1 <?xml version=
"1.0" encoding=
"UTF-8"?>
2 <!DOCTYPE book PUBLIC
"-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []
>
5 <book id=
"MTD-NAND-Guide">
7 <title>MTD NAND Driver Programming Interface
</title>
11 <firstname>Thomas
</firstname>
12 <surname>Gleixner
</surname>
15 <email>tglx@linutronix.de
</email>
23 <holder>Thomas Gleixner
</holder>
28 This documentation is free software; you can redistribute
29 it and/or modify it under the terms of the GNU General Public
30 License version
2 as published by the Free Software Foundation.
34 This program is distributed in the hope that it will be
35 useful, but WITHOUT ANY WARRANTY; without even the implied
36 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
37 See the GNU General Public License for more details.
41 You should have received a copy of the GNU General Public
42 License along with this program; if not, write to the Free
43 Software Foundation, Inc.,
59 Temple Place, Suite
330, Boston,
48 For more details see the file COPYING in the source
49 distribution of Linux.
57 <title>Introduction
</title>
59 The generic NAND driver supports almost all NAND and AG-AND based
60 chips and connects them to the Memory Technology Devices (MTD)
61 subsystem of the Linux Kernel.
64 This documentation is provided for developers who want to implement
65 board drivers or filesystem drivers suitable for NAND devices.
70 <title>Known Bugs And Assumptions
</title>
76 <chapter id=
"dochints">
77 <title>Documentation hints
</title>
79 The function and structure docs are autogenerated. Each function and
80 struct member has a short description which is marked with an [XXX] identifier.
81 The following chapters explain the meaning of those identifiers.
83 <sect1 id=
"Function_identifiers_XXX">
84 <title>Function identifiers [XXX]
</title>
86 The functions are marked with [XXX] identifiers in the short
87 comment. The identifiers explain the usage and scope of the
88 functions. Following identifiers are used:
92 [MTD Interface]
</para><para>
93 These functions provide the interface to the MTD kernel API.
94 They are not replaceable and provide functionality
95 which is complete hardware independent.
98 [NAND Interface]
</para><para>
99 These functions are exported and provide the interface to the NAND kernel API.
102 [GENERIC]
</para><para>
103 Generic functions are not replaceable and provide functionality
104 which is complete hardware independent.
107 [DEFAULT]
</para><para>
108 Default functions provide hardware related functionality which is suitable
109 for most of the implementations. These functions can be replaced by the
110 board driver if necessary. Those functions are called via pointers in the
111 NAND chip description structure. The board driver can set the functions which
112 should be replaced by board dependent functions before calling nand_scan().
113 If the function pointer is NULL on entry to nand_scan() then the pointer
114 is set to the default function which is suitable for the detected chip type.
118 <sect1 id=
"Struct_member_identifiers_XXX">
119 <title>Struct member identifiers [XXX]
</title>
121 The struct members are marked with [XXX] identifiers in the
122 comment. The identifiers explain the usage and scope of the
123 members. Following identifiers are used:
127 [INTERN]
</para><para>
128 These members are for NAND driver internal use only and must not be
129 modified. Most of these values are calculated from the chip geometry
130 information which is evaluated during nand_scan().
133 [REPLACEABLE]
</para><para>
134 Replaceable members hold hardware related functions which can be
135 provided by the board driver. The board driver can set the functions which
136 should be replaced by board dependent functions before calling nand_scan().
137 If the function pointer is NULL on entry to nand_scan() then the pointer
138 is set to the default function which is suitable for the detected chip type.
141 [BOARDSPECIFIC]
</para><para>
142 Board specific members hold hardware related information which must
143 be provided by the board driver. The board driver must set the function
144 pointers and datafields before calling nand_scan().
147 [OPTIONAL]
</para><para>
148 Optional members can hold information relevant for the board driver. The
149 generic NAND driver code does not use this information.
155 <chapter id=
"basicboarddriver">
156 <title>Basic board driver
</title>
158 For most boards it will be sufficient to provide just the
159 basic functions and fill out some really board dependent
160 members in the nand chip description structure.
162 <sect1 id=
"Basic_defines">
163 <title>Basic defines
</title>
165 At least you have to provide a nand_chip structure
166 and a storage for the ioremap'ed chip address.
167 You can allocate the nand_chip structure using
168 kmalloc or you can allocate it statically.
169 The NAND chip structure embeds an mtd structure
170 which will be registered to the MTD subsystem.
171 You can extract a pointer to the mtd structure
172 from a nand_chip pointer using the nand_to_mtd()
176 Kmalloc based example
179 static struct mtd_info *board_mtd;
180 static void __iomem *baseaddr;
186 static struct nand_chip board_chip;
187 static void __iomem *baseaddr;
190 <sect1 id=
"Partition_defines">
191 <title>Partition defines
</title>
193 If you want to divide your device into partitions, then
194 define a partitioning scheme suitable to your board.
197 #define NUM_PARTITIONS
2
198 static struct mtd_partition partition_info[] = {
199 { .name =
"Flash partition 1",
201 .size =
8 *
1024 *
1024 },
202 { .name =
"Flash partition 2",
203 .offset = MTDPART_OFS_NEXT,
204 .size = MTDPART_SIZ_FULL },
208 <sect1 id=
"Hardware_control_functions">
209 <title>Hardware control function
</title>
211 The hardware control function provides access to the
212 control pins of the NAND chip(s).
213 The access can be done by GPIO pins or by address lines.
214 If you use address lines, make sure that the timing
215 requirements are met.
218 <emphasis>GPIO based example
</emphasis>
221 static void board_hwcontrol(struct mtd_info *mtd, int cmd)
224 case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
225 case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
226 case NAND_CTL_SETALE: /* Set ALE pin high */ break;
227 case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
228 case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
229 case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
234 <emphasis>Address lines based example.
</emphasis> It's assumed that the
235 nCE pin is driven by a chip select decoder.
238 static void board_hwcontrol(struct mtd_info *mtd, int cmd)
240 struct nand_chip *this = mtd_to_nand(mtd);
242 case NAND_CTL_SETCLE: this-
>IO_ADDR_W |= CLE_ADRR_BIT; break;
243 case NAND_CTL_CLRCLE: this-
>IO_ADDR_W
&= ~CLE_ADRR_BIT; break;
244 case NAND_CTL_SETALE: this-
>IO_ADDR_W |= ALE_ADRR_BIT; break;
245 case NAND_CTL_CLRALE: this-
>IO_ADDR_W
&= ~ALE_ADRR_BIT; break;
250 <sect1 id=
"Device_ready_function">
251 <title>Device ready function
</title>
253 If the hardware interface has the ready busy pin of the NAND chip connected to a
254 GPIO or other accessible I/O pin, this function is used to read back the state of the
255 pin. The function has no arguments and should return
0, if the device is busy (R/B pin
256 is low) and
1, if the device is ready (R/B pin is high).
257 If the hardware interface does not give access to the ready busy pin, then
258 the function must not be defined and the function pointer this-
>dev_ready is set to NULL.
261 <sect1 id=
"Init_function">
262 <title>Init function
</title>
264 The init function allocates memory and sets up all the board
265 specific parameters and function pointers. When everything
266 is set up nand_scan() is called. This function tries to
267 detect and identify then chip. If a chip is found all the
268 internal data fields are initialized accordingly.
269 The structure(s) have to be zeroed out first and then filled with the necessary
270 information about the device.
273 static int __init board_init (void)
275 struct nand_chip *this;
278 /* Allocate memory for MTD device structure and private data */
279 this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
281 printk (
"Unable to allocate NAND MTD device structure.\n");
286 board_mtd = nand_to_mtd(this);
288 /* map physical address */
289 baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS,
1024);
291 printk(
"Ioremap to access NAND chip failed\n");
296 /* Set address of NAND IO lines */
297 this-
>IO_ADDR_R = baseaddr;
298 this-
>IO_ADDR_W = baseaddr;
299 /* Reference hardware control function */
300 this-
>hwcontrol = board_hwcontrol;
301 /* Set command delay time, see datasheet for correct value */
302 this-
>chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
303 /* Assign the device ready function, if available */
304 this-
>dev_ready = board_dev_ready;
305 this-
>eccmode = NAND_ECC_SOFT;
307 /* Scan to find existence of the device */
308 if (nand_scan (board_mtd,
1)) {
313 add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
323 module_init(board_init);
326 <sect1 id=
"Exit_function">
327 <title>Exit function
</title>
329 The exit function is only necessary if the driver is
330 compiled as a module. It releases all resources which
331 are held by the chip driver and unregisters the partitions
336 static void __exit board_cleanup (void)
338 /* Release resources, unregister device */
339 nand_release (board_mtd);
341 /* unmap physical address */
344 /* Free the MTD device structure */
345 kfree (mtd_to_nand(board_mtd));
347 module_exit(board_cleanup);
353 <chapter id=
"boarddriversadvanced">
354 <title>Advanced board driver functions
</title>
356 This chapter describes the advanced functionality of the NAND
357 driver. For a list of functions which can be overridden by the board
358 driver see the documentation of the nand_chip structure.
360 <sect1 id=
"Multiple_chip_control">
361 <title>Multiple chip control
</title>
363 The nand driver can control chip arrays. Therefore the
364 board driver must provide an own select_chip function. This
365 function must (de)select the requested chip.
366 The function pointer in the nand_chip structure must
367 be set before calling nand_scan(). The maxchip parameter
368 of nand_scan() defines the maximum number of chips to
369 scan for. Make sure that the select_chip function can
370 handle the requested number of chips.
373 The nand driver concatenates the chips to one virtual
374 chip and provides this virtual chip to the MTD layer.
377 <emphasis>Note: The driver can only handle linear chip arrays
378 of equally sized chips. There is no support for
379 parallel arrays which extend the buswidth.
</emphasis>
382 <emphasis>GPIO based example
</emphasis>
385 static void board_select_chip (struct mtd_info *mtd, int chip)
387 /* Deselect all chips, set all nCE pins high */
388 GPIO(BOARD_NAND_NCE) |=
0xff;
390 GPIO(BOARD_NAND_NCE)
&= ~ (
1 << chip);
394 <emphasis>Address lines based example.
</emphasis>
395 Its assumed that the nCE pins are connected to an
399 static void board_select_chip (struct mtd_info *mtd, int chip)
401 struct nand_chip *this = mtd_to_nand(mtd);
403 /* Deselect all chips */
404 this-
>IO_ADDR_R
&= ~BOARD_NAND_ADDR_MASK;
405 this-
>IO_ADDR_W
&= ~BOARD_NAND_ADDR_MASK;
408 this-
>IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
409 this-
>IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
413 this-
>IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
414 this-
>IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
420 <sect1 id=
"Hardware_ECC_support">
421 <title>Hardware ECC support
</title>
422 <sect2 id=
"Functions_and_constants">
423 <title>Functions and constants
</title>
425 The nand driver supports three different types of
428 <listitem><para>NAND_ECC_HW3_256
</para><para>
429 Hardware ECC generator providing
3 bytes ECC per
432 <listitem><para>NAND_ECC_HW3_512
</para><para>
433 Hardware ECC generator providing
3 bytes ECC per
436 <listitem><para>NAND_ECC_HW6_512
</para><para>
437 Hardware ECC generator providing
6 bytes ECC per
440 <listitem><para>NAND_ECC_HW8_512
</para><para>
441 Hardware ECC generator providing
6 bytes ECC per
445 If your hardware generator has a different functionality
446 add it at the appropriate place in nand_base.c
449 The board driver must provide following functions:
451 <listitem><para>enable_hwecc
</para><para>
452 This function is called before reading / writing to
453 the chip. Reset or initialize the hardware generator
454 in this function. The function is called with an
455 argument which let you distinguish between read
456 and write operations.
458 <listitem><para>calculate_ecc
</para><para>
459 This function is called after read / write from / to
460 the chip. Transfer the ECC from the hardware to
461 the buffer. If the option NAND_HWECC_SYNDROME is set
462 then the function is only called on write. See below.
464 <listitem><para>correct_data
</para><para>
465 In case of an ECC error this function is called for
466 error detection and correction. Return
1 respectively
2
467 in case the error can be corrected. If the error is
468 not correctable return -
1. If your hardware generator
469 matches the default algorithm of the nand_ecc software
470 generator then use the correction function provided
471 by nand_ecc instead of implementing duplicated code.
476 <sect2 id=
"Hardware_ECC_with_syndrome_calculation">
477 <title>Hardware ECC with syndrome calculation
</title>
479 Many hardware ECC implementations provide Reed-Solomon
480 codes and calculate an error syndrome on read. The syndrome
481 must be converted to a standard Reed-Solomon syndrome
482 before calling the error correction code in the generic
483 Reed-Solomon library.
486 The ECC bytes must be placed immediately after the data
487 bytes in order to make the syndrome generator work. This
488 is contrary to the usual layout used by software ECC. The
489 separation of data and out of band area is not longer
490 possible. The nand driver code handles this layout and
491 the remaining free bytes in the oob area are managed by
492 the autoplacement code. Provide a matching oob-layout
493 in this case. See rts_from4.c and diskonchip.c for
494 implementation reference. In those cases we must also
495 use bad block tables on FLASH, because the ECC layout is
496 interfering with the bad block marker positions.
497 See bad block table support for details.
501 <sect1 id=
"Bad_Block_table_support">
502 <title>Bad block table support
</title>
504 Most NAND chips mark the bad blocks at a defined
505 position in the spare area. Those blocks must
506 not be erased under any circumstances as the bad
507 block information would be lost.
508 It is possible to check the bad block mark each
509 time when the blocks are accessed by reading the
510 spare area of the first page in the block. This
511 is time consuming so a bad block table is used.
514 The nand driver supports various types of bad block
517 <listitem><para>Per device
</para><para>
518 The bad block table contains all bad block information
519 of the device which can consist of multiple chips.
521 <listitem><para>Per chip
</para><para>
522 A bad block table is used per chip and contains the
523 bad block information for this particular chip.
525 <listitem><para>Fixed offset
</para><para>
526 The bad block table is located at a fixed offset
527 in the chip (device). This applies to various
530 <listitem><para>Automatic placed
</para><para>
531 The bad block table is automatically placed and
532 detected either at the end or at the beginning
535 <listitem><para>Mirrored tables
</para><para>
536 The bad block table is mirrored on the chip (device) to
537 allow updates of the bad block table without data loss.
542 nand_scan() calls the function nand_default_bbt().
543 nand_default_bbt() selects appropriate default
544 bad block table descriptors depending on the chip information
545 which was retrieved by nand_scan().
548 The standard policy is scanning the device for bad
549 blocks and build a ram based bad block table which
550 allows faster access than always checking the
551 bad block information on the flash chip itself.
553 <sect2 id=
"Flash_based_tables">
554 <title>Flash based tables
</title>
556 It may be desired or necessary to keep a bad block table in FLASH.
557 For AG-AND chips this is mandatory, as they have no factory marked
558 bad blocks. They have factory marked good blocks. The marker pattern
559 is erased when the block is erased to be reused. So in case of
560 powerloss before writing the pattern back to the chip this block
561 would be lost and added to the bad blocks. Therefore we scan the
562 chip(s) when we detect them the first time for good blocks and
563 store this information in a bad block table before erasing any
567 The blocks in which the tables are stored are protected against
568 accidental access by marking them bad in the memory bad block
569 table. The bad block table management functions are allowed
570 to circumvent this protection.
573 The simplest way to activate the FLASH based bad block table support
574 is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
575 the nand chip structure before calling nand_scan(). For AG-AND
576 chips is this done by default.
577 This activates the default FLASH based bad block table functionality
578 of the NAND driver. The default bad block table options are
580 <listitem><para>Store bad block table per chip
</para></listitem>
581 <listitem><para>Use
2 bits per block
</para></listitem>
582 <listitem><para>Automatic placement at the end of the chip
</para></listitem>
583 <listitem><para>Use mirrored tables with version numbers
</para></listitem>
584 <listitem><para>Reserve
4 blocks at the end of the chip
</para></listitem>
588 <sect2 id=
"User_defined_tables">
589 <title>User defined tables
</title>
591 User defined tables are created by filling out a
592 nand_bbt_descr structure and storing the pointer in the
593 nand_chip structure member bbt_td before calling nand_scan().
594 If a mirror table is necessary a second structure must be
595 created and a pointer to this structure must be stored
596 in bbt_md inside the nand_chip structure. If the bbt_md
597 member is set to NULL then only the main table is used
598 and no scan for the mirrored table is performed.
601 The most important field in the nand_bbt_descr structure
602 is the options field. The options define most of the
603 table properties. Use the predefined constants from
604 nand.h to define the options.
606 <listitem><para>Number of bits per block
</para>
607 <para>The supported number of bits is
1,
2,
4,
8.
</para></listitem>
608 <listitem><para>Table per chip
</para>
609 <para>Setting the constant NAND_BBT_PERCHIP selects that
610 a bad block table is managed for each chip in a chip array.
611 If this option is not set then a per device bad block table
612 is used.
</para></listitem>
613 <listitem><para>Table location is absolute
</para>
614 <para>Use the option constant NAND_BBT_ABSPAGE and
615 define the absolute page number where the bad block
616 table starts in the field pages. If you have selected bad block
617 tables per chip and you have a multi chip array then the start page
618 must be given for each chip in the chip array. Note: there is no scan
619 for a table ident pattern performed, so the fields
620 pattern, veroffs, offs, len can be left uninitialized
</para></listitem>
621 <listitem><para>Table location is automatically detected
</para>
622 <para>The table can either be located in the first or the last good
623 blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
624 the bad block table at the end of the chip (device). The
625 bad block tables are marked and identified by a pattern which
626 is stored in the spare area of the first page in the block which
627 holds the bad block table. Store a pointer to the pattern
628 in the pattern field. Further the length of the pattern has to be
629 stored in len and the offset in the spare area must be given
630 in the offs member of the nand_bbt_descr structure. For mirrored
631 bad block tables different patterns are mandatory.
</para></listitem>
632 <listitem><para>Table creation
</para>
633 <para>Set the option NAND_BBT_CREATE to enable the table creation
634 if no table can be found during the scan. Usually this is done only
635 once if a new chip is found.
</para></listitem>
636 <listitem><para>Table write support
</para>
637 <para>Set the option NAND_BBT_WRITE to enable the table write support.
638 This allows the update of the bad block table(s) in case a block has
639 to be marked bad due to wear. The MTD interface function block_markbad
640 is calling the update function of the bad block table. If the write
641 support is enabled then the table is updated on FLASH.
</para>
643 Note: Write support should only be enabled for mirrored tables with
646 <listitem><para>Table version control
</para>
647 <para>Set the option NAND_BBT_VERSION to enable the table version control.
648 It's highly recommended to enable this for mirrored tables with write
649 support. It makes sure that the risk of losing the bad block
650 table information is reduced to the loss of the information about the
651 one worn out block which should be marked bad. The version is stored in
652 4 consecutive bytes in the spare area of the device. The position of
653 the version number is defined by the member veroffs in the bad block table
654 descriptor.
</para></listitem>
655 <listitem><para>Save block contents on write
</para>
657 In case that the block which holds the bad block table does contain
658 other useful information, set the option NAND_BBT_SAVECONTENT. When
659 the bad block table is written then the whole block is read the bad
660 block table is updated and the block is erased and everything is
661 written back. If this option is not set only the bad block table
662 is written and everything else in the block is ignored and erased.
664 <listitem><para>Number of reserved blocks
</para>
666 For automatic placement some blocks must be reserved for
667 bad block table storage. The number of reserved blocks is defined
668 in the maxblocks member of the bad block table description structure.
669 Reserving
4 blocks for mirrored tables should be a reasonable number.
670 This also limits the number of blocks which are scanned for the bad
671 block table ident pattern.
677 <sect1 id=
"Spare_area_placement">
678 <title>Spare area (auto)placement
</title>
680 The nand driver implements different possibilities for
681 placement of filesystem data in the spare area,
683 <listitem><para>Placement defined by fs driver
</para></listitem>
684 <listitem><para>Automatic placement
</para></listitem>
686 The default placement function is automatic placement. The
687 nand driver has built in default placement schemes for the
688 various chiptypes. If due to hardware ECC functionality the
689 default placement does not fit then the board driver can
690 provide a own placement scheme.
693 File system drivers can provide a own placement scheme which
694 is used instead of the default placement scheme.
697 Placement schemes are defined by a nand_oobinfo structure
699 struct nand_oobinfo {
707 <listitem><para>useecc
</para><para>
708 The useecc member controls the ecc and placement function. The header
709 file include/mtd/mtd-abi.h contains constants to select ecc and
710 placement. MTD_NANDECC_OFF switches off the ecc complete. This is
711 not recommended and available for testing and diagnosis only.
712 MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
713 selects automatic placement.
715 <listitem><para>eccbytes
</para><para>
716 The eccbytes member defines the number of ecc bytes per page.
718 <listitem><para>eccpos
</para><para>
719 The eccpos array holds the byte offsets in the spare area where
720 the ecc codes are placed.
722 <listitem><para>oobfree
</para><para>
723 The oobfree array defines the areas in the spare area which can be
724 used for automatic placement. The information is given in the format
725 {offset, size}. offset defines the start of the usable area, size the
726 length in bytes. More than one area can be defined. The list is terminated
731 <sect2 id=
"Placement_defined_by_fs_driver">
732 <title>Placement defined by fs driver
</title>
734 The calling function provides a pointer to a nand_oobinfo
735 structure which defines the ecc placement. For writes the
736 caller must provide a spare area buffer along with the
737 data buffer. The spare area buffer size is (number of pages) *
738 (size of spare area). For reads the buffer size is
739 (number of pages) * ((size of spare area) + (number of ecc
740 steps per page) * sizeof (int)). The driver stores the
741 result of the ecc check for each tuple in the spare buffer.
742 The storage sequence is
745 <spare data page
0><ecc result
0>...
<ecc result n
>
751 <spare data page n
><ecc result
0>...
<ecc result n
>
754 This is a legacy mode used by YAFFS1.
757 If the spare area buffer is NULL then only the ECC placement is
758 done according to the given scheme in the nand_oobinfo structure.
761 <sect2 id=
"Automatic_placement">
762 <title>Automatic placement
</title>
764 Automatic placement uses the built in defaults to place the
765 ecc bytes in the spare area. If filesystem data have to be stored /
766 read into the spare area then the calling function must provide a
767 buffer. The buffer size per page is determined by the oobfree array in
768 the nand_oobinfo structure.
771 If the spare area buffer is NULL then only the ECC placement is
772 done according to the default builtin scheme.
776 <sect1 id=
"Spare_area_autoplacement_default">
777 <title>Spare area autoplacement default schemes
</title>
778 <sect2 id=
"pagesize_256">
779 <title>256 byte pagesize
</title>
780 <informaltable><tgroup cols=
"3"><tbody>
782 <entry>Offset
</entry>
783 <entry>Content
</entry>
784 <entry>Comment
</entry>
788 <entry>ECC byte
0</entry>
789 <entry>Error correction code byte
0</entry>
793 <entry>ECC byte
1</entry>
794 <entry>Error correction code byte
1</entry>
798 <entry>ECC byte
2</entry>
799 <entry>Error correction code byte
2</entry>
803 <entry>Autoplace
0</entry>
808 <entry>Autoplace
1</entry>
813 <entry>Bad block marker
</entry>
814 <entry>If any bit in this byte is zero, then this block is bad.
815 This applies only to the first page in a block. In the remaining
816 pages this byte is reserved
</entry>
820 <entry>Autoplace
2</entry>
825 <entry>Autoplace
3</entry>
828 </tbody></tgroup></informaltable>
830 <sect2 id=
"pagesize_512">
831 <title>512 byte pagesize
</title>
832 <informaltable><tgroup cols=
"3"><tbody>
834 <entry>Offset
</entry>
835 <entry>Content
</entry>
836 <entry>Comment
</entry>
840 <entry>ECC byte
0</entry>
841 <entry>Error correction code byte
0 of the lower
256 Byte data in
846 <entry>ECC byte
1</entry>
847 <entry>Error correction code byte
1 of the lower
256 Bytes of data
852 <entry>ECC byte
2</entry>
853 <entry>Error correction code byte
2 of the lower
256 Bytes of data
858 <entry>ECC byte
3</entry>
859 <entry>Error correction code byte
0 of the upper
256 Bytes of data
864 <entry>reserved
</entry>
865 <entry>reserved
</entry>
869 <entry>Bad block marker
</entry>
870 <entry>If any bit in this byte is zero, then this block is bad.
871 This applies only to the first page in a block. In the remaining
872 pages this byte is reserved
</entry>
876 <entry>ECC byte
4</entry>
877 <entry>Error correction code byte
1 of the upper
256 Bytes of data
882 <entry>ECC byte
5</entry>
883 <entry>Error correction code byte
2 of the upper
256 Bytes of data
887 <entry>0x08 -
0x0F</entry>
888 <entry>Autoplace
0 -
7</entry>
891 </tbody></tgroup></informaltable>
893 <sect2 id=
"pagesize_2048">
894 <title>2048 byte pagesize
</title>
895 <informaltable><tgroup cols=
"3"><tbody>
897 <entry>Offset
</entry>
898 <entry>Content
</entry>
899 <entry>Comment
</entry>
903 <entry>Bad block marker
</entry>
904 <entry>If any bit in this byte is zero, then this block is bad.
905 This applies only to the first page in a block. In the remaining
906 pages this byte is reserved
</entry>
910 <entry>Reserved
</entry>
911 <entry>Reserved
</entry>
914 <entry>0x02-
0x27</entry>
915 <entry>Autoplace
0 -
37</entry>
920 <entry>ECC byte
0</entry>
921 <entry>Error correction code byte
0 of the first
256 Byte data in
926 <entry>ECC byte
1</entry>
927 <entry>Error correction code byte
1 of the first
256 Bytes of data
932 <entry>ECC byte
2</entry>
933 <entry>Error correction code byte
2 of the first
256 Bytes data in
938 <entry>ECC byte
3</entry>
939 <entry>Error correction code byte
0 of the second
256 Bytes of data
944 <entry>ECC byte
4</entry>
945 <entry>Error correction code byte
1 of the second
256 Bytes of data
950 <entry>ECC byte
5</entry>
951 <entry>Error correction code byte
2 of the second
256 Bytes of data
956 <entry>ECC byte
6</entry>
957 <entry>Error correction code byte
0 of the third
256 Bytes of data
962 <entry>ECC byte
7</entry>
963 <entry>Error correction code byte
1 of the third
256 Bytes of data
968 <entry>ECC byte
8</entry>
969 <entry>Error correction code byte
2 of the third
256 Bytes of data
974 <entry>ECC byte
9</entry>
975 <entry>Error correction code byte
0 of the fourth
256 Bytes of data
980 <entry>ECC byte
10</entry>
981 <entry>Error correction code byte
1 of the fourth
256 Bytes of data
986 <entry>ECC byte
11</entry>
987 <entry>Error correction code byte
2 of the fourth
256 Bytes of data
992 <entry>ECC byte
12</entry>
993 <entry>Error correction code byte
0 of the fifth
256 Bytes of data
998 <entry>ECC byte
13</entry>
999 <entry>Error correction code byte
1 of the fifth
256 Bytes of data
1000 in this page
</entry>
1004 <entry>ECC byte
14</entry>
1005 <entry>Error correction code byte
2 of the fifth
256 Bytes of data
1006 in this page
</entry>
1010 <entry>ECC byte
15</entry>
1011 <entry>Error correction code byte
0 of the sixt
256 Bytes of data
1012 in this page
</entry>
1016 <entry>ECC byte
16</entry>
1017 <entry>Error correction code byte
1 of the sixt
256 Bytes of data
1018 in this page
</entry>
1022 <entry>ECC byte
17</entry>
1023 <entry>Error correction code byte
2 of the sixt
256 Bytes of data
1024 in this page
</entry>
1028 <entry>ECC byte
18</entry>
1029 <entry>Error correction code byte
0 of the seventh
256 Bytes of
1030 data in this page
</entry>
1034 <entry>ECC byte
19</entry>
1035 <entry>Error correction code byte
1 of the seventh
256 Bytes of
1036 data in this page
</entry>
1040 <entry>ECC byte
20</entry>
1041 <entry>Error correction code byte
2 of the seventh
256 Bytes of
1042 data in this page
</entry>
1046 <entry>ECC byte
21</entry>
1047 <entry>Error correction code byte
0 of the eighth
256 Bytes of data
1048 in this page
</entry>
1052 <entry>ECC byte
22</entry>
1053 <entry>Error correction code byte
1 of the eighth
256 Bytes of data
1054 in this page
</entry>
1058 <entry>ECC byte
23</entry>
1059 <entry>Error correction code byte
2 of the eighth
256 Bytes of data
1060 in this page
</entry>
1062 </tbody></tgroup></informaltable>
1067 <chapter id=
"filesystems">
1068 <title>Filesystem support
</title>
1070 The NAND driver provides all necessary functions for a
1071 filesystem via the MTD interface.
1074 Filesystems must be aware of the NAND peculiarities and
1075 restrictions. One major restrictions of NAND Flash is, that you cannot
1076 write as often as you want to a page. The consecutive writes to a page,
1077 before erasing it again, are restricted to
1-
3 writes, depending on the
1078 manufacturers specifications. This applies similar to the spare area.
1081 Therefore NAND aware filesystems must either write in page size chunks
1082 or hold a writebuffer to collect smaller writes until they sum up to
1083 pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
1086 The spare area usage to store filesystem data is controlled by
1087 the spare area placement functionality which is described in one
1088 of the earlier chapters.
1091 <chapter id=
"tools">
1092 <title>Tools
</title>
1094 The MTD project provides a couple of helpful tools to handle NAND Flash.
1096 <listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions
</para></listitem>
1097 <listitem><para>nandwrite: write filesystem images to NAND FLASH
</para></listitem>
1098 <listitem><para>nanddump: dump the contents of a NAND FLASH partitions
</para></listitem>
1102 These tools are aware of the NAND restrictions. Please use those tools
1103 instead of complaining about errors which are caused by non NAND aware
1108 <chapter id=
"defines">
1109 <title>Constants
</title>
1111 This chapter describes the constants which might be relevant for a driver developer.
1113 <sect1 id=
"Chip_option_constants">
1114 <title>Chip option constants
</title>
1115 <sect2 id=
"Constants_for_chip_id_table">
1116 <title>Constants for chip id table
</title>
1118 These constants are defined in nand.h. They are ored together to describe
1119 the chip functionality.
1121 /* Buswitdh is
16 bit */
1122 #define NAND_BUSWIDTH_16
0x00000002
1123 /* Device supports partial programming without padding */
1124 #define NAND_NO_PADDING
0x00000004
1125 /* Chip has cache program function */
1126 #define NAND_CACHEPRG
0x00000008
1127 /* Chip has copy back function */
1128 #define NAND_COPYBACK
0x00000010
1129 /* AND Chip which has
4 banks and a confusing page / block
1130 * assignment. See Renesas datasheet for further information */
1131 #define NAND_IS_AND
0x00000020
1132 /* Chip has a array of
4 pages which can be read without
1133 * additional ready /busy waits */
1134 #define NAND_4PAGE_ARRAY
0x00000040
1138 <sect2 id=
"Constants_for_runtime_options">
1139 <title>Constants for runtime options
</title>
1141 These constants are defined in nand.h. They are ored together to describe
1144 /* The hw ecc generator provides a syndrome instead a ecc value on read
1145 * This can only work if we have the ecc bytes directly behind the
1146 * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
1147 #define NAND_HWECC_SYNDROME
0x00020000
1153 <sect1 id=
"EEC_selection_constants">
1154 <title>ECC selection constants
</title>
1156 Use these constants to select the ECC algorithm.
1158 /* No ECC. Usage is not recommended ! */
1159 #define NAND_ECC_NONE
0
1160 /* Software ECC
3 byte ECC per
256 Byte data */
1161 #define NAND_ECC_SOFT
1
1162 /* Hardware ECC
3 byte ECC per
256 Byte data */
1163 #define NAND_ECC_HW3_256
2
1164 /* Hardware ECC
3 byte ECC per
512 Byte data */
1165 #define NAND_ECC_HW3_512
3
1166 /* Hardware ECC
6 byte ECC per
512 Byte data */
1167 #define NAND_ECC_HW6_512
4
1168 /* Hardware ECC
6 byte ECC per
512 Byte data */
1169 #define NAND_ECC_HW8_512
6
1174 <sect1 id=
"Hardware_control_related_constants">
1175 <title>Hardware control related constants
</title>
1177 These constants describe the requested hardware access function when
1178 the boardspecific hardware control function is called
1180 /* Select the chip by setting nCE to low */
1181 #define NAND_CTL_SETNCE
1
1182 /* Deselect the chip by setting nCE to high */
1183 #define NAND_CTL_CLRNCE
2
1184 /* Select the command latch by setting CLE to high */
1185 #define NAND_CTL_SETCLE
3
1186 /* Deselect the command latch by setting CLE to low */
1187 #define NAND_CTL_CLRCLE
4
1188 /* Select the address latch by setting ALE to high */
1189 #define NAND_CTL_SETALE
5
1190 /* Deselect the address latch by setting ALE to low */
1191 #define NAND_CTL_CLRALE
6
1192 /* Set write protection by setting WP to high. Not used! */
1193 #define NAND_CTL_SETWP
7
1194 /* Clear write protection by setting WP to low. Not used! */
1195 #define NAND_CTL_CLRWP
8
1200 <sect1 id=
"Bad_block_table_constants">
1201 <title>Bad block table related constants
</title>
1203 These constants describe the options used for bad block
1206 /* Options for the bad block table descriptors */
1208 /* The number of bits used per block in the bbt on the device */
1209 #define NAND_BBT_NRBITS_MSK
0x0000000F
1210 #define NAND_BBT_1BIT
0x00000001
1211 #define NAND_BBT_2BIT
0x00000002
1212 #define NAND_BBT_4BIT
0x00000004
1213 #define NAND_BBT_8BIT
0x00000008
1214 /* The bad block table is in the last good block of the device */
1215 #define NAND_BBT_LASTBLOCK
0x00000010
1216 /* The bbt is at the given page, else we must scan for the bbt */
1217 #define NAND_BBT_ABSPAGE
0x00000020
1218 /* bbt is stored per chip on multichip devices */
1219 #define NAND_BBT_PERCHIP
0x00000080
1220 /* bbt has a version counter at offset veroffs */
1221 #define NAND_BBT_VERSION
0x00000100
1222 /* Create a bbt if none axists */
1223 #define NAND_BBT_CREATE
0x00000200
1224 /* Write bbt if necessary */
1225 #define NAND_BBT_WRITE
0x00001000
1226 /* Read and write back block contents when writing bbt */
1227 #define NAND_BBT_SAVECONTENT
0x00002000
1234 <chapter id=
"structs">
1235 <title>Structures
</title>
1237 This chapter contains the autogenerated documentation of the structures which are
1238 used in the NAND driver and might be relevant for a driver developer. Each
1239 struct member has a short description which is marked with an [XXX] identifier.
1240 See the chapter
"Documentation hints" for an explanation.
1242 !Iinclude/linux/mtd/nand.h
1245 <chapter id=
"pubfunctions">
1246 <title>Public Functions Provided
</title>
1248 This chapter contains the autogenerated documentation of the NAND kernel API functions
1249 which are exported. Each function has a short description which is marked with an [XXX] identifier.
1250 See the chapter
"Documentation hints" for an explanation.
1252 !Edrivers/mtd/nand/nand_base.c
1253 !Edrivers/mtd/nand/nand_bbt.c
1254 !Edrivers/mtd/nand/nand_ecc.c
1257 <chapter id=
"intfunctions">
1258 <title>Internal Functions Provided
</title>
1260 This chapter contains the autogenerated documentation of the NAND driver internal functions.
1261 Each function has a short description which is marked with an [XXX] identifier.
1262 See the chapter
"Documentation hints" for an explanation.
1263 The functions marked with [DEFAULT] might be relevant for a board driver developer.
1265 !Idrivers/mtd/nand/nand_base.c
1266 !Idrivers/mtd/nand/nand_bbt.c
1267 <!-- No internal functions for kernel-doc:
1268 X!Idrivers/mtd/nand/nand_ecc.c
1272 <chapter id=
"credits">
1273 <title>Credits
</title>
1275 The following people have contributed to the NAND driver:
1277 <listitem><para>Steven J. Hill
<email>sjhill@realitydiluted.com
</email></para></listitem>
1278 <listitem><para>David Woodhouse
<email>dwmw2@infradead.org
</email></para></listitem>
1279 <listitem><para>Thomas Gleixner
<email>tglx@linutronix.de
</email></para></listitem>
1281 A lot of users have provided bugfixes, improvements and helping hands for testing.
1285 The following people have contributed to this document:
1287 <listitem><para>Thomas Gleixner
<email>tglx@linutronix.de
</email></para></listitem>