1 // SPDX-License-Identifier: GPL-2.0-only
4 * Helper functions for bitmap.h.
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
24 * DOC: bitmap introduction
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
46 int __bitmap_equal(const unsigned long *bitmap1
,
47 const unsigned long *bitmap2
, unsigned int bits
)
49 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
50 for (k
= 0; k
< lim
; ++k
)
51 if (bitmap1
[k
] != bitmap2
[k
])
54 if (bits
% BITS_PER_LONG
)
55 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
60 EXPORT_SYMBOL(__bitmap_equal
);
62 bool __bitmap_or_equal(const unsigned long *bitmap1
,
63 const unsigned long *bitmap2
,
64 const unsigned long *bitmap3
,
67 unsigned int k
, lim
= bits
/ BITS_PER_LONG
;
70 for (k
= 0; k
< lim
; ++k
) {
71 if ((bitmap1
[k
] | bitmap2
[k
]) != bitmap3
[k
])
75 if (!(bits
% BITS_PER_LONG
))
78 tmp
= (bitmap1
[k
] | bitmap2
[k
]) ^ bitmap3
[k
];
79 return (tmp
& BITMAP_LAST_WORD_MASK(bits
)) == 0;
82 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
84 unsigned int k
, lim
= BITS_TO_LONGS(bits
);
85 for (k
= 0; k
< lim
; ++k
)
88 EXPORT_SYMBOL(__bitmap_complement
);
91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
95 * @nbits : bitmap size, in bits
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
101 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
102 unsigned shift
, unsigned nbits
)
104 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
105 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
106 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
107 for (k
= 0; off
+ k
< lim
; ++k
) {
108 unsigned long upper
, lower
;
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
114 if (!rem
|| off
+ k
+ 1 >= lim
)
117 upper
= src
[off
+ k
+ 1];
118 if (off
+ k
+ 1 == lim
- 1)
120 upper
<<= (BITS_PER_LONG
- rem
);
122 lower
= src
[off
+ k
];
123 if (off
+ k
== lim
- 1)
126 dst
[k
] = lower
| upper
;
129 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
131 EXPORT_SYMBOL(__bitmap_shift_right
);
135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
139 * @nbits : bitmap size, in bits
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
146 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
147 unsigned int shift
, unsigned int nbits
)
150 unsigned int lim
= BITS_TO_LONGS(nbits
);
151 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
152 for (k
= lim
- off
- 1; k
>= 0; --k
) {
153 unsigned long upper
, lower
;
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
160 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
163 upper
= src
[k
] << rem
;
164 dst
[k
+ off
] = lower
| upper
;
167 memset(dst
, 0, off
*sizeof(unsigned long));
169 EXPORT_SYMBOL(__bitmap_shift_left
);
172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173 * @dst: destination bitmap, might overlap with src
174 * @src: source bitmap
175 * @first: start bit of region to be removed
176 * @cut: number of bits to remove
177 * @nbits: bitmap size, in bits
179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
180 * n is less than @first, or the m-th bit of @src is set for any
181 * m such that @first <= n < nbits, and m = n + @cut.
183 * In pictures, example for a big-endian 32-bit architecture:
185 * The @src bitmap is::
189 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
193 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
197 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
202 * Note that @dst and @src might overlap partially or entirely.
204 * This is implemented in the obvious way, with a shift and carry
205 * step for each moved bit. Optimisation is left as an exercise
208 void bitmap_cut(unsigned long *dst
, const unsigned long *src
,
209 unsigned int first
, unsigned int cut
, unsigned int nbits
)
211 unsigned int len
= BITS_TO_LONGS(nbits
);
212 unsigned long keep
= 0, carry
;
215 if (first
% BITS_PER_LONG
) {
216 keep
= src
[first
/ BITS_PER_LONG
] &
217 (~0UL >> (BITS_PER_LONG
- first
% BITS_PER_LONG
));
220 memmove(dst
, src
, len
* sizeof(*dst
));
223 for (i
= first
/ BITS_PER_LONG
; i
< len
; i
++) {
225 carry
= dst
[i
+ 1] & 1UL;
229 dst
[i
] = (dst
[i
] >> 1) | (carry
<< (BITS_PER_LONG
- 1));
233 dst
[first
/ BITS_PER_LONG
] &= ~0UL << (first
% BITS_PER_LONG
);
234 dst
[first
/ BITS_PER_LONG
] |= keep
;
236 EXPORT_SYMBOL(bitmap_cut
);
238 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
239 const unsigned long *bitmap2
, unsigned int bits
)
242 unsigned int lim
= bits
/BITS_PER_LONG
;
243 unsigned long result
= 0;
245 for (k
= 0; k
< lim
; k
++)
246 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
247 if (bits
% BITS_PER_LONG
)
248 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
249 BITMAP_LAST_WORD_MASK(bits
));
252 EXPORT_SYMBOL(__bitmap_and
);
254 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
255 const unsigned long *bitmap2
, unsigned int bits
)
258 unsigned int nr
= BITS_TO_LONGS(bits
);
260 for (k
= 0; k
< nr
; k
++)
261 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
263 EXPORT_SYMBOL(__bitmap_or
);
265 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
266 const unsigned long *bitmap2
, unsigned int bits
)
269 unsigned int nr
= BITS_TO_LONGS(bits
);
271 for (k
= 0; k
< nr
; k
++)
272 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
274 EXPORT_SYMBOL(__bitmap_xor
);
276 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
277 const unsigned long *bitmap2
, unsigned int bits
)
280 unsigned int lim
= bits
/BITS_PER_LONG
;
281 unsigned long result
= 0;
283 for (k
= 0; k
< lim
; k
++)
284 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
285 if (bits
% BITS_PER_LONG
)
286 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
287 BITMAP_LAST_WORD_MASK(bits
));
290 EXPORT_SYMBOL(__bitmap_andnot
);
292 void __bitmap_replace(unsigned long *dst
,
293 const unsigned long *old
, const unsigned long *new,
294 const unsigned long *mask
, unsigned int nbits
)
297 unsigned int nr
= BITS_TO_LONGS(nbits
);
299 for (k
= 0; k
< nr
; k
++)
300 dst
[k
] = (old
[k
] & ~mask
[k
]) | (new[k
] & mask
[k
]);
302 EXPORT_SYMBOL(__bitmap_replace
);
304 int __bitmap_intersects(const unsigned long *bitmap1
,
305 const unsigned long *bitmap2
, unsigned int bits
)
307 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
308 for (k
= 0; k
< lim
; ++k
)
309 if (bitmap1
[k
] & bitmap2
[k
])
312 if (bits
% BITS_PER_LONG
)
313 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
317 EXPORT_SYMBOL(__bitmap_intersects
);
319 int __bitmap_subset(const unsigned long *bitmap1
,
320 const unsigned long *bitmap2
, unsigned int bits
)
322 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
323 for (k
= 0; k
< lim
; ++k
)
324 if (bitmap1
[k
] & ~bitmap2
[k
])
327 if (bits
% BITS_PER_LONG
)
328 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
332 EXPORT_SYMBOL(__bitmap_subset
);
334 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
336 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
339 for (k
= 0; k
< lim
; k
++)
340 w
+= hweight_long(bitmap
[k
]);
342 if (bits
% BITS_PER_LONG
)
343 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
347 EXPORT_SYMBOL(__bitmap_weight
);
349 void __bitmap_set(unsigned long *map
, unsigned int start
, int len
)
351 unsigned long *p
= map
+ BIT_WORD(start
);
352 const unsigned int size
= start
+ len
;
353 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
354 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
356 while (len
- bits_to_set
>= 0) {
359 bits_to_set
= BITS_PER_LONG
;
364 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
368 EXPORT_SYMBOL(__bitmap_set
);
370 void __bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
372 unsigned long *p
= map
+ BIT_WORD(start
);
373 const unsigned int size
= start
+ len
;
374 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
375 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
377 while (len
- bits_to_clear
>= 0) {
378 *p
&= ~mask_to_clear
;
379 len
-= bits_to_clear
;
380 bits_to_clear
= BITS_PER_LONG
;
381 mask_to_clear
= ~0UL;
385 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
386 *p
&= ~mask_to_clear
;
389 EXPORT_SYMBOL(__bitmap_clear
);
392 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
393 * @map: The address to base the search on
394 * @size: The bitmap size in bits
395 * @start: The bitnumber to start searching at
396 * @nr: The number of zeroed bits we're looking for
397 * @align_mask: Alignment mask for zero area
398 * @align_offset: Alignment offset for zero area.
400 * The @align_mask should be one less than a power of 2; the effect is that
401 * the bit offset of all zero areas this function finds plus @align_offset
402 * is multiple of that power of 2.
404 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
408 unsigned long align_mask
,
409 unsigned long align_offset
)
411 unsigned long index
, end
, i
;
413 index
= find_next_zero_bit(map
, size
, start
);
415 /* Align allocation */
416 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
421 i
= find_next_bit(map
, end
, index
);
428 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
431 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
432 * second version by Paul Jackson, third by Joe Korty.
436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
438 * @ubuf: pointer to user buffer containing string.
439 * @ulen: buffer size in bytes. If string is smaller than this
440 * then it must be terminated with a \0.
441 * @maskp: pointer to bitmap array that will contain result.
442 * @nmaskbits: size of bitmap, in bits.
444 int bitmap_parse_user(const char __user
*ubuf
,
445 unsigned int ulen
, unsigned long *maskp
,
451 buf
= memdup_user_nul(ubuf
, ulen
);
455 ret
= bitmap_parse(buf
, UINT_MAX
, maskp
, nmaskbits
);
460 EXPORT_SYMBOL(bitmap_parse_user
);
463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
464 * @list: indicates whether the bitmap must be list
465 * @buf: page aligned buffer into which string is placed
466 * @maskp: pointer to bitmap to convert
467 * @nmaskbits: size of bitmap, in bits
469 * Output format is a comma-separated list of decimal numbers and
470 * ranges if list is specified or hex digits grouped into comma-separated
471 * sets of 8 digits/set. Returns the number of characters written to buf.
473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
474 * area and that sufficient storage remains at @buf to accommodate the
475 * bitmap_print_to_pagebuf() output. Returns the number of characters
476 * actually printed to @buf, excluding terminating '\0'.
478 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
481 ptrdiff_t len
= PAGE_SIZE
- offset_in_page(buf
);
483 return list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
484 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
489 * Region 9-38:4/10 describes the following bitmap structure:
491 * .........****......****......****......
493 * start off group_len end
498 unsigned int group_len
;
502 static int bitmap_set_region(const struct region
*r
,
503 unsigned long *bitmap
, int nbits
)
510 for (start
= r
->start
; start
<= r
->end
; start
+= r
->group_len
)
511 bitmap_set(bitmap
, start
, min(r
->end
- start
+ 1, r
->off
));
516 static int bitmap_check_region(const struct region
*r
)
518 if (r
->start
> r
->end
|| r
->group_len
== 0 || r
->off
> r
->group_len
)
524 static const char *bitmap_getnum(const char *str
, unsigned int *num
)
526 unsigned long long n
;
529 len
= _parse_integer(str
, 10, &n
);
531 return ERR_PTR(-EINVAL
);
532 if (len
& KSTRTOX_OVERFLOW
|| n
!= (unsigned int)n
)
533 return ERR_PTR(-EOVERFLOW
);
539 static inline bool end_of_str(char c
)
541 return c
== '\0' || c
== '\n';
544 static inline bool __end_of_region(char c
)
546 return isspace(c
) || c
== ',';
549 static inline bool end_of_region(char c
)
551 return __end_of_region(c
) || end_of_str(c
);
555 * The format allows commas and whitespases at the beginning
558 static const char *bitmap_find_region(const char *str
)
560 while (__end_of_region(*str
))
563 return end_of_str(*str
) ? NULL
: str
;
566 static const char *bitmap_find_region_reverse(const char *start
, const char *end
)
568 while (start
<= end
&& __end_of_region(*end
))
574 static const char *bitmap_parse_region(const char *str
, struct region
*r
)
576 str
= bitmap_getnum(str
, &r
->start
);
580 if (end_of_region(*str
))
584 return ERR_PTR(-EINVAL
);
586 str
= bitmap_getnum(str
+ 1, &r
->end
);
590 if (end_of_region(*str
))
594 return ERR_PTR(-EINVAL
);
596 str
= bitmap_getnum(str
+ 1, &r
->off
);
601 return ERR_PTR(-EINVAL
);
603 return bitmap_getnum(str
+ 1, &r
->group_len
);
609 r
->group_len
= r
->end
+ 1;
611 return end_of_str(*str
) ? NULL
: str
;
615 * bitmap_parselist - convert list format ASCII string to bitmap
616 * @buf: read user string from this buffer; must be terminated
618 * @maskp: write resulting mask here
619 * @nmaskbits: number of bits in mask to be written
621 * Input format is a comma-separated list of decimal numbers and
622 * ranges. Consecutively set bits are shown as two hyphen-separated
623 * decimal numbers, the smallest and largest bit numbers set in
625 * Optionally each range can be postfixed to denote that only parts of it
626 * should be set. The range will divided to groups of specific size.
627 * From each group will be used only defined amount of bits.
628 * Syntax: range:used_size/group_size
629 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
631 * Returns: 0 on success, -errno on invalid input strings. Error values:
633 * - ``-EINVAL``: wrong region format
634 * - ``-EINVAL``: invalid character in string
635 * - ``-ERANGE``: bit number specified too large for mask
636 * - ``-EOVERFLOW``: integer overflow in the input parameters
638 int bitmap_parselist(const char *buf
, unsigned long *maskp
, int nmaskbits
)
643 bitmap_zero(maskp
, nmaskbits
);
646 buf
= bitmap_find_region(buf
);
650 buf
= bitmap_parse_region(buf
, &r
);
654 ret
= bitmap_check_region(&r
);
658 ret
= bitmap_set_region(&r
, maskp
, nmaskbits
);
665 EXPORT_SYMBOL(bitmap_parselist
);
669 * bitmap_parselist_user()
671 * @ubuf: pointer to user buffer containing string.
672 * @ulen: buffer size in bytes. If string is smaller than this
673 * then it must be terminated with a \0.
674 * @maskp: pointer to bitmap array that will contain result.
675 * @nmaskbits: size of bitmap, in bits.
677 * Wrapper for bitmap_parselist(), providing it with user buffer.
679 int bitmap_parselist_user(const char __user
*ubuf
,
680 unsigned int ulen
, unsigned long *maskp
,
686 buf
= memdup_user_nul(ubuf
, ulen
);
690 ret
= bitmap_parselist(buf
, maskp
, nmaskbits
);
695 EXPORT_SYMBOL(bitmap_parselist_user
);
697 static const char *bitmap_get_x32_reverse(const char *start
,
698 const char *end
, u32
*num
)
703 for (i
= 0; i
< 32; i
+= 4) {
704 c
= hex_to_bin(*end
--);
706 return ERR_PTR(-EINVAL
);
710 if (start
> end
|| __end_of_region(*end
))
714 if (hex_to_bin(*end
--) >= 0)
715 return ERR_PTR(-EOVERFLOW
);
722 * bitmap_parse - convert an ASCII hex string into a bitmap.
723 * @start: pointer to buffer containing string.
724 * @buflen: buffer size in bytes. If string is smaller than this
725 * then it must be terminated with a \0 or \n. In that case,
726 * UINT_MAX may be provided instead of string length.
727 * @maskp: pointer to bitmap array that will contain result.
728 * @nmaskbits: size of bitmap, in bits.
730 * Commas group hex digits into chunks. Each chunk defines exactly 32
731 * bits of the resultant bitmask. No chunk may specify a value larger
732 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
733 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
734 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
735 * Leading, embedded and trailing whitespace accepted.
737 int bitmap_parse(const char *start
, unsigned int buflen
,
738 unsigned long *maskp
, int nmaskbits
)
740 const char *end
= strnchrnul(start
, buflen
, '\n') - 1;
741 int chunks
= BITS_TO_U32(nmaskbits
);
742 u32
*bitmap
= (u32
*)maskp
;
746 for (chunk
= 0; ; chunk
++) {
747 end
= bitmap_find_region_reverse(start
, end
);
754 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
755 end
= bitmap_get_x32_reverse(start
, end
, &bitmap
[chunk
^ 1]);
757 end
= bitmap_get_x32_reverse(start
, end
, &bitmap
[chunk
]);
763 unset_bit
= (BITS_TO_U32(nmaskbits
) - chunks
) * 32;
764 if (unset_bit
< nmaskbits
) {
765 bitmap_clear(maskp
, unset_bit
, nmaskbits
- unset_bit
);
769 if (find_next_bit(maskp
, unset_bit
, nmaskbits
) != unset_bit
)
774 EXPORT_SYMBOL(bitmap_parse
);
779 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
780 * @buf: pointer to a bitmap
781 * @pos: a bit position in @buf (0 <= @pos < @nbits)
782 * @nbits: number of valid bit positions in @buf
784 * Map the bit at position @pos in @buf (of length @nbits) to the
785 * ordinal of which set bit it is. If it is not set or if @pos
786 * is not a valid bit position, map to -1.
788 * If for example, just bits 4 through 7 are set in @buf, then @pos
789 * values 4 through 7 will get mapped to 0 through 3, respectively,
790 * and other @pos values will get mapped to -1. When @pos value 7
791 * gets mapped to (returns) @ord value 3 in this example, that means
792 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
794 * The bit positions 0 through @bits are valid positions in @buf.
796 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
798 if (pos
>= nbits
|| !test_bit(pos
, buf
))
801 return __bitmap_weight(buf
, pos
);
805 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
806 * @buf: pointer to bitmap
807 * @ord: ordinal bit position (n-th set bit, n >= 0)
808 * @nbits: number of valid bit positions in @buf
810 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
811 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
812 * >= weight(buf), returns @nbits.
814 * If for example, just bits 4 through 7 are set in @buf, then @ord
815 * values 0 through 3 will get mapped to 4 through 7, respectively,
816 * and all other @ord values returns @nbits. When @ord value 3
817 * gets mapped to (returns) @pos value 7 in this example, that means
818 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
820 * The bit positions 0 through @nbits-1 are valid positions in @buf.
822 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
826 for (pos
= find_first_bit(buf
, nbits
);
828 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
835 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
836 * @dst: remapped result
837 * @src: subset to be remapped
838 * @old: defines domain of map
839 * @new: defines range of map
840 * @nbits: number of bits in each of these bitmaps
842 * Let @old and @new define a mapping of bit positions, such that
843 * whatever position is held by the n-th set bit in @old is mapped
844 * to the n-th set bit in @new. In the more general case, allowing
845 * for the possibility that the weight 'w' of @new is less than the
846 * weight of @old, map the position of the n-th set bit in @old to
847 * the position of the m-th set bit in @new, where m == n % w.
849 * If either of the @old and @new bitmaps are empty, or if @src and
850 * @dst point to the same location, then this routine copies @src
853 * The positions of unset bits in @old are mapped to themselves
854 * (the identify map).
856 * Apply the above specified mapping to @src, placing the result in
857 * @dst, clearing any bits previously set in @dst.
859 * For example, lets say that @old has bits 4 through 7 set, and
860 * @new has bits 12 through 15 set. This defines the mapping of bit
861 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
862 * bit positions unchanged. So if say @src comes into this routine
863 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
866 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
867 const unsigned long *old
, const unsigned long *new,
870 unsigned int oldbit
, w
;
872 if (dst
== src
) /* following doesn't handle inplace remaps */
874 bitmap_zero(dst
, nbits
);
876 w
= bitmap_weight(new, nbits
);
877 for_each_set_bit(oldbit
, src
, nbits
) {
878 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
881 set_bit(oldbit
, dst
); /* identity map */
883 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
888 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
889 * @oldbit: bit position to be mapped
890 * @old: defines domain of map
891 * @new: defines range of map
892 * @bits: number of bits in each of these bitmaps
894 * Let @old and @new define a mapping of bit positions, such that
895 * whatever position is held by the n-th set bit in @old is mapped
896 * to the n-th set bit in @new. In the more general case, allowing
897 * for the possibility that the weight 'w' of @new is less than the
898 * weight of @old, map the position of the n-th set bit in @old to
899 * the position of the m-th set bit in @new, where m == n % w.
901 * The positions of unset bits in @old are mapped to themselves
902 * (the identify map).
904 * Apply the above specified mapping to bit position @oldbit, returning
905 * the new bit position.
907 * For example, lets say that @old has bits 4 through 7 set, and
908 * @new has bits 12 through 15 set. This defines the mapping of bit
909 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
910 * bit positions unchanged. So if say @oldbit is 5, then this routine
913 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
914 const unsigned long *new, int bits
)
916 int w
= bitmap_weight(new, bits
);
917 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
921 return bitmap_ord_to_pos(new, n
% w
, bits
);
925 * bitmap_onto - translate one bitmap relative to another
926 * @dst: resulting translated bitmap
927 * @orig: original untranslated bitmap
928 * @relmap: bitmap relative to which translated
929 * @bits: number of bits in each of these bitmaps
931 * Set the n-th bit of @dst iff there exists some m such that the
932 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
933 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
934 * (If you understood the previous sentence the first time your
935 * read it, you're overqualified for your current job.)
937 * In other words, @orig is mapped onto (surjectively) @dst,
938 * using the map { <n, m> | the n-th bit of @relmap is the
939 * m-th set bit of @relmap }.
941 * Any set bits in @orig above bit number W, where W is the
942 * weight of (number of set bits in) @relmap are mapped nowhere.
943 * In particular, if for all bits m set in @orig, m >= W, then
944 * @dst will end up empty. In situations where the possibility
945 * of such an empty result is not desired, one way to avoid it is
946 * to use the bitmap_fold() operator, below, to first fold the
947 * @orig bitmap over itself so that all its set bits x are in the
948 * range 0 <= x < W. The bitmap_fold() operator does this by
949 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
951 * Example [1] for bitmap_onto():
952 * Let's say @relmap has bits 30-39 set, and @orig has bits
953 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
954 * @dst will have bits 31, 33, 35, 37 and 39 set.
956 * When bit 0 is set in @orig, it means turn on the bit in
957 * @dst corresponding to whatever is the first bit (if any)
958 * that is turned on in @relmap. Since bit 0 was off in the
959 * above example, we leave off that bit (bit 30) in @dst.
961 * When bit 1 is set in @orig (as in the above example), it
962 * means turn on the bit in @dst corresponding to whatever
963 * is the second bit that is turned on in @relmap. The second
964 * bit in @relmap that was turned on in the above example was
965 * bit 31, so we turned on bit 31 in @dst.
967 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
968 * because they were the 4th, 6th, 8th and 10th set bits
969 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
970 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
972 * When bit 11 is set in @orig, it means turn on the bit in
973 * @dst corresponding to whatever is the twelfth bit that is
974 * turned on in @relmap. In the above example, there were
975 * only ten bits turned on in @relmap (30..39), so that bit
976 * 11 was set in @orig had no affect on @dst.
978 * Example [2] for bitmap_fold() + bitmap_onto():
979 * Let's say @relmap has these ten bits set::
981 * 40 41 42 43 45 48 53 61 74 95
983 * (for the curious, that's 40 plus the first ten terms of the
984 * Fibonacci sequence.)
986 * Further lets say we use the following code, invoking
987 * bitmap_fold() then bitmap_onto, as suggested above to
988 * avoid the possibility of an empty @dst result::
990 * unsigned long *tmp; // a temporary bitmap's bits
992 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
993 * bitmap_onto(dst, tmp, relmap, bits);
995 * Then this table shows what various values of @dst would be, for
996 * various @orig's. I list the zero-based positions of each set bit.
997 * The tmp column shows the intermediate result, as computed by
998 * using bitmap_fold() to fold the @orig bitmap modulo ten
999 * (the weight of @relmap):
1001 * =============== ============== =================
1007 * 1 3 5 7 1 3 5 7 41 43 48 61
1008 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1009 * 0 9 18 27 0 9 8 7 40 61 74 95
1011 * 0 11 22 33 0 1 2 3 40 41 42 43
1012 * 0 12 24 36 0 2 4 6 40 42 45 53
1013 * 78 102 211 1 2 8 41 42 74 [#f1]_
1014 * =============== ============== =================
1018 * For these marked lines, if we hadn't first done bitmap_fold()
1019 * into tmp, then the @dst result would have been empty.
1021 * If either of @orig or @relmap is empty (no set bits), then @dst
1022 * will be returned empty.
1024 * If (as explained above) the only set bits in @orig are in positions
1025 * m where m >= W, (where W is the weight of @relmap) then @dst will
1026 * once again be returned empty.
1028 * All bits in @dst not set by the above rule are cleared.
1030 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
1031 const unsigned long *relmap
, unsigned int bits
)
1033 unsigned int n
, m
; /* same meaning as in above comment */
1035 if (dst
== orig
) /* following doesn't handle inplace mappings */
1037 bitmap_zero(dst
, bits
);
1040 * The following code is a more efficient, but less
1041 * obvious, equivalent to the loop:
1042 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1043 * n = bitmap_ord_to_pos(orig, m, bits);
1044 * if (test_bit(m, orig))
1050 for_each_set_bit(n
, relmap
, bits
) {
1051 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1052 if (test_bit(m
, orig
))
1059 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1060 * @dst: resulting smaller bitmap
1061 * @orig: original larger bitmap
1062 * @sz: specified size
1063 * @nbits: number of bits in each of these bitmaps
1065 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1066 * Clear all other bits in @dst. See further the comment and
1067 * Example [2] for bitmap_onto() for why and how to use this.
1069 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
1070 unsigned int sz
, unsigned int nbits
)
1072 unsigned int oldbit
;
1074 if (dst
== orig
) /* following doesn't handle inplace mappings */
1076 bitmap_zero(dst
, nbits
);
1078 for_each_set_bit(oldbit
, orig
, nbits
)
1079 set_bit(oldbit
% sz
, dst
);
1081 #endif /* CONFIG_NUMA */
1084 * Common code for bitmap_*_region() routines.
1085 * bitmap: array of unsigned longs corresponding to the bitmap
1086 * pos: the beginning of the region
1087 * order: region size (log base 2 of number of bits)
1088 * reg_op: operation(s) to perform on that region of bitmap
1090 * Can set, verify and/or release a region of bits in a bitmap,
1091 * depending on which combination of REG_OP_* flag bits is set.
1093 * A region of a bitmap is a sequence of bits in the bitmap, of
1094 * some size '1 << order' (a power of two), aligned to that same
1095 * '1 << order' power of two.
1097 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1098 * Returns 0 in all other cases and reg_ops.
1102 REG_OP_ISFREE
, /* true if region is all zero bits */
1103 REG_OP_ALLOC
, /* set all bits in region */
1104 REG_OP_RELEASE
, /* clear all bits in region */
1107 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
1109 int nbits_reg
; /* number of bits in region */
1110 int index
; /* index first long of region in bitmap */
1111 int offset
; /* bit offset region in bitmap[index] */
1112 int nlongs_reg
; /* num longs spanned by region in bitmap */
1113 int nbitsinlong
; /* num bits of region in each spanned long */
1114 unsigned long mask
; /* bitmask for one long of region */
1115 int i
; /* scans bitmap by longs */
1116 int ret
= 0; /* return value */
1119 * Either nlongs_reg == 1 (for small orders that fit in one long)
1120 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1122 nbits_reg
= 1 << order
;
1123 index
= pos
/ BITS_PER_LONG
;
1124 offset
= pos
- (index
* BITS_PER_LONG
);
1125 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1126 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1129 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1130 * overflows if nbitsinlong == BITS_PER_LONG.
1132 mask
= (1UL << (nbitsinlong
- 1));
1138 for (i
= 0; i
< nlongs_reg
; i
++) {
1139 if (bitmap
[index
+ i
] & mask
)
1142 ret
= 1; /* all bits in region free (zero) */
1146 for (i
= 0; i
< nlongs_reg
; i
++)
1147 bitmap
[index
+ i
] |= mask
;
1150 case REG_OP_RELEASE
:
1151 for (i
= 0; i
< nlongs_reg
; i
++)
1152 bitmap
[index
+ i
] &= ~mask
;
1160 * bitmap_find_free_region - find a contiguous aligned mem region
1161 * @bitmap: array of unsigned longs corresponding to the bitmap
1162 * @bits: number of bits in the bitmap
1163 * @order: region size (log base 2 of number of bits) to find
1165 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1166 * allocate them (set them to one). Only consider regions of length
1167 * a power (@order) of two, aligned to that power of two, which
1168 * makes the search algorithm much faster.
1170 * Return the bit offset in bitmap of the allocated region,
1171 * or -errno on failure.
1173 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1175 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1177 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1178 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1180 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1185 EXPORT_SYMBOL(bitmap_find_free_region
);
1188 * bitmap_release_region - release allocated bitmap region
1189 * @bitmap: array of unsigned longs corresponding to the bitmap
1190 * @pos: beginning of bit region to release
1191 * @order: region size (log base 2 of number of bits) to release
1193 * This is the complement to __bitmap_find_free_region() and releases
1194 * the found region (by clearing it in the bitmap).
1198 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1200 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1202 EXPORT_SYMBOL(bitmap_release_region
);
1205 * bitmap_allocate_region - allocate bitmap region
1206 * @bitmap: array of unsigned longs corresponding to the bitmap
1207 * @pos: beginning of bit region to allocate
1208 * @order: region size (log base 2 of number of bits) to allocate
1210 * Allocate (set bits in) a specified region of a bitmap.
1212 * Return 0 on success, or %-EBUSY if specified region wasn't
1213 * free (not all bits were zero).
1215 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1217 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1219 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1221 EXPORT_SYMBOL(bitmap_allocate_region
);
1224 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1225 * @dst: destination buffer
1226 * @src: bitmap to copy
1227 * @nbits: number of bits in the bitmap
1229 * Require nbits % BITS_PER_LONG == 0.
1232 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1236 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1237 if (BITS_PER_LONG
== 64)
1238 dst
[i
] = cpu_to_le64(src
[i
]);
1240 dst
[i
] = cpu_to_le32(src
[i
]);
1243 EXPORT_SYMBOL(bitmap_copy_le
);
1246 unsigned long *bitmap_alloc(unsigned int nbits
, gfp_t flags
)
1248 return kmalloc_array(BITS_TO_LONGS(nbits
), sizeof(unsigned long),
1251 EXPORT_SYMBOL(bitmap_alloc
);
1253 unsigned long *bitmap_zalloc(unsigned int nbits
, gfp_t flags
)
1255 return bitmap_alloc(nbits
, flags
| __GFP_ZERO
);
1257 EXPORT_SYMBOL(bitmap_zalloc
);
1259 void bitmap_free(const unsigned long *bitmap
)
1263 EXPORT_SYMBOL(bitmap_free
);
1265 #if BITS_PER_LONG == 64
1267 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1268 * @bitmap: array of unsigned longs, the destination bitmap
1269 * @buf: array of u32 (in host byte order), the source bitmap
1270 * @nbits: number of bits in @bitmap
1272 void bitmap_from_arr32(unsigned long *bitmap
, const u32
*buf
, unsigned int nbits
)
1274 unsigned int i
, halfwords
;
1276 halfwords
= DIV_ROUND_UP(nbits
, 32);
1277 for (i
= 0; i
< halfwords
; i
++) {
1278 bitmap
[i
/2] = (unsigned long) buf
[i
];
1279 if (++i
< halfwords
)
1280 bitmap
[i
/2] |= ((unsigned long) buf
[i
]) << 32;
1283 /* Clear tail bits in last word beyond nbits. */
1284 if (nbits
% BITS_PER_LONG
)
1285 bitmap
[(halfwords
- 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits
);
1287 EXPORT_SYMBOL(bitmap_from_arr32
);
1290 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1291 * @buf: array of u32 (in host byte order), the dest bitmap
1292 * @bitmap: array of unsigned longs, the source bitmap
1293 * @nbits: number of bits in @bitmap
1295 void bitmap_to_arr32(u32
*buf
, const unsigned long *bitmap
, unsigned int nbits
)
1297 unsigned int i
, halfwords
;
1299 halfwords
= DIV_ROUND_UP(nbits
, 32);
1300 for (i
= 0; i
< halfwords
; i
++) {
1301 buf
[i
] = (u32
) (bitmap
[i
/2] & UINT_MAX
);
1302 if (++i
< halfwords
)
1303 buf
[i
] = (u32
) (bitmap
[i
/2] >> 32);
1306 /* Clear tail bits in last element of array beyond nbits. */
1307 if (nbits
% BITS_PER_LONG
)
1308 buf
[halfwords
- 1] &= (u32
) (UINT_MAX
>> ((-nbits
) & 31));
1310 EXPORT_SYMBOL(bitmap_to_arr32
);