net: ipv6: RTF_PCPU should not be settable from userspace
[linux/fpc-iii.git] / mm / mempolicy.c
blobe09b1a0e2cfea6b4a7d92adfe11592446aa20eff
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126 struct mempolicy *get_task_policy(struct task_struct *p)
128 struct mempolicy *pol = p->mempolicy;
129 int node;
131 if (pol)
132 return pol;
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
142 return &default_policy;
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
167 return pol->flags & MPOL_MODE_FLAGS;
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
217 int ret;
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
256 struct mempolicy *policy;
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
266 VM_BUG_ON(!nodes);
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
292 return policy;
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
317 nodemask_t tmp;
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
339 if (nodes_empty(tmp))
340 tmp = *nodes;
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
362 nodemask_t tmp;
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
428 * Called with task's alloc_lock held.
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
434 mpol_rebind_policy(tsk->mempolicy, new, step);
438 * Rebind each vma in mm to new nodemask.
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
445 struct vm_area_struct *vma;
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
557 #ifdef CONFIG_NUMA_BALANCING
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
570 int nr_updated;
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
576 return nr_updated;
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
582 return 0;
584 #endif /* CONFIG_NUMA_BALANCING */
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
609 qp->prev = vma;
611 if (flags & MPOL_MF_LAZY) {
612 /* Similar to task_numa_work, skip inaccessible VMAs */
613 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
614 change_prot_numa(vma, start, endvma);
615 return 1;
618 if ((flags & MPOL_MF_STRICT) ||
619 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
620 vma_migratable(vma)))
621 /* queue pages from current vma */
622 return 0;
623 return 1;
627 * Walk through page tables and collect pages to be migrated.
629 * If pages found in a given range are on a set of nodes (determined by
630 * @nodes and @flags,) it's isolated and queued to the pagelist which is
631 * passed via @private.)
633 static int
634 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
635 nodemask_t *nodes, unsigned long flags,
636 struct list_head *pagelist)
638 struct queue_pages qp = {
639 .pagelist = pagelist,
640 .flags = flags,
641 .nmask = nodes,
642 .prev = NULL,
644 struct mm_walk queue_pages_walk = {
645 .hugetlb_entry = queue_pages_hugetlb,
646 .pmd_entry = queue_pages_pte_range,
647 .test_walk = queue_pages_test_walk,
648 .mm = mm,
649 .private = &qp,
652 return walk_page_range(start, end, &queue_pages_walk);
656 * Apply policy to a single VMA
657 * This must be called with the mmap_sem held for writing.
659 static int vma_replace_policy(struct vm_area_struct *vma,
660 struct mempolicy *pol)
662 int err;
663 struct mempolicy *old;
664 struct mempolicy *new;
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
671 new = mpol_dup(pol);
672 if (IS_ERR(new))
673 return PTR_ERR(new);
675 if (vma->vm_ops && vma->vm_ops->set_policy) {
676 err = vma->vm_ops->set_policy(vma, new);
677 if (err)
678 goto err_out;
681 old = vma->vm_policy;
682 vma->vm_policy = new; /* protected by mmap_sem */
683 mpol_put(old);
685 return 0;
686 err_out:
687 mpol_put(new);
688 return err;
691 /* Step 2: apply policy to a range and do splits. */
692 static int mbind_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, struct mempolicy *new_pol)
695 struct vm_area_struct *next;
696 struct vm_area_struct *prev;
697 struct vm_area_struct *vma;
698 int err = 0;
699 pgoff_t pgoff;
700 unsigned long vmstart;
701 unsigned long vmend;
703 vma = find_vma(mm, start);
704 if (!vma || vma->vm_start > start)
705 return -EFAULT;
707 prev = vma->vm_prev;
708 if (start > vma->vm_start)
709 prev = vma;
711 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
712 next = vma->vm_next;
713 vmstart = max(start, vma->vm_start);
714 vmend = min(end, vma->vm_end);
716 if (mpol_equal(vma_policy(vma), new_pol))
717 continue;
719 pgoff = vma->vm_pgoff +
720 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
721 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
722 vma->anon_vma, vma->vm_file, pgoff,
723 new_pol, vma->vm_userfaultfd_ctx);
724 if (prev) {
725 vma = prev;
726 next = vma->vm_next;
727 if (mpol_equal(vma_policy(vma), new_pol))
728 continue;
729 /* vma_merge() joined vma && vma->next, case 8 */
730 goto replace;
732 if (vma->vm_start != vmstart) {
733 err = split_vma(vma->vm_mm, vma, vmstart, 1);
734 if (err)
735 goto out;
737 if (vma->vm_end != vmend) {
738 err = split_vma(vma->vm_mm, vma, vmend, 0);
739 if (err)
740 goto out;
742 replace:
743 err = vma_replace_policy(vma, new_pol);
744 if (err)
745 goto out;
748 out:
749 return err;
752 /* Set the process memory policy */
753 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
754 nodemask_t *nodes)
756 struct mempolicy *new, *old;
757 NODEMASK_SCRATCH(scratch);
758 int ret;
760 if (!scratch)
761 return -ENOMEM;
763 new = mpol_new(mode, flags, nodes);
764 if (IS_ERR(new)) {
765 ret = PTR_ERR(new);
766 goto out;
769 task_lock(current);
770 ret = mpol_set_nodemask(new, nodes, scratch);
771 if (ret) {
772 task_unlock(current);
773 mpol_put(new);
774 goto out;
776 old = current->mempolicy;
777 current->mempolicy = new;
778 if (new && new->mode == MPOL_INTERLEAVE &&
779 nodes_weight(new->v.nodes))
780 current->il_next = first_node(new->v.nodes);
781 task_unlock(current);
782 mpol_put(old);
783 ret = 0;
784 out:
785 NODEMASK_SCRATCH_FREE(scratch);
786 return ret;
790 * Return nodemask for policy for get_mempolicy() query
792 * Called with task's alloc_lock held
794 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
796 nodes_clear(*nodes);
797 if (p == &default_policy)
798 return;
800 switch (p->mode) {
801 case MPOL_BIND:
802 /* Fall through */
803 case MPOL_INTERLEAVE:
804 *nodes = p->v.nodes;
805 break;
806 case MPOL_PREFERRED:
807 if (!(p->flags & MPOL_F_LOCAL))
808 node_set(p->v.preferred_node, *nodes);
809 /* else return empty node mask for local allocation */
810 break;
811 default:
812 BUG();
816 static int lookup_node(struct mm_struct *mm, unsigned long addr)
818 struct page *p;
819 int err;
821 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
822 if (err >= 0) {
823 err = page_to_nid(p);
824 put_page(p);
826 return err;
829 /* Retrieve NUMA policy */
830 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
831 unsigned long addr, unsigned long flags)
833 int err;
834 struct mm_struct *mm = current->mm;
835 struct vm_area_struct *vma = NULL;
836 struct mempolicy *pol = current->mempolicy;
838 if (flags &
839 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
840 return -EINVAL;
842 if (flags & MPOL_F_MEMS_ALLOWED) {
843 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
844 return -EINVAL;
845 *policy = 0; /* just so it's initialized */
846 task_lock(current);
847 *nmask = cpuset_current_mems_allowed;
848 task_unlock(current);
849 return 0;
852 if (flags & MPOL_F_ADDR) {
854 * Do NOT fall back to task policy if the
855 * vma/shared policy at addr is NULL. We
856 * want to return MPOL_DEFAULT in this case.
858 down_read(&mm->mmap_sem);
859 vma = find_vma_intersection(mm, addr, addr+1);
860 if (!vma) {
861 up_read(&mm->mmap_sem);
862 return -EFAULT;
864 if (vma->vm_ops && vma->vm_ops->get_policy)
865 pol = vma->vm_ops->get_policy(vma, addr);
866 else
867 pol = vma->vm_policy;
868 } else if (addr)
869 return -EINVAL;
871 if (!pol)
872 pol = &default_policy; /* indicates default behavior */
874 if (flags & MPOL_F_NODE) {
875 if (flags & MPOL_F_ADDR) {
876 err = lookup_node(mm, addr);
877 if (err < 0)
878 goto out;
879 *policy = err;
880 } else if (pol == current->mempolicy &&
881 pol->mode == MPOL_INTERLEAVE) {
882 *policy = current->il_next;
883 } else {
884 err = -EINVAL;
885 goto out;
887 } else {
888 *policy = pol == &default_policy ? MPOL_DEFAULT :
889 pol->mode;
891 * Internal mempolicy flags must be masked off before exposing
892 * the policy to userspace.
894 *policy |= (pol->flags & MPOL_MODE_FLAGS);
897 if (vma) {
898 up_read(&current->mm->mmap_sem);
899 vma = NULL;
902 err = 0;
903 if (nmask) {
904 if (mpol_store_user_nodemask(pol)) {
905 *nmask = pol->w.user_nodemask;
906 } else {
907 task_lock(current);
908 get_policy_nodemask(pol, nmask);
909 task_unlock(current);
913 out:
914 mpol_cond_put(pol);
915 if (vma)
916 up_read(&current->mm->mmap_sem);
917 return err;
920 #ifdef CONFIG_MIGRATION
922 * page migration
924 static void migrate_page_add(struct page *page, struct list_head *pagelist,
925 unsigned long flags)
928 * Avoid migrating a page that is shared with others.
930 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
931 if (!isolate_lru_page(page)) {
932 list_add_tail(&page->lru, pagelist);
933 inc_zone_page_state(page, NR_ISOLATED_ANON +
934 page_is_file_cache(page));
939 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
941 if (PageHuge(page))
942 return alloc_huge_page_node(page_hstate(compound_head(page)),
943 node);
944 else
945 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
946 __GFP_THISNODE, 0);
950 * Migrate pages from one node to a target node.
951 * Returns error or the number of pages not migrated.
953 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
954 int flags)
956 nodemask_t nmask;
957 LIST_HEAD(pagelist);
958 int err = 0;
960 nodes_clear(nmask);
961 node_set(source, nmask);
964 * This does not "check" the range but isolates all pages that
965 * need migration. Between passing in the full user address
966 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
968 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
969 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
970 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
972 if (!list_empty(&pagelist)) {
973 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
974 MIGRATE_SYNC, MR_SYSCALL);
975 if (err)
976 putback_movable_pages(&pagelist);
979 return err;
983 * Move pages between the two nodesets so as to preserve the physical
984 * layout as much as possible.
986 * Returns the number of page that could not be moved.
988 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
989 const nodemask_t *to, int flags)
991 int busy = 0;
992 int err;
993 nodemask_t tmp;
995 err = migrate_prep();
996 if (err)
997 return err;
999 down_read(&mm->mmap_sem);
1002 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1003 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1004 * bit in 'tmp', and return that <source, dest> pair for migration.
1005 * The pair of nodemasks 'to' and 'from' define the map.
1007 * If no pair of bits is found that way, fallback to picking some
1008 * pair of 'source' and 'dest' bits that are not the same. If the
1009 * 'source' and 'dest' bits are the same, this represents a node
1010 * that will be migrating to itself, so no pages need move.
1012 * If no bits are left in 'tmp', or if all remaining bits left
1013 * in 'tmp' correspond to the same bit in 'to', return false
1014 * (nothing left to migrate).
1016 * This lets us pick a pair of nodes to migrate between, such that
1017 * if possible the dest node is not already occupied by some other
1018 * source node, minimizing the risk of overloading the memory on a
1019 * node that would happen if we migrated incoming memory to a node
1020 * before migrating outgoing memory source that same node.
1022 * A single scan of tmp is sufficient. As we go, we remember the
1023 * most recent <s, d> pair that moved (s != d). If we find a pair
1024 * that not only moved, but what's better, moved to an empty slot
1025 * (d is not set in tmp), then we break out then, with that pair.
1026 * Otherwise when we finish scanning from_tmp, we at least have the
1027 * most recent <s, d> pair that moved. If we get all the way through
1028 * the scan of tmp without finding any node that moved, much less
1029 * moved to an empty node, then there is nothing left worth migrating.
1032 tmp = *from;
1033 while (!nodes_empty(tmp)) {
1034 int s,d;
1035 int source = NUMA_NO_NODE;
1036 int dest = 0;
1038 for_each_node_mask(s, tmp) {
1041 * do_migrate_pages() tries to maintain the relative
1042 * node relationship of the pages established between
1043 * threads and memory areas.
1045 * However if the number of source nodes is not equal to
1046 * the number of destination nodes we can not preserve
1047 * this node relative relationship. In that case, skip
1048 * copying memory from a node that is in the destination
1049 * mask.
1051 * Example: [2,3,4] -> [3,4,5] moves everything.
1052 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1055 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1056 (node_isset(s, *to)))
1057 continue;
1059 d = node_remap(s, *from, *to);
1060 if (s == d)
1061 continue;
1063 source = s; /* Node moved. Memorize */
1064 dest = d;
1066 /* dest not in remaining from nodes? */
1067 if (!node_isset(dest, tmp))
1068 break;
1070 if (source == NUMA_NO_NODE)
1071 break;
1073 node_clear(source, tmp);
1074 err = migrate_to_node(mm, source, dest, flags);
1075 if (err > 0)
1076 busy += err;
1077 if (err < 0)
1078 break;
1080 up_read(&mm->mmap_sem);
1081 if (err < 0)
1082 return err;
1083 return busy;
1088 * Allocate a new page for page migration based on vma policy.
1089 * Start by assuming the page is mapped by the same vma as contains @start.
1090 * Search forward from there, if not. N.B., this assumes that the
1091 * list of pages handed to migrate_pages()--which is how we get here--
1092 * is in virtual address order.
1094 static struct page *new_page(struct page *page, unsigned long start, int **x)
1096 struct vm_area_struct *vma;
1097 unsigned long uninitialized_var(address);
1099 vma = find_vma(current->mm, start);
1100 while (vma) {
1101 address = page_address_in_vma(page, vma);
1102 if (address != -EFAULT)
1103 break;
1104 vma = vma->vm_next;
1107 if (PageHuge(page)) {
1108 BUG_ON(!vma);
1109 return alloc_huge_page_noerr(vma, address, 1);
1112 * if !vma, alloc_page_vma() will use task or system default policy
1114 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1116 #else
1118 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1119 unsigned long flags)
1123 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1124 const nodemask_t *to, int flags)
1126 return -ENOSYS;
1129 static struct page *new_page(struct page *page, unsigned long start, int **x)
1131 return NULL;
1133 #endif
1135 static long do_mbind(unsigned long start, unsigned long len,
1136 unsigned short mode, unsigned short mode_flags,
1137 nodemask_t *nmask, unsigned long flags)
1139 struct mm_struct *mm = current->mm;
1140 struct mempolicy *new;
1141 unsigned long end;
1142 int err;
1143 LIST_HEAD(pagelist);
1145 if (flags & ~(unsigned long)MPOL_MF_VALID)
1146 return -EINVAL;
1147 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1148 return -EPERM;
1150 if (start & ~PAGE_MASK)
1151 return -EINVAL;
1153 if (mode == MPOL_DEFAULT)
1154 flags &= ~MPOL_MF_STRICT;
1156 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1157 end = start + len;
1159 if (end < start)
1160 return -EINVAL;
1161 if (end == start)
1162 return 0;
1164 new = mpol_new(mode, mode_flags, nmask);
1165 if (IS_ERR(new))
1166 return PTR_ERR(new);
1168 if (flags & MPOL_MF_LAZY)
1169 new->flags |= MPOL_F_MOF;
1172 * If we are using the default policy then operation
1173 * on discontinuous address spaces is okay after all
1175 if (!new)
1176 flags |= MPOL_MF_DISCONTIG_OK;
1178 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1179 start, start + len, mode, mode_flags,
1180 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1182 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1184 err = migrate_prep();
1185 if (err)
1186 goto mpol_out;
1189 NODEMASK_SCRATCH(scratch);
1190 if (scratch) {
1191 down_write(&mm->mmap_sem);
1192 task_lock(current);
1193 err = mpol_set_nodemask(new, nmask, scratch);
1194 task_unlock(current);
1195 if (err)
1196 up_write(&mm->mmap_sem);
1197 } else
1198 err = -ENOMEM;
1199 NODEMASK_SCRATCH_FREE(scratch);
1201 if (err)
1202 goto mpol_out;
1204 err = queue_pages_range(mm, start, end, nmask,
1205 flags | MPOL_MF_INVERT, &pagelist);
1206 if (!err)
1207 err = mbind_range(mm, start, end, new);
1209 if (!err) {
1210 int nr_failed = 0;
1212 if (!list_empty(&pagelist)) {
1213 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1214 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1215 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1216 if (nr_failed)
1217 putback_movable_pages(&pagelist);
1220 if (nr_failed && (flags & MPOL_MF_STRICT))
1221 err = -EIO;
1222 } else
1223 putback_movable_pages(&pagelist);
1225 up_write(&mm->mmap_sem);
1226 mpol_out:
1227 mpol_put(new);
1228 return err;
1232 * User space interface with variable sized bitmaps for nodelists.
1235 /* Copy a node mask from user space. */
1236 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1237 unsigned long maxnode)
1239 unsigned long k;
1240 unsigned long nlongs;
1241 unsigned long endmask;
1243 --maxnode;
1244 nodes_clear(*nodes);
1245 if (maxnode == 0 || !nmask)
1246 return 0;
1247 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1248 return -EINVAL;
1250 nlongs = BITS_TO_LONGS(maxnode);
1251 if ((maxnode % BITS_PER_LONG) == 0)
1252 endmask = ~0UL;
1253 else
1254 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1256 /* When the user specified more nodes than supported just check
1257 if the non supported part is all zero. */
1258 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1259 if (nlongs > PAGE_SIZE/sizeof(long))
1260 return -EINVAL;
1261 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1262 unsigned long t;
1263 if (get_user(t, nmask + k))
1264 return -EFAULT;
1265 if (k == nlongs - 1) {
1266 if (t & endmask)
1267 return -EINVAL;
1268 } else if (t)
1269 return -EINVAL;
1271 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1272 endmask = ~0UL;
1275 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1276 return -EFAULT;
1277 nodes_addr(*nodes)[nlongs-1] &= endmask;
1278 return 0;
1281 /* Copy a kernel node mask to user space */
1282 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1283 nodemask_t *nodes)
1285 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1286 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1288 if (copy > nbytes) {
1289 if (copy > PAGE_SIZE)
1290 return -EINVAL;
1291 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1292 return -EFAULT;
1293 copy = nbytes;
1295 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1298 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1299 unsigned long, mode, const unsigned long __user *, nmask,
1300 unsigned long, maxnode, unsigned, flags)
1302 nodemask_t nodes;
1303 int err;
1304 unsigned short mode_flags;
1306 mode_flags = mode & MPOL_MODE_FLAGS;
1307 mode &= ~MPOL_MODE_FLAGS;
1308 if (mode >= MPOL_MAX)
1309 return -EINVAL;
1310 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1311 (mode_flags & MPOL_F_RELATIVE_NODES))
1312 return -EINVAL;
1313 err = get_nodes(&nodes, nmask, maxnode);
1314 if (err)
1315 return err;
1316 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1319 /* Set the process memory policy */
1320 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1321 unsigned long, maxnode)
1323 int err;
1324 nodemask_t nodes;
1325 unsigned short flags;
1327 flags = mode & MPOL_MODE_FLAGS;
1328 mode &= ~MPOL_MODE_FLAGS;
1329 if ((unsigned int)mode >= MPOL_MAX)
1330 return -EINVAL;
1331 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1332 return -EINVAL;
1333 err = get_nodes(&nodes, nmask, maxnode);
1334 if (err)
1335 return err;
1336 return do_set_mempolicy(mode, flags, &nodes);
1339 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1340 const unsigned long __user *, old_nodes,
1341 const unsigned long __user *, new_nodes)
1343 const struct cred *cred = current_cred(), *tcred;
1344 struct mm_struct *mm = NULL;
1345 struct task_struct *task;
1346 nodemask_t task_nodes;
1347 int err;
1348 nodemask_t *old;
1349 nodemask_t *new;
1350 NODEMASK_SCRATCH(scratch);
1352 if (!scratch)
1353 return -ENOMEM;
1355 old = &scratch->mask1;
1356 new = &scratch->mask2;
1358 err = get_nodes(old, old_nodes, maxnode);
1359 if (err)
1360 goto out;
1362 err = get_nodes(new, new_nodes, maxnode);
1363 if (err)
1364 goto out;
1366 /* Find the mm_struct */
1367 rcu_read_lock();
1368 task = pid ? find_task_by_vpid(pid) : current;
1369 if (!task) {
1370 rcu_read_unlock();
1371 err = -ESRCH;
1372 goto out;
1374 get_task_struct(task);
1376 err = -EINVAL;
1379 * Check if this process has the right to modify the specified
1380 * process. The right exists if the process has administrative
1381 * capabilities, superuser privileges or the same
1382 * userid as the target process.
1384 tcred = __task_cred(task);
1385 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1386 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1387 !capable(CAP_SYS_NICE)) {
1388 rcu_read_unlock();
1389 err = -EPERM;
1390 goto out_put;
1392 rcu_read_unlock();
1394 task_nodes = cpuset_mems_allowed(task);
1395 /* Is the user allowed to access the target nodes? */
1396 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1397 err = -EPERM;
1398 goto out_put;
1401 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1402 err = -EINVAL;
1403 goto out_put;
1406 err = security_task_movememory(task);
1407 if (err)
1408 goto out_put;
1410 mm = get_task_mm(task);
1411 put_task_struct(task);
1413 if (!mm) {
1414 err = -EINVAL;
1415 goto out;
1418 err = do_migrate_pages(mm, old, new,
1419 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1421 mmput(mm);
1422 out:
1423 NODEMASK_SCRATCH_FREE(scratch);
1425 return err;
1427 out_put:
1428 put_task_struct(task);
1429 goto out;
1434 /* Retrieve NUMA policy */
1435 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1436 unsigned long __user *, nmask, unsigned long, maxnode,
1437 unsigned long, addr, unsigned long, flags)
1439 int err;
1440 int uninitialized_var(pval);
1441 nodemask_t nodes;
1443 if (nmask != NULL && maxnode < MAX_NUMNODES)
1444 return -EINVAL;
1446 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1448 if (err)
1449 return err;
1451 if (policy && put_user(pval, policy))
1452 return -EFAULT;
1454 if (nmask)
1455 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1457 return err;
1460 #ifdef CONFIG_COMPAT
1462 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1463 compat_ulong_t __user *, nmask,
1464 compat_ulong_t, maxnode,
1465 compat_ulong_t, addr, compat_ulong_t, flags)
1467 long err;
1468 unsigned long __user *nm = NULL;
1469 unsigned long nr_bits, alloc_size;
1470 DECLARE_BITMAP(bm, MAX_NUMNODES);
1472 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1473 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1475 if (nmask)
1476 nm = compat_alloc_user_space(alloc_size);
1478 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1480 if (!err && nmask) {
1481 unsigned long copy_size;
1482 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1483 err = copy_from_user(bm, nm, copy_size);
1484 /* ensure entire bitmap is zeroed */
1485 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1486 err |= compat_put_bitmap(nmask, bm, nr_bits);
1489 return err;
1492 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1493 compat_ulong_t, maxnode)
1495 unsigned long __user *nm = NULL;
1496 unsigned long nr_bits, alloc_size;
1497 DECLARE_BITMAP(bm, MAX_NUMNODES);
1499 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1500 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1502 if (nmask) {
1503 if (compat_get_bitmap(bm, nmask, nr_bits))
1504 return -EFAULT;
1505 nm = compat_alloc_user_space(alloc_size);
1506 if (copy_to_user(nm, bm, alloc_size))
1507 return -EFAULT;
1510 return sys_set_mempolicy(mode, nm, nr_bits+1);
1513 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1514 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1515 compat_ulong_t, maxnode, compat_ulong_t, flags)
1517 unsigned long __user *nm = NULL;
1518 unsigned long nr_bits, alloc_size;
1519 nodemask_t bm;
1521 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1522 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1524 if (nmask) {
1525 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1526 return -EFAULT;
1527 nm = compat_alloc_user_space(alloc_size);
1528 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1529 return -EFAULT;
1532 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1535 #endif
1537 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1538 unsigned long addr)
1540 struct mempolicy *pol = NULL;
1542 if (vma) {
1543 if (vma->vm_ops && vma->vm_ops->get_policy) {
1544 pol = vma->vm_ops->get_policy(vma, addr);
1545 } else if (vma->vm_policy) {
1546 pol = vma->vm_policy;
1549 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1550 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1551 * count on these policies which will be dropped by
1552 * mpol_cond_put() later
1554 if (mpol_needs_cond_ref(pol))
1555 mpol_get(pol);
1559 return pol;
1563 * get_vma_policy(@vma, @addr)
1564 * @vma: virtual memory area whose policy is sought
1565 * @addr: address in @vma for shared policy lookup
1567 * Returns effective policy for a VMA at specified address.
1568 * Falls back to current->mempolicy or system default policy, as necessary.
1569 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1570 * count--added by the get_policy() vm_op, as appropriate--to protect against
1571 * freeing by another task. It is the caller's responsibility to free the
1572 * extra reference for shared policies.
1574 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1575 unsigned long addr)
1577 struct mempolicy *pol = __get_vma_policy(vma, addr);
1579 if (!pol)
1580 pol = get_task_policy(current);
1582 return pol;
1585 bool vma_policy_mof(struct vm_area_struct *vma)
1587 struct mempolicy *pol;
1589 if (vma->vm_ops && vma->vm_ops->get_policy) {
1590 bool ret = false;
1592 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1593 if (pol && (pol->flags & MPOL_F_MOF))
1594 ret = true;
1595 mpol_cond_put(pol);
1597 return ret;
1600 pol = vma->vm_policy;
1601 if (!pol)
1602 pol = get_task_policy(current);
1604 return pol->flags & MPOL_F_MOF;
1607 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1609 enum zone_type dynamic_policy_zone = policy_zone;
1611 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1614 * if policy->v.nodes has movable memory only,
1615 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1617 * policy->v.nodes is intersect with node_states[N_MEMORY].
1618 * so if the following test faile, it implies
1619 * policy->v.nodes has movable memory only.
1621 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1622 dynamic_policy_zone = ZONE_MOVABLE;
1624 return zone >= dynamic_policy_zone;
1628 * Return a nodemask representing a mempolicy for filtering nodes for
1629 * page allocation
1631 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1633 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1634 if (unlikely(policy->mode == MPOL_BIND) &&
1635 apply_policy_zone(policy, gfp_zone(gfp)) &&
1636 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1637 return &policy->v.nodes;
1639 return NULL;
1642 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1643 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1644 int nd)
1646 switch (policy->mode) {
1647 case MPOL_PREFERRED:
1648 if (!(policy->flags & MPOL_F_LOCAL))
1649 nd = policy->v.preferred_node;
1650 break;
1651 case MPOL_BIND:
1653 * Normally, MPOL_BIND allocations are node-local within the
1654 * allowed nodemask. However, if __GFP_THISNODE is set and the
1655 * current node isn't part of the mask, we use the zonelist for
1656 * the first node in the mask instead.
1658 if (unlikely(gfp & __GFP_THISNODE) &&
1659 unlikely(!node_isset(nd, policy->v.nodes)))
1660 nd = first_node(policy->v.nodes);
1661 break;
1662 default:
1663 BUG();
1665 return node_zonelist(nd, gfp);
1668 /* Do dynamic interleaving for a process */
1669 static unsigned interleave_nodes(struct mempolicy *policy)
1671 unsigned nid, next;
1672 struct task_struct *me = current;
1674 nid = me->il_next;
1675 next = next_node(nid, policy->v.nodes);
1676 if (next >= MAX_NUMNODES)
1677 next = first_node(policy->v.nodes);
1678 if (next < MAX_NUMNODES)
1679 me->il_next = next;
1680 return nid;
1684 * Depending on the memory policy provide a node from which to allocate the
1685 * next slab entry.
1687 unsigned int mempolicy_slab_node(void)
1689 struct mempolicy *policy;
1690 int node = numa_mem_id();
1692 if (in_interrupt())
1693 return node;
1695 policy = current->mempolicy;
1696 if (!policy || policy->flags & MPOL_F_LOCAL)
1697 return node;
1699 switch (policy->mode) {
1700 case MPOL_PREFERRED:
1702 * handled MPOL_F_LOCAL above
1704 return policy->v.preferred_node;
1706 case MPOL_INTERLEAVE:
1707 return interleave_nodes(policy);
1709 case MPOL_BIND: {
1711 * Follow bind policy behavior and start allocation at the
1712 * first node.
1714 struct zonelist *zonelist;
1715 struct zone *zone;
1716 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1717 zonelist = &NODE_DATA(node)->node_zonelists[0];
1718 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1719 &policy->v.nodes,
1720 &zone);
1721 return zone ? zone->node : node;
1724 default:
1725 BUG();
1729 /* Do static interleaving for a VMA with known offset. */
1730 static unsigned offset_il_node(struct mempolicy *pol,
1731 struct vm_area_struct *vma, unsigned long off)
1733 unsigned nnodes = nodes_weight(pol->v.nodes);
1734 unsigned target;
1735 int c;
1736 int nid = NUMA_NO_NODE;
1738 if (!nnodes)
1739 return numa_node_id();
1740 target = (unsigned int)off % nnodes;
1741 c = 0;
1742 do {
1743 nid = next_node(nid, pol->v.nodes);
1744 c++;
1745 } while (c <= target);
1746 return nid;
1749 /* Determine a node number for interleave */
1750 static inline unsigned interleave_nid(struct mempolicy *pol,
1751 struct vm_area_struct *vma, unsigned long addr, int shift)
1753 if (vma) {
1754 unsigned long off;
1757 * for small pages, there is no difference between
1758 * shift and PAGE_SHIFT, so the bit-shift is safe.
1759 * for huge pages, since vm_pgoff is in units of small
1760 * pages, we need to shift off the always 0 bits to get
1761 * a useful offset.
1763 BUG_ON(shift < PAGE_SHIFT);
1764 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1765 off += (addr - vma->vm_start) >> shift;
1766 return offset_il_node(pol, vma, off);
1767 } else
1768 return interleave_nodes(pol);
1772 * Return the bit number of a random bit set in the nodemask.
1773 * (returns NUMA_NO_NODE if nodemask is empty)
1775 int node_random(const nodemask_t *maskp)
1777 int w, bit = NUMA_NO_NODE;
1779 w = nodes_weight(*maskp);
1780 if (w)
1781 bit = bitmap_ord_to_pos(maskp->bits,
1782 get_random_int() % w, MAX_NUMNODES);
1783 return bit;
1786 #ifdef CONFIG_HUGETLBFS
1788 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1789 * @vma: virtual memory area whose policy is sought
1790 * @addr: address in @vma for shared policy lookup and interleave policy
1791 * @gfp_flags: for requested zone
1792 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1793 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1795 * Returns a zonelist suitable for a huge page allocation and a pointer
1796 * to the struct mempolicy for conditional unref after allocation.
1797 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1798 * @nodemask for filtering the zonelist.
1800 * Must be protected by read_mems_allowed_begin()
1802 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1803 gfp_t gfp_flags, struct mempolicy **mpol,
1804 nodemask_t **nodemask)
1806 struct zonelist *zl;
1808 *mpol = get_vma_policy(vma, addr);
1809 *nodemask = NULL; /* assume !MPOL_BIND */
1811 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1812 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1813 huge_page_shift(hstate_vma(vma))), gfp_flags);
1814 } else {
1815 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1816 if ((*mpol)->mode == MPOL_BIND)
1817 *nodemask = &(*mpol)->v.nodes;
1819 return zl;
1823 * init_nodemask_of_mempolicy
1825 * If the current task's mempolicy is "default" [NULL], return 'false'
1826 * to indicate default policy. Otherwise, extract the policy nodemask
1827 * for 'bind' or 'interleave' policy into the argument nodemask, or
1828 * initialize the argument nodemask to contain the single node for
1829 * 'preferred' or 'local' policy and return 'true' to indicate presence
1830 * of non-default mempolicy.
1832 * We don't bother with reference counting the mempolicy [mpol_get/put]
1833 * because the current task is examining it's own mempolicy and a task's
1834 * mempolicy is only ever changed by the task itself.
1836 * N.B., it is the caller's responsibility to free a returned nodemask.
1838 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1840 struct mempolicy *mempolicy;
1841 int nid;
1843 if (!(mask && current->mempolicy))
1844 return false;
1846 task_lock(current);
1847 mempolicy = current->mempolicy;
1848 switch (mempolicy->mode) {
1849 case MPOL_PREFERRED:
1850 if (mempolicy->flags & MPOL_F_LOCAL)
1851 nid = numa_node_id();
1852 else
1853 nid = mempolicy->v.preferred_node;
1854 init_nodemask_of_node(mask, nid);
1855 break;
1857 case MPOL_BIND:
1858 /* Fall through */
1859 case MPOL_INTERLEAVE:
1860 *mask = mempolicy->v.nodes;
1861 break;
1863 default:
1864 BUG();
1866 task_unlock(current);
1868 return true;
1870 #endif
1873 * mempolicy_nodemask_intersects
1875 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1876 * policy. Otherwise, check for intersection between mask and the policy
1877 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1878 * policy, always return true since it may allocate elsewhere on fallback.
1880 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1882 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1883 const nodemask_t *mask)
1885 struct mempolicy *mempolicy;
1886 bool ret = true;
1888 if (!mask)
1889 return ret;
1890 task_lock(tsk);
1891 mempolicy = tsk->mempolicy;
1892 if (!mempolicy)
1893 goto out;
1895 switch (mempolicy->mode) {
1896 case MPOL_PREFERRED:
1898 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1899 * allocate from, they may fallback to other nodes when oom.
1900 * Thus, it's possible for tsk to have allocated memory from
1901 * nodes in mask.
1903 break;
1904 case MPOL_BIND:
1905 case MPOL_INTERLEAVE:
1906 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1907 break;
1908 default:
1909 BUG();
1911 out:
1912 task_unlock(tsk);
1913 return ret;
1916 /* Allocate a page in interleaved policy.
1917 Own path because it needs to do special accounting. */
1918 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1919 unsigned nid)
1921 struct zonelist *zl;
1922 struct page *page;
1924 zl = node_zonelist(nid, gfp);
1925 page = __alloc_pages(gfp, order, zl);
1926 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1927 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1928 return page;
1932 * alloc_pages_vma - Allocate a page for a VMA.
1934 * @gfp:
1935 * %GFP_USER user allocation.
1936 * %GFP_KERNEL kernel allocations,
1937 * %GFP_HIGHMEM highmem/user allocations,
1938 * %GFP_FS allocation should not call back into a file system.
1939 * %GFP_ATOMIC don't sleep.
1941 * @order:Order of the GFP allocation.
1942 * @vma: Pointer to VMA or NULL if not available.
1943 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1944 * @node: Which node to prefer for allocation (modulo policy).
1945 * @hugepage: for hugepages try only the preferred node if possible
1947 * This function allocates a page from the kernel page pool and applies
1948 * a NUMA policy associated with the VMA or the current process.
1949 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1950 * mm_struct of the VMA to prevent it from going away. Should be used for
1951 * all allocations for pages that will be mapped into user space. Returns
1952 * NULL when no page can be allocated.
1954 struct page *
1955 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1956 unsigned long addr, int node, bool hugepage)
1958 struct mempolicy *pol;
1959 struct page *page;
1960 unsigned int cpuset_mems_cookie;
1961 struct zonelist *zl;
1962 nodemask_t *nmask;
1964 retry_cpuset:
1965 pol = get_vma_policy(vma, addr);
1966 cpuset_mems_cookie = read_mems_allowed_begin();
1968 if (pol->mode == MPOL_INTERLEAVE) {
1969 unsigned nid;
1971 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1972 mpol_cond_put(pol);
1973 page = alloc_page_interleave(gfp, order, nid);
1974 goto out;
1977 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1978 int hpage_node = node;
1981 * For hugepage allocation and non-interleave policy which
1982 * allows the current node (or other explicitly preferred
1983 * node) we only try to allocate from the current/preferred
1984 * node and don't fall back to other nodes, as the cost of
1985 * remote accesses would likely offset THP benefits.
1987 * If the policy is interleave, or does not allow the current
1988 * node in its nodemask, we allocate the standard way.
1990 if (pol->mode == MPOL_PREFERRED &&
1991 !(pol->flags & MPOL_F_LOCAL))
1992 hpage_node = pol->v.preferred_node;
1994 nmask = policy_nodemask(gfp, pol);
1995 if (!nmask || node_isset(hpage_node, *nmask)) {
1996 mpol_cond_put(pol);
1997 page = __alloc_pages_node(hpage_node,
1998 gfp | __GFP_THISNODE, order);
1999 goto out;
2003 nmask = policy_nodemask(gfp, pol);
2004 zl = policy_zonelist(gfp, pol, node);
2005 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2006 mpol_cond_put(pol);
2007 out:
2008 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2009 goto retry_cpuset;
2010 return page;
2014 * alloc_pages_current - Allocate pages.
2016 * @gfp:
2017 * %GFP_USER user allocation,
2018 * %GFP_KERNEL kernel allocation,
2019 * %GFP_HIGHMEM highmem allocation,
2020 * %GFP_FS don't call back into a file system.
2021 * %GFP_ATOMIC don't sleep.
2022 * @order: Power of two of allocation size in pages. 0 is a single page.
2024 * Allocate a page from the kernel page pool. When not in
2025 * interrupt context and apply the current process NUMA policy.
2026 * Returns NULL when no page can be allocated.
2028 * Don't call cpuset_update_task_memory_state() unless
2029 * 1) it's ok to take cpuset_sem (can WAIT), and
2030 * 2) allocating for current task (not interrupt).
2032 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2034 struct mempolicy *pol = &default_policy;
2035 struct page *page;
2036 unsigned int cpuset_mems_cookie;
2038 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2039 pol = get_task_policy(current);
2041 retry_cpuset:
2042 cpuset_mems_cookie = read_mems_allowed_begin();
2045 * No reference counting needed for current->mempolicy
2046 * nor system default_policy
2048 if (pol->mode == MPOL_INTERLEAVE)
2049 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2050 else
2051 page = __alloc_pages_nodemask(gfp, order,
2052 policy_zonelist(gfp, pol, numa_node_id()),
2053 policy_nodemask(gfp, pol));
2055 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2056 goto retry_cpuset;
2058 return page;
2060 EXPORT_SYMBOL(alloc_pages_current);
2062 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2064 struct mempolicy *pol = mpol_dup(vma_policy(src));
2066 if (IS_ERR(pol))
2067 return PTR_ERR(pol);
2068 dst->vm_policy = pol;
2069 return 0;
2073 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2074 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2075 * with the mems_allowed returned by cpuset_mems_allowed(). This
2076 * keeps mempolicies cpuset relative after its cpuset moves. See
2077 * further kernel/cpuset.c update_nodemask().
2079 * current's mempolicy may be rebinded by the other task(the task that changes
2080 * cpuset's mems), so we needn't do rebind work for current task.
2083 /* Slow path of a mempolicy duplicate */
2084 struct mempolicy *__mpol_dup(struct mempolicy *old)
2086 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2088 if (!new)
2089 return ERR_PTR(-ENOMEM);
2091 /* task's mempolicy is protected by alloc_lock */
2092 if (old == current->mempolicy) {
2093 task_lock(current);
2094 *new = *old;
2095 task_unlock(current);
2096 } else
2097 *new = *old;
2099 if (current_cpuset_is_being_rebound()) {
2100 nodemask_t mems = cpuset_mems_allowed(current);
2101 if (new->flags & MPOL_F_REBINDING)
2102 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2103 else
2104 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2106 atomic_set(&new->refcnt, 1);
2107 return new;
2110 /* Slow path of a mempolicy comparison */
2111 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2113 if (!a || !b)
2114 return false;
2115 if (a->mode != b->mode)
2116 return false;
2117 if (a->flags != b->flags)
2118 return false;
2119 if (mpol_store_user_nodemask(a))
2120 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2121 return false;
2123 switch (a->mode) {
2124 case MPOL_BIND:
2125 /* Fall through */
2126 case MPOL_INTERLEAVE:
2127 return !!nodes_equal(a->v.nodes, b->v.nodes);
2128 case MPOL_PREFERRED:
2129 return a->v.preferred_node == b->v.preferred_node;
2130 default:
2131 BUG();
2132 return false;
2137 * Shared memory backing store policy support.
2139 * Remember policies even when nobody has shared memory mapped.
2140 * The policies are kept in Red-Black tree linked from the inode.
2141 * They are protected by the sp->lock spinlock, which should be held
2142 * for any accesses to the tree.
2145 /* lookup first element intersecting start-end */
2146 /* Caller holds sp->lock */
2147 static struct sp_node *
2148 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2150 struct rb_node *n = sp->root.rb_node;
2152 while (n) {
2153 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2155 if (start >= p->end)
2156 n = n->rb_right;
2157 else if (end <= p->start)
2158 n = n->rb_left;
2159 else
2160 break;
2162 if (!n)
2163 return NULL;
2164 for (;;) {
2165 struct sp_node *w = NULL;
2166 struct rb_node *prev = rb_prev(n);
2167 if (!prev)
2168 break;
2169 w = rb_entry(prev, struct sp_node, nd);
2170 if (w->end <= start)
2171 break;
2172 n = prev;
2174 return rb_entry(n, struct sp_node, nd);
2177 /* Insert a new shared policy into the list. */
2178 /* Caller holds sp->lock */
2179 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2181 struct rb_node **p = &sp->root.rb_node;
2182 struct rb_node *parent = NULL;
2183 struct sp_node *nd;
2185 while (*p) {
2186 parent = *p;
2187 nd = rb_entry(parent, struct sp_node, nd);
2188 if (new->start < nd->start)
2189 p = &(*p)->rb_left;
2190 else if (new->end > nd->end)
2191 p = &(*p)->rb_right;
2192 else
2193 BUG();
2195 rb_link_node(&new->nd, parent, p);
2196 rb_insert_color(&new->nd, &sp->root);
2197 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2198 new->policy ? new->policy->mode : 0);
2201 /* Find shared policy intersecting idx */
2202 struct mempolicy *
2203 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2205 struct mempolicy *pol = NULL;
2206 struct sp_node *sn;
2208 if (!sp->root.rb_node)
2209 return NULL;
2210 spin_lock(&sp->lock);
2211 sn = sp_lookup(sp, idx, idx+1);
2212 if (sn) {
2213 mpol_get(sn->policy);
2214 pol = sn->policy;
2216 spin_unlock(&sp->lock);
2217 return pol;
2220 static void sp_free(struct sp_node *n)
2222 mpol_put(n->policy);
2223 kmem_cache_free(sn_cache, n);
2227 * mpol_misplaced - check whether current page node is valid in policy
2229 * @page: page to be checked
2230 * @vma: vm area where page mapped
2231 * @addr: virtual address where page mapped
2233 * Lookup current policy node id for vma,addr and "compare to" page's
2234 * node id.
2236 * Returns:
2237 * -1 - not misplaced, page is in the right node
2238 * node - node id where the page should be
2240 * Policy determination "mimics" alloc_page_vma().
2241 * Called from fault path where we know the vma and faulting address.
2243 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2245 struct mempolicy *pol;
2246 struct zone *zone;
2247 int curnid = page_to_nid(page);
2248 unsigned long pgoff;
2249 int thiscpu = raw_smp_processor_id();
2250 int thisnid = cpu_to_node(thiscpu);
2251 int polnid = -1;
2252 int ret = -1;
2254 BUG_ON(!vma);
2256 pol = get_vma_policy(vma, addr);
2257 if (!(pol->flags & MPOL_F_MOF))
2258 goto out;
2260 switch (pol->mode) {
2261 case MPOL_INTERLEAVE:
2262 BUG_ON(addr >= vma->vm_end);
2263 BUG_ON(addr < vma->vm_start);
2265 pgoff = vma->vm_pgoff;
2266 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2267 polnid = offset_il_node(pol, vma, pgoff);
2268 break;
2270 case MPOL_PREFERRED:
2271 if (pol->flags & MPOL_F_LOCAL)
2272 polnid = numa_node_id();
2273 else
2274 polnid = pol->v.preferred_node;
2275 break;
2277 case MPOL_BIND:
2279 * allows binding to multiple nodes.
2280 * use current page if in policy nodemask,
2281 * else select nearest allowed node, if any.
2282 * If no allowed nodes, use current [!misplaced].
2284 if (node_isset(curnid, pol->v.nodes))
2285 goto out;
2286 (void)first_zones_zonelist(
2287 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2288 gfp_zone(GFP_HIGHUSER),
2289 &pol->v.nodes, &zone);
2290 polnid = zone->node;
2291 break;
2293 default:
2294 BUG();
2297 /* Migrate the page towards the node whose CPU is referencing it */
2298 if (pol->flags & MPOL_F_MORON) {
2299 polnid = thisnid;
2301 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2302 goto out;
2305 if (curnid != polnid)
2306 ret = polnid;
2307 out:
2308 mpol_cond_put(pol);
2310 return ret;
2313 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2315 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2316 rb_erase(&n->nd, &sp->root);
2317 sp_free(n);
2320 static void sp_node_init(struct sp_node *node, unsigned long start,
2321 unsigned long end, struct mempolicy *pol)
2323 node->start = start;
2324 node->end = end;
2325 node->policy = pol;
2328 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2329 struct mempolicy *pol)
2331 struct sp_node *n;
2332 struct mempolicy *newpol;
2334 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2335 if (!n)
2336 return NULL;
2338 newpol = mpol_dup(pol);
2339 if (IS_ERR(newpol)) {
2340 kmem_cache_free(sn_cache, n);
2341 return NULL;
2343 newpol->flags |= MPOL_F_SHARED;
2344 sp_node_init(n, start, end, newpol);
2346 return n;
2349 /* Replace a policy range. */
2350 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2351 unsigned long end, struct sp_node *new)
2353 struct sp_node *n;
2354 struct sp_node *n_new = NULL;
2355 struct mempolicy *mpol_new = NULL;
2356 int ret = 0;
2358 restart:
2359 spin_lock(&sp->lock);
2360 n = sp_lookup(sp, start, end);
2361 /* Take care of old policies in the same range. */
2362 while (n && n->start < end) {
2363 struct rb_node *next = rb_next(&n->nd);
2364 if (n->start >= start) {
2365 if (n->end <= end)
2366 sp_delete(sp, n);
2367 else
2368 n->start = end;
2369 } else {
2370 /* Old policy spanning whole new range. */
2371 if (n->end > end) {
2372 if (!n_new)
2373 goto alloc_new;
2375 *mpol_new = *n->policy;
2376 atomic_set(&mpol_new->refcnt, 1);
2377 sp_node_init(n_new, end, n->end, mpol_new);
2378 n->end = start;
2379 sp_insert(sp, n_new);
2380 n_new = NULL;
2381 mpol_new = NULL;
2382 break;
2383 } else
2384 n->end = start;
2386 if (!next)
2387 break;
2388 n = rb_entry(next, struct sp_node, nd);
2390 if (new)
2391 sp_insert(sp, new);
2392 spin_unlock(&sp->lock);
2393 ret = 0;
2395 err_out:
2396 if (mpol_new)
2397 mpol_put(mpol_new);
2398 if (n_new)
2399 kmem_cache_free(sn_cache, n_new);
2401 return ret;
2403 alloc_new:
2404 spin_unlock(&sp->lock);
2405 ret = -ENOMEM;
2406 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2407 if (!n_new)
2408 goto err_out;
2409 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2410 if (!mpol_new)
2411 goto err_out;
2412 goto restart;
2416 * mpol_shared_policy_init - initialize shared policy for inode
2417 * @sp: pointer to inode shared policy
2418 * @mpol: struct mempolicy to install
2420 * Install non-NULL @mpol in inode's shared policy rb-tree.
2421 * On entry, the current task has a reference on a non-NULL @mpol.
2422 * This must be released on exit.
2423 * This is called at get_inode() calls and we can use GFP_KERNEL.
2425 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2427 int ret;
2429 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2430 spin_lock_init(&sp->lock);
2432 if (mpol) {
2433 struct vm_area_struct pvma;
2434 struct mempolicy *new;
2435 NODEMASK_SCRATCH(scratch);
2437 if (!scratch)
2438 goto put_mpol;
2439 /* contextualize the tmpfs mount point mempolicy */
2440 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2441 if (IS_ERR(new))
2442 goto free_scratch; /* no valid nodemask intersection */
2444 task_lock(current);
2445 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2446 task_unlock(current);
2447 if (ret)
2448 goto put_new;
2450 /* Create pseudo-vma that contains just the policy */
2451 memset(&pvma, 0, sizeof(struct vm_area_struct));
2452 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2453 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2455 put_new:
2456 mpol_put(new); /* drop initial ref */
2457 free_scratch:
2458 NODEMASK_SCRATCH_FREE(scratch);
2459 put_mpol:
2460 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2464 int mpol_set_shared_policy(struct shared_policy *info,
2465 struct vm_area_struct *vma, struct mempolicy *npol)
2467 int err;
2468 struct sp_node *new = NULL;
2469 unsigned long sz = vma_pages(vma);
2471 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2472 vma->vm_pgoff,
2473 sz, npol ? npol->mode : -1,
2474 npol ? npol->flags : -1,
2475 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2477 if (npol) {
2478 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2479 if (!new)
2480 return -ENOMEM;
2482 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2483 if (err && new)
2484 sp_free(new);
2485 return err;
2488 /* Free a backing policy store on inode delete. */
2489 void mpol_free_shared_policy(struct shared_policy *p)
2491 struct sp_node *n;
2492 struct rb_node *next;
2494 if (!p->root.rb_node)
2495 return;
2496 spin_lock(&p->lock);
2497 next = rb_first(&p->root);
2498 while (next) {
2499 n = rb_entry(next, struct sp_node, nd);
2500 next = rb_next(&n->nd);
2501 sp_delete(p, n);
2503 spin_unlock(&p->lock);
2506 #ifdef CONFIG_NUMA_BALANCING
2507 static int __initdata numabalancing_override;
2509 static void __init check_numabalancing_enable(void)
2511 bool numabalancing_default = false;
2513 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2514 numabalancing_default = true;
2516 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2517 if (numabalancing_override)
2518 set_numabalancing_state(numabalancing_override == 1);
2520 if (num_online_nodes() > 1 && !numabalancing_override) {
2521 pr_info("%s automatic NUMA balancing. "
2522 "Configure with numa_balancing= or the "
2523 "kernel.numa_balancing sysctl",
2524 numabalancing_default ? "Enabling" : "Disabling");
2525 set_numabalancing_state(numabalancing_default);
2529 static int __init setup_numabalancing(char *str)
2531 int ret = 0;
2532 if (!str)
2533 goto out;
2535 if (!strcmp(str, "enable")) {
2536 numabalancing_override = 1;
2537 ret = 1;
2538 } else if (!strcmp(str, "disable")) {
2539 numabalancing_override = -1;
2540 ret = 1;
2542 out:
2543 if (!ret)
2544 pr_warn("Unable to parse numa_balancing=\n");
2546 return ret;
2548 __setup("numa_balancing=", setup_numabalancing);
2549 #else
2550 static inline void __init check_numabalancing_enable(void)
2553 #endif /* CONFIG_NUMA_BALANCING */
2555 /* assumes fs == KERNEL_DS */
2556 void __init numa_policy_init(void)
2558 nodemask_t interleave_nodes;
2559 unsigned long largest = 0;
2560 int nid, prefer = 0;
2562 policy_cache = kmem_cache_create("numa_policy",
2563 sizeof(struct mempolicy),
2564 0, SLAB_PANIC, NULL);
2566 sn_cache = kmem_cache_create("shared_policy_node",
2567 sizeof(struct sp_node),
2568 0, SLAB_PANIC, NULL);
2570 for_each_node(nid) {
2571 preferred_node_policy[nid] = (struct mempolicy) {
2572 .refcnt = ATOMIC_INIT(1),
2573 .mode = MPOL_PREFERRED,
2574 .flags = MPOL_F_MOF | MPOL_F_MORON,
2575 .v = { .preferred_node = nid, },
2580 * Set interleaving policy for system init. Interleaving is only
2581 * enabled across suitably sized nodes (default is >= 16MB), or
2582 * fall back to the largest node if they're all smaller.
2584 nodes_clear(interleave_nodes);
2585 for_each_node_state(nid, N_MEMORY) {
2586 unsigned long total_pages = node_present_pages(nid);
2588 /* Preserve the largest node */
2589 if (largest < total_pages) {
2590 largest = total_pages;
2591 prefer = nid;
2594 /* Interleave this node? */
2595 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2596 node_set(nid, interleave_nodes);
2599 /* All too small, use the largest */
2600 if (unlikely(nodes_empty(interleave_nodes)))
2601 node_set(prefer, interleave_nodes);
2603 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2604 pr_err("%s: interleaving failed\n", __func__);
2606 check_numabalancing_enable();
2609 /* Reset policy of current process to default */
2610 void numa_default_policy(void)
2612 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2616 * Parse and format mempolicy from/to strings
2620 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2622 static const char * const policy_modes[] =
2624 [MPOL_DEFAULT] = "default",
2625 [MPOL_PREFERRED] = "prefer",
2626 [MPOL_BIND] = "bind",
2627 [MPOL_INTERLEAVE] = "interleave",
2628 [MPOL_LOCAL] = "local",
2632 #ifdef CONFIG_TMPFS
2634 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2635 * @str: string containing mempolicy to parse
2636 * @mpol: pointer to struct mempolicy pointer, returned on success.
2638 * Format of input:
2639 * <mode>[=<flags>][:<nodelist>]
2641 * On success, returns 0, else 1
2643 int mpol_parse_str(char *str, struct mempolicy **mpol)
2645 struct mempolicy *new = NULL;
2646 unsigned short mode;
2647 unsigned short mode_flags;
2648 nodemask_t nodes;
2649 char *nodelist = strchr(str, ':');
2650 char *flags = strchr(str, '=');
2651 int err = 1;
2653 if (nodelist) {
2654 /* NUL-terminate mode or flags string */
2655 *nodelist++ = '\0';
2656 if (nodelist_parse(nodelist, nodes))
2657 goto out;
2658 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2659 goto out;
2660 } else
2661 nodes_clear(nodes);
2663 if (flags)
2664 *flags++ = '\0'; /* terminate mode string */
2666 for (mode = 0; mode < MPOL_MAX; mode++) {
2667 if (!strcmp(str, policy_modes[mode])) {
2668 break;
2671 if (mode >= MPOL_MAX)
2672 goto out;
2674 switch (mode) {
2675 case MPOL_PREFERRED:
2677 * Insist on a nodelist of one node only
2679 if (nodelist) {
2680 char *rest = nodelist;
2681 while (isdigit(*rest))
2682 rest++;
2683 if (*rest)
2684 goto out;
2686 break;
2687 case MPOL_INTERLEAVE:
2689 * Default to online nodes with memory if no nodelist
2691 if (!nodelist)
2692 nodes = node_states[N_MEMORY];
2693 break;
2694 case MPOL_LOCAL:
2696 * Don't allow a nodelist; mpol_new() checks flags
2698 if (nodelist)
2699 goto out;
2700 mode = MPOL_PREFERRED;
2701 break;
2702 case MPOL_DEFAULT:
2704 * Insist on a empty nodelist
2706 if (!nodelist)
2707 err = 0;
2708 goto out;
2709 case MPOL_BIND:
2711 * Insist on a nodelist
2713 if (!nodelist)
2714 goto out;
2717 mode_flags = 0;
2718 if (flags) {
2720 * Currently, we only support two mutually exclusive
2721 * mode flags.
2723 if (!strcmp(flags, "static"))
2724 mode_flags |= MPOL_F_STATIC_NODES;
2725 else if (!strcmp(flags, "relative"))
2726 mode_flags |= MPOL_F_RELATIVE_NODES;
2727 else
2728 goto out;
2731 new = mpol_new(mode, mode_flags, &nodes);
2732 if (IS_ERR(new))
2733 goto out;
2736 * Save nodes for mpol_to_str() to show the tmpfs mount options
2737 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2739 if (mode != MPOL_PREFERRED)
2740 new->v.nodes = nodes;
2741 else if (nodelist)
2742 new->v.preferred_node = first_node(nodes);
2743 else
2744 new->flags |= MPOL_F_LOCAL;
2747 * Save nodes for contextualization: this will be used to "clone"
2748 * the mempolicy in a specific context [cpuset] at a later time.
2750 new->w.user_nodemask = nodes;
2752 err = 0;
2754 out:
2755 /* Restore string for error message */
2756 if (nodelist)
2757 *--nodelist = ':';
2758 if (flags)
2759 *--flags = '=';
2760 if (!err)
2761 *mpol = new;
2762 return err;
2764 #endif /* CONFIG_TMPFS */
2767 * mpol_to_str - format a mempolicy structure for printing
2768 * @buffer: to contain formatted mempolicy string
2769 * @maxlen: length of @buffer
2770 * @pol: pointer to mempolicy to be formatted
2772 * Convert @pol into a string. If @buffer is too short, truncate the string.
2773 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2774 * longest flag, "relative", and to display at least a few node ids.
2776 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2778 char *p = buffer;
2779 nodemask_t nodes = NODE_MASK_NONE;
2780 unsigned short mode = MPOL_DEFAULT;
2781 unsigned short flags = 0;
2783 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2784 mode = pol->mode;
2785 flags = pol->flags;
2788 switch (mode) {
2789 case MPOL_DEFAULT:
2790 break;
2791 case MPOL_PREFERRED:
2792 if (flags & MPOL_F_LOCAL)
2793 mode = MPOL_LOCAL;
2794 else
2795 node_set(pol->v.preferred_node, nodes);
2796 break;
2797 case MPOL_BIND:
2798 case MPOL_INTERLEAVE:
2799 nodes = pol->v.nodes;
2800 break;
2801 default:
2802 WARN_ON_ONCE(1);
2803 snprintf(p, maxlen, "unknown");
2804 return;
2807 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2809 if (flags & MPOL_MODE_FLAGS) {
2810 p += snprintf(p, buffer + maxlen - p, "=");
2813 * Currently, the only defined flags are mutually exclusive
2815 if (flags & MPOL_F_STATIC_NODES)
2816 p += snprintf(p, buffer + maxlen - p, "static");
2817 else if (flags & MPOL_F_RELATIVE_NODES)
2818 p += snprintf(p, buffer + maxlen - p, "relative");
2821 if (!nodes_empty(nodes))
2822 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2823 nodemask_pr_args(&nodes));