V4L/DVB (11218): gspca - sq905: Update the frame pointer after adding the last packet.
[linux/fpc-iii.git] / Documentation / ftrace.txt
blob803b1318b13da11242a3558123d28293d3ee4378
1                 ftrace - Function Tracer
2                 ========================
4 Copyright 2008 Red Hat Inc.
5    Author:   Steven Rostedt <srostedt@redhat.com>
6   License:   The GNU Free Documentation License, Version 1.2
7                (dual licensed under the GPL v2)
8 Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
9              John Kacur, and David Teigland.
11 Written for: 2.6.28-rc2
13 Introduction
14 ------------
16 Ftrace is an internal tracer designed to help out developers and
17 designers of systems to find what is going on inside the kernel.
18 It can be used for debugging or analyzing latencies and performance
19 issues that take place outside of user-space.
21 Although ftrace is the function tracer, it also includes an
22 infrastructure that allows for other types of tracing. Some of the
23 tracers that are currently in ftrace include a tracer to trace
24 context switches, the time it takes for a high priority task to
25 run after it was woken up, the time interrupts are disabled, and
26 more (ftrace allows for tracer plugins, which means that the list of
27 tracers can always grow).
30 The File System
31 ---------------
33 Ftrace uses the debugfs file system to hold the control files as well
34 as the files to display output.
36 To mount the debugfs system:
38   # mkdir /debug
39   # mount -t debugfs nodev /debug
41 (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
42  this document will use /debug)
44 That's it! (assuming that you have ftrace configured into your kernel)
46 After mounting the debugfs, you can see a directory called
47 "tracing".  This directory contains the control and output files
48 of ftrace. Here is a list of some of the key files:
51  Note: all time values are in microseconds.
53   current_tracer: This is used to set or display the current tracer
54                 that is configured.
56   available_tracers: This holds the different types of tracers that
57                 have been compiled into the kernel. The tracers
58                 listed here can be configured by echoing their name
59                 into current_tracer.
61   tracing_enabled: This sets or displays whether the current_tracer
62                 is activated and tracing or not. Echo 0 into this
63                 file to disable the tracer or 1 to enable it.
65   trace: This file holds the output of the trace in a human readable
66                 format (described below).
68   latency_trace: This file shows the same trace but the information
69                 is organized more to display possible latencies
70                 in the system (described below).
72   trace_pipe: The output is the same as the "trace" file but this
73                 file is meant to be streamed with live tracing.
74                 Reads from this file will block until new data
75                 is retrieved. Unlike the "trace" and "latency_trace"
76                 files, this file is a consumer. This means reading
77                 from this file causes sequential reads to display
78                 more current data. Once data is read from this
79                 file, it is consumed, and will not be read
80                 again with a sequential read. The "trace" and
81                 "latency_trace" files are static, and if the
82                 tracer is not adding more data, they will display
83                 the same information every time they are read.
85   trace_options: This file lets the user control the amount of data
86                 that is displayed in one of the above output
87                 files.
89   trace_max_latency: Some of the tracers record the max latency.
90                 For example, the time interrupts are disabled.
91                 This time is saved in this file. The max trace
92                 will also be stored, and displayed by either
93                 "trace" or "latency_trace".  A new max trace will
94                 only be recorded if the latency is greater than
95                 the value in this file. (in microseconds)
97   buffer_size_kb: This sets or displays the number of kilobytes each CPU
98                 buffer can hold. The tracer buffers are the same size
99                 for each CPU. The displayed number is the size of the
100                 CPU buffer and not total size of all buffers. The
101                 trace buffers are allocated in pages (blocks of memory
102                 that the kernel uses for allocation, usually 4 KB in size).
103                 If the last page allocated has room for more bytes
104                 than requested, the rest of the page will be used,
105                 making the actual allocation bigger than requested.
106                 (Note, the size may not be a multiple of the page size due
107                 to buffer managment overhead.)
109                 This can only be updated when the current_tracer
110                 is set to "nop".
112   tracing_cpumask: This is a mask that lets the user only trace
113                 on specified CPUS. The format is a hex string
114                 representing the CPUS.
116   set_ftrace_filter: When dynamic ftrace is configured in (see the
117                 section below "dynamic ftrace"), the code is dynamically
118                 modified (code text rewrite) to disable calling of the
119                 function profiler (mcount). This lets tracing be configured
120                 in with practically no overhead in performance.  This also
121                 has a side effect of enabling or disabling specific functions
122                 to be traced. Echoing names of functions into this file
123                 will limit the trace to only those functions.
125   set_ftrace_notrace: This has an effect opposite to that of
126                 set_ftrace_filter. Any function that is added here will not
127                 be traced. If a function exists in both set_ftrace_filter
128                 and set_ftrace_notrace, the function will _not_ be traced.
130   set_ftrace_pid: Have the function tracer only trace a single thread.
132   available_filter_functions: This lists the functions that ftrace
133                 has processed and can trace. These are the function
134                 names that you can pass to "set_ftrace_filter" or
135                 "set_ftrace_notrace". (See the section "dynamic ftrace"
136                 below for more details.)
139 The Tracers
140 -----------
142 Here is the list of current tracers that may be configured.
144   function - function tracer that uses mcount to trace all functions.
146   sched_switch - traces the context switches between tasks.
148   irqsoff - traces the areas that disable interrupts and saves
149                 the trace with the longest max latency.
150                 See tracing_max_latency.  When a new max is recorded,
151                 it replaces the old trace. It is best to view this
152                 trace via the latency_trace file.
154   preemptoff - Similar to irqsoff but traces and records the amount of
155                 time for which preemption is disabled.
157   preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
158                  records the largest time for which irqs and/or preemption
159                  is disabled.
161   wakeup - Traces and records the max latency that it takes for
162                 the highest priority task to get scheduled after
163                 it has been woken up.
165   nop - This is not a tracer. To remove all tracers from tracing
166                 simply echo "nop" into current_tracer.
169 Examples of using the tracer
170 ----------------------------
172 Here are typical examples of using the tracers when controlling them only
173 with the debugfs interface (without using any user-land utilities).
175 Output format:
176 --------------
178 Here is an example of the output format of the file "trace"
180                              --------
181 # tracer: function
183 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
184 #              | |      |          |         |
185             bash-4251  [01] 10152.583854: path_put <-path_walk
186             bash-4251  [01] 10152.583855: dput <-path_put
187             bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
188                              --------
190 A header is printed with the tracer name that is represented by the trace.
191 In this case the tracer is "function". Then a header showing the format. Task
192 name "bash", the task PID "4251", the CPU that it was running on
193 "01", the timestamp in <secs>.<usecs> format, the function name that was
194 traced "path_put" and the parent function that called this function
195 "path_walk". The timestamp is the time at which the function was
196 entered.
198 The sched_switch tracer also includes tracing of task wakeups and
199 context switches.
201      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +  2916:115:S
202      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +    10:115:S
203      ksoftirqd/1-7     [01]  1453.070013:      7:115:R ==>    10:115:R
204         events/1-10    [01]  1453.070013:     10:115:S ==>  2916:115:R
205      kondemand/1-2916  [01]  1453.070013:   2916:115:S ==>     7:115:R
206      ksoftirqd/1-7     [01]  1453.070013:      7:115:S ==>     0:140:R
208 Wake ups are represented by a "+" and the context switches are shown as
209 "==>".  The format is:
211  Context switches:
213        Previous task              Next Task
215   <pid>:<prio>:<state>  ==>  <pid>:<prio>:<state>
217  Wake ups:
219        Current task               Task waking up
221   <pid>:<prio>:<state>    +  <pid>:<prio>:<state>
223 The prio is the internal kernel priority, which is the inverse of the
224 priority that is usually displayed by user-space tools. Zero represents
225 the highest priority (99). Prio 100 starts the "nice" priorities with
226 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
227 reserved for the idle task which is the lowest priority thread (pid 0).
230 Latency trace format
231 --------------------
233 For traces that display latency times, the latency_trace file gives
234 somewhat more information to see why a latency happened. Here is a typical
235 trace.
237 # tracer: irqsoff
239 irqsoff latency trace v1.1.5 on 2.6.26-rc8
240 --------------------------------------------------------------------
241  latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
242     -----------------
243     | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
244     -----------------
245  => started at: apic_timer_interrupt
246  => ended at:   do_softirq
248 #                _------=> CPU#
249 #               / _-----=> irqs-off
250 #              | / _----=> need-resched
251 #              || / _---=> hardirq/softirq
252 #              ||| / _--=> preempt-depth
253 #              |||| /
254 #              |||||     delay
255 #  cmd     pid ||||| time  |   caller
256 #     \   /    |||||   \   |   /
257   <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
258   <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
259   <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
263 This shows that the current tracer is "irqsoff" tracing the time for which
264 interrupts were disabled. It gives the trace version and the version
265 of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
266 the max latency in microsecs (97 us). The number of trace entries displayed
267 and the total number recorded (both are three: #3/3). The type of
268 preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
269 and are reserved for later use. #P is the number of online CPUS (#P:2).
271 The task is the process that was running when the latency occurred.
272 (swapper pid: 0).
274 The start and stop (the functions in which the interrupts were disabled and
275 enabled respectively) that caused the latencies:
277   apic_timer_interrupt is where the interrupts were disabled.
278   do_softirq is where they were enabled again.
280 The next lines after the header are the trace itself. The header
281 explains which is which.
283   cmd: The name of the process in the trace.
285   pid: The PID of that process.
287   CPU#: The CPU which the process was running on.
289   irqs-off: 'd' interrupts are disabled. '.' otherwise.
290             Note: If the architecture does not support a way to
291                   read the irq flags variable, an 'X' will always
292                   be printed here.
294   need-resched: 'N' task need_resched is set, '.' otherwise.
296   hardirq/softirq:
297         'H' - hard irq occurred inside a softirq.
298         'h' - hard irq is running
299         's' - soft irq is running
300         '.' - normal context.
302   preempt-depth: The level of preempt_disabled
304 The above is mostly meaningful for kernel developers.
306   time: This differs from the trace file output. The trace file output
307         includes an absolute timestamp. The timestamp used by the
308         latency_trace file is relative to the start of the trace.
310   delay: This is just to help catch your eye a bit better. And
311         needs to be fixed to be only relative to the same CPU.
312         The marks are determined by the difference between this
313         current trace and the next trace.
314          '!' - greater than preempt_mark_thresh (default 100)
315          '+' - greater than 1 microsecond
316          ' ' - less than or equal to 1 microsecond.
318   The rest is the same as the 'trace' file.
321 trace_options
322 -------------
324 The trace_options file is used to control what gets printed in the trace
325 output. To see what is available, simply cat the file:
327   cat /debug/tracing/trace_options
328   print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
329  noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj
331 To disable one of the options, echo in the option prepended with "no".
333   echo noprint-parent > /debug/tracing/trace_options
335 To enable an option, leave off the "no".
337   echo sym-offset > /debug/tracing/trace_options
339 Here are the available options:
341   print-parent - On function traces, display the calling function
342                 as well as the function being traced.
344   print-parent:
345    bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul
347   noprint-parent:
348    bash-4000  [01]  1477.606694: simple_strtoul
351   sym-offset - Display not only the function name, but also the offset
352                 in the function. For example, instead of seeing just
353                 "ktime_get", you will see "ktime_get+0xb/0x20".
355   sym-offset:
356    bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
358   sym-addr - this will also display the function address as well as
359                 the function name.
361   sym-addr:
362    bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
364   verbose - This deals with the latency_trace file.
366     bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
367     (+0.000ms): simple_strtoul (strict_strtoul)
369   raw - This will display raw numbers. This option is best for use with
370         user applications that can translate the raw numbers better than
371         having it done in the kernel.
373   hex - Similar to raw, but the numbers will be in a hexadecimal format.
375   bin - This will print out the formats in raw binary.
377   block - TBD (needs update)
379   stacktrace - This is one of the options that changes the trace itself.
380                 When a trace is recorded, so is the stack of functions.
381                 This allows for back traces of trace sites.
383   userstacktrace - This option changes the trace.
384                    It records a stacktrace of the current userspace thread.
386   sym-userobj - when user stacktrace are enabled, look up which object the
387                 address belongs to, and print a relative address
388                 This is especially useful when ASLR is on, otherwise you don't
389                 get a chance to resolve the address to object/file/line after the app is no
390                 longer running
392                 The lookup is performed when you read trace,trace_pipe,latency_trace. Example:
394                 a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
395 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
397   sched-tree - TBD (any users??)
400 sched_switch
401 ------------
403 This tracer simply records schedule switches. Here is an example
404 of how to use it.
406  # echo sched_switch > /debug/tracing/current_tracer
407  # echo 1 > /debug/tracing/tracing_enabled
408  # sleep 1
409  # echo 0 > /debug/tracing/tracing_enabled
410  # cat /debug/tracing/trace
412 # tracer: sched_switch
414 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
415 #              | |      |          |         |
416             bash-3997  [01]   240.132281:   3997:120:R   +  4055:120:R
417             bash-3997  [01]   240.132284:   3997:120:R ==>  4055:120:R
418            sleep-4055  [01]   240.132371:   4055:120:S ==>  3997:120:R
419             bash-3997  [01]   240.132454:   3997:120:R   +  4055:120:S
420             bash-3997  [01]   240.132457:   3997:120:R ==>  4055:120:R
421            sleep-4055  [01]   240.132460:   4055:120:D ==>  3997:120:R
422             bash-3997  [01]   240.132463:   3997:120:R   +  4055:120:D
423             bash-3997  [01]   240.132465:   3997:120:R ==>  4055:120:R
424           <idle>-0     [00]   240.132589:      0:140:R   +     4:115:S
425           <idle>-0     [00]   240.132591:      0:140:R ==>     4:115:R
426      ksoftirqd/0-4     [00]   240.132595:      4:115:S ==>     0:140:R
427           <idle>-0     [00]   240.132598:      0:140:R   +     4:115:S
428           <idle>-0     [00]   240.132599:      0:140:R ==>     4:115:R
429      ksoftirqd/0-4     [00]   240.132603:      4:115:S ==>     0:140:R
430            sleep-4055  [01]   240.133058:   4055:120:S ==>  3997:120:R
431  [...]
434 As we have discussed previously about this format, the header shows
435 the name of the trace and points to the options. The "FUNCTION"
436 is a misnomer since here it represents the wake ups and context
437 switches.
439 The sched_switch file only lists the wake ups (represented with '+')
440 and context switches ('==>') with the previous task or current task
441 first followed by the next task or task waking up. The format for both
442 of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
443 is the inverse of the actual priority with zero (0) being the highest
444 priority and the nice values starting at 100 (nice -20). Below is
445 a quick chart to map the kernel priority to user land priorities.
447   Kernel priority: 0 to 99    ==> user RT priority 99 to 0
448   Kernel priority: 100 to 139 ==> user nice -20 to 19
449   Kernel priority: 140        ==> idle task priority
451 The task states are:
453  R - running : wants to run, may not actually be running
454  S - sleep   : process is waiting to be woken up (handles signals)
455  D - disk sleep (uninterruptible sleep) : process must be woken up
456                                         (ignores signals)
457  T - stopped : process suspended
458  t - traced  : process is being traced (with something like gdb)
459  Z - zombie  : process waiting to be cleaned up
460  X - unknown
463 ftrace_enabled
464 --------------
466 The following tracers (listed below) give different output depending
467 on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
468 one can either use the sysctl function or set it via the proc
469 file system interface.
471   sysctl kernel.ftrace_enabled=1
473  or
475   echo 1 > /proc/sys/kernel/ftrace_enabled
477 To disable ftrace_enabled simply replace the '1' with '0' in
478 the above commands.
480 When ftrace_enabled is set the tracers will also record the functions
481 that are within the trace. The descriptions of the tracers
482 will also show an example with ftrace enabled.
485 irqsoff
486 -------
488 When interrupts are disabled, the CPU can not react to any other
489 external event (besides NMIs and SMIs). This prevents the timer
490 interrupt from triggering or the mouse interrupt from letting the
491 kernel know of a new mouse event. The result is a latency with the
492 reaction time.
494 The irqsoff tracer tracks the time for which interrupts are disabled.
495 When a new maximum latency is hit, the tracer saves the trace leading up
496 to that latency point so that every time a new maximum is reached, the old
497 saved trace is discarded and the new trace is saved.
499 To reset the maximum, echo 0 into tracing_max_latency. Here is an
500 example:
502  # echo irqsoff > /debug/tracing/current_tracer
503  # echo 0 > /debug/tracing/tracing_max_latency
504  # echo 1 > /debug/tracing/tracing_enabled
505  # ls -ltr
506  [...]
507  # echo 0 > /debug/tracing/tracing_enabled
508  # cat /debug/tracing/latency_trace
509 # tracer: irqsoff
511 irqsoff latency trace v1.1.5 on 2.6.26
512 --------------------------------------------------------------------
513  latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
514     -----------------
515     | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
516     -----------------
517  => started at: sys_setpgid
518  => ended at:   sys_setpgid
520 #                _------=> CPU#
521 #               / _-----=> irqs-off
522 #              | / _----=> need-resched
523 #              || / _---=> hardirq/softirq
524 #              ||| / _--=> preempt-depth
525 #              |||| /
526 #              |||||     delay
527 #  cmd     pid ||||| time  |   caller
528 #     \   /    |||||   \   |   /
529     bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
530     bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
531     bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
534 Here we see that that we had a latency of 12 microsecs (which is
535 very good). The _write_lock_irq in sys_setpgid disabled interrupts.
536 The difference between the 12 and the displayed timestamp 14us occurred
537 because the clock was incremented between the time of recording the max
538 latency and the time of recording the function that had that latency.
540 Note the above example had ftrace_enabled not set. If we set the
541 ftrace_enabled, we get a much larger output:
543 # tracer: irqsoff
545 irqsoff latency trace v1.1.5 on 2.6.26-rc8
546 --------------------------------------------------------------------
547  latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
548     -----------------
549     | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
550     -----------------
551  => started at: __alloc_pages_internal
552  => ended at:   __alloc_pages_internal
554 #                _------=> CPU#
555 #               / _-----=> irqs-off
556 #              | / _----=> need-resched
557 #              || / _---=> hardirq/softirq
558 #              ||| / _--=> preempt-depth
559 #              |||| /
560 #              |||||     delay
561 #  cmd     pid ||||| time  |   caller
562 #     \   /    |||||   \   |   /
563       ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
564       ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
565       ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
566       ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
567       ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
568       ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
569       ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
570       ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
571       ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
572       ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
573       ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
574       ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
575 [...]
576       ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
577       ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
578       ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
579       ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
580       ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
581       ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
582       ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
583       ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
584       ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
588 Here we traced a 50 microsecond latency. But we also see all the
589 functions that were called during that time. Note that by enabling
590 function tracing, we incur an added overhead. This overhead may
591 extend the latency times. But nevertheless, this trace has provided
592 some very helpful debugging information.
595 preemptoff
596 ----------
598 When preemption is disabled, we may be able to receive interrupts but
599 the task cannot be preempted and a higher priority task must wait
600 for preemption to be enabled again before it can preempt a lower
601 priority task.
603 The preemptoff tracer traces the places that disable preemption.
604 Like the irqsoff tracer, it records the maximum latency for which preemption
605 was disabled. The control of preemptoff tracer is much like the irqsoff
606 tracer.
608  # echo preemptoff > /debug/tracing/current_tracer
609  # echo 0 > /debug/tracing/tracing_max_latency
610  # echo 1 > /debug/tracing/tracing_enabled
611  # ls -ltr
612  [...]
613  # echo 0 > /debug/tracing/tracing_enabled
614  # cat /debug/tracing/latency_trace
615 # tracer: preemptoff
617 preemptoff latency trace v1.1.5 on 2.6.26-rc8
618 --------------------------------------------------------------------
619  latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
620     -----------------
621     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
622     -----------------
623  => started at: do_IRQ
624  => ended at:   __do_softirq
626 #                _------=> CPU#
627 #               / _-----=> irqs-off
628 #              | / _----=> need-resched
629 #              || / _---=> hardirq/softirq
630 #              ||| / _--=> preempt-depth
631 #              |||| /
632 #              |||||     delay
633 #  cmd     pid ||||| time  |   caller
634 #     \   /    |||||   \   |   /
635     sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
636     sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
637     sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
640 This has some more changes. Preemption was disabled when an interrupt
641 came in (notice the 'h'), and was enabled while doing a softirq.
642 (notice the 's'). But we also see that interrupts have been disabled
643 when entering the preempt off section and leaving it (the 'd').
644 We do not know if interrupts were enabled in the mean time.
646 # tracer: preemptoff
648 preemptoff latency trace v1.1.5 on 2.6.26-rc8
649 --------------------------------------------------------------------
650  latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
651     -----------------
652     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
653     -----------------
654  => started at: remove_wait_queue
655  => ended at:   __do_softirq
657 #                _------=> CPU#
658 #               / _-----=> irqs-off
659 #              | / _----=> need-resched
660 #              || / _---=> hardirq/softirq
661 #              ||| / _--=> preempt-depth
662 #              |||| /
663 #              |||||     delay
664 #  cmd     pid ||||| time  |   caller
665 #     \   /    |||||   \   |   /
666     sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
667     sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
668     sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
669     sshd-4261  0d..1    2us : irq_enter (do_IRQ)
670     sshd-4261  0d..1    2us : idle_cpu (irq_enter)
671     sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
672     sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
673     sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
674 [...]
675     sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
676     sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
677     sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
678     sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
679     sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
680     sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
681     sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
682     sshd-4261  0d..2   15us : do_softirq (irq_exit)
683     sshd-4261  0d...   15us : __do_softirq (do_softirq)
684     sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
685     sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
686     sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
687     sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
688     sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
689 [...]
690     sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
691     sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
692     sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
693     sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
694     sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
695     sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
696     sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
697     sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
698 [...]
699     sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
700     sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)
703 The above is an example of the preemptoff trace with ftrace_enabled
704 set. Here we see that interrupts were disabled the entire time.
705 The irq_enter code lets us know that we entered an interrupt 'h'.
706 Before that, the functions being traced still show that it is not
707 in an interrupt, but we can see from the functions themselves that
708 this is not the case.
710 Notice that __do_softirq when called does not have a preempt_count.
711 It may seem that we missed a preempt enabling. What really happened
712 is that the preempt count is held on the thread's stack and we
713 switched to the softirq stack (4K stacks in effect). The code
714 does not copy the preempt count, but because interrupts are disabled,
715 we do not need to worry about it. Having a tracer like this is good
716 for letting people know what really happens inside the kernel.
719 preemptirqsoff
720 --------------
722 Knowing the locations that have interrupts disabled or preemption
723 disabled for the longest times is helpful. But sometimes we would
724 like to know when either preemption and/or interrupts are disabled.
726 Consider the following code:
728     local_irq_disable();
729     call_function_with_irqs_off();
730     preempt_disable();
731     call_function_with_irqs_and_preemption_off();
732     local_irq_enable();
733     call_function_with_preemption_off();
734     preempt_enable();
736 The irqsoff tracer will record the total length of
737 call_function_with_irqs_off() and
738 call_function_with_irqs_and_preemption_off().
740 The preemptoff tracer will record the total length of
741 call_function_with_irqs_and_preemption_off() and
742 call_function_with_preemption_off().
744 But neither will trace the time that interrupts and/or preemption
745 is disabled. This total time is the time that we can not schedule.
746 To record this time, use the preemptirqsoff tracer.
748 Again, using this trace is much like the irqsoff and preemptoff tracers.
750  # echo preemptirqsoff > /debug/tracing/current_tracer
751  # echo 0 > /debug/tracing/tracing_max_latency
752  # echo 1 > /debug/tracing/tracing_enabled
753  # ls -ltr
754  [...]
755  # echo 0 > /debug/tracing/tracing_enabled
756  # cat /debug/tracing/latency_trace
757 # tracer: preemptirqsoff
759 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
760 --------------------------------------------------------------------
761  latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
762     -----------------
763     | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
764     -----------------
765  => started at: apic_timer_interrupt
766  => ended at:   __do_softirq
768 #                _------=> CPU#
769 #               / _-----=> irqs-off
770 #              | / _----=> need-resched
771 #              || / _---=> hardirq/softirq
772 #              ||| / _--=> preempt-depth
773 #              |||| /
774 #              |||||     delay
775 #  cmd     pid ||||| time  |   caller
776 #     \   /    |||||   \   |   /
777       ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
778       ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
779       ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
783 The trace_hardirqs_off_thunk is called from assembly on x86 when
784 interrupts are disabled in the assembly code. Without the function
785 tracing, we do not know if interrupts were enabled within the preemption
786 points. We do see that it started with preemption enabled.
788 Here is a trace with ftrace_enabled set:
791 # tracer: preemptirqsoff
793 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
794 --------------------------------------------------------------------
795  latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
796     -----------------
797     | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
798     -----------------
799  => started at: write_chan
800  => ended at:   __do_softirq
802 #                _------=> CPU#
803 #               / _-----=> irqs-off
804 #              | / _----=> need-resched
805 #              || / _---=> hardirq/softirq
806 #              ||| / _--=> preempt-depth
807 #              |||| /
808 #              |||||     delay
809 #  cmd     pid ||||| time  |   caller
810 #     \   /    |||||   \   |   /
811       ls-4473  0.N..    0us : preempt_schedule (write_chan)
812       ls-4473  0dN.1    1us : _spin_lock (schedule)
813       ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
814       ls-4473  0d..2    2us : put_prev_task_fair (schedule)
815 [...]
816       ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
817       ls-4473  0d..2   13us : __switch_to (schedule)
818     sshd-4261  0d..2   14us : finish_task_switch (schedule)
819     sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
820     sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
821     sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
822     sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
823     sshd-4261  0d..2   17us : irq_enter (do_IRQ)
824     sshd-4261  0d..2   17us : idle_cpu (irq_enter)
825     sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
826     sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
827     sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
828     sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
829     sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
830     sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
831     sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
832 [...]
833     sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
834     sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
835     sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
836     sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
837     sshd-4261  0d..3   30us : do_softirq (irq_exit)
838     sshd-4261  0d...   30us : __do_softirq (do_softirq)
839     sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
840     sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
841     sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
842 [...]
843     sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
844     sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
845     sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
846     sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
847     sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
848     sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
849     sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
850     sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
851     sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
852 [...]
853     sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
854     sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
855     sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
856     sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
857     sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
858     sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
859     sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
860     sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
861     sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
862     sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
863     sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
864 [...]
865     sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
866     sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
867     sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
868     sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
869     sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
870     sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
871     sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)
874 This is a very interesting trace. It started with the preemption of
875 the ls task. We see that the task had the "need_resched" bit set
876 via the 'N' in the trace.  Interrupts were disabled before the spin_lock
877 at the beginning of the trace. We see that a schedule took place to run
878 sshd.  When the interrupts were enabled, we took an interrupt.
879 On return from the interrupt handler, the softirq ran. We took another
880 interrupt while running the softirq as we see from the capital 'H'.
883 wakeup
884 ------
886 In a Real-Time environment it is very important to know the wakeup
887 time it takes for the highest priority task that is woken up to the
888 time that it executes. This is also known as "schedule latency".
889 I stress the point that this is about RT tasks. It is also important
890 to know the scheduling latency of non-RT tasks, but the average
891 schedule latency is better for non-RT tasks. Tools like
892 LatencyTop are more appropriate for such measurements.
894 Real-Time environments are interested in the worst case latency.
895 That is the longest latency it takes for something to happen, and
896 not the average. We can have a very fast scheduler that may only
897 have a large latency once in a while, but that would not work well
898 with Real-Time tasks.  The wakeup tracer was designed to record
899 the worst case wakeups of RT tasks. Non-RT tasks are not recorded
900 because the tracer only records one worst case and tracing non-RT
901 tasks that are unpredictable will overwrite the worst case latency
902 of RT tasks.
904 Since this tracer only deals with RT tasks, we will run this slightly
905 differently than we did with the previous tracers. Instead of performing
906 an 'ls', we will run 'sleep 1' under 'chrt' which changes the
907 priority of the task.
909  # echo wakeup > /debug/tracing/current_tracer
910  # echo 0 > /debug/tracing/tracing_max_latency
911  # echo 1 > /debug/tracing/tracing_enabled
912  # chrt -f 5 sleep 1
913  # echo 0 > /debug/tracing/tracing_enabled
914  # cat /debug/tracing/latency_trace
915 # tracer: wakeup
917 wakeup latency trace v1.1.5 on 2.6.26-rc8
918 --------------------------------------------------------------------
919  latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
920     -----------------
921     | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
922     -----------------
924 #                _------=> CPU#
925 #               / _-----=> irqs-off
926 #              | / _----=> need-resched
927 #              || / _---=> hardirq/softirq
928 #              ||| / _--=> preempt-depth
929 #              |||| /
930 #              |||||     delay
931 #  cmd     pid ||||| time  |   caller
932 #     \   /    |||||   \   |   /
933   <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
934   <idle>-0     1d..4    4us : schedule (cpu_idle)
938 Running this on an idle system, we see that it only took 4 microseconds
939 to perform the task switch.  Note, since the trace marker in the
940 schedule is before the actual "switch", we stop the tracing when
941 the recorded task is about to schedule in. This may change if
942 we add a new marker at the end of the scheduler.
944 Notice that the recorded task is 'sleep' with the PID of 4901 and it
945 has an rt_prio of 5. This priority is user-space priority and not
946 the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
947 for SCHED_RR.
949 Doing the same with chrt -r 5 and ftrace_enabled set.
951 # tracer: wakeup
953 wakeup latency trace v1.1.5 on 2.6.26-rc8
954 --------------------------------------------------------------------
955  latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
956     -----------------
957     | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
958     -----------------
960 #                _------=> CPU#
961 #               / _-----=> irqs-off
962 #              | / _----=> need-resched
963 #              || / _---=> hardirq/softirq
964 #              ||| / _--=> preempt-depth
965 #              |||| /
966 #              |||||     delay
967 #  cmd     pid ||||| time  |   caller
968 #     \   /    |||||   \   |   /
969 ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
970 ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
971 ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
972 ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
973 ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
974 ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
975 ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
976 ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
977 [...]
978 ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
979 ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
980 ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
981 ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
982 [...]
983 ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
984 ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
985 ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
986 ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
987 ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
988 ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
989 ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
990 ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
991 ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
992 ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
993 ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
994 ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
995 ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
996 ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
997 [...]
998 ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
999 ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
1000 ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
1001 ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
1002 ksoftirq-7     1d..4   50us : schedule (__cond_resched)
1004 The interrupt went off while running ksoftirqd. This task runs at
1005 SCHED_OTHER. Why did not we see the 'N' set early? This may be
1006 a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
1007 configured, the interrupt and softirq run with their own stack.
1008 Some information is held on the top of the task's stack (need_resched
1009 and preempt_count are both stored there). The setting of the NEED_RESCHED
1010 bit is done directly to the task's stack, but the reading of the
1011 NEED_RESCHED is done by looking at the current stack, which in this case
1012 is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
1013 has been set. We do not see the 'N' until we switch back to the task's
1014 assigned stack.
1016 function
1017 --------
1019 This tracer is the function tracer. Enabling the function tracer
1020 can be done from the debug file system. Make sure the ftrace_enabled is
1021 set; otherwise this tracer is a nop.
1023  # sysctl kernel.ftrace_enabled=1
1024  # echo function > /debug/tracing/current_tracer
1025  # echo 1 > /debug/tracing/tracing_enabled
1026  # usleep 1
1027  # echo 0 > /debug/tracing/tracing_enabled
1028  # cat /debug/tracing/trace
1029 # tracer: function
1031 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1032 #              | |      |          |         |
1033             bash-4003  [00]   123.638713: finish_task_switch <-schedule
1034             bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
1035             bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
1036             bash-4003  [00]   123.638715: hrtick_set <-schedule
1037             bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
1038             bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
1039             bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
1040             bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
1041             bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
1042             bash-4003  [00]   123.638718: sub_preempt_count <-schedule
1043             bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
1044             bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
1045             bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
1046             bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
1047             bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
1048 [...]
1051 Note: function tracer uses ring buffers to store the above entries.
1052 The newest data may overwrite the oldest data. Sometimes using echo to
1053 stop the trace is not sufficient because the tracing could have overwritten
1054 the data that you wanted to record. For this reason, it is sometimes better to
1055 disable tracing directly from a program. This allows you to stop the
1056 tracing at the point that you hit the part that you are interested in.
1057 To disable the tracing directly from a C program, something like following
1058 code snippet can be used:
1060 int trace_fd;
1061 [...]
1062 int main(int argc, char *argv[]) {
1063         [...]
1064         trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
1065         [...]
1066         if (condition_hit()) {
1067                 write(trace_fd, "0", 1);
1068         }
1069         [...]
1072 Note: Here we hard coded the path name. The debugfs mount is not
1073 guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
1074 For simple one time traces, the above is sufficent. For anything else,
1075 a search through /proc/mounts may be needed to find where the debugfs
1076 file-system is mounted.
1079 Single thread tracing
1080 ---------------------
1082 By writing into /debug/tracing/set_ftrace_pid you can trace a
1083 single thread. For example:
1085 # cat /debug/tracing/set_ftrace_pid
1086 no pid
1087 # echo 3111 > /debug/tracing/set_ftrace_pid
1088 # cat /debug/tracing/set_ftrace_pid
1089 3111
1090 # echo function > /debug/tracing/current_tracer
1091 # cat /debug/tracing/trace | head
1092  # tracer: function
1094  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1095  #              | |       |          |         |
1096      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1097      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1098      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1099      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1100      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1101      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1102 # echo -1 > /debug/tracing/set_ftrace_pid
1103 # cat /debug/tracing/trace |head
1104  # tracer: function
1106  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1107  #              | |       |          |         |
1108  ##### CPU 3 buffer started ####
1109      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1110      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1111      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1112      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1113      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1115 If you want to trace a function when executing, you could use
1116 something like this simple program:
1118 #include <stdio.h>
1119 #include <stdlib.h>
1120 #include <sys/types.h>
1121 #include <sys/stat.h>
1122 #include <fcntl.h>
1123 #include <unistd.h>
1125 int main (int argc, char **argv)
1127         if (argc < 1)
1128                 exit(-1);
1130         if (fork() > 0) {
1131                 int fd, ffd;
1132                 char line[64];
1133                 int s;
1135                 ffd = open("/debug/tracing/current_tracer", O_WRONLY);
1136                 if (ffd < 0)
1137                         exit(-1);
1138                 write(ffd, "nop", 3);
1140                 fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY);
1141                 s = sprintf(line, "%d\n", getpid());
1142                 write(fd, line, s);
1144                 write(ffd, "function", 8);
1146                 close(fd);
1147                 close(ffd);
1149                 execvp(argv[1], argv+1);
1150         }
1152         return 0;
1155 dynamic ftrace
1156 --------------
1158 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
1159 virtually no overhead when function tracing is disabled. The way
1160 this works is the mcount function call (placed at the start of
1161 every kernel function, produced by the -pg switch in gcc), starts
1162 of pointing to a simple return. (Enabling FTRACE will include the
1163 -pg switch in the compiling of the kernel.)
1165 At compile time every C file object is run through the
1166 recordmcount.pl script (located in the scripts directory). This
1167 script will process the C object using objdump to find all the
1168 locations in the .text section that call mcount. (Note, only
1169 the .text section is processed, since processing other sections
1170 like .init.text may cause races due to those sections being freed).
1172 A new section called "__mcount_loc" is created that holds references
1173 to all the mcount call sites in the .text section. This section is
1174 compiled back into the original object. The final linker will add
1175 all these references into a single table.
1177 On boot up, before SMP is initialized, the dynamic ftrace code
1178 scans this table and updates all the locations into nops. It also
1179 records the locations, which are added to the available_filter_functions
1180 list.  Modules are processed as they are loaded and before they are
1181 executed.  When a module is unloaded, it also removes its functions from
1182 the ftrace function list. This is automatic in the module unload
1183 code, and the module author does not need to worry about it.
1185 When tracing is enabled, kstop_machine is called to prevent races
1186 with the CPUS executing code being modified (which can cause the
1187 CPU to do undesireable things), and the nops are patched back
1188 to calls. But this time, they do not call mcount (which is just
1189 a function stub). They now call into the ftrace infrastructure.
1191 One special side-effect to the recording of the functions being
1192 traced is that we can now selectively choose which functions we
1193 wish to trace and which ones we want the mcount calls to remain as
1194 nops.
1196 Two files are used, one for enabling and one for disabling the tracing
1197 of specified functions. They are:
1199   set_ftrace_filter
1203   set_ftrace_notrace
1205 A list of available functions that you can add to these files is listed
1208    available_filter_functions
1210  # cat /debug/tracing/available_filter_functions
1211 put_prev_task_idle
1212 kmem_cache_create
1213 pick_next_task_rt
1214 get_online_cpus
1215 pick_next_task_fair
1216 mutex_lock
1217 [...]
1219 If I am only interested in sys_nanosleep and hrtimer_interrupt:
1221  # echo sys_nanosleep hrtimer_interrupt \
1222                 > /debug/tracing/set_ftrace_filter
1223  # echo ftrace > /debug/tracing/current_tracer
1224  # echo 1 > /debug/tracing/tracing_enabled
1225  # usleep 1
1226  # echo 0 > /debug/tracing/tracing_enabled
1227  # cat /debug/tracing/trace
1228 # tracer: ftrace
1230 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1231 #              | |      |          |         |
1232           usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
1233           usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
1234           <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
1236 To see which functions are being traced, you can cat the file:
1238  # cat /debug/tracing/set_ftrace_filter
1239 hrtimer_interrupt
1240 sys_nanosleep
1243 Perhaps this is not enough. The filters also allow simple wild cards.
1244 Only the following are currently available
1246   <match>*  - will match functions that begin with <match>
1247   *<match>  - will match functions that end with <match>
1248   *<match>* - will match functions that have <match> in it
1250 These are the only wild cards which are supported.
1252   <match>*<match> will not work.
1254 Note: It is better to use quotes to enclose the wild cards, otherwise
1255   the shell may expand the parameters into names of files in the local
1256   directory.
1258  # echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter
1260 Produces:
1262 # tracer: ftrace
1264 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1265 #              | |      |          |         |
1266             bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
1267             bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
1268             bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
1269             bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
1270           <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
1271           <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
1272           <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
1273           <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
1274           <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
1277 Notice that we lost the sys_nanosleep.
1279  # cat /debug/tracing/set_ftrace_filter
1280 hrtimer_run_queues
1281 hrtimer_run_pending
1282 hrtimer_init
1283 hrtimer_cancel
1284 hrtimer_try_to_cancel
1285 hrtimer_forward
1286 hrtimer_start
1287 hrtimer_reprogram
1288 hrtimer_force_reprogram
1289 hrtimer_get_next_event
1290 hrtimer_interrupt
1291 hrtimer_nanosleep
1292 hrtimer_wakeup
1293 hrtimer_get_remaining
1294 hrtimer_get_res
1295 hrtimer_init_sleeper
1298 This is because the '>' and '>>' act just like they do in bash.
1299 To rewrite the filters, use '>'
1300 To append to the filters, use '>>'
1302 To clear out a filter so that all functions will be recorded again:
1304  # echo > /debug/tracing/set_ftrace_filter
1305  # cat /debug/tracing/set_ftrace_filter
1308 Again, now we want to append.
1310  # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
1311  # cat /debug/tracing/set_ftrace_filter
1312 sys_nanosleep
1313  # echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter
1314  # cat /debug/tracing/set_ftrace_filter
1315 hrtimer_run_queues
1316 hrtimer_run_pending
1317 hrtimer_init
1318 hrtimer_cancel
1319 hrtimer_try_to_cancel
1320 hrtimer_forward
1321 hrtimer_start
1322 hrtimer_reprogram
1323 hrtimer_force_reprogram
1324 hrtimer_get_next_event
1325 hrtimer_interrupt
1326 sys_nanosleep
1327 hrtimer_nanosleep
1328 hrtimer_wakeup
1329 hrtimer_get_remaining
1330 hrtimer_get_res
1331 hrtimer_init_sleeper
1334 The set_ftrace_notrace prevents those functions from being traced.
1336  # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
1338 Produces:
1340 # tracer: ftrace
1342 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1343 #              | |      |          |         |
1344             bash-4043  [01]   115.281644: finish_task_switch <-schedule
1345             bash-4043  [01]   115.281645: hrtick_set <-schedule
1346             bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
1347             bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
1348             bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
1349             bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
1350             bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
1351             bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
1352             bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process
1354 We can see that there's no more lock or preempt tracing.
1356 trace_pipe
1357 ----------
1359 The trace_pipe outputs the same content as the trace file, but the effect
1360 on the tracing is different. Every read from trace_pipe is consumed.
1361 This means that subsequent reads will be different. The trace
1362 is live.
1364  # echo function > /debug/tracing/current_tracer
1365  # cat /debug/tracing/trace_pipe > /tmp/trace.out &
1366 [1] 4153
1367  # echo 1 > /debug/tracing/tracing_enabled
1368  # usleep 1
1369  # echo 0 > /debug/tracing/tracing_enabled
1370  # cat /debug/tracing/trace
1371 # tracer: function
1373 #           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1374 #              | |      |          |         |
1377  # cat /tmp/trace.out
1378             bash-4043  [00] 41.267106: finish_task_switch <-schedule
1379             bash-4043  [00] 41.267106: hrtick_set <-schedule
1380             bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
1381             bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
1382             bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
1383             bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
1384             bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
1385             bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
1386             bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
1387             bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
1390 Note, reading the trace_pipe file will block until more input is added.
1391 By changing the tracer, trace_pipe will issue an EOF. We needed
1392 to set the function tracer _before_ we "cat" the trace_pipe file.
1395 trace entries
1396 -------------
1398 Having too much or not enough data can be troublesome in diagnosing
1399 an issue in the kernel. The file buffer_size_kb is used to modify
1400 the size of the internal trace buffers. The number listed
1401 is the number of entries that can be recorded per CPU. To know
1402 the full size, multiply the number of possible CPUS with the
1403 number of entries.
1405  # cat /debug/tracing/buffer_size_kb
1406 1408 (units kilobytes)
1408 Note, to modify this, you must have tracing completely disabled. To do that,
1409 echo "nop" into the current_tracer. If the current_tracer is not set
1410 to "nop", an EINVAL error will be returned.
1412  # echo nop > /debug/tracing/current_tracer
1413  # echo 10000 > /debug/tracing/buffer_size_kb
1414  # cat /debug/tracing/buffer_size_kb
1415 10000 (units kilobytes)
1417 The number of pages which will be allocated is limited to a percentage
1418 of available memory. Allocating too much will produce an error.
1420  # echo 1000000000000 > /debug/tracing/buffer_size_kb
1421 -bash: echo: write error: Cannot allocate memory
1422  # cat /debug/tracing/buffer_size_kb