2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/bsearch.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
33 #include "../vfp/vfpinstr.h"
39 /******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
43 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44 static u32 cache_levels
;
46 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
50 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51 * of cp15 registers can be viewed either as couple of two u32 registers
52 * or one u64 register. Current u64 register encoding is that least
53 * significant u32 word is followed by most significant u32 word.
55 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu
*vcpu
,
56 const struct coproc_reg
*r
,
59 vcpu_cp15(vcpu
, r
->reg
) = val
& 0xffffffff;
60 vcpu_cp15(vcpu
, r
->reg
+ 1) = val
>> 32;
63 static inline u64
vcpu_cp15_reg64_get(struct kvm_vcpu
*vcpu
,
64 const struct coproc_reg
*r
)
68 val
= vcpu_cp15(vcpu
, r
->reg
+ 1);
70 val
= val
| vcpu_cp15(vcpu
, r
->reg
);
74 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
76 kvm_inject_undefined(vcpu
);
80 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
83 * We can get here, if the host has been built without VFPv3 support,
84 * but the guest attempted a floating point operation.
86 kvm_inject_undefined(vcpu
);
90 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
92 kvm_inject_undefined(vcpu
);
96 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
99 * Compute guest MPIDR. We build a virtual cluster out of the
100 * vcpu_id, but we read the 'U' bit from the underlying
103 vcpu_cp15(vcpu
, c0_MPIDR
) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK
) |
104 ((vcpu
->vcpu_id
>> 2) << MPIDR_LEVEL_BITS
) |
105 (vcpu
->vcpu_id
& 3));
108 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
109 static bool access_actlr(struct kvm_vcpu
*vcpu
,
110 const struct coproc_params
*p
,
111 const struct coproc_reg
*r
)
114 return ignore_write(vcpu
, p
);
116 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu_cp15(vcpu
, c1_ACTLR
);
120 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
121 static bool access_cbar(struct kvm_vcpu
*vcpu
,
122 const struct coproc_params
*p
,
123 const struct coproc_reg
*r
)
126 return write_to_read_only(vcpu
, p
);
127 return read_zero(vcpu
, p
);
130 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
131 static bool access_l2ctlr(struct kvm_vcpu
*vcpu
,
132 const struct coproc_params
*p
,
133 const struct coproc_reg
*r
)
136 return ignore_write(vcpu
, p
);
138 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu_cp15(vcpu
, c9_L2CTLR
);
142 static void reset_l2ctlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
146 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr
));
147 l2ctlr
&= ~(3 << 24);
148 ncores
= atomic_read(&vcpu
->kvm
->online_vcpus
) - 1;
149 /* How many cores in the current cluster and the next ones */
150 ncores
-= (vcpu
->vcpu_id
& ~3);
151 /* Cap it to the maximum number of cores in a single cluster */
152 ncores
= min(ncores
, 3U);
153 l2ctlr
|= (ncores
& 3) << 24;
155 vcpu_cp15(vcpu
, c9_L2CTLR
) = l2ctlr
;
158 static void reset_actlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
162 /* ACTLR contains SMP bit: make sure you create all cpus first! */
163 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr
));
164 /* Make the SMP bit consistent with the guest configuration */
165 if (atomic_read(&vcpu
->kvm
->online_vcpus
) > 1)
170 vcpu_cp15(vcpu
, c1_ACTLR
) = actlr
;
174 * TRM entries: A7:4.3.50, A15:4.3.49
175 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
177 static bool access_l2ectlr(struct kvm_vcpu
*vcpu
,
178 const struct coproc_params
*p
,
179 const struct coproc_reg
*r
)
182 return ignore_write(vcpu
, p
);
184 *vcpu_reg(vcpu
, p
->Rt1
) = 0;
189 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
192 const struct coproc_params
*p
,
193 const struct coproc_reg
*r
)
196 return read_from_write_only(vcpu
, p
);
198 kvm_set_way_flush(vcpu
);
203 * Generic accessor for VM registers. Only called as long as HCR_TVM
204 * is set. If the guest enables the MMU, we stop trapping the VM
205 * sys_regs and leave it in complete control of the caches.
207 * Used by the cpu-specific code.
209 bool access_vm_reg(struct kvm_vcpu
*vcpu
,
210 const struct coproc_params
*p
,
211 const struct coproc_reg
*r
)
213 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
215 BUG_ON(!p
->is_write
);
217 vcpu_cp15(vcpu
, r
->reg
) = *vcpu_reg(vcpu
, p
->Rt1
);
219 vcpu_cp15(vcpu
, r
->reg
+ 1) = *vcpu_reg(vcpu
, p
->Rt2
);
221 kvm_toggle_cache(vcpu
, was_enabled
);
225 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
226 const struct coproc_params
*p
,
227 const struct coproc_reg
*r
)
232 return read_from_write_only(vcpu
, p
);
234 reg
= (u64
)*vcpu_reg(vcpu
, p
->Rt2
) << 32;
235 reg
|= *vcpu_reg(vcpu
, p
->Rt1
) ;
237 vgic_v3_dispatch_sgi(vcpu
, reg
);
242 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
243 const struct coproc_params
*p
,
244 const struct coproc_reg
*r
)
247 return ignore_write(vcpu
, p
);
249 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
255 * We could trap ID_DFR0 and tell the guest we don't support performance
256 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
257 * NAKed, so it will read the PMCR anyway.
259 * Therefore we tell the guest we have 0 counters. Unfortunately, we
260 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
261 * all PM registers, which doesn't crash the guest kernel at least.
263 static bool pm_fake(struct kvm_vcpu
*vcpu
,
264 const struct coproc_params
*p
,
265 const struct coproc_reg
*r
)
268 return ignore_write(vcpu
, p
);
270 return read_zero(vcpu
, p
);
273 #define access_pmcr pm_fake
274 #define access_pmcntenset pm_fake
275 #define access_pmcntenclr pm_fake
276 #define access_pmovsr pm_fake
277 #define access_pmselr pm_fake
278 #define access_pmceid0 pm_fake
279 #define access_pmceid1 pm_fake
280 #define access_pmccntr pm_fake
281 #define access_pmxevtyper pm_fake
282 #define access_pmxevcntr pm_fake
283 #define access_pmuserenr pm_fake
284 #define access_pmintenset pm_fake
285 #define access_pmintenclr pm_fake
287 /* Architected CP15 registers.
288 * CRn denotes the primary register number, but is copied to the CRm in the
289 * user space API for 64-bit register access in line with the terminology used
291 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
292 * registers preceding 32-bit ones.
294 static const struct coproc_reg cp15_regs
[] = {
295 /* MPIDR: we use VMPIDR for guest access. */
296 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32
,
297 NULL
, reset_mpidr
, c0_MPIDR
},
299 /* CSSELR: swapped by interrupt.S. */
300 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
301 NULL
, reset_unknown
, c0_CSSELR
},
303 /* ACTLR: trapped by HCR.TAC bit. */
304 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32
,
305 access_actlr
, reset_actlr
, c1_ACTLR
},
307 /* CPACR: swapped by interrupt.S. */
308 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32
,
309 NULL
, reset_val
, c1_CPACR
, 0x00000000 },
311 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
312 { CRm64( 2), Op1( 0), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR0
},
313 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32
,
314 access_vm_reg
, reset_unknown
, c2_TTBR0
},
315 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32
,
316 access_vm_reg
, reset_unknown
, c2_TTBR1
},
317 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
318 access_vm_reg
, reset_val
, c2_TTBCR
, 0x00000000 },
319 { CRm64( 2), Op1( 1), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR1
},
322 /* DACR: swapped by interrupt.S. */
323 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
324 access_vm_reg
, reset_unknown
, c3_DACR
},
326 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
327 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
328 access_vm_reg
, reset_unknown
, c5_DFSR
},
329 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
330 access_vm_reg
, reset_unknown
, c5_IFSR
},
331 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
332 access_vm_reg
, reset_unknown
, c5_ADFSR
},
333 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
334 access_vm_reg
, reset_unknown
, c5_AIFSR
},
336 /* DFAR/IFAR: swapped by interrupt.S. */
337 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
338 access_vm_reg
, reset_unknown
, c6_DFAR
},
339 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
340 access_vm_reg
, reset_unknown
, c6_IFAR
},
342 /* PAR swapped by interrupt.S */
343 { CRm64( 7), Op1( 0), is64
, NULL
, reset_unknown64
, c7_PAR
},
346 * DC{C,I,CI}SW operations:
348 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
349 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
350 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
352 * L2CTLR access (guest wants to know #CPUs).
354 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32
,
355 access_l2ctlr
, reset_l2ctlr
, c9_L2CTLR
},
356 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32
, access_l2ectlr
},
359 * Dummy performance monitor implementation.
361 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
362 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
363 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
364 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
365 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
366 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
367 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
368 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
369 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
370 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
371 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
372 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
373 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
375 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
376 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
377 access_vm_reg
, reset_unknown
, c10_PRRR
},
378 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
379 access_vm_reg
, reset_unknown
, c10_NMRR
},
381 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
382 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32
,
383 access_vm_reg
, reset_unknown
, c10_AMAIR0
},
384 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32
,
385 access_vm_reg
, reset_unknown
, c10_AMAIR1
},
388 { CRm64(12), Op1( 0), is64
, access_gic_sgi
},
390 /* VBAR: swapped by interrupt.S. */
391 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
392 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
395 { CRn(12), CRm(12), Op1( 0), Op2(5), is32
, access_gic_sre
},
397 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
398 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
399 access_vm_reg
, reset_val
, c13_CID
, 0x00000000 },
400 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
401 NULL
, reset_unknown
, c13_TID_URW
},
402 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
403 NULL
, reset_unknown
, c13_TID_URO
},
404 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
405 NULL
, reset_unknown
, c13_TID_PRIV
},
407 /* CNTKCTL: swapped by interrupt.S. */
408 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
409 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
411 /* The Configuration Base Address Register. */
412 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32
, access_cbar
},
415 static int check_reg_table(const struct coproc_reg
*table
, unsigned int n
)
419 for (i
= 1; i
< n
; i
++) {
420 if (cmp_reg(&table
[i
-1], &table
[i
]) >= 0) {
421 kvm_err("reg table %p out of order (%d)\n", table
, i
- 1);
429 /* Target specific emulation tables */
430 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
432 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
434 BUG_ON(check_reg_table(table
->table
, table
->num
));
435 target_tables
[table
->target
] = table
;
438 /* Get specific register table for this target. */
439 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
441 struct kvm_coproc_target_table
*table
;
443 table
= target_tables
[target
];
448 #define reg_to_match_value(x) \
451 val = (x)->CRn << 11; \
452 val |= (x)->CRm << 7; \
453 val |= (x)->Op1 << 4; \
454 val |= (x)->Op2 << 1; \
455 val |= !(x)->is_64bit; \
459 static int match_reg(const void *key
, const void *elt
)
461 const unsigned long pval
= (unsigned long)key
;
462 const struct coproc_reg
*r
= elt
;
464 return pval
- reg_to_match_value(r
);
467 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
468 const struct coproc_reg table
[],
471 unsigned long pval
= reg_to_match_value(params
);
473 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_reg
);
476 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
477 const struct coproc_params
*params
)
480 const struct coproc_reg
*table
, *r
;
482 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
483 params
->CRm
, params
->Op2
, params
->is_write
);
485 table
= get_target_table(vcpu
->arch
.target
, &num
);
487 /* Search target-specific then generic table. */
488 r
= find_reg(params
, table
, num
);
490 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
493 /* If we don't have an accessor, we should never get here! */
496 if (likely(r
->access(vcpu
, params
, r
))) {
497 /* Skip instruction, since it was emulated */
498 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
501 /* If access function fails, it should complain. */
503 kvm_err("Unsupported guest CP15 access at: %08lx\n",
505 print_cp_instr(params
);
507 kvm_inject_undefined(vcpu
);
511 static struct coproc_params
decode_64bit_hsr(struct kvm_vcpu
*vcpu
)
513 struct coproc_params params
;
515 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
516 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
517 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
518 params
.is_64bit
= true;
520 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
522 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
529 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
530 * @vcpu: The VCPU pointer
531 * @run: The kvm_run struct
533 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
535 struct coproc_params params
= decode_64bit_hsr(vcpu
);
537 return emulate_cp15(vcpu
, ¶ms
);
541 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
542 * @vcpu: The VCPU pointer
543 * @run: The kvm_run struct
545 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
547 struct coproc_params params
= decode_64bit_hsr(vcpu
);
550 pm_fake(vcpu
, ¶ms
, NULL
);
553 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
557 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
558 const struct coproc_reg
*table
, size_t num
)
562 for (i
= 0; i
< num
; i
++)
564 table
[i
].reset(vcpu
, &table
[i
]);
567 static struct coproc_params
decode_32bit_hsr(struct kvm_vcpu
*vcpu
)
569 struct coproc_params params
;
571 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
572 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
573 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
574 params
.is_64bit
= false;
576 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
577 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
578 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
585 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
586 * @vcpu: The VCPU pointer
587 * @run: The kvm_run struct
589 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
591 struct coproc_params params
= decode_32bit_hsr(vcpu
);
592 return emulate_cp15(vcpu
, ¶ms
);
596 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
597 * @vcpu: The VCPU pointer
598 * @run: The kvm_run struct
600 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
602 struct coproc_params params
= decode_32bit_hsr(vcpu
);
605 pm_fake(vcpu
, ¶ms
, NULL
);
608 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
612 /******************************************************************************
614 *****************************************************************************/
616 static bool index_to_params(u64 id
, struct coproc_params
*params
)
618 switch (id
& KVM_REG_SIZE_MASK
) {
619 case KVM_REG_SIZE_U32
:
620 /* Any unused index bits means it's not valid. */
621 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
622 | KVM_REG_ARM_COPROC_MASK
623 | KVM_REG_ARM_32_CRN_MASK
624 | KVM_REG_ARM_CRM_MASK
625 | KVM_REG_ARM_OPC1_MASK
626 | KVM_REG_ARM_32_OPC2_MASK
))
629 params
->is_64bit
= false;
630 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
631 >> KVM_REG_ARM_32_CRN_SHIFT
);
632 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
633 >> KVM_REG_ARM_CRM_SHIFT
);
634 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
635 >> KVM_REG_ARM_OPC1_SHIFT
);
636 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
637 >> KVM_REG_ARM_32_OPC2_SHIFT
);
639 case KVM_REG_SIZE_U64
:
640 /* Any unused index bits means it's not valid. */
641 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
642 | KVM_REG_ARM_COPROC_MASK
643 | KVM_REG_ARM_CRM_MASK
644 | KVM_REG_ARM_OPC1_MASK
))
646 params
->is_64bit
= true;
647 /* CRm to CRn: see cp15_to_index for details */
648 params
->CRn
= ((id
& KVM_REG_ARM_CRM_MASK
)
649 >> KVM_REG_ARM_CRM_SHIFT
);
650 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
651 >> KVM_REG_ARM_OPC1_SHIFT
);
660 /* Decode an index value, and find the cp15 coproc_reg entry. */
661 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
665 const struct coproc_reg
*table
, *r
;
666 struct coproc_params params
;
668 /* We only do cp15 for now. */
669 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
672 if (!index_to_params(id
, ¶ms
))
675 table
= get_target_table(vcpu
->arch
.target
, &num
);
676 r
= find_reg(¶ms
, table
, num
);
678 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
680 /* Not saved in the cp15 array? */
688 * These are the invariant cp15 registers: we let the guest see the host
689 * versions of these, so they're part of the guest state.
691 * A future CPU may provide a mechanism to present different values to
692 * the guest, or a future kvm may trap them.
694 /* Unfortunately, there's no register-argument for mrc, so generate. */
695 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
696 static void get_##name(struct kvm_vcpu *v, \
697 const struct coproc_reg *r) \
701 asm volatile("mrc p15, " __stringify(op1) \
702 ", %0, c" __stringify(crn) \
703 ", c" __stringify(crm) \
704 ", " __stringify(op2) "\n" : "=r" (val)); \
705 ((struct coproc_reg *)r)->val = val; \
708 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
709 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
710 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
711 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
712 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
713 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
714 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
715 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
716 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
717 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
718 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
719 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
720 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
721 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
722 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
723 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
724 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
725 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
726 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
727 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
728 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
730 /* ->val is filled in by kvm_invariant_coproc_table_init() */
731 static struct coproc_reg invariant_cp15
[] = {
732 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
733 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
734 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
735 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
736 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
738 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
739 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
741 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
742 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
743 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
744 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
745 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
746 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
747 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
748 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
750 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
751 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
752 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
753 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
754 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
755 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
759 * Reads a register value from a userspace address to a kernel
760 * variable. Make sure that register size matches sizeof(*__val).
762 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
764 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
770 * Writes a register value to a userspace address from a kernel variable.
771 * Make sure that register size matches sizeof(*__val).
773 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
775 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
780 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
782 struct coproc_params params
;
783 const struct coproc_reg
*r
;
786 if (!index_to_params(id
, ¶ms
))
789 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
794 if (KVM_REG_SIZE(id
) == 4) {
797 ret
= reg_to_user(uaddr
, &val
, id
);
798 } else if (KVM_REG_SIZE(id
) == 8) {
799 ret
= reg_to_user(uaddr
, &r
->val
, id
);
804 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
806 struct coproc_params params
;
807 const struct coproc_reg
*r
;
811 if (!index_to_params(id
, ¶ms
))
813 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
818 if (KVM_REG_SIZE(id
) == 4) {
821 err
= reg_from_user(&val32
, uaddr
, id
);
824 } else if (KVM_REG_SIZE(id
) == 8) {
825 err
= reg_from_user(&val
, uaddr
, id
);
830 /* This is what we mean by invariant: you can't change it. */
837 static bool is_valid_cache(u32 val
)
841 if (val
>= CSSELR_MAX
)
844 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
846 ctype
= (cache_levels
>> (level
* 3)) & 7;
849 case 0: /* No cache */
851 case 1: /* Instruction cache only */
853 case 2: /* Data cache only */
854 case 4: /* Unified cache */
856 case 3: /* Separate instruction and data caches */
858 default: /* Reserved: we can't know instruction or data. */
863 /* Which cache CCSIDR represents depends on CSSELR value. */
864 static u32
get_ccsidr(u32 csselr
)
868 /* Make sure noone else changes CSSELR during this! */
870 /* Put value into CSSELR */
871 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
873 /* Read result out of CCSIDR */
874 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
880 static int demux_c15_get(u64 id
, void __user
*uaddr
)
883 u32 __user
*uval
= uaddr
;
885 /* Fail if we have unknown bits set. */
886 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
887 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
890 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
891 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
892 if (KVM_REG_SIZE(id
) != 4)
894 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
895 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
896 if (!is_valid_cache(val
))
899 return put_user(get_ccsidr(val
), uval
);
905 static int demux_c15_set(u64 id
, void __user
*uaddr
)
908 u32 __user
*uval
= uaddr
;
910 /* Fail if we have unknown bits set. */
911 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
912 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
915 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
916 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
917 if (KVM_REG_SIZE(id
) != 4)
919 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
920 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
921 if (!is_valid_cache(val
))
924 if (get_user(newval
, uval
))
927 /* This is also invariant: you can't change it. */
928 if (newval
!= get_ccsidr(val
))
937 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
938 KVM_REG_ARM_VFP_FPSCR
,
939 KVM_REG_ARM_VFP_FPINST
,
940 KVM_REG_ARM_VFP_FPINST2
,
941 KVM_REG_ARM_VFP_MVFR0
,
942 KVM_REG_ARM_VFP_MVFR1
,
943 KVM_REG_ARM_VFP_FPSID
};
945 static unsigned int num_fp_regs(void)
947 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
953 static unsigned int num_vfp_regs(void)
955 /* Normal FP regs + control regs. */
956 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
959 static int copy_vfp_regids(u64 __user
*uindices
)
962 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
963 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
965 for (i
= 0; i
< num_fp_regs(); i
++) {
966 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
972 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
973 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
978 return num_vfp_regs();
981 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
983 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
986 /* Fail if we have unknown bits set. */
987 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
988 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
991 if (vfpid
< num_fp_regs()) {
992 if (KVM_REG_SIZE(id
) != 8)
994 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpregs
[vfpid
],
998 /* FP control registers are all 32 bit. */
999 if (KVM_REG_SIZE(id
) != 4)
1003 case KVM_REG_ARM_VFP_FPEXC
:
1004 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpexc
, id
);
1005 case KVM_REG_ARM_VFP_FPSCR
:
1006 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpscr
, id
);
1007 case KVM_REG_ARM_VFP_FPINST
:
1008 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpinst
, id
);
1009 case KVM_REG_ARM_VFP_FPINST2
:
1010 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpinst2
, id
);
1011 case KVM_REG_ARM_VFP_MVFR0
:
1013 return reg_to_user(uaddr
, &val
, id
);
1014 case KVM_REG_ARM_VFP_MVFR1
:
1016 return reg_to_user(uaddr
, &val
, id
);
1017 case KVM_REG_ARM_VFP_FPSID
:
1019 return reg_to_user(uaddr
, &val
, id
);
1025 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
1027 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
1030 /* Fail if we have unknown bits set. */
1031 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1032 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1035 if (vfpid
< num_fp_regs()) {
1036 if (KVM_REG_SIZE(id
) != 8)
1038 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpregs
[vfpid
],
1042 /* FP control registers are all 32 bit. */
1043 if (KVM_REG_SIZE(id
) != 4)
1047 case KVM_REG_ARM_VFP_FPEXC
:
1048 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpexc
, uaddr
, id
);
1049 case KVM_REG_ARM_VFP_FPSCR
:
1050 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpscr
, uaddr
, id
);
1051 case KVM_REG_ARM_VFP_FPINST
:
1052 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpinst
, uaddr
, id
);
1053 case KVM_REG_ARM_VFP_FPINST2
:
1054 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpinst2
, uaddr
, id
);
1055 /* These are invariant. */
1056 case KVM_REG_ARM_VFP_MVFR0
:
1057 if (reg_from_user(&val
, uaddr
, id
))
1059 if (val
!= fmrx(MVFR0
))
1062 case KVM_REG_ARM_VFP_MVFR1
:
1063 if (reg_from_user(&val
, uaddr
, id
))
1065 if (val
!= fmrx(MVFR1
))
1068 case KVM_REG_ARM_VFP_FPSID
:
1069 if (reg_from_user(&val
, uaddr
, id
))
1071 if (val
!= fmrx(FPSID
))
1078 #else /* !CONFIG_VFPv3 */
1079 static unsigned int num_vfp_regs(void)
1084 static int copy_vfp_regids(u64 __user
*uindices
)
1089 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
1094 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
1098 #endif /* !CONFIG_VFPv3 */
1100 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1102 const struct coproc_reg
*r
;
1103 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1106 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1107 return demux_c15_get(reg
->id
, uaddr
);
1109 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1110 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
1112 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1114 return get_invariant_cp15(reg
->id
, uaddr
);
1117 if (KVM_REG_SIZE(reg
->id
) == 8) {
1120 val
= vcpu_cp15_reg64_get(vcpu
, r
);
1121 ret
= reg_to_user(uaddr
, &val
, reg
->id
);
1122 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1123 ret
= reg_to_user(uaddr
, &vcpu_cp15(vcpu
, r
->reg
), reg
->id
);
1129 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1131 const struct coproc_reg
*r
;
1132 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1135 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1136 return demux_c15_set(reg
->id
, uaddr
);
1138 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1139 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
1141 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1143 return set_invariant_cp15(reg
->id
, uaddr
);
1146 if (KVM_REG_SIZE(reg
->id
) == 8) {
1149 ret
= reg_from_user(&val
, uaddr
, reg
->id
);
1151 vcpu_cp15_reg64_set(vcpu
, r
, val
);
1152 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1153 ret
= reg_from_user(&vcpu_cp15(vcpu
, r
->reg
), uaddr
, reg
->id
);
1159 static unsigned int num_demux_regs(void)
1161 unsigned int i
, count
= 0;
1163 for (i
= 0; i
< CSSELR_MAX
; i
++)
1164 if (is_valid_cache(i
))
1170 static int write_demux_regids(u64 __user
*uindices
)
1172 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
1175 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
1176 for (i
= 0; i
< CSSELR_MAX
; i
++) {
1177 if (!is_valid_cache(i
))
1179 if (put_user(val
| i
, uindices
))
1186 static u64
cp15_to_index(const struct coproc_reg
*reg
)
1188 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
1189 if (reg
->is_64bit
) {
1190 val
|= KVM_REG_SIZE_U64
;
1191 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1193 * CRn always denotes the primary coproc. reg. nr. for the
1194 * in-kernel representation, but the user space API uses the
1195 * CRm for the encoding, because it is modelled after the
1196 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1199 val
|= (reg
->CRn
<< KVM_REG_ARM_CRM_SHIFT
);
1201 val
|= KVM_REG_SIZE_U32
;
1202 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1203 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
1204 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
1205 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
1210 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
1215 if (put_user(cp15_to_index(reg
), *uind
))
1222 /* Assumed ordered tables, see kvm_coproc_table_init. */
1223 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
1225 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
1226 unsigned int total
= 0;
1229 /* We check for duplicates here, to allow arch-specific overrides. */
1230 i1
= get_target_table(vcpu
->arch
.target
, &num
);
1233 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
1235 BUG_ON(i1
== end1
|| i2
== end2
);
1237 /* Walk carefully, as both tables may refer to the same register. */
1239 int cmp
= cmp_reg(i1
, i2
);
1240 /* target-specific overrides generic entry. */
1242 /* Ignore registers we trap but don't save. */
1244 if (!copy_reg_to_user(i1
, &uind
))
1249 /* Ignore registers we trap but don't save. */
1251 if (!copy_reg_to_user(i2
, &uind
))
1257 if (cmp
<= 0 && ++i1
== end1
)
1259 if (cmp
>= 0 && ++i2
== end2
)
1265 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
1267 return ARRAY_SIZE(invariant_cp15
)
1270 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
1273 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1278 /* Then give them all the invariant registers' indices. */
1279 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
1280 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
1285 err
= walk_cp15(vcpu
, uindices
);
1290 err
= copy_vfp_regids(uindices
);
1295 return write_demux_regids(uindices
);
1298 void kvm_coproc_table_init(void)
1302 /* Make sure tables are unique and in order. */
1303 BUG_ON(check_reg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
1304 BUG_ON(check_reg_table(invariant_cp15
, ARRAY_SIZE(invariant_cp15
)));
1306 /* We abuse the reset function to overwrite the table itself. */
1307 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1308 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1311 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1313 * If software reads the Cache Type fields from Ctype1
1314 * upwards, once it has seen a value of 0b000, no caches
1315 * exist at further-out levels of the hierarchy. So, for
1316 * example, if Ctype3 is the first Cache Type field with a
1317 * value of 0b000, the values of Ctype4 to Ctype7 must be
1320 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1321 for (i
= 0; i
< 7; i
++)
1322 if (((cache_levels
>> (i
*3)) & 7) == 0)
1324 /* Clear all higher bits. */
1325 cache_levels
&= (1 << (i
*3))-1;
1329 * kvm_reset_coprocs - sets cp15 registers to reset value
1330 * @vcpu: The VCPU pointer
1332 * This function finds the right table above and sets the registers on the
1333 * virtual CPU struct to their architecturally defined reset values.
1335 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1338 const struct coproc_reg
*table
;
1340 /* Catch someone adding a register without putting in reset entry. */
1341 memset(vcpu
->arch
.ctxt
.cp15
, 0x42, sizeof(vcpu
->arch
.ctxt
.cp15
));
1343 /* Generic chip reset first (so target could override). */
1344 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1346 table
= get_target_table(vcpu
->arch
.target
, &num
);
1347 reset_coproc_regs(vcpu
, table
, num
);
1349 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1350 if (vcpu_cp15(vcpu
, num
) == 0x42424242)
1351 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num
);