1 // SPDX-License-Identifier: GPL-2.0
3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
4 * Copyright (c) 2016, Intel Corporation.
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
13 #include "edac_module.h"
14 #include "skx_common.h"
16 #define EDAC_MOD_STR "skx_edac"
21 #define skx_printk(level, fmt, arg...) \
22 edac_printk(level, "skx", fmt, ##arg)
24 #define skx_mc_printk(mci, level, fmt, arg...) \
25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
27 static struct list_head
*skx_edac_list
;
29 static u64 skx_tolm
, skx_tohm
;
30 static int skx_num_sockets
;
31 static unsigned int nvdimm_count
;
33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
36 static struct skx_dev
*get_skx_dev(struct pci_bus
*bus
, u8 idx
)
40 list_for_each_entry(d
, skx_edac_list
, list
) {
41 if (d
->seg
== pci_domain_nr(bus
) && d
->bus
[idx
] == bus
->number
)
49 CHAN0
, CHAN1
, CHAN2
, SAD_ALL
, UTIL_ALL
, SAD
,
50 ERRCHAN0
, ERRCHAN1
, ERRCHAN2
,
55 u16 devfn
[SKX_NUM_IMC
];
62 * List of PCI device ids that we need together with some device
63 * number and function numbers to tell which memory controller the
66 static const struct munit skx_all_munits
[] = {
67 { 0x2054, { }, 1, 1, SAD_ALL
},
68 { 0x2055, { }, 1, 1, UTIL_ALL
},
69 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0
},
70 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1
},
71 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2
},
72 { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0
},
73 { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1
},
74 { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2
},
75 { 0x208e, { }, 1, 0, SAD
},
79 static int get_all_munits(const struct munit
*m
)
81 struct pci_dev
*pdev
, *prev
;
88 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, m
->did
, prev
);
92 if (m
->per_socket
== SKX_NUM_IMC
) {
93 for (i
= 0; i
< SKX_NUM_IMC
; i
++)
94 if (m
->devfn
[i
] == pdev
->devfn
)
99 d
= get_skx_dev(pdev
->bus
, m
->busidx
);
103 /* Be sure that the device is enabled */
104 if (unlikely(pci_enable_device(pdev
) < 0)) {
105 skx_printk(KERN_ERR
, "Couldn't enable device %04x:%04x\n",
106 PCI_VENDOR_ID_INTEL
, m
->did
);
115 d
->imc
[i
].chan
[m
->mtype
].cdev
= pdev
;
121 d
->imc
[i
].chan
[m
->mtype
- ERRCHAN0
].edev
= pdev
;
133 * one of these devices per core, including cores
134 * that don't exist on this SKU. Ignore any that
135 * read a route table of zero, make sure all the
136 * non-zero values match.
138 pci_read_config_dword(pdev
, 0xB4, ®
);
140 if (d
->mcroute
== 0) {
142 } else if (d
->mcroute
!= reg
) {
143 skx_printk(KERN_ERR
, "mcroute mismatch\n");
160 static struct res_config skx_cfg
= {
163 .busno_cfg_offset
= 0xcc,
166 static const struct x86_cpu_id skx_cpuids
[] = {
167 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X
, X86_STEPPINGS(0x0, 0xf), &skx_cfg
),
170 MODULE_DEVICE_TABLE(x86cpu
, skx_cpuids
);
172 static bool skx_check_ecc(u32 mcmtr
)
174 return !!GET_BITFIELD(mcmtr
, 2, 2);
177 static int skx_get_dimm_config(struct mem_ctl_info
*mci
)
179 struct skx_pvt
*pvt
= mci
->pvt_info
;
180 u32 mtr
, mcmtr
, amap
, mcddrtcfg
;
181 struct skx_imc
*imc
= pvt
->imc
;
182 struct dimm_info
*dimm
;
186 /* Only the mcmtr on the first channel is effective */
187 pci_read_config_dword(imc
->chan
[0].cdev
, 0x87c, &mcmtr
);
189 for (i
= 0; i
< SKX_NUM_CHANNELS
; i
++) {
191 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x8C, &amap
);
192 pci_read_config_dword(imc
->chan
[i
].cdev
, 0x400, &mcddrtcfg
);
193 for (j
= 0; j
< SKX_NUM_DIMMS
; j
++) {
194 dimm
= edac_get_dimm(mci
, i
, j
, 0);
195 pci_read_config_dword(imc
->chan
[i
].cdev
,
197 if (IS_DIMM_PRESENT(mtr
)) {
198 ndimms
+= skx_get_dimm_info(mtr
, mcmtr
, amap
, dimm
, imc
, i
, j
);
199 } else if (IS_NVDIMM_PRESENT(mcddrtcfg
, j
)) {
200 ndimms
+= skx_get_nvdimm_info(dimm
, imc
, i
, j
,
205 if (ndimms
&& !skx_check_ecc(mcmtr
)) {
206 skx_printk(KERN_ERR
, "ECC is disabled on imc %d\n", imc
->mc
);
214 #define SKX_MAX_SAD 24
216 #define SKX_GET_SAD(d, i, reg) \
217 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218 #define SKX_GET_ILV(d, i, reg) \
219 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
221 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
222 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
223 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
225 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
226 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
227 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
229 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
230 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
232 static void skx_show_retry_rd_err_log(struct decoded_addr
*res
,
235 u32 log0
, log1
, log2
, log3
, log4
;
236 u32 corr0
, corr1
, corr2
, corr3
;
237 struct pci_dev
*edev
;
240 edev
= res
->dev
->imc
[res
->imc
].chan
[res
->channel
].edev
;
242 pci_read_config_dword(edev
, 0x154, &log0
);
243 pci_read_config_dword(edev
, 0x148, &log1
);
244 pci_read_config_dword(edev
, 0x150, &log2
);
245 pci_read_config_dword(edev
, 0x15c, &log3
);
246 pci_read_config_dword(edev
, 0x114, &log4
);
248 n
= snprintf(msg
, len
, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
249 log0
, log1
, log2
, log3
, log4
);
251 pci_read_config_dword(edev
, 0x104, &corr0
);
252 pci_read_config_dword(edev
, 0x108, &corr1
);
253 pci_read_config_dword(edev
, 0x10c, &corr2
);
254 pci_read_config_dword(edev
, 0x110, &corr3
);
257 snprintf(msg
+ n
, len
- n
,
258 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
259 corr0
& 0xffff, corr0
>> 16,
260 corr1
& 0xffff, corr1
>> 16,
261 corr2
& 0xffff, corr2
>> 16,
262 corr3
& 0xffff, corr3
>> 16);
265 static bool skx_sad_decode(struct decoded_addr
*res
)
267 struct skx_dev
*d
= list_first_entry(skx_edac_list
, typeof(*d
), list
);
268 u64 addr
= res
->addr
;
269 int i
, idx
, tgt
, lchan
, shift
;
271 u64 limit
, prev_limit
;
274 /* Simple sanity check for I/O space or out of range */
275 if (addr
>= skx_tohm
|| (addr
>= skx_tolm
&& addr
< BIT_ULL(32))) {
276 edac_dbg(0, "Address 0x%llx out of range\n", addr
);
282 for (i
= 0; i
< SKX_MAX_SAD
; i
++) {
283 SKX_GET_SAD(d
, i
, sad
);
284 limit
= SKX_SAD_LIMIT(sad
);
285 if (SKX_SAD_ENABLE(sad
)) {
286 if (addr
>= prev_limit
&& addr
<= limit
)
289 prev_limit
= limit
+ 1;
291 edac_dbg(0, "No SAD entry for 0x%llx\n", addr
);
295 SKX_GET_ILV(d
, i
, ilv
);
297 switch (SKX_SAD_INTERLEAVE(sad
)) {
299 idx
= GET_BITFIELD(addr
, 6, 8);
302 idx
= GET_BITFIELD(addr
, 8, 10);
305 idx
= GET_BITFIELD(addr
, 12, 14);
308 idx
= GET_BITFIELD(addr
, 30, 32);
312 tgt
= GET_BITFIELD(ilv
, 4 * idx
, 4 * idx
+ 3);
314 /* If point to another node, find it and start over */
315 if (SKX_ILV_REMOTE(tgt
)) {
317 edac_dbg(0, "Double remote!\n");
321 list_for_each_entry(d
, skx_edac_list
, list
) {
322 if (d
->imc
[0].src_id
== SKX_ILV_TARGET(tgt
))
325 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt
));
329 if (SKX_SAD_MOD3(sad
) == 0) {
330 lchan
= SKX_ILV_TARGET(tgt
);
332 switch (SKX_SAD_MOD3MODE(sad
)) {
343 edac_dbg(0, "illegal mod3mode\n");
346 switch (SKX_SAD_MOD3ASMOD2(sad
)) {
348 lchan
= (addr
>> shift
) % 3;
351 lchan
= (addr
>> shift
) % 2;
354 lchan
= (addr
>> shift
) % 2;
355 lchan
= (lchan
<< 1) | !lchan
;
358 lchan
= ((addr
>> shift
) % 2) << 1;
361 lchan
= (lchan
<< 1) | (SKX_ILV_TARGET(tgt
) & 1);
365 res
->socket
= d
->imc
[0].src_id
;
366 res
->imc
= GET_BITFIELD(d
->mcroute
, lchan
* 3, lchan
* 3 + 2);
367 res
->channel
= GET_BITFIELD(d
->mcroute
, lchan
* 2 + 18, lchan
* 2 + 19);
369 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
370 res
->addr
, res
->socket
, res
->imc
, res
->channel
);
374 #define SKX_MAX_TAD 8
376 #define SKX_GET_TADBASE(d, mc, i, reg) \
377 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
378 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
379 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
380 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
381 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
383 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
384 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
385 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
386 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
387 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
388 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
389 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
391 /* which bit used for both socket and channel interleave */
392 static int skx_granularity
[] = { 6, 8, 12, 30 };
394 static u64
skx_do_interleave(u64 addr
, int shift
, int ways
, u64 lowbits
)
400 return addr
| (lowbits
& ((1ull << shift
) - 1));
403 static bool skx_tad_decode(struct decoded_addr
*res
)
406 u32 base
, wayness
, chnilvoffset
;
407 int skt_interleave_bit
, chn_interleave_bit
;
410 for (i
= 0; i
< SKX_MAX_TAD
; i
++) {
411 SKX_GET_TADBASE(res
->dev
, res
->imc
, i
, base
);
412 SKX_GET_TADWAYNESS(res
->dev
, res
->imc
, i
, wayness
);
413 if (SKX_TAD_BASE(base
) <= res
->addr
&& res
->addr
<= SKX_TAD_LIMIT(wayness
))
416 edac_dbg(0, "No TAD entry for 0x%llx\n", res
->addr
);
420 res
->sktways
= SKX_TAD_SKTWAYS(wayness
);
421 res
->chanways
= SKX_TAD_CHNWAYS(wayness
);
422 skt_interleave_bit
= skx_granularity
[SKX_TAD_SKT_GRAN(base
)];
423 chn_interleave_bit
= skx_granularity
[SKX_TAD_CHN_GRAN(base
)];
425 SKX_GET_TADCHNILVOFFSET(res
->dev
, res
->imc
, res
->channel
, i
, chnilvoffset
);
426 channel_addr
= res
->addr
- SKX_TAD_OFFSET(chnilvoffset
);
428 if (res
->chanways
== 3 && skt_interleave_bit
> chn_interleave_bit
) {
429 /* Must handle channel first, then socket */
430 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
431 res
->chanways
, channel_addr
);
432 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
433 res
->sktways
, channel_addr
);
435 /* Handle socket then channel. Preserve low bits from original address */
436 channel_addr
= skx_do_interleave(channel_addr
, skt_interleave_bit
,
437 res
->sktways
, res
->addr
);
438 channel_addr
= skx_do_interleave(channel_addr
, chn_interleave_bit
,
439 res
->chanways
, res
->addr
);
442 res
->chan_addr
= channel_addr
;
444 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
445 res
->addr
, res
->chan_addr
, res
->sktways
, res
->chanways
);
449 #define SKX_MAX_RIR 4
451 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
452 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
453 0x108 + 4 * (i), &(reg))
454 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
455 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
456 0x120 + 16 * (idx) + 4 * (i), &(reg))
458 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
459 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
460 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
461 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
462 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
464 static bool skx_rir_decode(struct decoded_addr
*res
)
466 int i
, idx
, chan_rank
;
469 u64 rank_addr
, prev_limit
= 0, limit
;
471 if (res
->dev
->imc
[res
->imc
].chan
[res
->channel
].dimms
[0].close_pg
)
476 for (i
= 0; i
< SKX_MAX_RIR
; i
++) {
477 SKX_GET_RIRWAYNESS(res
->dev
, res
->imc
, res
->channel
, i
, rirway
);
478 limit
= SKX_RIR_LIMIT(rirway
);
479 if (SKX_RIR_VALID(rirway
)) {
480 if (prev_limit
<= res
->chan_addr
&&
481 res
->chan_addr
<= limit
)
486 edac_dbg(0, "No RIR entry for 0x%llx\n", res
->addr
);
490 rank_addr
= res
->chan_addr
>> shift
;
491 rank_addr
/= SKX_RIR_WAYS(rirway
);
493 rank_addr
|= res
->chan_addr
& GENMASK_ULL(shift
- 1, 0);
495 res
->rank_address
= rank_addr
;
496 idx
= (res
->chan_addr
>> shift
) % SKX_RIR_WAYS(rirway
);
498 SKX_GET_RIRILV(res
->dev
, res
->imc
, res
->channel
, idx
, i
, rirlv
);
499 res
->rank_address
= rank_addr
- SKX_RIR_OFFSET(rirlv
);
500 chan_rank
= SKX_RIR_CHAN_RANK(rirlv
);
501 res
->channel_rank
= chan_rank
;
502 res
->dimm
= chan_rank
/ 4;
503 res
->rank
= chan_rank
% 4;
505 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
506 res
->addr
, res
->dimm
, res
->rank
,
507 res
->channel_rank
, res
->rank_address
);
511 static u8 skx_close_row
[] = {
512 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
515 static u8 skx_close_column
[] = {
516 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
519 static u8 skx_open_row
[] = {
520 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
523 static u8 skx_open_column
[] = {
524 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
527 static u8 skx_open_fine_column
[] = {
528 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
531 static int skx_bits(u64 addr
, int nbits
, u8
*bits
)
535 for (i
= 0; i
< nbits
; i
++)
536 res
|= ((addr
>> bits
[i
]) & 1) << i
;
540 static int skx_bank_bits(u64 addr
, int b0
, int b1
, int do_xor
, int x0
, int x1
)
542 int ret
= GET_BITFIELD(addr
, b0
, b0
) | (GET_BITFIELD(addr
, b1
, b1
) << 1);
545 ret
^= GET_BITFIELD(addr
, x0
, x0
) | (GET_BITFIELD(addr
, x1
, x1
) << 1);
550 static bool skx_mad_decode(struct decoded_addr
*r
)
552 struct skx_dimm
*dimm
= &r
->dev
->imc
[r
->imc
].chan
[r
->channel
].dimms
[r
->dimm
];
553 int bg0
= dimm
->fine_grain_bank
? 6 : 13;
555 if (dimm
->close_pg
) {
556 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_close_row
);
557 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_close_column
);
558 r
->column
|= 0x400; /* C10 is autoprecharge, always set */
559 r
->bank_address
= skx_bank_bits(r
->rank_address
, 8, 9, dimm
->bank_xor_enable
, 22, 28);
560 r
->bank_group
= skx_bank_bits(r
->rank_address
, 6, 7, dimm
->bank_xor_enable
, 20, 21);
562 r
->row
= skx_bits(r
->rank_address
, dimm
->rowbits
, skx_open_row
);
563 if (dimm
->fine_grain_bank
)
564 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_fine_column
);
566 r
->column
= skx_bits(r
->rank_address
, dimm
->colbits
, skx_open_column
);
567 r
->bank_address
= skx_bank_bits(r
->rank_address
, 18, 19, dimm
->bank_xor_enable
, 22, 23);
568 r
->bank_group
= skx_bank_bits(r
->rank_address
, bg0
, 17, dimm
->bank_xor_enable
, 20, 21);
570 r
->row
&= (1u << dimm
->rowbits
) - 1;
572 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
573 r
->addr
, r
->row
, r
->column
, r
->bank_address
,
578 static bool skx_decode(struct decoded_addr
*res
)
580 return skx_sad_decode(res
) && skx_tad_decode(res
) &&
581 skx_rir_decode(res
) && skx_mad_decode(res
);
584 static struct notifier_block skx_mce_dec
= {
585 .notifier_call
= skx_mce_check_error
,
586 .priority
= MCE_PRIO_EDAC
,
589 #ifdef CONFIG_EDAC_DEBUG
592 * Exercise the address decode logic by writing an address to
593 * /sys/kernel/debug/edac/skx_test/addr.
595 static struct dentry
*skx_test
;
597 static int debugfs_u64_set(void *data
, u64 val
)
601 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val
);
603 memset(&m
, 0, sizeof(m
));
604 /* ADDRV + MemRd + Unknown channel */
605 m
.status
= MCI_STATUS_ADDRV
+ 0x90;
606 /* One corrected error */
607 m
.status
|= BIT_ULL(MCI_STATUS_CEC_SHIFT
);
609 skx_mce_check_error(NULL
, 0, &m
);
613 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo
, NULL
, debugfs_u64_set
, "%llu\n");
615 static void setup_skx_debug(void)
617 skx_test
= edac_debugfs_create_dir("skx_test");
621 if (!edac_debugfs_create_file("addr", 0200, skx_test
,
622 NULL
, &fops_u64_wo
)) {
623 debugfs_remove(skx_test
);
628 static void teardown_skx_debug(void)
630 debugfs_remove_recursive(skx_test
);
633 static inline void setup_skx_debug(void) {}
634 static inline void teardown_skx_debug(void) {}
635 #endif /*CONFIG_EDAC_DEBUG*/
639 * make sure we are running on the correct cpu model
640 * search for all the devices we need
641 * check which DIMMs are present.
643 static int __init
skx_init(void)
645 const struct x86_cpu_id
*id
;
646 struct res_config
*cfg
;
647 const struct munit
*m
;
649 int rc
= 0, i
, off
[3] = {0xd0, 0xd4, 0xd8};
650 u8 mc
= 0, src_id
, node_id
;
655 owner
= edac_get_owner();
656 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
659 id
= x86_match_cpu(skx_cpuids
);
663 cfg
= (struct res_config
*)id
->driver_data
;
665 rc
= skx_get_hi_lo(0x2034, off
, &skx_tolm
, &skx_tohm
);
669 rc
= skx_get_all_bus_mappings(cfg
, &skx_edac_list
);
673 edac_dbg(2, "No memory controllers found\n");
676 skx_num_sockets
= rc
;
678 for (m
= skx_all_munits
; m
->did
; m
++) {
679 rc
= get_all_munits(m
);
682 if (rc
!= m
->per_socket
* skx_num_sockets
) {
683 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
684 m
->per_socket
* skx_num_sockets
, rc
, m
->did
);
690 list_for_each_entry(d
, skx_edac_list
, list
) {
691 rc
= skx_get_src_id(d
, 0xf0, &src_id
);
694 rc
= skx_get_node_id(d
, &node_id
);
697 edac_dbg(2, "src_id=%d node_id=%d\n", src_id
, node_id
);
698 for (i
= 0; i
< SKX_NUM_IMC
; i
++) {
701 d
->imc
[i
].src_id
= src_id
;
702 d
->imc
[i
].node_id
= node_id
;
703 rc
= skx_register_mci(&d
->imc
[i
], d
->imc
[i
].chan
[0].cdev
,
704 "Skylake Socket", EDAC_MOD_STR
,
705 skx_get_dimm_config
);
711 skx_set_decode(skx_decode
, skx_show_retry_rd_err_log
);
713 if (nvdimm_count
&& skx_adxl_get() == -ENODEV
)
714 skx_printk(KERN_NOTICE
, "Only decoding DDR4 address!\n");
716 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
721 mce_register_decode_chain(&skx_mce_dec
);
729 static void __exit
skx_exit(void)
732 mce_unregister_decode_chain(&skx_mce_dec
);
733 teardown_skx_debug();
739 module_init(skx_init
);
740 module_exit(skx_exit
);
742 module_param(edac_op_state
, int, 0444);
743 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
745 MODULE_LICENSE("GPL v2");
746 MODULE_AUTHOR("Tony Luck");
747 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");