels
= 0;
1396 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1397 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1401 * Need to check if in unganged mode: In such, there are 2 channels,
1402 * but they are not in 128 bit mode and thus the above 'dclr0' status
1405 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1406 * their CSEnable bit on. If so, then SINGLE DIMM case.
1408 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1411 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1412 * is more than just one DIMM present in unganged mode. Need to check
1413 * both controllers since DIMMs can be placed in either one.
1415 for (i
= 0; i
< 2; i
++) {
1416 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1418 for (j
= 0; j
< 4; j
++) {
1419 if (DBAM_DIMM(j
, dbam
) > 0) {
1429 amd64_info("MCT channel count: %d\n", channels
);
1434 static int f17_early_channel_count(struct amd64_pvt
*pvt
)
1436 int i
, channels
= 0;
1438 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1440 channels
+= !!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
);
1442 amd64_info("MCT channel count: %d\n", channels
);
1447 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1452 if (i
== 0 || i
== 3 || i
== 4)
1458 else if (!(i
& 0x1))
1461 shift
= (i
+ 1) >> 1;
1464 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1469 static int ddr3_lrdimm_cs_size(unsigned i
, unsigned rank_multiply
)
1474 if (i
< 4 || i
== 6)
1478 else if (!(i
& 0x1))
1481 shift
= (i
+ 1) >> 1;
1484 cs_size
= rank_multiply
* (128 << shift
);
1489 static int ddr4_cs_size(unsigned i
)
1498 /* Min cs_size = 1G */
1499 cs_size
= 1024 * (1 << (i
>> 1));
1504 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1505 unsigned cs_mode
, int cs_mask_nr
)
1507 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1509 WARN_ON(cs_mode
> 11);
1511 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1512 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1514 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1518 * F15h supports only 64bit DCT interfaces
1520 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1521 unsigned cs_mode
, int cs_mask_nr
)
1523 WARN_ON(cs_mode
> 12);
1525 return ddr3_cs_size(cs_mode
, false);
1528 /* F15h M60h supports DDR4 mapping as well.. */
1529 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1530 unsigned cs_mode
, int cs_mask_nr
)
1533 u32 dcsm
= pvt
->csels
[dct
].csmasks
[cs_mask_nr
];
1535 WARN_ON(cs_mode
> 12);
1537 if (pvt
->dram_type
== MEM_DDR4
) {
1541 cs_size
= ddr4_cs_size(cs_mode
);
1542 } else if (pvt
->dram_type
== MEM_LRDDR3
) {
1543 unsigned rank_multiply
= dcsm
& 0xf;
1545 if (rank_multiply
== 3)
1547 cs_size
= ddr3_lrdimm_cs_size(cs_mode
, rank_multiply
);
1549 /* Minimum cs size is 512mb for F15hM60h*/
1553 cs_size
= ddr3_cs_size(cs_mode
, false);
1560 * F16h and F15h model 30h have only limited cs_modes.
1562 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1563 unsigned cs_mode
, int cs_mask_nr
)
1565 WARN_ON(cs_mode
> 12);
1567 if (cs_mode
== 6 || cs_mode
== 8 ||
1568 cs_mode
== 9 || cs_mode
== 12)
1571 return ddr3_cs_size(cs_mode
, false);
1574 static int f17_addr_mask_to_cs_size(struct amd64_pvt
*pvt
, u8 umc
,
1575 unsigned int cs_mode
, int csrow_nr
)
1577 u32 addr_mask_orig
, addr_mask_deinterleaved
;
1578 u32 msb
, weight
, num_zero_bits
;
1581 /* No Chip Selects are enabled. */
1585 /* Requested size of an even CS but none are enabled. */
1586 if (!(cs_mode
& CS_EVEN
) && !(csrow_nr
& 1))
1589 /* Requested size of an odd CS but none are enabled. */
1590 if (!(cs_mode
& CS_ODD
) && (csrow_nr
& 1))
1594 * There is one mask per DIMM, and two Chip Selects per DIMM.
1595 * CS0 and CS1 -> DIMM0
1596 * CS2 and CS3 -> DIMM1
1598 dimm
= csrow_nr
>> 1;
1600 /* Asymmetric dual-rank DIMM support. */
1601 if ((csrow_nr
& 1) && (cs_mode
& CS_ODD_SECONDARY
))
1602 addr_mask_orig
= pvt
->csels
[umc
].csmasks_sec
[dimm
];
1604 addr_mask_orig
= pvt
->csels
[umc
].csmasks
[dimm
];
1607 * The number of zero bits in the mask is equal to the number of bits
1608 * in a full mask minus the number of bits in the current mask.
1610 * The MSB is the number of bits in the full mask because BIT[0] is
1613 msb
= fls(addr_mask_orig
) - 1;
1614 weight
= hweight_long(addr_mask_orig
);
1615 num_zero_bits
= msb
- weight
;
1617 /* Take the number of zero bits off from the top of the mask. */
1618 addr_mask_deinterleaved
= GENMASK_ULL(msb
- num_zero_bits
, 1);
1620 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr
, dimm
);
1621 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig
);
1622 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved
);
1624 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1625 size
= (addr_mask_deinterleaved
>> 2) + 1;
1627 /* Return size in MBs. */
1631 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1634 if (pvt
->fam
== 0xf)
1637 if (!amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1638 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1639 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1641 edac_dbg(0, " DCTs operate in %s mode\n",
1642 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1644 if (!dct_ganging_enabled(pvt
))
1645 edac_dbg(0, " Address range split per DCT: %s\n",
1646 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1648 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1649 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1650 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1652 edac_dbg(0, " channel interleave: %s, "
1653 "interleave bits selector: 0x%x\n",
1654 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1655 dct_sel_interleave_addr(pvt
));
1658 amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1662 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1663 * 2.10.12 Memory Interleaving Modes).
1665 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1666 u8 intlv_en
, int num_dcts_intlv
,
1673 return (u8
)(dct_sel
);
1675 if (num_dcts_intlv
== 2) {
1676 select
= (sys_addr
>> 8) & 0x3;
1677 channel
= select
? 0x3 : 0;
1678 } else if (num_dcts_intlv
== 4) {
1679 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1680 switch (intlv_addr
) {
1682 channel
= (sys_addr
>> 8) & 0x3;
1685 channel
= (sys_addr
>> 9) & 0x3;
1693 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1694 * Interleaving Modes.
1696 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1697 bool hi_range_sel
, u8 intlv_en
)
1699 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1701 if (dct_ganging_enabled(pvt
))
1705 return dct_sel_high
;
1708 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1710 if (dct_interleave_enabled(pvt
)) {
1711 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1713 /* return DCT select function: 0=DCT0, 1=DCT1 */
1715 return sys_addr
>> 6 & 1;
1717 if (intlv_addr
& 0x2) {
1718 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1719 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) & 1;
1721 return ((sys_addr
>> shift
) & 1) ^ temp
;
1724 if (intlv_addr
& 0x4) {
1725 u8 shift
= intlv_addr
& 0x1 ? 9 : 8;
1727 return (sys_addr
>> shift
) & 1;
1730 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1733 if (dct_high_range_enabled(pvt
))
1734 return ~dct_sel_high
& 1;
1739 /* Convert the sys_addr to the normalized DCT address */
1740 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1741 u64 sys_addr
, bool hi_rng
,
1742 u32 dct_sel_base_addr
)
1745 u64 dram_base
= get_dram_base(pvt
, range
);
1746 u64 hole_off
= f10_dhar_offset(pvt
);
1747 u64 dct_sel_base_off
= (u64
)(pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1752 * base address of high range is below 4Gb
1753 * (bits [47:27] at [31:11])
1754 * DRAM address space on this DCT is hoisted above 4Gb &&
1757 * remove hole offset from sys_addr
1759 * remove high range offset from sys_addr
1761 if ((!(dct_sel_base_addr
>> 16) ||
1762 dct_sel_base_addr
< dhar_base(pvt
)) &&
1764 (sys_addr
>= BIT_64(32)))
1765 chan_off
= hole_off
;
1767 chan_off
= dct_sel_base_off
;
1771 * we have a valid hole &&
1776 * remove dram base to normalize to DCT address
1778 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1779 chan_off
= hole_off
;
1781 chan_off
= dram_base
;
1784 return (sys_addr
& GENMASK_ULL(47,6)) - (chan_off
& GENMASK_ULL(47,23));
1788 * checks if the csrow passed in is marked as SPARED, if so returns the new
1791 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1795 if (online_spare_swap_done(pvt
, dct
) &&
1796 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1798 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1799 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1809 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1810 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1813 * -EINVAL: NOT FOUND
1814 * 0..csrow = Chip-Select Row
1816 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1818 struct mem_ctl_info
*mci
;
1819 struct amd64_pvt
*pvt
;
1820 u64 cs_base
, cs_mask
;
1821 int cs_found
= -EINVAL
;
1824 mci
= edac_mc_find(nid
);
1828 pvt
= mci
->pvt_info
;
1830 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1832 for_each_chip_select(csrow
, dct
, pvt
) {
1833 if (!csrow_enabled(csrow
, dct
, pvt
))
1836 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1838 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1839 csrow
, cs_base
, cs_mask
);
1843 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1844 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1846 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1847 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1851 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1853 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1861 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1862 * swapped with a region located at the bottom of memory so that the GPU can use
1863 * the interleaved region and thus two channels.
1865 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1867 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1869 if (pvt
->fam
== 0x10) {
1870 /* only revC3 and revE have that feature */
1871 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1875 amd64_read_pci_cfg(pvt
->F2
, SWAP_INTLV_REG
, &swap_reg
);
1877 if (!(swap_reg
& 0x1))
1880 swap_base
= (swap_reg
>> 3) & 0x7f;
1881 swap_limit
= (swap_reg
>> 11) & 0x7f;
1882 rgn_size
= (swap_reg
>> 20) & 0x7f;
1883 tmp_addr
= sys_addr
>> 27;
1885 if (!(sys_addr
>> 34) &&
1886 (((tmp_addr
>= swap_base
) &&
1887 (tmp_addr
<= swap_limit
)) ||
1888 (tmp_addr
< rgn_size
)))
1889 return sys_addr
^ (u64
)swap_base
<< 27;
1894 /* For a given @dram_range, check if @sys_addr falls within it. */
1895 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1896 u64 sys_addr
, int *chan_sel
)
1898 int cs_found
= -EINVAL
;
1902 bool high_range
= false;
1904 u8 node_id
= dram_dst_node(pvt
, range
);
1905 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1906 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1908 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1909 range
, sys_addr
, get_dram_limit(pvt
, range
));
1911 if (dhar_valid(pvt
) &&
1912 dhar_base(pvt
) <= sys_addr
&&
1913 sys_addr
< BIT_64(32)) {
1914 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1919 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1922 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1924 dct_sel_base
= dct_sel_baseaddr(pvt
);
1927 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1928 * select between DCT0 and DCT1.
1930 if (dct_high_range_enabled(pvt
) &&
1931 !dct_ganging_enabled(pvt
) &&
1932 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1935 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1937 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1938 high_range
, dct_sel_base
);
1940 /* Remove node interleaving, see F1x120 */
1942 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1943 (chan_addr
& 0xfff);
1945 /* remove channel interleave */
1946 if (dct_interleave_enabled(pvt
) &&
1947 !dct_high_range_enabled(pvt
) &&
1948 !dct_ganging_enabled(pvt
)) {
1950 if (dct_sel_interleave_addr(pvt
) != 1) {
1951 if (dct_sel_interleave_addr(pvt
) == 0x3)
1953 chan_addr
= ((chan_addr
>> 10) << 9) |
1954 (chan_addr
& 0x1ff);
1956 /* A[6] or hash 6 */
1957 chan_addr
= ((chan_addr
>> 7) << 6) |
1961 chan_addr
= ((chan_addr
>> 13) << 12) |
1962 (chan_addr
& 0xfff);
1965 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1967 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1970 *chan_sel
= channel
;
1975 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1976 u64 sys_addr
, int *chan_sel
)
1978 int cs_found
= -EINVAL
;
1979 int num_dcts_intlv
= 0;
1980 u64 chan_addr
, chan_offset
;
1981 u64 dct_base
, dct_limit
;
1982 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1983 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1985 u64 dhar_offset
= f10_dhar_offset(pvt
);
1986 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1987 u8 node_id
= dram_dst_node(pvt
, range
);
1988 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1990 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
1991 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
1993 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
1994 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
1996 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1997 range
, sys_addr
, get_dram_limit(pvt
, range
));
1999 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
2000 !(get_dram_limit(pvt
, range
) >= sys_addr
))
2003 if (dhar_valid(pvt
) &&
2004 dhar_base(pvt
) <= sys_addr
&&
2005 sys_addr
< BIT_64(32)) {
2006 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2011 /* Verify sys_addr is within DCT Range. */
2012 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
2013 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
2015 if (!(dct_cont_base_reg
& BIT(0)) &&
2016 !(dct_base
<= (sys_addr
>> 27) &&
2017 dct_limit
>= (sys_addr
>> 27)))
2020 /* Verify number of dct's that participate in channel interleaving. */
2021 num_dcts_intlv
= (int) hweight8(intlv_en
);
2023 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
2026 if (pvt
->model
>= 0x60)
2027 channel
= f1x_determine_channel(pvt
, sys_addr
, false, intlv_en
);
2029 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
2030 num_dcts_intlv
, dct_sel
);
2032 /* Verify we stay within the MAX number of channels allowed */
2036 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
2038 /* Get normalized DCT addr */
2039 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
2040 chan_offset
= dhar_offset
;
2042 chan_offset
= dct_base
<< 27;
2044 chan_addr
= sys_addr
- chan_offset
;
2046 /* remove channel interleave */
2047 if (num_dcts_intlv
== 2) {
2048 if (intlv_addr
== 0x4)
2049 chan_addr
= ((chan_addr
>> 9) << 8) |
2051 else if (intlv_addr
== 0x5)
2052 chan_addr
= ((chan_addr
>> 10) << 9) |
2053 (chan_addr
& 0x1ff);
2057 } else if (num_dcts_intlv
== 4) {
2058 if (intlv_addr
== 0x4)
2059 chan_addr
= ((chan_addr
>> 10) << 8) |
2061 else if (intlv_addr
== 0x5)
2062 chan_addr
= ((chan_addr
>> 11) << 9) |
2063 (chan_addr
& 0x1ff);
2068 if (dct_offset_en
) {
2069 amd64_read_pci_cfg(pvt
->F1
,
2070 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
2072 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
2075 f15h_select_dct(pvt
, channel
);
2077 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
2081 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
2082 * there is support for 4 DCT's, but only 2 are currently functional.
2083 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
2084 * pvt->csels[1]. So we need to use '1' here to get correct info.
2085 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
2087 alias_channel
= (channel
== 3) ? 1 : channel
;
2089 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
2092 *chan_sel
= alias_channel
;
2097 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
2101 int cs_found
= -EINVAL
;
2104 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2105 if (!dram_rw(pvt
, range
))
2108 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
2109 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
2113 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
2114 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
2115 cs_found
= f1x_match_to_this_node(pvt
, range
,
2116 sys_addr
, chan_sel
);
2125 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2126 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2128 * The @sys_addr is usually an error address received from the hardware
2131 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
2132 struct err_info
*err
)
2134 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2136 error_address_to_page_and_offset(sys_addr
, err
);
2138 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
2139 if (err
->csrow
< 0) {
2140 err
->err_code
= ERR_CSROW
;
2145 * We need the syndromes for channel detection only when we're
2146 * ganged. Otherwise @chan should already contain the channel at
2149 if (dct_ganging_enabled(pvt
))
2150 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
2154 * debug routine to display the memory sizes of all logical DIMMs and its
2157 static void debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
2159 int dimm
, size0
, size1
;
2160 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
2161 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
2163 if (pvt
->fam
== 0xf) {
2164 /* K8 families < revF not supported yet */
2165 if (pvt
->ext_model
< K8_REV_F
)
2171 if (pvt
->fam
== 0x10) {
2172 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
2174 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ?
2175 pvt
->csels
[1].csbases
:
2176 pvt
->csels
[0].csbases
;
2179 dcsb
= pvt
->csels
[1].csbases
;
2181 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2184 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
2186 /* Dump memory sizes for DIMM and its CSROWs */
2187 for (dimm
= 0; dimm
< 4; dimm
++) {
2190 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
2192 * For F15m60h, we need multiplier for LRDIMM cs_size
2193 * calculation. We pass dimm value to the dbam_to_cs
2194 * mapper so we can find the multiplier from the
2195 * corresponding DCSM.
2197 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2198 DBAM_DIMM(dimm
, dbam
),
2202 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
2203 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2204 DBAM_DIMM(dimm
, dbam
),
2207 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
2209 dimm
* 2 + 1, size1
);
2213 static struct amd64_family_type family_types
[] = {
2216 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
2217 .f2_id
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
2220 .early_channel_count
= k8_early_channel_count
,
2221 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
2222 .dbam_to_cs
= k8_dbam_to_chip_select
,
2227 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
2228 .f2_id
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
2231 .early_channel_count
= f1x_early_channel_count
,
2232 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2233 .dbam_to_cs
= f10_dbam_to_chip_select
,
2238 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
2239 .f2_id
= PCI_DEVICE_ID_AMD_15H_NB_F2
,
2242 .early_channel_count
= f1x_early_channel_count
,
2243 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2244 .dbam_to_cs
= f15_dbam_to_chip_select
,
2248 .ctl_name
= "F15h_M30h",
2249 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
2250 .f2_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
,
2253 .early_channel_count
= f1x_early_channel_count
,
2254 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2255 .dbam_to_cs
= f16_dbam_to_chip_select
,
2259 .ctl_name
= "F15h_M60h",
2260 .f1_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
,
2261 .f2_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F2
,
2264 .early_channel_count
= f1x_early_channel_count
,
2265 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2266 .dbam_to_cs
= f15_m60h_dbam_to_chip_select
,
2271 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
2272 .f2_id
= PCI_DEVICE_ID_AMD_16H_NB_F2
,
2275 .early_channel_count
= f1x_early_channel_count
,
2276 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2277 .dbam_to_cs
= f16_dbam_to_chip_select
,
2281 .ctl_name
= "F16h_M30h",
2282 .f1_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1
,
2283 .f2_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F2
,
2286 .early_channel_count
= f1x_early_channel_count
,
2287 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2288 .dbam_to_cs
= f16_dbam_to_chip_select
,
2293 .f0_id
= PCI_DEVICE_ID_AMD_17H_DF_F0
,
2294 .f6_id
= PCI_DEVICE_ID_AMD_17H_DF_F6
,
2297 .early_channel_count
= f17_early_channel_count
,
2298 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2302 .ctl_name
= "F17h_M10h",
2303 .f0_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F0
,
2304 .f6_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F6
,
2307 .early_channel_count
= f17_early_channel_count
,
2308 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2312 .ctl_name
= "F17h_M30h",
2313 .f0_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F0
,
2314 .f6_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F6
,
2317 .early_channel_count
= f17_early_channel_count
,
2318 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2322 .ctl_name
= "F17h_M60h",
2323 .f0_id
= PCI_DEVICE_ID_AMD_17H_M60H_DF_F0
,
2324 .f6_id
= PCI_DEVICE_ID_AMD_17H_M60H_DF_F6
,
2327 .early_channel_count
= f17_early_channel_count
,
2328 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2332 .ctl_name
= "F17h_M70h",
2333 .f0_id
= PCI_DEVICE_ID_AMD_17H_M70H_DF_F0
,
2334 .f6_id
= PCI_DEVICE_ID_AMD_17H_M70H_DF_F6
,
2337 .early_channel_count
= f17_early_channel_count
,
2338 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2343 .f0_id
= PCI_DEVICE_ID_AMD_19H_DF_F0
,
2344 .f6_id
= PCI_DEVICE_ID_AMD_19H_DF_F6
,
2347 .early_channel_count
= f17_early_channel_count
,
2348 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2354 * These are tables of eigenvectors (one per line) which can be used for the
2355 * construction of the syndrome tables. The modified syndrome search algorithm
2356 * uses those to find the symbol in error and thus the DIMM.
2358 * Algorithm courtesy of Ross LaFetra from AMD.
2360 static const u16 x4_vectors
[] = {
2361 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2362 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2363 0x0001, 0x0002, 0x0004, 0x0008,
2364 0x1013, 0x3032, 0x4044, 0x8088,
2365 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2366 0x4857, 0xc4fe, 0x13cc, 0x3288,
2367 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2368 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2369 0x15c1, 0x2a42, 0x89ac, 0x4758,
2370 0x2b03, 0x1602, 0x4f0c, 0xca08,
2371 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2372 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2373 0x2b87, 0x164e, 0x642c, 0xdc18,
2374 0x40b9, 0x80de, 0x1094, 0x20e8,
2375 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2376 0x11c1, 0x2242, 0x84ac, 0x4c58,
2377 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2378 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2379 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2380 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2381 0x16b3, 0x3d62, 0x4f34, 0x8518,
2382 0x1e2f, 0x391a, 0x5cac, 0xf858,
2383 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2384 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2385 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2386 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2387 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2388 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2389 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2390 0x185d, 0x2ca6, 0x7914, 0x9e28,
2391 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2392 0x4199, 0x82ee, 0x19f4, 0x2e58,
2393 0x4807, 0xc40e, 0x130c, 0x3208,
2394 0x1905, 0x2e0a, 0x5804, 0xac08,
2395 0x213f, 0x132a, 0xadfc, 0x5ba8,
2396 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2399 static const u16 x8_vectors
[] = {
2400 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2401 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2402 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2403 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2404 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2405 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2406 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2407 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2408 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2409 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2410 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2411 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2412 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2413 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2414 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2415 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2416 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2417 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2418 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2421 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
2424 unsigned int i
, err_sym
;
2426 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
2428 unsigned v_idx
= err_sym
* v_dim
;
2429 unsigned v_end
= (err_sym
+ 1) * v_dim
;
2431 /* walk over all 16 bits of the syndrome */
2432 for (i
= 1; i
< (1U << 16); i
<<= 1) {
2434 /* if bit is set in that eigenvector... */
2435 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
2436 u16 ev_comp
= vectors
[v_idx
++];
2438 /* ... and bit set in the modified syndrome, */
2448 /* can't get to zero, move to next symbol */
2453 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
2457 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
2470 return err_sym
>> 4;
2476 /* imaginary bits not in a DIMM */
2478 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
2490 return err_sym
>> 3;
2496 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
2498 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2501 if (pvt
->ecc_sym_sz
== 8)
2502 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
2503 ARRAY_SIZE(x8_vectors
),
2505 else if (pvt
->ecc_sym_sz
== 4)
2506 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
2507 ARRAY_SIZE(x4_vectors
),
2510 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
2514 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
2517 static void __log_ecc_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
2520 enum hw_event_mc_err_type err_type
;
2524 err_type
= HW_EVENT_ERR_CORRECTED
;
2525 else if (ecc_type
== 1)
2526 err_type
= HW_EVENT_ERR_UNCORRECTED
;
2527 else if (ecc_type
== 3)
2528 err_type
= HW_EVENT_ERR_DEFERRED
;
2530 WARN(1, "Something is rotten in the state of Denmark.\n");
2534 switch (err
->err_code
) {
2539 string
= "Failed to map error addr to a node";
2542 string
= "Failed to map error addr to a csrow";
2545 string
= "Unknown syndrome - possible error reporting race";
2548 string
= "MCA_SYND not valid - unknown syndrome and csrow";
2551 string
= "Cannot decode normalized address";
2554 string
= "WTF error";
2558 edac_mc_handle_error(err_type
, mci
, 1,
2559 err
->page
, err
->offset
, err
->syndrome
,
2560 err
->csrow
, err
->channel
, -1,
2564 static inline void decode_bus_error(int node_id
, struct mce
*m
)
2566 struct mem_ctl_info
*mci
;
2567 struct amd64_pvt
*pvt
;
2568 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2569 u8 xec
= XEC(m
->status
, 0x1f);
2570 u16 ec
= EC(m
->status
);
2572 struct err_info err
;
2574 mci
= edac_mc_find(node_id
);
2578 pvt
= mci
->pvt_info
;
2580 /* Bail out early if this was an 'observed' error */
2581 if (PP(ec
) == NBSL_PP_OBS
)
2584 /* Do only ECC errors */
2585 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2588 memset(&err
, 0, sizeof(err
));
2590 sys_addr
= get_error_address(pvt
, m
);
2593 err
.syndrome
= extract_syndrome(m
->status
);
2595 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2597 __log_ecc_error(mci
, &err
, ecc_type
);
2601 * To find the UMC channel represented by this bank we need to match on its
2602 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2605 * Currently, we can derive the channel number by looking at the 6th nibble in
2606 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
2609 static int find_umc_channel(struct mce
*m
)
2611 return (m
->ipid
& GENMASK(31, 0)) >> 20;
2614 static void decode_umc_error(int node_id
, struct mce
*m
)
2616 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2617 struct mem_ctl_info
*mci
;
2618 struct amd64_pvt
*pvt
;
2619 struct err_info err
;
2622 mci
= edac_mc_find(node_id
);
2626 pvt
= mci
->pvt_info
;
2628 memset(&err
, 0, sizeof(err
));
2630 if (m
->status
& MCI_STATUS_DEFERRED
)
2633 err
.channel
= find_umc_channel(m
);
2635 if (!(m
->status
& MCI_STATUS_SYNDV
)) {
2636 err
.err_code
= ERR_SYND
;
2640 if (ecc_type
== 2) {
2641 u8 length
= (m
->synd
>> 18) & 0x3f;
2644 err
.syndrome
= (m
->synd
>> 32) & GENMASK(length
- 1, 0);
2646 err
.err_code
= ERR_CHANNEL
;
2649 err
.csrow
= m
->synd
& 0x7;
2651 if (umc_normaddr_to_sysaddr(m
->addr
, pvt
->mc_node_id
, err
.channel
, &sys_addr
)) {
2652 err
.err_code
= ERR_NORM_ADDR
;
2656 error_address_to_page_and_offset(sys_addr
, &err
);
2659 __log_ecc_error(mci
, &err
, ecc_type
);
2663 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2664 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2665 * Reserve F0 and F6 on systems with a UMC.
2668 reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 pci_id1
, u16 pci_id2
)
2671 pvt
->F0
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2673 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1
);
2677 pvt
->F6
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2679 pci_dev_put(pvt
->F0
);
2682 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2686 edac_dbg(1, "F0: %s\n", pci_name(pvt
->F0
));
2687 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2688 edac_dbg(1, "F6: %s\n", pci_name(pvt
->F6
));
2693 /* Reserve the ADDRESS MAP Device */
2694 pvt
->F1
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2696 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1
);
2700 /* Reserve the DCT Device */
2701 pvt
->F2
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2703 pci_dev_put(pvt
->F1
);
2706 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2710 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2711 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2712 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2717 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2720 pci_dev_put(pvt
->F0
);
2721 pci_dev_put(pvt
->F6
);
2723 pci_dev_put(pvt
->F1
);
2724 pci_dev_put(pvt
->F2
);
2728 static void determine_ecc_sym_sz(struct amd64_pvt
*pvt
)
2730 pvt
->ecc_sym_sz
= 4;
2736 /* Check enabled channels only: */
2737 if (pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) {
2738 if (pvt
->umc
[i
].ecc_ctrl
& BIT(9)) {
2739 pvt
->ecc_sym_sz
= 16;
2741 } else if (pvt
->umc
[i
].ecc_ctrl
& BIT(7)) {
2742 pvt
->ecc_sym_sz
= 8;
2747 } else if (pvt
->fam
>= 0x10) {
2750 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2751 /* F16h has only DCT0, so no need to read dbam1. */
2752 if (pvt
->fam
!= 0x16)
2753 amd64_read_dct_pci_cfg(pvt
, 1, DBAM0
, &pvt
->dbam1
);
2755 /* F10h, revD and later can do x8 ECC too. */
2756 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2757 pvt
->ecc_sym_sz
= 8;
2762 * Retrieve the hardware registers of the memory controller.
2764 static void __read_mc_regs_df(struct amd64_pvt
*pvt
)
2766 u8 nid
= pvt
->mc_node_id
;
2767 struct amd64_umc
*umc
;
2770 /* Read registers from each UMC */
2773 umc_base
= get_umc_base(i
);
2776 amd_smn_read(nid
, umc_base
+ UMCCH_DIMM_CFG
, &umc
->dimm_cfg
);
2777 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CFG
, &umc
->umc_cfg
);
2778 amd_smn_read(nid
, umc_base
+ UMCCH_SDP_CTRL
, &umc
->sdp_ctrl
);
2779 amd_smn_read(nid
, umc_base
+ UMCCH_ECC_CTRL
, &umc
->ecc_ctrl
);
2780 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CAP_HI
, &umc
->umc_cap_hi
);
2785 * Retrieve the hardware registers of the memory controller (this includes the
2786 * 'Address Map' and 'Misc' device regs)
2788 static void read_mc_regs(struct amd64_pvt
*pvt
)
2794 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2795 * those are Read-As-Zero.
2797 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2798 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2800 /* Check first whether TOP_MEM2 is enabled: */
2801 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2802 if (msr_val
& BIT(21)) {
2803 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2804 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2806 edac_dbg(0, " TOP_MEM2 disabled\n");
2810 __read_mc_regs_df(pvt
);
2811 amd64_read_pci_cfg(pvt
->F0
, DF_DHAR
, &pvt
->dhar
);
2816 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2818 read_dram_ctl_register(pvt
);
2820 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2823 /* read settings for this DRAM range */
2824 read_dram_base_limit_regs(pvt
, range
);
2826 rw
= dram_rw(pvt
, range
);
2830 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2832 get_dram_base(pvt
, range
),
2833 get_dram_limit(pvt
, range
));
2835 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2836 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2837 (rw
& 0x1) ? "R" : "-",
2838 (rw
& 0x2) ? "W" : "-",
2839 dram_intlv_sel(pvt
, range
),
2840 dram_dst_node(pvt
, range
));
2843 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2844 amd64_read_dct_pci_cfg(pvt
, 0, DBAM0
, &pvt
->dbam0
);
2846 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2848 amd64_read_dct_pci_cfg(pvt
, 0, DCLR0
, &pvt
->dclr0
);
2849 amd64_read_dct_pci_cfg(pvt
, 0, DCHR0
, &pvt
->dchr0
);
2851 if (!dct_ganging_enabled(pvt
)) {
2852 amd64_read_dct_pci_cfg(pvt
, 1, DCLR0
, &pvt
->dclr1
);
2853 amd64_read_dct_pci_cfg(pvt
, 1, DCHR0
, &pvt
->dchr1
);
2857 read_dct_base_mask(pvt
);
2859 determine_memory_type(pvt
);
2860 edac_dbg(1, " DIMM type: %s\n", edac_mem_types
[pvt
->dram_type
]);
2862 determine_ecc_sym_sz(pvt
);
2866 * NOTE: CPU Revision Dependent code
2869 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2870 * k8 private pointer to -->
2871 * DRAM Bank Address mapping register
2873 * DCL register where dual_channel_active is
2875 * The DBAM register consists of 4 sets of 4 bits each definitions:
2878 * 0-3 CSROWs 0 and 1
2879 * 4-7 CSROWs 2 and 3
2880 * 8-11 CSROWs 4 and 5
2881 * 12-15 CSROWs 6 and 7
2883 * Values range from: 0 to 15
2884 * The meaning of the values depends on CPU revision and dual-channel state,
2885 * see relevant BKDG more info.
2887 * The memory controller provides for total of only 8 CSROWs in its current
2888 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2889 * single channel or two (2) DIMMs in dual channel mode.
2891 * The following code logic collapses the various tables for CSROW based on CPU
2895 * The number of PAGE_SIZE pages on the specified CSROW number it
2899 static u32
get_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr_orig
)
2901 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2902 int csrow_nr
= csrow_nr_orig
;
2903 u32 cs_mode
, nr_pages
;
2907 cs_mode
= DBAM_DIMM(csrow_nr
, dbam
);
2909 cs_mode
= f17_get_cs_mode(csrow_nr
>> 1, dct
, pvt
);
2912 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
, csrow_nr
);
2913 nr_pages
<<= 20 - PAGE_SHIFT
;
2915 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2916 csrow_nr_orig
, dct
, cs_mode
);
2917 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2922 static int init_csrows_df(struct mem_ctl_info
*mci
)
2924 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2925 enum edac_type edac_mode
= EDAC_NONE
;
2926 enum dev_type dev_type
= DEV_UNKNOWN
;
2927 struct dimm_info
*dimm
;
2931 if (mci
->edac_ctl_cap
& EDAC_FLAG_S16ECD16ED
) {
2932 edac_mode
= EDAC_S16ECD16ED
;
2934 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_S8ECD8ED
) {
2935 edac_mode
= EDAC_S8ECD8ED
;
2937 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_S4ECD4ED
) {
2938 edac_mode
= EDAC_S4ECD4ED
;
2940 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_SECDED
) {
2941 edac_mode
= EDAC_SECDED
;
2945 for_each_chip_select(cs
, umc
, pvt
) {
2946 if (!csrow_enabled(cs
, umc
, pvt
))
2950 dimm
= mci
->csrows
[cs
]->channels
[umc
]->dimm
;
2952 edac_dbg(1, "MC node: %d, csrow: %d\n",
2953 pvt
->mc_node_id
, cs
);
2955 dimm
->nr_pages
= get_csrow_nr_pages(pvt
, umc
, cs
);
2956 dimm
->mtype
= pvt
->dram_type
;
2957 dimm
->edac_mode
= edac_mode
;
2958 dimm
->dtype
= dev_type
;
2967 * Initialize the array of csrow attribute instances, based on the values
2968 * from pci config hardware registers.
2970 static int init_csrows(struct mem_ctl_info
*mci
)
2972 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2973 enum edac_type edac_mode
= EDAC_NONE
;
2974 struct csrow_info
*csrow
;
2975 struct dimm_info
*dimm
;
2976 int i
, j
, empty
= 1;
2981 return init_csrows_df(mci
);
2983 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2987 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2988 pvt
->mc_node_id
, val
,
2989 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2992 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2994 for_each_chip_select(i
, 0, pvt
) {
2995 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2996 bool row_dct1
= false;
2998 if (pvt
->fam
!= 0xf)
2999 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
3001 if (!row_dct0
&& !row_dct1
)
3004 csrow
= mci
->csrows
[i
];
3007 edac_dbg(1, "MC node: %d, csrow: %d\n",
3008 pvt
->mc_node_id
, i
);
3011 nr_pages
= get_csrow_nr_pages(pvt
, 0, i
);
3012 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
3015 /* K8 has only one DCT */
3016 if (pvt
->fam
!= 0xf && row_dct1
) {
3017 int row_dct1_pages
= get_csrow_nr_pages(pvt
, 1, i
);
3019 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
3020 nr_pages
+= row_dct1_pages
;
3023 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
3025 /* Determine DIMM ECC mode: */
3026 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
) {
3027 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
)
3032 for (j
= 0; j
< pvt
->channel_count
; j
++) {
3033 dimm
= csrow
->channels
[j
]->dimm
;
3034 dimm
->mtype
= pvt
->dram_type
;
3035 dimm
->edac_mode
= edac_mode
;
3043 /* get all cores on this DCT */
3044 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
3048 for_each_online_cpu(cpu
)
3049 if (amd_get_nb_id(cpu
) == nid
)
3050 cpumask_set_cpu(cpu
, mask
);
3053 /* check MCG_CTL on all the cpus on this node */
3054 static bool nb_mce_bank_enabled_on_node(u16 nid
)
3060 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
3061 amd64_warn("%s: Error allocating mask\n", __func__
);
3065 get_cpus_on_this_dct_cpumask(mask
, nid
);
3067 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
3069 for_each_cpu(cpu
, mask
) {
3070 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
3071 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
3073 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
3075 (nbe
? "enabled" : "disabled"));
3083 free_cpumask_var(mask
);
3087 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
3089 cpumask_var_t cmask
;
3092 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
3093 amd64_warn("%s: error allocating mask\n", __func__
);
3097 get_cpus_on_this_dct_cpumask(cmask
, nid
);
3099 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
3101 for_each_cpu(cpu
, cmask
) {
3103 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
3106 if (reg
->l
& MSR_MCGCTL_NBE
)
3107 s
->flags
.nb_mce_enable
= 1;
3109 reg
->l
|= MSR_MCGCTL_NBE
;
3112 * Turn off NB MCE reporting only when it was off before
3114 if (!s
->flags
.nb_mce_enable
)
3115 reg
->l
&= ~MSR_MCGCTL_NBE
;
3118 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
3120 free_cpumask_var(cmask
);
3125 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
3129 u32 value
, mask
= 0x3; /* UECC/CECC enable */
3131 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
3132 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
3136 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
3138 s
->old_nbctl
= value
& mask
;
3139 s
->nbctl_valid
= true;
3142 amd64_write_pci_cfg(F3
, NBCTL
, value
);
3144 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3146 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3147 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
3149 if (!(value
& NBCFG_ECC_ENABLE
)) {
3150 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3152 s
->flags
.nb_ecc_prev
= 0;
3154 /* Attempt to turn on DRAM ECC Enable */
3155 value
|= NBCFG_ECC_ENABLE
;
3156 amd64_write_pci_cfg(F3
, NBCFG
, value
);
3158 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3160 if (!(value
& NBCFG_ECC_ENABLE
)) {
3161 amd64_warn("Hardware rejected DRAM ECC enable,"
3162 "check memory DIMM configuration.\n");
3165 amd64_info("Hardware accepted DRAM ECC Enable\n");
3168 s
->flags
.nb_ecc_prev
= 1;
3171 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3172 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
3177 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
3180 u32 value
, mask
= 0x3; /* UECC/CECC enable */
3182 if (!s
->nbctl_valid
)
3185 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
3187 value
|= s
->old_nbctl
;
3189 amd64_write_pci_cfg(F3
, NBCTL
, value
);
3191 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3192 if (!s
->flags
.nb_ecc_prev
) {
3193 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3194 value
&= ~NBCFG_ECC_ENABLE
;
3195 amd64_write_pci_cfg(F3
, NBCFG
, value
);
3198 /* restore the NB Enable MCGCTL bit */
3199 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
3200 amd64_warn("Error restoring NB MCGCTL settings!\n");
3203 static bool ecc_enabled(struct amd64_pvt
*pvt
)
3205 u16 nid
= pvt
->mc_node_id
;
3206 bool nb_mce_en
= false;
3210 if (boot_cpu_data
.x86
>= 0x17) {
3211 u8 umc_en_mask
= 0, ecc_en_mask
= 0;
3212 struct amd64_umc
*umc
;
3217 /* Only check enabled UMCs. */
3218 if (!(umc
->sdp_ctrl
& UMC_SDP_INIT
))
3221 umc_en_mask
|= BIT(i
);
3223 if (umc
->umc_cap_hi
& UMC_ECC_ENABLED
)
3224 ecc_en_mask
|= BIT(i
);
3227 /* Check whether at least one UMC is enabled: */
3229 ecc_en
= umc_en_mask
== ecc_en_mask
;
3231 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid
);
3233 /* Assume UMC MCA banks are enabled. */
3236 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &value
);
3238 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
3240 nb_mce_en
= nb_mce_bank_enabled_on_node(nid
);
3242 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3243 MSR_IA32_MCG_CTL
, nid
);
3246 amd64_info("Node %d: DRAM ECC %s.\n",
3247 nid
, (ecc_en
? "enabled" : "disabled"));
3249 if (!ecc_en
|| !nb_mce_en
)
3256 f17h_determine_edac_ctl_cap(struct mem_ctl_info
*mci
, struct amd64_pvt
*pvt
)
3258 u8 i
, ecc_en
= 1, cpk_en
= 1, dev_x4
= 1, dev_x16
= 1;
3261 if (pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) {
3262 ecc_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_ENABLED
);
3263 cpk_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_CHIPKILL_CAP
);
3265 dev_x4
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(6));
3266 dev_x16
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(7));
3270 /* Set chipkill only if ECC is enabled: */
3272 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3278 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3280 mci
->edac_ctl_cap
|= EDAC_FLAG_S16ECD16ED
;
3282 mci
->edac_ctl_cap
|= EDAC_FLAG_S8ECD8ED
;
3286 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
)
3288 struct amd64_pvt
*pvt
= mci
->pvt_info
;
3290 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
3291 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3294 f17h_determine_edac_ctl_cap(mci
, pvt
);
3296 if (pvt
->nbcap
& NBCAP_SECDED
)
3297 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3299 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
3300 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3303 mci
->edac_cap
= determine_edac_cap(pvt
);
3304 mci
->mod_name
= EDAC_MOD_STR
;
3305 mci
->ctl_name
= fam_type
->ctl_name
;
3306 mci
->dev_name
= pci_name(pvt
->F3
);
3307 mci
->ctl_page_to_phys
= NULL
;
3309 /* memory scrubber interface */
3310 mci
->set_sdram_scrub_rate
= set_scrub_rate
;
3311 mci
->get_sdram_scrub_rate
= get_scrub_rate
;
3315 * returns a pointer to the family descriptor on success, NULL otherwise.
3317 static struct amd64_family_type
*per_family_init(struct amd64_pvt
*pvt
)
3319 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
3320 pvt
->stepping
= boot_cpu_data
.x86_stepping
;
3321 pvt
->model
= boot_cpu_data
.x86_model
;
3322 pvt
->fam
= boot_cpu_data
.x86
;
3326 fam_type
= &family_types
[K8_CPUS
];
3327 pvt
->ops
= &family_types
[K8_CPUS
].ops
;
3331 fam_type
= &family_types
[F10_CPUS
];
3332 pvt
->ops
= &family_types
[F10_CPUS
].ops
;
3336 if (pvt
->model
== 0x30) {
3337 fam_type
= &family_types
[F15_M30H_CPUS
];
3338 pvt
->ops
= &family_types
[F15_M30H_CPUS
].ops
;
3340 } else if (pvt
->model
== 0x60) {
3341 fam_type
= &family_types
[F15_M60H_CPUS
];
3342 pvt
->ops
= &family_types
[F15_M60H_CPUS
].ops
;
3346 fam_type
= &family_types
[F15_CPUS
];
3347 pvt
->ops
= &family_types
[F15_CPUS
].ops
;
3351 if (pvt
->model
== 0x30) {
3352 fam_type
= &family_types
[F16_M30H_CPUS
];
3353 pvt
->ops
= &family_types
[F16_M30H_CPUS
].ops
;
3356 fam_type
= &family_types
[F16_CPUS
];
3357 pvt
->ops
= &family_types
[F16_CPUS
].ops
;
3361 if (pvt
->model
>= 0x10 && pvt
->model
<= 0x2f) {
3362 fam_type
= &family_types
[F17_M10H_CPUS
];
3363 pvt
->ops
= &family_types
[F17_M10H_CPUS
].ops
;
3365 } else if (pvt
->model
>= 0x30 && pvt
->model
<= 0x3f) {
3366 fam_type
= &family_types
[F17_M30H_CPUS
];
3367 pvt
->ops
= &family_types
[F17_M30H_CPUS
].ops
;
3369 } else if (pvt
->model
>= 0x60 && pvt
->model
<= 0x6f) {
3370 fam_type
= &family_types
[F17_M60H_CPUS
];
3371 pvt
->ops
= &family_types
[F17_M60H_CPUS
].ops
;
3373 } else if (pvt
->model
>= 0x70 && pvt
->model
<= 0x7f) {
3374 fam_type
= &family_types
[F17_M70H_CPUS
];
3375 pvt
->ops
= &family_types
[F17_M70H_CPUS
].ops
;
3380 fam_type
= &family_types
[F17_CPUS
];
3381 pvt
->ops
= &family_types
[F17_CPUS
].ops
;
3383 if (pvt
->fam
== 0x18)
3384 family_types
[F17_CPUS
].ctl_name
= "F18h";
3388 fam_type
= &family_types
[F19_CPUS
];
3389 pvt
->ops
= &family_types
[F19_CPUS
].ops
;
3390 family_types
[F19_CPUS
].ctl_name
= "F19h";
3394 amd64_err("Unsupported family!\n");
3398 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
3400 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
3401 : "revE or earlier ")
3402 : ""), pvt
->mc_node_id
);
3406 static const struct attribute_group
*amd64_edac_attr_groups
[] = {
3407 #ifdef CONFIG_EDAC_DEBUG
3408 &amd64_edac_dbg_group
,
3410 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3411 &amd64_edac_inj_group
,
3416 static int hw_info_get(struct amd64_pvt
*pvt
)
3418 u16 pci_id1
, pci_id2
;
3421 if (pvt
->fam
>= 0x17) {
3422 pvt
->umc
= kcalloc(fam_type
->max_mcs
, sizeof(struct amd64_umc
), GFP_KERNEL
);
3426 pci_id1
= fam_type
->f0_id
;
3427 pci_id2
= fam_type
->f6_id
;
3429 pci_id1
= fam_type
->f1_id
;
3430 pci_id2
= fam_type
->f2_id
;
3433 ret
= reserve_mc_sibling_devs(pvt
, pci_id1
, pci_id2
);
3442 static void hw_info_put(struct amd64_pvt
*pvt
)
3444 if (pvt
->F0
|| pvt
->F1
)
3445 free_mc_sibling_devs(pvt
);
3450 static int init_one_instance(struct amd64_pvt
*pvt
)
3452 struct mem_ctl_info
*mci
= NULL
;
3453 struct edac_mc_layer layers
[2];
3457 * We need to determine how many memory channels there are. Then use
3458 * that information for calculating the size of the dynamic instance
3459 * tables in the 'mci' structure.
3461 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
3462 if (pvt
->channel_count
< 0)
3466 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
3467 layers
[0].size
= pvt
->csels
[0].b_cnt
;
3468 layers
[0].is_virt_csrow
= true;
3469 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
3472 * Always allocate two channels since we can have setups with DIMMs on
3473 * only one channel. Also, this simplifies handling later for the price
3474 * of a couple of KBs tops.
3476 layers
[1].size
= fam_type
->max_mcs
;
3477 layers
[1].is_virt_csrow
= false;
3479 mci
= edac_mc_alloc(pvt
->mc_node_id
, ARRAY_SIZE(layers
), layers
, 0);
3483 mci
->pvt_info
= pvt
;
3484 mci
->pdev
= &pvt
->F3
->dev
;
3486 setup_mci_misc_attrs(mci
);
3488 if (init_csrows(mci
))
3489 mci
->edac_cap
= EDAC_FLAG_NONE
;
3492 if (edac_mc_add_mc_with_groups(mci
, amd64_edac_attr_groups
)) {
3493 edac_dbg(1, "failed edac_mc_add_mc()\n");
3501 static bool instance_has_memory(struct amd64_pvt
*pvt
)
3503 bool cs_enabled
= false;
3504 int cs
= 0, dct
= 0;
3506 for (dct
= 0; dct
< fam_type
->max_mcs
; dct
++) {
3507 for_each_chip_select(cs
, dct
, pvt
)
3508 cs_enabled
|= csrow_enabled(cs
, dct
, pvt
);
3514 static int probe_one_instance(unsigned int nid
)
3516 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3517 struct amd64_pvt
*pvt
= NULL
;
3518 struct ecc_settings
*s
;
3522 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
3528 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
3532 pvt
->mc_node_id
= nid
;
3535 fam_type
= per_family_init(pvt
);
3539 ret
= hw_info_get(pvt
);
3544 if (!instance_has_memory(pvt
)) {
3545 amd64_info("Node %d: No DIMMs detected.\n", nid
);
3549 if (!ecc_enabled(pvt
)) {
3552 if (!ecc_enable_override
)
3555 if (boot_cpu_data
.x86
>= 0x17) {
3556 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3559 amd64_warn("Forcing ECC on!\n");
3561 if (!enable_ecc_error_reporting(s
, nid
, F3
))
3565 ret
= init_one_instance(pvt
);
3567 amd64_err("Error probing instance: %d\n", nid
);
3569 if (boot_cpu_data
.x86
< 0x17)
3570 restore_ecc_error_reporting(s
, nid
, F3
);
3575 dump_misc_regs(pvt
);
3585 ecc_stngs
[nid
] = NULL
;
3591 static void remove_one_instance(unsigned int nid
)
3593 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3594 struct ecc_settings
*s
= ecc_stngs
[nid
];
3595 struct mem_ctl_info
*mci
;
3596 struct amd64_pvt
*pvt
;
3598 /* Remove from EDAC CORE tracking list */
3599 mci
= edac_mc_del_mc(&F3
->dev
);
3603 pvt
= mci
->pvt_info
;
3605 restore_ecc_error_reporting(s
, nid
, F3
);
3607 kfree(ecc_stngs
[nid
]);
3608 ecc_stngs
[nid
] = NULL
;
3610 /* Free the EDAC CORE resources */
3611 mci
->pvt_info
= NULL
;
3618 static void setup_pci_device(void)
3620 struct mem_ctl_info
*mci
;
3621 struct amd64_pvt
*pvt
;
3626 mci
= edac_mc_find(0);
3630 pvt
= mci
->pvt_info
;
3632 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F0
->dev
, EDAC_MOD_STR
);
3634 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
3636 pr_warn("%s(): Unable to create PCI control\n", __func__
);
3637 pr_warn("%s(): PCI error report via EDAC not set\n", __func__
);
3641 static const struct x86_cpu_id amd64_cpuids
[] = {
3642 X86_MATCH_VENDOR_FAM(AMD
, 0x0F, NULL
),
3643 X86_MATCH_VENDOR_FAM(AMD
, 0x10, NULL
),
3644 X86_MATCH_VENDOR_FAM(AMD
, 0x15, NULL
),
3645 X86_MATCH_VENDOR_FAM(AMD
, 0x16, NULL
),
3646 X86_MATCH_VENDOR_FAM(AMD
, 0x17, NULL
),
3647 X86_MATCH_VENDOR_FAM(HYGON
, 0x18, NULL
),
3648 X86_MATCH_VENDOR_FAM(AMD
, 0x19, NULL
),
3651 MODULE_DEVICE_TABLE(x86cpu
, amd64_cpuids
);
3653 static int __init
amd64_edac_init(void)
3659 owner
= edac_get_owner();
3660 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3663 if (!x86_match_cpu(amd64_cpuids
))
3666 if (amd_cache_northbridges() < 0)
3672 ecc_stngs
= kcalloc(amd_nb_num(), sizeof(ecc_stngs
[0]), GFP_KERNEL
);
3676 msrs
= msrs_alloc();
3680 for (i
= 0; i
< amd_nb_num(); i
++) {
3681 err
= probe_one_instance(i
);
3683 /* unwind properly */
3685 remove_one_instance(i
);
3691 if (!edac_has_mcs()) {
3696 /* register stuff with EDAC MCE */
3697 if (boot_cpu_data
.x86
>= 0x17)
3698 amd_register_ecc_decoder(decode_umc_error
);
3700 amd_register_ecc_decoder(decode_bus_error
);
3704 #ifdef CONFIG_X86_32
3705 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR
);
3708 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
3723 static void __exit
amd64_edac_exit(void)
3728 edac_pci_release_generic_ctl(pci_ctl
);
3730 /* unregister from EDAC MCE */
3731 if (boot_cpu_data
.x86
>= 0x17)
3732 amd_unregister_ecc_decoder(decode_umc_error
);
3734 amd_unregister_ecc_decoder(decode_bus_error
);
3736 for (i
= 0; i
< amd_nb_num(); i
++)
3737 remove_one_instance(i
);
3746 module_init(amd64_edac_init
);
3747 module_exit(amd64_edac_exit
);
3749 MODULE_LICENSE("GPL");
3750 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3751 "Dave Peterson, Thayne Harbaugh");
3752 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3753 EDAC_AMD64_VERSION
);
3755 module_param(edac_op_state
, int, 0444);
3756 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");